SN74LVC1T45 [TI]

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS; 可配置电压转换和3态输出的单位双电源总线收发器
SN74LVC1T45
型号: SN74LVC1T45
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
可配置电压转换和3态输出的单位双电源总线收发器

总线收发器 输出元件
文件: 总22页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
D
D
Available in the Texas Instruments  
NanoStarand NanoFreePackages  
Fully Configurable Dual-Rail Design Allows  
Each Port to Operate Over the Full 1.65-V to  
5.5-V Power-Supply Range  
D
D
I
Supports Partial-Power-Down Mode  
off  
Operation  
Max Data Rates  
− 420 Mbps (3.3-V to 5-V Translation)  
− 210 Mbps (Translate to 3.3 V)  
− 140 Mbps (Translate to 2.5 V)  
− 75 Mbps (Translate to 1.8 V)  
D
V
Isolation Feature − If Either V  
Input  
CC  
CC  
Is at GND, Both Ports Are in the  
High-Impedance State  
D
D
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
D
D
D
DIR Input Circuit Referenced to V  
CCA  
ESD Protection Exceeds JESD 22  
− 2000-V Human-Body Model (A114-A)  
− 200-V Machine Model (A115-A)  
Low Power Consumption, 4-µA Max I  
CC  
24-mA Output Drive at 3.3 V  
− 1000-V Charged-Device Model (C101)  
YEP OR YZP PACKAGE  
(BOTTOM VIEW)  
DBV OR DCK PACKAGE  
(TOP VIEW)  
3 4  
2 5  
1 6  
A
GND  
B
DIR  
1
2
3
6
5
4
V
GND  
V
CCB  
DIR  
CCA  
V
V
CCB  
CCA  
A
B
description/ordering information  
This single-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is  
designed to track V . V accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track  
CCA CCA  
V
. V  
accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional  
CCB CCB  
translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.  
The SN74LVC1T45 is designed for asynchronous communication between data buses. The device transmits  
data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the  
direction-control (DIR) input.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
A
PACKAGE  
NanoStar− WCSP (DSBGA)  
0.23-mm Large Bump − YEP  
SN74LVC1T45YEPR  
SN74LVC1T45YZPR  
Reel of 3000  
_ _ _TA_  
NanoFree− WCSP (DSBGA)  
0.23-mm Large Bump − YZP (Pb-free)  
−40°C to 85°C  
Reel of 3000  
Reel of 250  
Reel of 3000  
SN74LVC1T45DBVR  
SN74LVC1T45DBVT  
SN74LVC1T45DCKR  
SOT (SOT-23) − DBV  
CT1_  
TA_  
SOT (SC-70) − DCK  
Reel of 250  
SN74LVC1T45DCKT  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.  
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one  
following character to designate the assembly/test site. Pin  
1 identifier indicates solder-bump composition  
(1 = SnPb, = Pb-free).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
NanoStar and NanoFree are trademarks of Texas Instruments.  
ꢈꢥ  
Copyright 2004, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢯ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢪ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢕꢊ ꢈ ꢖ ꢆ ꢗꢁ ꢘꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅ ꢗꢄꢈꢑꢋ ꢌ ꢈꢔ ꢑꢁ ꢀꢄ ꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐꢈ ꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
description/ordering information (continued)  
The SN74LVC1T45 is designed so that the DIR input circuit is supplied by V  
.
CCA  
This device is fully specified for partial-power-down applications using I . The I circuitry disables the outputs,  
off  
off  
preventing damaging current backflow through the device when it is powered down.  
The V isolation feature ensures that if either V input is at GND, both ports are in the high-impedance state.  
CC  
CC  
NanoStarand NanoFreepackage technology is a major breakthrough in IC packaging concepts, using the  
die as the package.  
