SN74LVC1T45DBVTG4 [TI]

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS; 可配置电压转换和3态输出的单位双电源总线收发器
SN74LVC1T45DBVTG4
型号: SN74LVC1T45DBVTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
可配置电压转换和3态输出的单位双电源总线收发器

总线驱动器 总线收发器 逻辑集成电路 光电二极管 输出元件
文件: 总25页 (文件大小:831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LVC1T45  
www.ti.com ..................................................................................................................................................... SCES515IDECEMBER 2003REVISED MAY 2009  
SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER  
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS  
1
FEATURES  
2
Available in the Texas Instruments NanoFree™  
Package  
Max Data Rates  
420 Mbps (3.3-V to 5-V Translation)  
210 Mbps (Translate to 3.3 V)  
140 Mbps (Translate to 2.5 V)  
75 Mbps (Translate to 1.8 V)  
Fully Configurable Dual-Rail Design Allows  
Each Port to Operate Over the Full 1.65-V to  
5.5-V Power-Supply Range  
VCC Isolation Feature – If Either VCC Input Is at  
GND, Both Ports Are in the High-Impedance  
State  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
ESD Protection Exceeds JESD 22  
DIR Input Circuit Referenced to VCCA  
Low Power Consumption, 4-µA Max ICC  
±24-mA Output Drive at 3.3 V  
2000-V Human-Body Model (A114-A)  
200-V Machine Model (A115-A)  
1000-V Charged-Device Model (C101)  
Ioff Supports Partial-Power-Down Mode  
Operation  
DBV PACKAGE  
(TOP VIEW)  
DCK PACKAGE  
(TOP VIEW)  
DRL PACKAGE  
(TOP VIEW)  
YZP PACKAGE  
(BOTTOM VIEW)  
4 C2  
C1  
3
2
A
GND  
VCCA  
B
1
2
3
6
5
4
VCCA  
GND  
A
VCCB VCCA  
VCCB  
DIR  
B
1
2
3
6
5
4
1
2
3
6
VCCA  
GND  
A
VCCB  
DIR  
B
B1  
B2  
5
DIR  
VCCB  
GND  
DIR  
A1 1  
A2  
6
A
5
4
B
See mechanical drawings for dimensions.  
DESCRIPTION/ORDERING INFORMATION  
This single-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is  
designed to track VCCA. VCCA accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track  
VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional  
translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.  
The SN74LVC1T45 is designed for asynchronous communication between two data buses. The logic levels of  
the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data  
from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the  
A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic  
HIGH or LOW level applied to prevent excess ICC and ICCZ  
.
The SN74LVC1T45 is designed so that the DIR input is powered by VCCA  
.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,  
preventing damaging current backflow through the device when it is powered down.  
The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance  
state.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
NanoFree is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2003–2009, Texas Instruments Incorporated  
SN74LVC1T45  
SCES515IDECEMBER 2003REVISED MAY 2009 ..................................................................................................................................................... www.ti.com  
NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the  
package.  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING(3)  
NanoFree™ – WCSP (DSBGA)  
Reel of 3000  
SN74LVC1T45YZPR  
_ _ _TA_  
0.23-mm Large Bump – YZP (Pb-free)  
SOT (SOT-23) – DBV  
Reel of 3000  
Reel of 250  
Reel of 3000  
Reel of 250  
Reel of 4000  
SN74LVC1T45DBVR  
SN74LVC1T45DBVT  
SN74LVC1T45DCKR  
SN74LVC1T45DCKT  
SN74LVC1T45DRLR  
CT1_  
TA_  
–40°C to 85°C  
SOT (SC-70) – DCK  
SOT (SOT-533) – DRL  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) DBV/DCK/DRL: The actual top-side marking has one additional character that designates the wafer fab/assembly site.  
YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following  
character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).  
FUNCTION TABLE(1)  
INPUT  
OPERATION  
DIR  
L
B data to A bus  
A data to B bus  
H
(1) Input circuits of the data I/Os  
always are active.  
LOGIC DIAGRAM (POSITIVE LOGIC)  
5
3
DIR  
A
4
B
V
CCA  
V
CCB  
2
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
www.ti.com ..................................................................................................................................................... SCES515IDECEMBER 2003REVISED MAY 2009  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VCCA  
VCCB  
Supply voltage range  
–0.5  
6.5  
V
VI  
Input voltage range(2)  
Voltage range applied to any output in the high-impedance or power-off state(2)  
–0.5  
–0.5  
6.5  
6.5  
V
V
VO  
A port  
Voltage range applied to any output in the high or low state(2)(3)  
B port  
–0.5 VCCA + 0.5  
VO  
V
–0.5 VCCB + 0.5  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
–50  
–50  
±50  
±100  
165  
259  
142  
123  
mA  
mA  
mA  
mA  
Output clamp current  
VO < 0  
Continuous output current  
Continuous current through VCC or GND  
DBV package  
DCK package  
DRL package  
YZP package  
θJA  
Package thermal impedance(4)  
°C/W  
°C  
Tstg  
Storage temperature range  
–65  
150  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(3) The value of VCC is provided in the recommended operating conditions table.  
(4) The package thermal impedance is calculated in accordance with JESD 51-7.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
SCES515IDECEMBER 2003REVISED MAY 2009 ..................................................................................................................................................... www.ti.com  
Recommended Operating Conditions(1)(2)(3)  
VCCI  
VCCO  
MIN  
1.65  
MAX  
5.5  
UNIT  
VCCA  
VCCB  
Supply voltage  
V
1.65  
5.5  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
VCCI × 0.65  
1.7  
High-level  
input voltage  
VIH  
VIL  
VIH  
VIL  
Data inputs(4)  
Data inputs(4)  
V
V
V
V
2
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
VCCI × 0.7  
VCCI × 0.35  
0.7  
Low-level  
input voltage  
0.8  
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
VCCI × 0.3  
VCCA × 0.65  
1.7  
2
High-level  
input voltage  
DIR  
(5)  
(5)  
(referenced to VCCA  
)
)
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
VCCA × 0.7  
VCCA × 0.35  
0.7  
Low-level  
input voltage  
DIR  
(referenced to VCCA  
0.8  
4.5 V to 5.5 V  
VCCA × 0.3  
VI  
Input voltage  
0
0
5.5  
VCCO  
–4  
–8  
–24  
–32  
4
V
V
VO  
Output voltage  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
IOH  
High-level output current  
Low-level output current  
mA  
mA  
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
8
IOL  
24  
32  
20  
20  
10  
5
4.5 V to 5.5 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
Data inputs  
Input transition  
rise or fall rate  
Δt/Δv  
ns/V  
°C  
4.5 V to 5.5 V  
1.65 V to 5.5 V  
Control inputs  
Operating free-air temperature  
5
TA  
–40  
85  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
(4) For VCCI values not specified in the data sheet, VIH min = VCCI × 0.7 V, VIL max = VCCI × 0.3 V.  
(5) For VCCI values not specified in the data sheet, VIH min = VCCA × 0.7 V, VIL max = VCCA × 0.3 V.  
4
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
www.ti.com ..................................................................................................................................................... SCES515IDECEMBER 2003REVISED MAY 2009  
Electrical Characteristics(1)(2)  
over recommended operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TYP  
–40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
IOH = –100 µA  
VCCA  
VCCB  
UNIT  
MIN  
MAX  
MIN  
MAX  
VCCO  
– 0.1  
1.65 V to 4.5 V  
1.65 V to 4.5 V  
IOH = –4 mA  
IOH = –8 mA  
IOH = –24 mA  
IOH = –32 mA  
IOL = 100 µA  
IOL = 4 mA  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
1.2  
1.9  
2.4  
3.8  
VOH  
VI = VIH  
V
3 V  
3 V  
4.5 V  
4.5 V  
1.65 V to 4.5 V  
1.65 V  
1.65 V to 4.5 V  
1.65 V  
0.1  
0.45  
0.3  
VOL  
IOL = 8 mA  
VI = VIL  
2.3 V  
2.3 V  
V
IOL = 24 mA  
IOL = 32 mA  
VI = VCCA or GND  
3 V  
3 V  
0.55  
0.55  
±2  
4.5 V  
4.5 V  
II  
DIR  
1.65 V to 5.5 V  
0 V  
1.65 V to 5.5 V  
0 to 5.5 V  
0 V  
±1  
±1  
±1  
µA  
µA  
A port  
B port  
±2  
Ioff  
VI or VO = 0 to 5.5 V  
VO = VCCO or GND  
0 to 5.5 V  
±2  
A or B  
port  
IOZ  
1.65 V to 5.5 V  
1.65 V to 5.5 V  
±1  
±2  
µA  
µA  
1.65 V to 5.5 V  
5.5 V  
1.65 V to 5.5 V  
0 V  
3
2
ICCA  
VI = VCCI or GND, IO = 0  
0 V  
5.5 V  
-2  
3
1.65 V to 5.5 V  
5.5 V  
1.65 V to 5.5 V  
0 V  
ICCB  
VI = VCCI or GND, IO = 0  
VI = VCCI or GND, IO = 0  
-2  
2
µA  
µA  
0 V  
5.5 V  
ICCA + ICCB  
(see Table 1)  
1.65 V to 5.5 V  
3 V to 5.5 V  
1.65 V to 5.5 V  
3 V to 5.5 V  
4
A port at VCCA – 0.6 V,  
DIR at VCCA, B port = open  
A port  
50  
ΔICCA  
µA  
DIR at VCCA – 0.6 V,  
B port = open,  
A port at VCCA or GND  
DIR  
50  
50  
B port at VCCB – 0.6 V,  
DIR at GND,  
ΔICCB B port  
3 V to 5.5 V  
3 V to 5.5 V  
µA  
A port = open  
Ci  
DIR  
VI = VCCA or GND  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
2.5  
6
pF  
pF  
A or B  
port  
Cio  
VO = VCCA/B or GND  
(1) VCCO is the VCC associated with the output port.  
(2) VCCI is the VCC associated with the input port.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
SCES515IDECEMBER 2003REVISED MAY 2009 ..................................................................................................................................................... www.ti.com  
Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (see Figure 1)  
VCCB = 1.8 V  
±0.15 V  
VCCB = 2.5 V  
±0.2 V  
VCCB = 3.3 V  
±0.3 V  
VCCB = 5 V  
±0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
3
MAX  
MIN  
2.2  
2.2  
2.3  
2.1  
4.8  
2.1  
4.9  
3.7  
MAX  
MIN  
1.7  
1.8  
2.1  
2
MAX  
MIN  
1.4  
1.7  
1.9  
1.8  
5.1  
3.1  
2.8  
2.4  
MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
17.7  
14.3  
17.7  
14.3  
19.4  
10.5  
21.9  
16  
10.3  
8.5  
8.3  
7.1  
7.2  
7
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
2.8  
3
16  
15.5  
12.6  
18.4  
10.7  
10.3  
8.4  
15.1  
12.2  
17.1  
10.9  
8.2  
B
2.8  
5.2  
2.3  
7.4  
4.2  
12.9  
18.5  
10.5  
11.5  
9.2  
4.7  
2.4  
4.6  
3.3  
DIR  
DIR  
DIR  
DIR  
6.4  
(1)  
tPZH  
33.7  
36.2  
28.2  
33.7  
25.2  
24.4  
20.8  
27  
23.9  
22.9  
19  
21.5  
20.4  
18.1  
24.1  
(1)  
tPZL  
(1)  
tPZH  
(1)  
tPZL  
25.5  
(1) The enable time is a calculated value, derived using the formula shown in the enable times section.  
Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (see Figure 1)  
VCCB = 1.8 V  
±0.15 V  
VCCB = 2.5 V  
±0.2 V  
VCCB = 3.3 V  
±0.3 V  
VCCB = 5 V  
±0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
2.3  
2.1  
2.2  
2.2  
3
MAX  
MIN  
1.5  
1.4  
1.5  
1.4  
3.1  
1.3  
4.1  
3.2  
MAX  
MIN  
MAX  
6.4  
MIN  
1.1  
0.9  
1
MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
16  
12.9  
10.3  
8.5  
8.5  
7.5  
1.3  
1.3  
1.4  
1.3  
2.8  
1.3  
3.9  
2.8  
5.1  
4.6  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
5.4  
8.5  
8
7.5  
B
7.5  
7
0.9  
3.2  
1
6.2  
8.1  
8.1  
8.1  
8.1  
DIR  
DIR  
DIR  
DIR  
1.3  
6.5  
3.9  
5.9  
5.9  
5.9  
5.8  
23.7  
18.9  
29.2  
32.2  
21.9  
21  
11.4  
9.6  
10.2  
8.4  
2.4  
1.8  
7.1  
5.3  
(1)  
tPZH  
18.1  
18.9  
14.4  
15.6  
16.4  
17.2  
12.3  
13.5  
12.8  
13.3  
10.9  
12.7  
(1)  
tPZL  
(1)  
tPZH  
(1)  
tPZL  
(1) The enable time is a calculated value, derived using the formula shown in the enable times section.  
6
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
www.ti.com ..................................................................................................................................................... SCES515IDECEMBER 2003REVISED MAY 2009  
Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 1)  
VCCB = 1.8 V  
±0.15 V  
VCCB = 2.5 V  
±0.2 V  
VCCB = 3.3 V  
±0.3 V  
VCCB = 5 V  
±0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
2.1  
2
MAX  
MIN  
1.4  
1.3  
1.3  
1.3  
3
MAX  
MIN  
0.7  
0.8  
0.7  
0.8  
2.8  
2.2  
2.9  
2.4  
MAX  
MIN  
0.7  
0.7  
0.6  
0.7  
3.4  
2.2  
2.4  
1.7  
MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
15.5  
12.6  
8.3  
8
7
5.8  
5
4.4  
4
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
1.7  
1.8  
2.9  
1.8  
5.4  
3.3  
6.4  
5.8  
5
5.4  
B
7.1  
5.4  
4.5  
7.3  
7.3  
7.3  
5.7  
8.8  
7.1  
12.9  
13.8  
11.5  
12.3  
7.3  
DIR  
DIR  
DIR  
DIR  
5.6  
1.6  
3.9  
2.9  
5.6  
5.7  
20.5  
14.5  
22.8  
27.6  
21.1  
19.9  
10.1  
7.8  
6.8  
4.9  
(1)  
tPZH  
14.2  
15.5  
13.6  
14.3  
10.3  
11.3  
10.1  
11.3  
(1)  
tPZL  
(1)  
tPZH  
(1)  
tPZL  
(1) The enable time is a calculated value, derived using the formula shown in the enable times section.  
Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 5 V ±0.5 V (see Figure 1)  
VCCB = 1.8 V  
±0.15 V  
VCCB = 2.5 V  
±0.2 V  
VCCB = 3.3 V  
±0.3 V  
VCCB = 5 V  
±0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
1.9  
1.8  
1.4  
1.7  
2.1  
0.9  
4.8  
4.2  
MAX  
MIN  
1
MAX  
MIN  
MAX  
5.4  
4.5  
4.4  
4
MIN  
0.5  
0.5  
0.5  
0.5  
2.2  
0.9  
2.5  
1.6  
MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
15.1  
12.2  
7.2  
7.5  
6.2  
0.6  
0.7  
0.7  
0.7  
2.2  
1
3.9  
3.5  
3.9  
3.5  
5.4  
3.7  
6.5  
4.5  
8.4  
10  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
0.9  
1
5.1  
B
7
0.9  
2.2  
1
4.6  
5.4  
5.4  
5.5  
3.7  
8.5  
7
DIR  
DIR  
DIR  
DIR  
3.8  
3.8  
20.2  
14.8  
22  
2.5  
2.5  
9.8  
1
7.4  
2.5  
(1)  
tPZH  
12.5  
14.4  
11.3  
11.6  
11.4  
12.5  
9.1  
10  
(1)  
tPZL  
27.2  
18.9  
17.6  
(1)  
tPZH  
7.6  
8.6  
(1)  
tPZL  
(1) The enable time is a calculated value, derived using the formula shown in the enable times section.  
Operating Characteristics  
TA = 25°C  
VCCA  
VCCB = 1.8 V  
=
VCCA  
VCCB = 2.5 V  
=
VCCA  
VCCB = 3.3 V  
=
VCCA =  
VCCB = 5 V  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
TYP  
TYP  
TYP  
TYP  
A-port input, B-port output  
B-port input, A-port output  
A-port input, B-port output  
B-port input, A-port output  
CL = 0 pF,  
f = 10 MHz,  
tr = tf = 1 ns  
3
4
4
4
(1)  
(1)  
CpdA  
pF  
pF  
18  
18  
3
19  
19  
4
20  
20  
4
21  
21  
4
CL = 0 pF,  
f = 10 MHz,  
tr = tf = 1 ns  
CpdB  
(1) Power dissipation capacitance per transceiver  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
SCES515IDECEMBER 2003REVISED MAY 2009 ..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 1.8 V  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
V
= 1.8 V  
CCB  
8
V
= 1.8 V  
= 2.5 V  
CCB  
7
6
V
V
= 2.5 V  
= 3.3 V  
CCB  
V
V
CCB  
5
CCB  
4
V
CCB  
= 5 V  
= 3.3 V  
= 5 V  
CCB  
3
2
1
0
V
CCB  
20  
0
5
10  
15  
C − pF  
25  
30  
35  
10  
15  
20  
25  
30  
35  
0
5
C − pF  
L
L
TYPICAL PROPAGATION DELAY (B to A) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 1.8 V  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
V
V
= 1.8 V  
= 2.5 V  
CCB  
8
7
6
5
4
3
2
1
0
CCB  
V
= 1.8 V  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
V
CCB  
V
CCB  
V
CCB  
= 2.5 V  
= 3.3 V  
= 5 V  
0
5
10  
15  
20  
C − pF  
25  
30  
35  
35  
10  
15  
20  
25  
30  
0
5
C − pF  
L
L
8
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
www.ti.com ..................................................................................................................................................... SCES515IDECEMBER 2003REVISED MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 2.5 V  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
V
= 1.8 V  
CCB  
V
= 1.8 V  
= 2.5 V  
CCB  
V
CCB  
= 2.5 V  
V
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
10  
15  
20  
25  
30  
35  
0
5
10  
15  
C − pF  
20  
25  
30  
35  
0
5
C − pF  
L
L
TYPICAL PROPAGATION DELAY (B to A) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 2.5 V  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
V
CCB  
= 1.8 V  
V
= 1.8 V  
= 2.5 V  
CCB  
5
4
3
2
1
0
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
CCB  
V
CCB  
= 5 V  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
C − pF  
L
C − pF  
L
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
SCES515IDECEMBER 2003REVISED MAY 2009 ..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 3.3 V  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
V
CCB  
= 1.8 V  
7
V
V
= 1.8 V  
= 2.5 V  
CCB  
6
5
4
3
2
1
0
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
CCB  
V
CCB  
= 5 V  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
15  
C − pF  
25  
10  
20  
30  
35  
0
5
10  
15  
C − pF  
25  
0
5
20  
30  
35  
L
L
TYPICAL PROPAGATION DELAY (B to A) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 3.3 V  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
V
= 1.8 V  
= 2.5 V  
CCB  
V
V
= 1.8 V  
= 2.5 V  
CCB  
V
CCB  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
CCB  
35  
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
0
5
C − pF  
L
C − pF  
L
10  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
www.ti.com ..................................................................................................................................................... SCES515IDECEMBER 2003REVISED MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 5 V  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
V
= 1.8 V  
CCB  
7
V
= 1.8 V  
= 2.5 V  
CCB  
6
5
4
3
2
V
V
= 2.5 V  
= 3.3 V  
CCB  
V
CCB  
CCB  
V
= 5 V  
10  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
1
0
CCB  
35  
20  
15  
C − pF  
25  
30  
0
5
0
5
10  
15  
20  
25  
30  
35  
C − pF  
L
L
TYPICAL PROPAGATION DELAY (B to A) vs LOAD CAPACITANCE  
TA = 25°C, VCCA = 5 V  
10  
10  
9
9
8
7
6
5
4
3
2
1
0
8
7
6
5
V
V
= 1.8 V  
= 2.5 V  
CCB  
V
V
= 1.8 V  
= 2.5 V  
CCB  
4
3
2
CCB  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
V
V
= 3.3 V  
= 5 V  
CCB  
CCB  
1
0
CCB  
5
0
10  
15  
20  
25  
30  
35  
25  
30  
35  
10  
15  
20  
0
5
C − pF  
L
C − pF  
L
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
SCES515IDECEMBER 2003REVISED MAY 2009 ..................................................................................................................................................... www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
2 × V  
CCO  
TEST  
S1  
S1  
R
L
Open  
GND  
t
Open  
pd  
From Output  
Under Test  
t
t
/t  
/t  
2 × V  
CCO  
GND  
PLZ PZL  
PHZ PZH  
C
L
R
L
(see Note A)  
t
w
LOAD CIRCUIT  
V
CCI  
V
CCI  
/2  
V
CCI  
/2  
Input  
C
L
V
TP  
R
L
V
CCO  
0 V  
1.8 V ± 0.15 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
5 V ± 0.5 V  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
0.15 V  
0.15 V  
0.3 V  
15 pF  
15 pF  
15 pF  
15 pF  
VOLTAGE WAVEFORMS  
PULSE DURATION  
0.3 V  
V
CCA  
Output  
Control  
(low-level  
enabling)  
V /2  
CCA  
V
CCA  
/2  
t
0 V  
t
PZL  
PLZ  
V
V
CCO  
Output  
Waveform 1  
V
CCI  
V
/2  
/2  
CCO  
Input  
V
CCI  
/2  
V
CCI  
/2  
V
+ V  
OL  
TP  
S1 at 2 × V  
CCO  
OL  
0 V  
(see Note B)  
t
t
PZH  
PHZ  
t
t
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
OH  
V
OH  
− V  
TP  
V
CCO  
Output  
V /2  
CCO  
V
CCO  
/2  
(see Note B)  
0 V  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
NOTES: A. C includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR v10 MHz, Z = 50 , dv/dt 1 V/ns.  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
t
t
t
V
V
and t  
and t  
and t  
are the same as t  
.
dis  
.
PLZ  
PZL  
PLH  
PHZ  
are the same as t  
PZH  
en  
are the same as t .  
pd  
PHL  
is the V associated with the input port.  
CC  
CCI  
is the V associated with the output port.  
CCO  
CC  
J. All parameters and waveforms are not applicable to all devices.  
Figure 1. Load Circuit and Voltage Waveforms  
12  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SN74LVC1T45  
SN74LVC1T45  
www.ti.com ..................................................................................................................................................... SCES515IDECEMBER 2003REVISED MAY 2009  
APPLICATION INFORMATION  
Figure 2 shows an example of the SN74LVC1T45 being used in a unidirectional logic level-shifting application.  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
1
2
3
6
5
4
SYSTEM-1  
SYSTEM-2  
PIN  
1
NAME  
VCCA  
GND  
A
FUNCTION  
VCC1  
GND  
OUT  
DESCRIPTION  
SYSTEM-1 supply voltage (1.65 V to 5.5 V)  
Device GND  
2
3
Output level depends on VCC1 voltage.  
Input threshold value depends on VCC2 voltage.  
GND (low level) determines B-port to A-port direction.  
SYSTEM-2 supply voltage (1.65 V to 5.5 V)  
4
B
IN  
5
DIR  
VCCB  
DIR  
6
VCC2  
Figure 2. Unidirectional Logic Level-Shifting Application  
Figure 3 shows the SN74LVC1T45 being used in a bidirectional logic level-shifting application. Since the  
SN74LVC1T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid  
bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
Pullup/Down  
or Bus Hold  
Pullup/Down  
or Bus Hold  
I/O-1  
I/O-2  
(1)  
(1)  
1
2
3
6
5
4
DIR CTRL  
SYSTEM-1  
SYSTEM-2  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): SN74LVC1T45  
 
SN74LVC1T45  
SCES515IDECEMBER 2003REVISED MAY 2009 ..................................................................................................................................................... www.ti.com  
The following table shows data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to  
SYSTEM-1.  
STATE DIR CTRL  
I/O-1  
I/O-2  
DESCRIPTION  
1
H
Out  
In  
SYSTEM-1 data to SYSTEM-2  
SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled. The  
bus-line state depends on pullup or pulldown.(1)  
2
H
Hi-Z  
Hi-Z  
DIR bit is flipped. I/O-1 and I/O-2 still are disabled. The bus-line state depends on pullup or  
pulldown.(1)  
3
4
L
L
Hi-Z  
Out  
Hi-Z  
In  
SYSTEM-2 data to SYSTEM-1  
(1) SYSTEM-1 and SYSTEM-2 must use the same conditions, i.e., both pullup or both pulldown.  
Figure 3. Bidirectional Logic Level-Shifting Application  
Enable Times  
Calculate the enable times for the SN74LVC1T45 using the following formulas:  
tPZH (DIR to A) = tPLZ (DIR to B) + tPLH (B to A)  
tPZL (DIR to A) = tPHZ (DIR to B) + tPHL (B to A)  
tPZH (DIR to B) = tPLZ (DIR to A) + tPLH (A to B)  
tPZL (DIR to B) = tPHZ (DIR to A) + tPHL (A to B)  
In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is  
switched until an output is expected. For example, if the SN74LVC1T45 initially is transmitting from A to B, then  
the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B  
port has been disabled, an input signal applied to it appears on the corresponding A port after the specified  
propagation delay.  
14  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SN74LVC1T45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-May-2009  
PACKAGING INFORMATION  
Orderable Device  
SN74LVC1T45DBVR  
SN74LVC1T45DBVRE4  
SN74LVC1T45DBVRG4  
SN74LVC1T45DBVT  
SN74LVC1T45DBVTE4  
SN74LVC1T45DBVTG4  
SN74LVC1T45DCKR  
SN74LVC1T45DCKRE4  
SN74LVC1T45DCKRG4  
SN74LVC1T45DCKT  
SN74LVC1T45DCKTE4  
SN74LVC1T45DCKTG4  
SN74LVC1T45DRLR  
SN74LVC1T45DRLRG4  
SN74LVC1T45YZPR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-23  
DBV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DBV  
DBV  
DBV  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DRL  
DRL  
YZP  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT  
4000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT  
4000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DSBGA  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-May-2009  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74LVC1T45 :  
Enhanced Product: SN74LVC1T45-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Oct-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74LVC1T45DBVR  
SN74LVC1T45DBVT  
SN74LVC1T45DCKR  
SN74LVC1T45DCKT  
SN74LVC1T45DRLR  
SN74LVC1T45YZPR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DRL  
YZP  
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
178.0  
180.0  
180.0  
178.0  
9.2  
9.2  
9.0  
8.4  
9.2  
8.4  
3.23  
3.23  
2.4  
3.17  
3.17  
2.5  
1.37  
1.37  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
3000  
250  
SC70  
2.24  
1.78  
1.02  
2.34  
1.78  
1.52  
1.22  
0.69  
0.63  
SOT  
4000  
3000  
DSBGA  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Oct-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74LVC1T45DBVR  
SN74LVC1T45DBVT  
SN74LVC1T45DCKR  
SN74LVC1T45DCKT  
SN74LVC1T45DRLR  
SN74LVC1T45YZPR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DRL  
YZP  
6
6
6
6
6
6
3000  
250  
202.0  
202.0  
180.0  
202.0  
202.0  
220.0  
201.0  
201.0  
180.0  
201.0  
201.0  
220.0  
28.0  
28.0  
18.0  
28.0  
28.0  
35.0  
3000  
250  
SC70  
SOT  
4000  
3000  
DSBGA  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

SN74LVC1T45DCKR

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKRE4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKRG4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKT

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKTE4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DCKTG4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DPKR

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER
TI

SN74LVC1T45DRLR

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DRLRG4

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45MDCKREP

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45QDCKRQ1

具有可配置电压转换的汽车类 Single-Bit 双电源总线收发器 | DCK | 6 | -40 to 125
TI

SN74LVC1T45TDCKRQ1

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI