SN74LXC1T14QDCKRQ1 [TI]

汽车类单通道定向反相 1.1V 至 5.5V 电压电平转换器 | DCK | 5 | -40 to 125;
SN74LXC1T14QDCKRQ1
型号: SN74LXC1T14QDCKRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类单通道定向反相 1.1V 至 5.5V 电压电平转换器 | DCK | 5 | -40 to 125

转换器 电平转换器
文件: 总24页 (文件大小:1340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
SN74LXC1T14-Q1 具有施密特触发输入的  
汽车类双电源反相转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
• 完全可配置的双电源轨设计可允许各个端口1.1V  
5.5V 范围内运行  
• 稳健、无干扰供电时序  
3.3V 5.0V 范围内支持高420Mbps 的速  
SN74LXC1T14-Q1 是一款具有施密特触发输入的一位  
双电源反相电压电平转换器件。输入引脚 A VCCI 逻  
辑电平为基准输出引脚 Y VCCO 逻辑电平为基  
准。输入引脚 A 能够接受 1.1V 5.5V 的电压并且  
可以直接连接VCCI GND。请参阅器件功能模式,  
简要了解逻辑的运行方式。  
• 施密特触发输入可实现慢速或高噪声输入  
带有集成动态下拉电阻器的输入有助于减少外部元  
件数量  
• 高驱动强度5V 时最高32 mA)  
• 低功耗  
该器件可确保低功耗并且完全符合使用 Ioff 的部分断  
电应用的规范要求。当器件断电时Ioff 电路将会禁用  
输出。这会抑制电流反流到器件中从而防止损坏器  
件。  
封装信(1)  
– 最大3 µA (25°C)  
– 最大6 µA40°C 125°C)  
VCC 隔离VCC (Ioff-float) 特性  
封装尺寸标称值)  
器件型号  
封装  
SN74LXC1T14-Q1 SC70 (5) (DCK)  
2.00mm × 1.25mm  
– 如果任何一VCC 电源电< 100 mV 或已断  
则所I/O 都被下拉然后成为高阻抗状态  
• 过压容差输入支持最5.5V 的电压而与电源电压  
无关。  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VCCI  
VCCO  
Ioff 支持局部断电模式运行  
• 工作温度范围40°C +125°C  
• 闩锁性能超100 mAJESD 78 II 类规范的  
要求  
Y
A
ESD 保护性能超JESD 22 规范要求  
4000V 人体放电模型  
1000V 充电器件模型  
GND  
2 应用  
简图  
消除缓慢或嘈杂输入信号  
驱动指LED 或蜂鸣器  
机械开关去抖  
• 通I/O (GPIO) 电平转换  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCES950  
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................12  
8.4 Device Functional Modes..........................................15  
9 Application and Implementation..................................16  
9.1 Application Information............................................. 16  
9.2 Typical Application.................................................... 16  
10 Power Supply Recommendations..............................17  
11 Layout...........................................................................17  
11.1 Layout Guidelines................................................... 17  
11.2 Layout Example...................................................... 17  
12 Device and Documentation Support..........................18  
12.1 Device Support....................................................... 18  
12.2 Documentation Support.......................................... 18  
12.3 接收文档更新通知................................................... 18  
12.4 支持资源..................................................................18  
12.5 Trademarks.............................................................18  
12.6 Electrostatic Discharge Caution..............................18  
12.7 术语表..................................................................... 18  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics: Tpd....................................8  
6.7 Switching Characteristics: TMAX .................................9  
6.8 Typical Characteristics..............................................10  
7 Parameter Measurement Information.......................... 11  
7.1 Load Circuit and Voltage Waveforms........................11  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................12  
Information.................................................................... 18  
4 Revision History  
DATE  
REVISION  
NOTES  
August 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCCI  
A
1
2
3
5
4
VCCO  
Y
GND  
5-1. DCK Package, 5-Pin SC70 (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
DCK  
VCCI  
A
1
2
3
4
Input supply voltage. 1.1 V VCCI 5.5 V.  
I
Input A. Referenced to VCCI  
Ground.  
GND  
Y
O
Output Y. Referenced to VCCO.  
VCCO  
5
Output supply voltage. 1.1 V VCCO 5.5 V.  
(1) I = input, O = output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74LXC1T14-Q1  
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
50  
MAX UNIT  
VCCI  
VCCO  
VI  
Input supply voltage A  
6.5  
6.5  
V
V
Output supply voltage Y  
Input Voltage(2)  
6.5  
V
VO  
VO  
IIK  
Voltage applied to any output in the high-impedance or power-off state(2)  
Voltage applied to any output in the high or low state(2) (3)  
Input clamp current  
6.5  
V
VCCB + 0.5  
V
VI < 0  
mA  
mA  
IOK  
IO  
Output clamp current  
VO < 0  
50  
Continuous output current  
50 mA  
200 mA  
150 °C  
150 °C  
50  
Continuous current through VCC or GND  
Junction Temperature  
200  
Tj  
Tstg  
Storage temperature  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
 
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted) (1) (2) (3)  
MIN  
1.1  
MAX UNIT  
VCCI  
Input supply voltage  
5.5  
5.5  
V
V
VCCO  
Output Supply voltage  
1.1  
VCCO = 1.1 V  
VCCO = 1.4 V  
VCCO = 1.65 V  
VCCO = 2.3 V  
VCCO = 3 V  
0.1  
4  
8  
12  
24  
32  
0.1  
IOH  
High-level output current  
mA  
VCCO = 4.5 V  
VCCO = 1.1 V  
VCCO = 1.4 V  
VCCO = 1.65 V  
VCCO = 2.3 V  
VCCO = 3 V  
4
8
IOL  
Low-level output current  
Input voltage (3)  
mA  
12  
24  
VCCO = 4.5 V  
32  
VI  
0
0
5.5  
V
V
Active State  
Tri-State  
Operating free-air temperature  
VCCO  
5.5  
VO  
TA  
Output voltage  
0
125 °C  
40  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) Input of this device has a weak pulldown to ensure the line is not floating when undefined external to the device. The input leakage  
from these weak pulldowns is defined by the II specification indicated under Electrical Characteristics.  
6.4 Thermal Information  
SN74LXC1T14  
THERMAL METRIC(1)  
DCK (SC70)  
5 PINS  
222.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
132.9  
109.5  
YJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
48.4  
YJB  
108.9  
RθJC(bottom)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
25°C  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
TEST  
CONDITIONS  
PARAMETER  
VCCI  
VCCO  
UNIT  
40°C to 85°C  
40°C to 125°C  
1.1 V  
1.1 V  
0.44  
0.60  
0.76  
1.08  
1.48  
2.19  
2.65  
0.17  
0.28  
0.35  
0.56  
0.89  
1.51  
1.88  
0.2  
0.88 0.44  
0.98 0.60  
1.13 0.76  
1.56 1.08  
1.92 1.48  
2.74 2.19  
3.33 2.65  
0.48 0.17  
0.59 0.28  
0.69 0.35  
0.97 0.56  
1.5 0.89  
0.88  
0.98  
1.13  
1.56  
1.92  
2.74  
3.33  
0.48  
0.59  
0.69  
0.97  
1.5  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Positive-  
going input-  
threshold  
voltage  
Data Input  
(Referenced to  
VT+  
V
VCCI  
)
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Negative-  
going input-  
threshold  
voltage  
Data Input  
(Referenced to  
VT-  
V
VCCI  
)
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.97 1.51  
2.4 1.88  
1.97  
2.4  
0.4  
0.2  
0.4  
0.25  
0.3  
0.5 0.25  
0.5  
Input-  
Data Input  
(A)  
(Referenced to  
0.55  
0.3  
0.65 0.38  
0.72 0.46  
0.93 0.58  
1.06 0.69  
VCCO  
0.55  
0.65  
0.72  
0.93  
1.06  
threshold  
hysteresis  
(VT+ VT-)  
0.38  
0.46  
0.58  
0.69  
VCCO  
V
ΔVT  
VCCI  
)
4.5 V  
5.5 V  
4.5 V  
5.5 V  
1.1 V 5.5 1.1 V 5.5  
V
IOH = 100 µA  
0.1  
0.1  
V
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1
1.2  
1.9  
2.4  
3.8  
1
1.2  
1.9  
2.4  
3.8  
IOH = 4 mA  
IOH = 8 mA  
IOH = 12 mA  
IOH = 24 mA  
IOH = 32 mA  
High-level  
output  
VOH  
V
voltage (3)  
4.5 V  
4.5 V  
1.1 V 5.5 1.1 V 5.5  
IOL = 100 µA  
0.1  
0.1  
V
V
IOL = 4 mA  
IOL = 8 mA  
IOL = 12 mA  
IOL = 24 mA  
IOL = 32 mA  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.3  
0.45  
0.3  
0.3  
0.45  
0.3  
Low-level  
output  
VOL  
V
voltage (4)  
0.55  
0.55  
0.55  
0.55  
4.5 V  
4.5 V  
Input  
leakage  
current  
Data Input (5)  
VI = VCCI or GND  
1.1 V 5.5 1.1 V 5.5  
II  
1
1
2
µA  
µA  
0.3  
1  
2  
V
V
Inputs  
VI or VO = 0 V –  
5.5 V  
Partial  
power down  
current  
0 V  
1
1
2
2
2.5  
2.5  
0 V 5.5 V  
1  
1  
2  
2  
2.5  
2.5  
Ioff  
0 V  
0 V 5.5 V  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
25°C  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
TEST  
CONDITIONS  
PARAMETER  
VCCI  
VCCO  
UNIT  
40°C to 85°C  
40°C to 125°C  
Floating (6)  
1.5  
2
2.5  
Floating  
supply  
Ioff-float Partial  
0 V 5.5 V 1.5  
2  
2.5  
Inputs  
VI or VO = GND  
µA  
Floating (6)  
1.5  
2
2.5  
0 V 5.5 V  
1.5  
2  
2.5  
power down  
current  
1.1 V 5.5 1.1 V 5.5  
2
3
6
V
V
VI = VCCI or GND  
IO = 0  
0 V  
5.5 V  
5.5 V  
0 V  
0.2  
0.5  
1  
VCCI supply  
current  
ICCI  
µA  
1
2
2
3
4
6
VI = GND  
IO = 0  
5.5 V  
Floating (6)  
1.1 V 5.5 1.1 V 5.5  
2
1
3
2
6
4
V
V
VI = VCCI or GND  
IO = 0  
ICCO  
VCCO  
supply  
current  
0 V  
5.5 V  
5.5 V  
0 V  
µA  
µA  
0.2  
0.5  
1  
VI = GND  
IO = 0  
ICCO  
Floating (6)  
5.5 V  
2
3
3
4
6
6
Combined  
supply  
current  
ICCI  
+
VI = VCCI or GND  
IO = 0  
1.1 V 5.5 1.1 V 5.5  
V
ICCO  
V
Additional  
input supply  
current  
3.0 V 5.5 3.0 V 5.5  
50  
10  
75 µA  
10 pF  
ΔICCI  
VI = VCCI 0.6 V  
V
V
Input  
Ci  
Capacitanc VI = 3.3 V or GND 3.3 V  
e
3.3 V  
5
5
VCCO = 0V VO  
=
Output  
Capacitanc  
e
1.65 V DC +1 MHz  
-16 dBm sine  
wave  
Co  
3.3 V  
3.3 V  
10  
10 pF  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) Tested at VI = VT+(MAX)  
(4) Tested at VI = VT-(MIN)  
(5) For I/O ports, the parameter Il includes the IOZ current.  
(6) Floating is defined as a node that is both not actively driven by an external device and has leakage not exeeding 10 nA.  
.
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
6.6 Switching Characteristics: Tpd  
Over operating free-air temperature range (TA). See Figure 7-1 and Table 7-1for test circuit and loading. See Figure 7-2 and Figure 7-3 for measurement waveforms.  
Input Supply Voltage (VCCI  
1.8 ± 0.15 V 2.5 ± 0.2 V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
)
Output Supply  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
Voltage (VCCO  
)
1.2 ± 0.1 V  
1.5 ± 0.1 V  
1.8 ± 0.15 V  
2.5 ± 0.2 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
10  
9
83  
36  
32  
29  
29  
28  
10  
8
70  
28  
23  
18  
16  
15  
10  
7
66  
26  
21  
15  
13  
12  
9
7
6
5
4
3
59  
22  
18  
13  
11  
10  
9
7
6
4
3
2
58  
21  
17  
12  
10  
9
9
7
6
4
3
2
54  
20  
16  
11  
9
8
7
6
Propagation  
delay  
tpd  
A
Y
ns  
7
6
5
7
6
4
7
5
4
8
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
6.7 Switching Characteristics: TMAX  
over operating free-air temperature range (unless otherwise noted)  
Operating free-air  
temperature (TA)  
PARAMETER  
TEST CONDITIONS  
VCCI  
VCCO  
UNIT  
-40°C to 125°C  
MIN TYP MAX  
3.0 V - 3.6 V  
2.25 V - 2.75 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.1 V - 1.3 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
3.0 V - 3.6 V  
3.0 V - 3.6 V  
1.65 V - 1.95 V  
3.0 V - 3.6 V  
2.25 V - 2.75 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.1 V - 1.3 V  
200  
150  
100  
20  
420  
300  
200  
40  
Up Translation  
100  
10  
210  
20  
50% Duty Cycle Input  
TMAX - Maximum One channel switching  
5
10  
Mbps  
Data Rate  
20% of pulse > 0.7*VCCO  
20% of pulse < 0.3*VCCO  
100  
75  
210  
140  
75  
50  
Down Translation 4.5 V - 5.5 V  
3.0 V - 3.6 V  
15  
30  
40  
75  
3.0 V - 3.6 V  
10  
20  
1.65 V - 1.95 V  
5
10  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74LXC1T14-Q1  
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
5
4.5  
4
1.8  
1.6  
1.4  
1.2  
1
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
VCC = 1.8 V  
VCC = 1.5 V  
VCC = 1.2 V  
1.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
IOH Output High Current (mA)  
IOH Output High Current (mA)  
6-1. Typical (TA=25°C) Output High Voltage (VOH) vs Source  
Current (IOH  
6-2. Typical (TA=25°C) Output High Voltage (VOH) vs Source  
Current (IOH  
)
)
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
0.05  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
IOL Output Low Current (mA)  
6-3. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
6-4. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
)
)
6-6. Typical (TA=25°C) Supply Current (ICC) vs Input Voltage  
6-5. Typical (TA=25°C) Supply Current (ICC) vs Input Voltage  
(VIN)  
(VIN)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Load Circuit and Voltage Waveforms  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f = 1 MHz  
ZO = 50 Ω  
• Δt/ΔV 1 ns/V  
Measurement Point  
2 x VCCO  
RL  
S1  
Output Pin  
Under Test  
Open  
(1)  
GND  
CL  
RL  
1. CL includes probe and jig capacitance.  
7-1. Load Circuit  
7-1. Load Circuit Conditions  
Parameter  
VCCO  
RL  
CL  
S1  
VTP  
tpd  
Propagation (delay) time  
15 pF  
Open  
N/A  
1.1 V 5.5 V  
2 kΩ  
(1)  
VCCI  
(1)  
VCCI  
100 kHz  
Input A, B  
VCCI / 2  
VCCI / 2  
Input A, B  
500 ps/V œ 1 s/V  
0 V  
0 V  
VOH  
(2)  
VOH  
tpd  
tpd  
(2)  
Ensure Monotonic  
Rising and Falling Edge  
Output B, A  
(2)  
VOL  
Output B, A  
VCCI / 2  
VCCI / 2  
(2)  
VOL  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
7-3. Input Transition Rise and Fall Rate  
7-2. Propagation Delay  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74LXC1T14-Q1 is a single bit translating transceiver that uses two individually configurable power-supply  
rails. The device is operational with both VCCI and VCCO supplies as low as 1.1 V and as high as 5.5 V. The A  
input is designed to track VCCI, and the Y output is designed to track VCCO  
.
The SN74LXC1T14-Q1 device is designed for asynchronous communication between devices, and transmits  
data from A to Y. The input circuitry on the A pin is always active and must have a logic HIGH or LOW level  
applied to prevent excess ICC and ICCZ  
.
This device is fully specified for partial-power-down applications using the Ioff current. The Ioff protection circuitry  
ensures that no excessive current is drawn from or sourced into an input or output while the device is powered  
down.  
The VCC isolation or VCC disconnect feature ensures that if either VCC is less than 100 mV or disconnected with  
the complementary supply within recommended operating conditions, the input is weakly pulled-down and then  
set to the high-impedance state by disabling their outputs while the supply current is maintained. The Ioff-float  
circuitry ensures that no excess current is drawn from or sourced into an input, or output while the supply is  
floating.  
Glitch-free power supply sequencing allows either supply rail to be powered on or off in any order while providing  
robust power sequencing performance.  
8.2 Functional Block Diagram  
VCCI  
VCCO  
Y
A
GND  
8.3 Feature Description  
8.3.1 CMOS Schmitt-Trigger Inputs with Integrated Pulldowns  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using ohm's law (R = V ÷ I).  
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics,  
which makes this device extremely tolerant to slow or noisy inputs. Driving the inputs slowly will increase  
dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, see  
Understanding Schmitt Triggers.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
8.3.1.1 Input with Integrated Dynamic Pull-Down Resistors  
Input circuitry is always active even when the device is disabled. It is recommended to keep a valid voltage level  
at the input to avoid high current consumption. To help avoid a floating input during disabling, this device has  
100-kΩ typical integrated weak dynamic pull-down at the input. When the device is disabled, the dynamic pull-  
downs are activated for only a short period of time to help drive and keep the floating input low before the device  
output becomes high impedance. If the input lines will be floated after the device is disabled, it is recommended  
to keep them at a valid input voltage level using external pull-downs. This feature is ideal for loads of 30 pF or  
less. If greater capactive loading is present then external pull-downs are recommended. If an external pull-up is  
required, it should be no larger than 15 kΩto avoid contention with the 100 kΩinternal pull-down.  
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at  
all times.  
8.3.3 Partial Power Down (Ioff  
)
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting  
current backflow into the device. The maximum leakage into or out of any input or output pin on the device is  
specified by Ioff in the Electrical Characteristics.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74LXC1T14-Q1  
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
8.3.4 VCC Isolation and VCC Disconnect (Ioff-float  
)
This device has an Input with Integrated Dynamic Pull-Down Resistors. The input will get pulled down and then  
enter a high-impedance state when either supply is < 100 mV or left floating (disconnected), while the other  
supply is still connected to the device. It is recommended to not drive the input for this device, but to keep it at a  
logic low state prior to floating (disconnecting) either supply.  
The maximum supply current is specified by ICCx, while VCCx is floating, in the Electrical Characteristics. The  
maximum leakage into or out of any input or output pin on the device is specified by Ioff(float) in the Electrical  
Characteristics.  
VCCI  
VCCO  
ICCO maintained  
Supply disconnected  
VCCI  
VCCO  
Hi-Z  
Hi-Z  
Y
Disabled  
A
Ioff(float)  
Ioff(float)  
GND  
8-1. VCC Disconnect Feature  
8.3.5 Over-Voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
8.3.6 Glitch-Free Power Supply Sequencing  
Either supply rail may be powered on or off in any order without producing a glitch on the output (that is, where  
the output erroneously transitions to VCC when it should be held low or vice versa). Glitches of this nature can  
be misinterpreted by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a  
false device configuration of the peripheral, or even a false data initialization by the peripheral.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
8.3.7 Negative Clamping Diodes  
As shown in 8-2, the inputs and outputs to this device have negative clamping diodes.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input negative-voltage and output voltage ratings may be exceeded if the input and  
output clamp-current ratings are observed.  
VCCA VCCB  
Device  
Input or I/O  
configured  
as input  
Level  
Shifter  
I/O configured  
as output  
-IIK  
-IOK  
GND  
8-2. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.8 Fully Configurable Dual-Rail Design  
Both the VCCI and VCCO pins can be supplied at any voltage from 1.1 V to 5.5 V, making the device suitable for  
translating between any of the voltage nodes (1.2 V, 1.5 V, 1.8 V, 3.3 V, and 5.0 V).  
8.3.9 Supports High-Speed Translation  
The SN74LXC1T14-Q1 device can support high data-rate applications. The translated signal data rate can be up  
to 420 Mbps when the signal is translated from 3.3 V to 5.0 V.  
8.4 Device Functional Modes  
8-1. Function Table  
Input A  
Output Y  
H
L
L
H
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74LXC1T14-Q1  
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN74LXC1T14-Q1 device can be used in level-translation applications for interfacing devices or systems  
operating at different interface voltages with one another. The SN74LXC1T14-Q1 device is ideal for use in  
applications where a push-pull driver is connected to the input. The maximum data rate can be up to 420 Mbps  
when the device translates a signal from 3.3 V to 5.0 V.  
9.2 Typical Application  
VCCO  
VCCI  
LDO  
PMIC  
DC/DC  
GPIO1  
RESET  
System  
Controller  
SN74LXC1T14-Q1  
9-1. LED Driver Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUES  
1.1 V to 5.5 V  
Input voltage range  
Output voltage range  
1.1 V to 5.5 V  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the SN74LXC1T14-Q1 device to determine the input  
voltage range. For a valid logic-high, the value must exceed the positive-going input-threshold voltage  
(Vt+) of the input port. For a valid logic low the value must be less than the negative-going input-threshold  
voltage (Vt-) of the input port.  
Output voltage range  
Use the supply voltage of the device that the SN74LXC1T14-Q1 device is driving to determine the output  
voltage range.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing  
without any supply sequencing requirements such as ramp order or ramp rate.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices, as described in Glitch-Free Power Supply Sequencing.  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:  
Use bypass capacitors on the power supply pins and place them as close to the device as possible. A 0.1 µF  
capacitor is recommended, but transient performance can be improved by having both 1 µF and 0.1 µF  
capacitors in parallel as bypass capacitors.  
The high drive capability of this device creates fast edges into light loads so routing and load conditions  
should be considered to prevent ringing.  
11.2 Layout Example  
Legend  
Via to VCCI  
Via to VCCO  
A
B
G
Via to GND  
Copper Traces  
SN74LXC1T14-Q1  
0402  
0.1µF  
0402  
0.1µF  
A
VCCI  
B
G
1
2
3
5
VCCO  
Reset Flag  
from LDO  
A
Reset Flag  
to Controller  
G
G
4
Y
GND  
11-1. Layout Example SN74LXC1T14-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
SN74LXC1T14-Q1  
ZHCSQV8 AUGUST 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Regulatory Requirements  
No statutory or regulatory requirements apply to this device.  
There are no special characteristics for this product.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Understanding Schmitt Triggers applicatin report  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74LXC1T14-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LXC1T14QDCKRQ1  
ACTIVE  
SC70  
DCK  
5
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
2OAT  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74LXC1T14-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2022  
Catalog : SN74LXC1T14  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74LXC1T45

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting
TI

SN74LXC1T45-Q1

具有可配置电压电平转换的汽车类 single-bit 双电源总线收发器
TI

SN74LXC1T45DBV

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting
TI

SN74LXC1T45DBVR

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting
TI

SN74LXC1T45DCK

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting
TI

SN74LXC1T45DCKR

具有可配置电压电平转换和三态输出的 single-bit 双电源总线收发器 | DCK | 6 | -40 to 125
TI

SN74LXC1T45DRL

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting
TI

SN74LXC1T45DRY

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting
TI

SN74LXC1T45DRYR

具有可配置电压电平转换和三态输出的 single-bit 双电源总线收发器 | DRY | 6 | -40 to 125
TI

SN74LXC1T45DTQ

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting
TI

SN74LXC1T45DTQR

具有可配置电压电平转换和三态输出的 single-bit 双电源总线收发器 | DTQ | 6 | -40 to 125
TI

SN74LXC1T45QDCKRQ1

具有可配置电压电平转换的汽车类 single-bit 双电源总线收发器 | DCK | 6 | -40 to 125
TI