FUNCTION TABLE  
INPUT  
OPERATION  
DIR  
L
B data to A bus  
A data to B bus  
H
logic diagram (positive logic)  
5
DIR  
3
A
4
B
V
CCA  
V
CCB  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
ꢕ ꢊ ꢈꢖ ꢆꢗ ꢁꢘ ꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅꢗ ꢄꢈꢑꢋ ꢌ ꢈ ꢔꢑꢁꢀ ꢄꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐ ꢈꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
and V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V  
CCA  
CCB  
Input voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V  
I
Voltage range applied to any output in the high-impedance or power-off state, V  
O
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V  
Voltage range applied to any output in the high or low state, V  
O
(see Notes 1 and 2): A port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5V  
+ 0.5V  
CCA  
CCB  
Input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
(V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
Continuous output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
IK  
OK  
I
Output clamp current, I  
O
O
CC  
Continuous current through V  
or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Package thermal impedance, θ (see Note 3): DBV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165°C/W  
JA  
DCK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259°C/W  
YEP/YZP package . . . . . . . . . . . . . . . . . . . . . . . . . . . 123°C/W  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Storage temperature range, T  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
2. The value of V is provided in the recommended operating conditions table.  
CC  
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢘꢊ  
ꢑꢈ  
ꢒꢐꢈ ꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
recommended operating conditions (see Notes 4 through 8)  
V
CCI  
V
CCO  
MIN  
1.65  
1.65  
MAX  
5.5  
UNIT  
V
V
CCA  
Supply voltage  
V
5.5  
CCB  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
V
× 0.65  
1.7  
CCI  
High-level input  
voltage  
Data inputs  
(see Note 7)  
V
IH  
V
IL  
V
IH  
V
IL  
V
V
V
V
2
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
V
× 0.7  
CCI  
V
× 0.35  
CCI  
0.7  
0.8  
Low-level input  
voltage  
Data inputs  
(see Note 7)  
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
V
× 0.3  
CCI  
V
CCA  
× 0.65  
1.7  
DIR  
High-level input  
voltage  
(Referenced to V  
)
)
CCA  
2
(see Note 8)  
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
V
× 0.7  
CCA  
V
CCA  
× 0.35  
0.7  
DIR  
Low-level input  
voltage  
(Referenced to V  
CCA  
0.8  
(see Note 8)  
4.5 V to 5.5 V  
V
× 0.3  
5.5  
CCA  
V
V
Input voltage  
0
0
V
V
I
Output voltage  
V
CCO  
O
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
−4  
−8  
−24  
−32  
4
I
High-level output current  
Low-level output current  
mA  
mA  
OH  
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
8
I
OL  
24  
32  
20  
20  
10  
5
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
Data input  
Input transition rise or  
fall rate  
t/v  
ns/V  
4.5 V to 5.5 V  
1.65 V to 5.5 V  
Control input  
Operating free-air temperature  
NOTES: 4. V is the V associated with the data input port.  
5
T
−40  
85  
°C  
A
CCI  
CCO  
CC  
is the V associated with the output port.  
CC  
5.  
V
6. All unused data inputs of the device must be held at V  
or GND to ensure proper device operation. Refer to the TI application report,  
CCI  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
7. For V  
8. For V  
values not specified in the data sheet, V  
values not specified in the data sheet, V  
= V  
= V  
x 0.7 V, V  
= V  
CCI  
x 0.3 V.  
x 0.3 V.  
CCI  
CCI  
IH(min)  
IH(min)  
CCI  
IL(max)  
x 0.7 V, V  
= V  
CCA  
IL(max)  
CCA  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
ꢕ ꢊ ꢈꢖ ꢆꢗ ꢁꢘ ꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅꢗ ꢄꢈꢑꢋ ꢌ ꢈ ꢔꢑꢁꢀ ꢄꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐ ꢈꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (see Notes 9 and 10)  
T
A
= 25°C  
−40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
V
V
CCB  
CCA  
MIN  
TYP  
MAX  
MIN  
−0.1  
MAX  
V
I
I
I
I
I
I
I
I
I
I
= −100 µA, V = V  
IH  
1.65 V to 4.5 V 1.65 V to 4.5 V  
CCO  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
I
= −4 mA,  
= −8 mA,  
= −24 mA,  
= −32 mA,  
= 100 µA,  
= 4 mA,  
V = V  
I
1.65V  
2.3 V  
3 V  
1.65 V  
2.3 V  
3 V  
1.2  
1.9  
2.4  
3.8  
IH  
IH  
IH  
IH  
IL  
IL  
IL  
IL  
IL  
V = V  
I
V
OH  
V
V = V  
I
V = V  
I
4.5 V  
4.5 V  
V = V  
I
1.65 V to 4.5 V 1.65 V to 4.5 V  
0.1  
0.45  
0.3  
V = V  
I
1.65 V  
2.3 V  
3 V  
1.65 V  
2.3 V  
3 V  
= 8 mA,  
V = V  
I
V
OL  
V
= 24 mA,  
= 32 mA,  
V = V  
I
0.55  
0.55  
V = V  
I
4.5 V  
4.5 V  
DIR  
input  
I
I
V = V  
I CCA  
or GND  
1.65 V to 5.5 V 1.65 V to 5.5 V  
1
2
µA  
A port  
B port  
0 V  
0 to 5.5 V  
0 V  
1
1
2
2
I
V or V = 0 to 5.5 V  
µA  
µA  
off  
I
O
0 to 5.5 V  
A or B  
ports  
I
V
O
= V  
CCO  
or GND  
1.65 V to 5.5 V 1.65 V to 5.5 V  
1.65 V to 5.5 V 1.65 V to 5.5 V  
1
2
OZ  
3
2
0
3
0
2
V = V  
I
or  
or  
CCI  
5.5 V  
0 V  
0 V  
I
I
= 0  
µA  
CCA  
O
GND  
5.5 V  
1.65 V to 5.5 V 1.65 V to 5.5 V  
V = V  
I
CCI  
5.5 V  
0 V  
0 V  
I
I
I
I
= 0  
= 0  
µA  
µA  
CCB  
O
GND  
5.5 V  
V = V  
I
or  
CCI  
I
1.65 V to 5.5 V 1.65 V to 5.5 V  
4
CCA + CCB  
O
GND  
A port at V  
− 0.6 V,  
, B port = OPEN  
CCA  
A port  
DIR  
50  
DIR at V  
CCA  
I  
I  
3 V to 5.5 V  
3 V to 5.5 V  
µA  
DIR at V  
B port = OPEN,  
− 0.6 V,  
CCA  
CCA  
50  
50  
A port at V  
or GND  
− 0.6 V,  
CCA  
B port at V  
DIR at GND, A port = OPEN  
CCB  
B port  
3 V to 5.5 V  
3.3 V  
3 V to 5.5 V  
3.3 V  
µA  
pF  
pF  
CCB  
DIR  
input  
C
C
V = V  
I CCA  
or GND  
2.5  
6
i
A or B  
ports  
V = V  
O CCA/B  
or GND  
3.3 V  
3.3 V  
io  
NOTES: 9. V  
is the V  
associated with the output port.  
associated with the input port.  
CC  
CCO  
V is the V  
CCI  
CC  
10.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢕꢊ ꢈ ꢖ ꢆ ꢗꢁ ꢘꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅ ꢗꢄꢈꢑꢋ ꢌ ꢈꢔ ꢑꢁ ꢀꢄ ꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐꢈ ꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
switching characteristics over recommended operating free-air temperature range,  
= 1.8 V 0.15 V (unless otherwise noted) (see Figure 1)  
V
CCA  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
V
= 5 V  
CCB  
CCB  
CCB  
CCB  
0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
3
MAX  
17.7  
14.3  
17.7  
14.3  
19.4  
10.5  
21.9  
16  
MIN  
2.2  
2.2  
2.3  
2.1  
4.8  
2.1  
4.9  
3.7  
MAX  
10.3  
8.5  
MIN  
1.7  
1.8  
2.1  
2
MAX  
8.3  
MIN  
1.4  
1.7  
1.9  
1.8  
5.1  
3.1  
2.8  
2.4  
MAX  
7.2  
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
B
A
A
B
A
B
A
ns  
ns  
ns  
ns  
ns  
ns  
2.8  
3
7.1  
7
16  
15.5  
12.6  
18.4  
10.7  
10.3  
8.4  
15.1  
12.2  
17.1  
10.9  
8.2  
B
2.8  
5.2  
2.3  
7.4  
4.2  
12.9  
18.5  
10.5  
11.5  
9.2  
t
4.7  
2.4  
4.6  
3.3  
DIR  
DIR  
DIR  
DIR  
t
PLZ  
t
PHZ  
t
6.4  
PLZ  
t
33.7  
36.2  
28.2  
25.2  
24.4  
20.8  
23.9  
22.9  
19  
21.5  
20.4  
18.1  
PZH  
t
PZL  
t
PZH  
t
33.7  
27  
25.5  
24.1  
PZL  
The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 16.  
switching characteristics over recommended operating free-air temperature range,  
= 2.5 V 0.2 V (unless otherwise noted) (see Figure 1)  
V
CCA  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
V
= 5 V  
CCB  
CCB  
CCB  
CCB  
0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
2.3  
2.1  
2.2  
2.2  
3
MAX  
16  
MIN  
1.5  
1.4  
1.5  
1.4  
3.1  
1.3  
4.1  
3.2  
MAX  
8.5  
MIN  
1.3  
1.3  
1.4  
1.3  
2.8  
1.3  
3.9  
2.8  
MAX  
6.4  
5.4  
8
MIN  
1.1  
0.9  
1
MAX  
5.1  
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
B
A
A
B
A
B
A
ns  
ns  
ns  
ns  
ns  
ns  
12.9  
10.3  
8.5  
7.5  
4.6  
8.5  
7.5  
B
7.5  
7
0.9  
3.2  
1
6.2  
t
8.1  
8.1  
8.1  
5.9  
10.2  
8.4  
16.4  
17.2  
12.3  
8.1  
DIR  
DIR  
DIR  
DIR  
t
1.3  
6.5  
3.9  
5.9  
5.9  
5.8  
PLZ  
t
23.7  
18.9  
29.2  
32.2  
21.9  
11.4  
9.6  
2.4  
1.8  
7.1  
PHZ  
t
5.3  
PLZ  
t
18.1  
18.9  
14.4  
12.8  
13.3  
10.9  
PZH  
t
PZL  
t
PZH  
t
21  
15.6  
13.5  
12.7  
PZL  
The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 16.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
ꢕ ꢊ ꢈꢖ ꢆꢗ ꢁꢘ ꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅꢗ ꢄꢈꢑꢋ ꢌ ꢈ ꢔꢑꢁꢀ ꢄꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐ ꢈꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
switching characteristics over recommended operating free-air temperature range,  
= 3.3 V 0.3 V (unless otherwise noted) (see Figure 1)  
V
CCA  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
V
= 5 V  
CCB  
CCB  
CCB  
CCB  
0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
2.1  
2
MAX  
15.5  
12.6  
8.3  
MIN  
1.4  
1.3  
1.3  
1.3  
3
MAX  
8
MIN  
0.7  
0.8  
0.7  
0.8  
2.8  
2.2  
2.9  
2.4  
MAX  
5.8  
5
MIN  
0.7  
0.7  
0.6  
0.7  
3.4  
2.2  
2.4  
1.7  
MAX  
4.4  
4
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
B
A
A
B
A
B
A
ns  
ns  
ns  
ns  
ns  
ns  
7
1.7  
1.8  
2.9  
1.8  
5.4  
3.3  
6.4  
5.4  
7.3  
5.6  
10.1  
7.8  
14.2  
15.5  
13.6  
5.8  
5
5.4  
4.5  
7.3  
5.7  
6.8  
4.9  
10.3  
11.3  
10.1  
B
7.1  
t
7.3  
7.3  
5.7  
8.8  
7.1  
12.9  
13.8  
11.5  
DIR  
DIR  
DIR  
DIR  
t
5.6  
1.6  
3.9  
2.9  
PLZ  
t
20.5  
14.5  
22.8  
27.6  
21.1  
PHZ  
t
PLZ  
t
PZH  
t
PZL  
t
PZH  
t
19.9  
14.3  
12.3  
11.3  
PZL  
The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 16.  
switching characteristics over recommended operating free-air temperature range,  
= 5 V 0.5 V (unless otherwise noted) (see Figure 1)  
V
CCA  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
V
= 5 V  
CCB  
CCB  
CCB  
CCB  
0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
1.9  
1.8  
1.4  
1.7  
2.1  
0.9  
4.8  
4.2  
MAX  
15.1  
12.2  
7.2  
MIN  
1
MAX  
7.5  
MIN  
0.6  
0.7  
0.7  
0.7  
2.2  
1
MAX  
5.4  
4.5  
4.4  
4
MIN  
0.5  
0.5  
0.5  
0.5  
2.2  
0.9  
2.5  
1.6  
MAX  
3.9  
3.5  
3.9  
3.5  
5.4  
3.7  
6.5  
4.5  
8.4  
10  
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
B
A
A
B
A
B
A
ns  
ns  
ns  
ns  
ns  
ns  
0.9  
1
6.2  
5.1  
B
7
0.9  
2.2  
1
4.6  
t
5.4  
5.4  
5.5  
3.7  
8.5  
7
DIR  
DIR  
DIR  
DIR  
t
3.8  
3.8  
PLZ  
t
20.2  
14.8  
22  
2.5  
2.5  
9.8  
1
PHZ  
t
7.4  
2.5  
PLZ  
t
12.5  
14.4  
11.3  
11.4  
12.5  
9.1  
PZH  
t
27.2  
18.9  
PZL  
t
7.6  
PZH  
t
17.6  
11.6  
10  
8.9  
PZL  
The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 16.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢘꢊ  
ꢑꢈ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
operating characteristics, T = 25°C  
A
V
=
V
=
V
=
V
=
CCA  
= 1.8 V  
CCA  
= 2.5 V  
CCA  
= 3.3 V  
CCA  
V
V
V
V
= 5 V  
PARAMETER  
CCB  
TYP  
CCB  
TYP  
CCB  
TYP  
CCB  
TEST CONDITIONS  
UNIT  
TYP  
A port input, B port output  
B port input, A port output  
A port input, B port output  
B port input, A port output  
3
18  
18  
3
4
19  
19  
4
4
20  
20  
4
4
21  
21  
4
C
C
pdA  
C
= 0,  
L
pF  
f = 10 MHz,  
t = t =1 ns  
r
f
pdB  
Power-dissipation capacitance per transceiver  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
ꢕ ꢊ ꢈꢖ ꢆꢗ ꢁꢘ ꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅꢗ ꢄꢈꢑꢋ ꢌ ꢈ ꢔꢑꢁꢀ ꢄꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐ ꢈꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
power-up considerations  
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention,  
oscillations, or other anomalies. Take the following precautions to guard against such power-up problems:  
1. Connect ground before any supply voltage is applied.  
2. Power up V  
.
CCA  
3. V  
can be ramped up along with or after V  
.
CCB  
CCA  
typical total static power consumption (I  
+ I  
)
CCA  
CCB  
Table 1  
V
CCA  
V
UNIT  
CCB  
0 V  
0
1.8 V  
2.5 V  
<1  
3.3 V  
<1  
5 V  
<1  
2
0 V  
<1  
<2  
<2  
<2  
2
1.8 V  
2.5 V  
3.3 V  
5 V  
<1  
<1  
<1  
<1  
<2  
<2  
<2  
<2  
<2  
<2  
<2  
µA  
<2  
<2  
<2  
<2  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢕꢊ ꢈ ꢖ ꢆ ꢗꢁ ꢘꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅ ꢗꢄꢈꢑꢋ ꢌ ꢈꢔ ꢑꢁ ꢀꢄ ꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐꢈ ꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
TYPICAL PROPAGATION DELAY (A TO B) vs LOAD CAPACITANCE  
T = 25°C, V  
= 1.8 V  
A
CCA  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
V
= 1.8 V  
CCB  
8
V
= 1.8 V  
= 2.5 V  
CCB  
7
6
V
V
= 2.5 V  
= 3.3 V  
CCB  
V
V
CCB  
5
CCB  
4
V
CCB  
= 5 V  
= 3.3 V  
= 5 V  
CCB  
3
V
CCB  
2
1
0
0
5
10  
15  
C
20  
25  
30  
35  
10  
15  
C
20  
− pF  
25  
30  
35  
0
5
− pF  
L
L
TYPICAL PROPAGATION DELAY (B TO A) vs LOAD CAPACITANCE  
T = 25°C, V  
= 1.8 V  
A
CCA  
10  
10  
9
9
8
7
6
5
4
3
2
1
0
V
V
= 1.8 V  
= 2.5 V  
CCB  
8
7
6
5
4
3
2
1
0
CCB  
V
= 1.8 V  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
V
CCB  
V
CCB  
V
CCB  
= 2.5 V  
= 3.3 V  
= 5 V  
0
5
10  
15  
20  
− pF  
25  
30  
35  
10  
15  
20  
− pF  
25  
30  
35  
0
5
C
C
L
L
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
ꢕ ꢊ ꢈꢖ ꢆꢗ ꢁꢘ ꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅꢗ ꢄꢈꢑꢋ ꢌ ꢈ ꢔꢑꢁꢀ ꢄꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐ ꢈꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
TYPICAL PROPAGATION DELAY (A TO B) vs LOAD CAPACITANCE  
T = 25°C, V  
= 2.5 V  
A
CCA  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
V
= 1.8 V  
CCB  
V
= 1.8 V  
= 2.5 V  
CCB  
V
CCB  
= 2.5 V  
V
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
0
0
10  
15  
C
20  
− pF  
25  
30  
35  
0
5
10  
15  
C
20  
− pF  
25  
30  
35  
5
L
L
TYPICAL PROPAGATION DELAY (B TO A) vs LOAD CAPACITANCE  
T = 25°C, V  
= 2.5 V  
A
CCA  
10  
9
8
7
6
5
4
3
2
1
10  
9
8
7
6
5
4
3
2
1
0
V
= 1.8 V  
CCB  
V
= 1.8 V  
= 2.5 V  
CCB  
V
CCB  
V
CCB  
= 2.5 V  
= 3.3 V  
V
CCB  
V
CCB  
= 5 V  
V
CCB  
V
CCB  
= 3.3 V  
= 5 V  
0
0
5
10  
15  
C
20  
− pF  
L
25  
30  
35  
0
5
10  
15  
20  
− pF  
25  
30  
35  
C
L
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢕꢊ ꢈ ꢖ ꢆ ꢗꢁ ꢘꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅ ꢗꢄꢈꢑꢋ ꢌ ꢈꢔ ꢑꢁ ꢀꢄ ꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐꢈ ꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
TYPICAL PROPAGATION DELAY (A TO B) vs LOAD CAPACITANCE  
T = 25°C, V  
= 3.3 V  
A
CCA  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
V
CCB  
= 1.8 V  
V
V
= 1.8 V  
= 2.5 V  
CCB  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
CCB  
V
CCB  
= 5 V  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
0
0
10  
15  
25  
10  
15  
C
20  
− pF  
25  
30  
35  
5
0
5
20  
− pF  
30  
35  
C
L
L
TYPICAL PROPAGATION DELAY (B TO A) vs LOAD CAPACITANCE  
T = 25°C, V  
= 3.3 V  
A
CCA  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
V
= 1.8 V  
= 2.5 V  
CCB  
V
= 1.8 V  
= 2.5 V  
CCB  
V
CCB  
V
CCB  
V
CCB  
V
CCB  
= 3.3 V  
= 5 V  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
0
0
10  
15  
20  
25  
30  
35  
5
35  
10  
15  
20  
25  
30  
0
5
C − pF  
L
C
− pF  
L
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
ꢕ ꢊ ꢈꢖ ꢆꢗ ꢁꢘ ꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅꢗ ꢄꢈꢑꢋ ꢌ ꢈ ꢔꢑꢁꢀ ꢄꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐ ꢈꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
T = 25°C, V = 5 V  
A
CCA  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
V
CCB  
= 1.8 V  
7
V
= 1.8 V  
= 2.5 V  
CCB  
6
5
4
3
2
V
V
= 2.5 V  
= 3.3 V  
CCB  
V
CCB  
CCB  
V
= 5 V  
10  
CCB  
V
CCB  
V
CCB  
= 3.3 V  
= 5 V  
1
0
35  
15  
20  
25  
30  
0
5
0
5
10  
15  
20  
− pF  
25  
30  
35  
C
− pF  
L
C
L
TYPICAL PROPAGATION DELAY (B TO A) vs LOAD CAPACITANCE  
T = 25°C, V  
= 5 V  
A
CCA  
10  
10  
9
8
7
6
5
4
3
2
9
8
7
6
5
4
3
2
1
0
V
= 1.8 V  
= 2.5 V  
CCB  
V
V
= 1.8 V  
= 2.5 V  
CCB  
V
CCB  
CCB  
V
CCB  
V
CCB  
= 3.3 V  
= 5 V  
V
V
= 3.3 V  
= 5 V  
CCB  
1
CCB  
0
0
5
0
10  
15  
C
20  
− pF  
25  
30  
35  
25  
30  
35  
10  
15  
C
20  
− pF  
5
L
L
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢘꢊ  
ꢑꢈ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
PARAMETER MEASUREMENT INFORMATION  
2 × V  
CCO  
TEST  
S1  
S1  
R
Open  
GND  
t
Open  
L
pd  
/t  
From Output  
Under Test  
t
2 × V  
CCO  
GND  
PLZ PZL  
/t  
PHZ PZH  
t
C
L
R
L
(see Note A)  
t
LOAD CIRCUIT  
w
V
CCI  
V /2  
CCI  
V /2  
CCI  
Input  
V
TP  
C
R
V
CCO  
L
L
0 V  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
5 V 0.5 V  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
0.15 V  
0.15 V  
0.3 V  
15 pF  
15 pF  
15 pF  
15 pF  
VOLTAGE WAVEFORMS  
PULSE DURATION  
0.3 V  
V
CCA  
Output  
Control  
(low-level  
enabling)  
V
CCA  
/2  
V
CCA  
/2  
0 V  
t
t
PLZ  
PZL  
V
V
CCO  
Output  
Waveform 1  
V
CCI  
V
CCO  
/2  
/2  
Input  
t
V /2  
CCI  
V /2  
CCI  
V
OL  
+ V  
TP  
S1 at 2 × V  
CCO  
OL  
0 V  
(see Note B)  
t
t
PZH  
PHZ  
t
PLH  
PHL  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
OH  
V
OH  
− V  
TP  
V
CCO  
Output  
V
CCO  
/2  
V
/2  
CCO  
(see Note B)  
0 V  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
NOTES: A.  
C
includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR v10 MHz, Z = 50 , dv/dt 1 V/ns.  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
t
t
t
V
V
and t  
and t  
and t  
PHL  
are the same as t  
.
dis  
PLZ  
PZL  
PLH  
PHZ  
PZH  
are the same as t  
are the same as t .  
pd  
.
en  
is the V  
associated with the input port.  
associated with the output port.  
CCI  
CC  
CC  
is the V  
CCO  
J. All parameters and waveforms are not applicable to all devices.  
Figure 2. Load Circuit and Voltage Waveforms  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢃ ꢉ  
ꢀꢊ ꢁꢋ ꢄ ꢌꢍꢎꢊ ꢈ ꢏꢐꢑ ꢄꢍꢀ ꢐꢒꢒꢄꢓ ꢎꢐꢀ ꢈ ꢔꢑꢁꢀ ꢆꢌ ꢊ ꢅꢌ ꢔ  
ꢕ ꢊ ꢈꢖ ꢆꢗ ꢁꢘ ꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅꢗ ꢄꢈꢑꢋ ꢌ ꢈ ꢔꢑꢁꢀ ꢄꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐ ꢈꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
APPLICATION INFORMATION  
The following circuit is an example of the SN74LVC1T45 being used in a unidirectional logic level-shifting  
application.  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
1
2
3
6
5
4
SYSTEM-1  
SYSTEM-2  
PIN  
NAME  
FUNCTION  
DESCRIPTION  
1
V
SYSTEM-1 supply voltage (1.65 V to 5.5 V)  
Device GND  
V
CCA  
CC1  
2
3
4
5
6
GND  
A
GND  
OUT  
IN  
Output level depends on V  
CC1  
voltage.  
B
Input threshold value depends on V voltage.  
CC2  
DIR  
The GND (low level) determines B port to A port direction.  
SYSTEM-2 supply voltage (1.65 V to 5.5 V)  
DIR  
V
CCB  
V
CC2  
Figure 3. Unidirectional Logic Level-Shifting Application  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢃ ꢉ  
ꢀ ꢊꢁ ꢋꢄ ꢌꢍ ꢎꢊ ꢈ ꢏ ꢐꢑ ꢄꢍꢀ ꢐꢒ ꢒꢄꢓ ꢎꢐ ꢀ ꢈꢔ ꢑꢁ ꢀꢆꢌ ꢊꢅꢌ ꢔ  
ꢕꢊ ꢈ ꢖ ꢆ ꢗꢁ ꢘꢊ ꢋꢐ ꢔ ꢑꢎꢄ ꢌ ꢅ ꢗꢄꢈꢑꢋ ꢌ ꢈꢔ ꢑꢁ ꢀꢄ ꢑꢈ ꢊꢗ ꢁ ꢑꢁꢏ ꢙ ꢍꢀꢈꢑꢈ ꢌ ꢗ ꢐꢈ ꢒꢐꢈ ꢀ  
SCES515E − DECEMBER 2003 − REVISED MAY 2004  
APPLICATION INFORMATION  
Figure 4 shows the SN74LVC1T45 being used in a bidirectional logic level-shifting application. Since the  
SN74LVC1T45 does not have an output enable (OE) pin, the system designer should take precautions to avoid  
bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
Pullup/Down  
or Bus Hold  
Pullup/Down  
or Bus Hold  
I/O-1  
I/O-2  
1
2
3
6
5
4
DIR CTRL  
SYSTEM-1  
SYSTEM-2  
Following is a sequence that illustrates data transmission from SYSTEM-1 to SYSTEM-2 and then from  
SYSTEM-2 to SYSTEM-1.  
STATE  
DIR CTRL  
I/O 1  
I/O 2  
DESCRIPTION  
1
H
SYSTEM-1 data to SYSTEM-2  
OUT  
IN  
SYSTEM-2 is getting ready to send data to  
SYSTEM-1. I/O-1 and I/O-2 are disabled.  
The bus-line state depends on pullup or pulldown.  
2
H
HI-Z  
HI-Z  
DIR bit is flipped. I/O-1 and I/O-2 still are disabled.  
The bus-line state depends on pullup or pulldown.  
3
4
L
L
HI-Z  
OUT  
HI-Z  
IN  
SYSTEM-2 data to SYSTEM-1  
SYSTEM-1 and SYSTEM-2 must use the same conditions, i.e., both pullup or both pulldown.  
Figure 4. Bidirectional Logic Level-Shifting Application  
enable times  
Calculate the enable times for the SN74LVC1T45 using the following formulas:  
1. t  
2. t  
3. t  
4. t  
(DIR to A) = t  
(DIR to B) + t  
(DIR to B) + t  
(DIR to A) + t  
(DIR to A) + t  
(B to A)  
(B to A)  
(A to B)  
(A to B)  
PZH  
PZL  
PZH  
PZL  
PLZ  
PLH  
PHL  
PLH  
PHL  
(DIR to A) = t  
(DIR to B) = t  
PHZ  
PLZ  
PHZ  
(DIR to B) = t  
In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is  
switched until an output is expected. For example, if the SN74LVC1T45 initially is transmitting from A to B, then  
the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the  
B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified  
propagation delay.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Sep-2005  
PACKAGING INFORMATION  
Orderable Device  
SN74LVC1T45DBVR  
SN74LVC1T45DBVRE4  
SN74LVC1T45DBVT  
SN74LVC1T45DBVTE4  
SN74LVC1T45DCKR  
SN74LVC1T45DCKRG4  
SN74LVC1T45DCKT  
SN74LVC1T45DCKTE4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-23  
DBV  
6
6
6
6
6
6
6
6
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT-23  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DBV  
DCK  
DCK  
DCK  
DCK  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN74LVC1T45YEPR  
SN74LVC1T45YZPR  
ACTIVE  
ACTIVE  
WCSP  
WCSP  
YEP  
YZP  
6
6
3000  
3000  
TBD  
SNPB  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Pb-Free  
(RoHS)  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MPDS114 – FEBRUARY 2002  
DCK (R-PDSO-G6)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,30  
0,15  
M
0,10  
0,65  
6
4
0,13 NOM  
1,40 2,40  
1,10 1,80  
1
3
Gage Plane  
2,15  
1,85  
0,15  
0°–8°  
0,46  
0,26  
Seating Plane  
0,10  
1,10  
0,80  
0,10  
0,00  
4093553-3/D 01/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-203  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN74LVC1T45-EP

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45-Q1

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DBVR

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DBVRE4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DBVRG4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DBVT

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DBVTE4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DBVTG4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKR

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKRE4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKRG4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKT

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI