SN74LXCH1T45DTQR [TI]

具有可配置电压电平转换功能的 single-bit 双电源收发器 | DTQ | 6 | -40 to 125;
SN74LXCH1T45DTQR
型号: SN74LXCH1T45DTQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可配置电压电平转换功能的 single-bit 双电源收发器 | DTQ | 6 | -40 to 125

文件: 总38页 (文件大小:2530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
具有可配置电压转换、三态输出和总线保持输入SN74LXCH1T45 1 位双电源  
总线收发器  
1 特性  
3 说明  
• 完全可配置的双电源轨设计允许各个端口1.1V 至  
5.5V 范围内运行  
• 稳健、无干扰电源时序控制  
3.3V 5.0V 范围内支持高420 Mbps 的速  
总线保持数据输入消除了对外部上拉或下拉电阻器  
的需求  
• 施密特触发控制输入可实现慢速或高噪声输入  
带集成静态下拉电阻器的控制输入允许浮动控制输  
SN74LXCH1T45 是一款 1 位双电源同相双向电压电平  
转换器件具有总线保持电路。I/O 引脚 A 和控制引脚  
(DIR) VCCA 逻辑电平为基准I/O 引脚 B VCCB  
逻辑电平为基准。A 端口能够接受 1.1V 5.5V I/O  
电压B 端口可接受 1.1V 5.5V I/O 电压。  
DIR 上为高电平时允许数据从 A 传输到 BDIR 上  
为低电平时允许数据从 B 传输到 A。请参阅器件功能  
模式简要了解控制逻辑的运行。  
器件信息(1)  
• 高驱动强度5V 时最高32 mA)  
• 低功耗  
封装尺寸标称值)  
器件型号  
封装  
SC70 (DCK) (6)  
SON (DRY) (6)  
X2SON (DTQ) (6)  
2.00mm × 1.25mm  
1.45mm × 1.00mm  
1.00mm × 0.80mm  
– 最大3µA (25°C)  
– 最大6µA40°C 125°C)  
VCC 隔离VCC 断开特性  
SN74LXCH1T45  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 如果任何一VCC 电源低100 mV则所有  
I/O 均变为高阻抗状态  
Ioff-float VCC 断开操作  
Ioff 支持局部断电模式运行  
VCCA  
VCCB  
• 兼LVC 系列电平转换器  
• 控制逻(DIR) VCCA 为基准  
DIR  
• 工作温度范围40°C +125°C  
• 闩锁性能超100 mAJESD 78 II 类规范  
ESD 保护性能超JESD 22 规范要求  
4000V 人体放电模型  
1000V 充电器件模型  
Bus-Hold  
Bus-Hold  
B
A
2 应用  
消除缓慢或嘈杂输入信号  
驱动指LED 或蜂鸣器  
机械开关去抖  
Note: Bus-hold circuits are only present for data inputs, not control inputs  
功能方框图  
• 通I/O 电平转换  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCES939  
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
Table of Contents  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................22  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Enable Times............................................................ 23  
9.3 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................25  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 Documentation Support ......................................... 26  
12.2 接收文档更新通知................................................... 26  
12.3 支持资源..................................................................26  
12.4 Trademarks.............................................................26  
12.5 Electrostatic Discharge Caution..............................26  
12.6 术语表..................................................................... 26  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics, VCCA = 1.2 ± 0.1 V............ 9  
6.7 Switching Characteristics, VCCA = 1.5 ± 0.1 V.......... 10  
6.8 Switching Characteristics, VCCA = 1.8 ± 0.15 V........ 11  
6.9 Switching Characteristics, VCCA = 2.5 ± 0.2 V.......... 12  
6.10 Switching Characteristics, VCCA = 3.3 ± 0.3 V........ 13  
6.11 Switching Characteristics, VCCA = 5.0 ± 0.5 V........ 14  
6.12 Switching Characteristics: Tsk, TMAX ......................15  
6.13 Operating Characteristics....................................... 15  
6.14 Typical Characteristics............................................16  
7 Parameter Measurement Information..........................17  
7.1 Load Circuit and Voltage Waveforms........................17  
Information.................................................................... 26  
4 Revision History  
DATE  
REVISION  
NOTES  
April 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
6
5
4
VCCA  
GND  
A
VCCB  
VCCA  
1
2
3
6
5
4
VCCB  
DIR  
B
DIR  
B
GND  
A
5-2. DRY Package Preview, 6-Pin SON  
(Top View)  
5-1. DCK Package, 6-Pin SC70  
(Top View)  
1
3
6
4
VCCA  
GND  
VCCB  
DIR  
B
2
5
A
5-3. DTQ Package Preview, 6-Pin X2SON Transparent (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
A
NO.  
3
I/O  
I/O  
I
Input or output A. Referenced to VCCA  
Input or output B. Referenced to VCCB  
.
.
B
4
DIR  
GND  
DIR  
VCCA  
VCCB  
5
Direction-control signal for all ports. Referenced to VCCA  
Ground.  
.
.
2
5
I
Direction-control signal for all ports. Referenced to VCCA  
A-port supply voltage. 1.1 V VCCA 5.5 V.  
B-port supply voltage. 1.1 V VCCB 5.5 V.  
1
6
(1) I = input, O = output, GND = ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74LXCH1T45  
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
50  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
6.5  
6.5  
V
V
I/O Ports (A Port)  
I/O Ports (B Port)  
Control Inputs  
A Port  
6.5  
VI  
Input Voltage(2)  
6.5  
V
6.5  
6.5  
Voltage applied to any output in the high-impedance or power-off  
state(2)  
VO  
VO  
V
V
B Port  
6.5  
A Port  
VCCA + 0.5  
VCCB + 0.5  
Voltage applied to any output in the high or low state(2) (3)  
B Port  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
mA  
mA  
Output clamp current  
VO < 0  
50  
Continuous output current  
Continuous current through VCC or GND  
Junction Temperature  
50 mA  
200 mA  
150 °C  
150 °C  
50  
200  
Tj  
Tstg  
Storage temperature  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure beyond the limits listed in Recommended Operating Conditions. may affect device  
reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
 
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
1.1  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
5.5  
5.5  
V
V
1.1  
VCCI = 1.1 V - 1.3 V  
VCCI = 1.4 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3.0 V - 3.6 V  
VCCI = 4.5 V - 5.5 V  
VCCI = 1.1 V - 1.3 V  
VCCI = 1.4 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3.0 V - 3.6 V  
VCCI = 4.5 V - 5.5 V  
VCCO = 1.1 V  
VCCI x 0.8  
VCCI x 0.65  
1.7  
Data Inputs  
(A,B)  
(Referenced to VCCI  
High-level input  
voltage  
VIH  
V
V
)
)
2
VCCI x 0.7  
VCCI x 0.2  
VCCI x 0.35  
0.7  
Data Inputs  
(A,B)  
(Referenced to VCCI  
Low-level input  
voltage  
VIL  
0.8  
VCCI x 0.3  
0.1  
4  
VCCO = 1.4 V  
VCCO = 1.65 V  
8  
IOH  
High-level output current  
mA  
VCCO = 2.3 V  
12  
24  
32  
0.1  
VCCO = 3 V  
VCCO = 4.5 V  
VCCO = 1.1 V  
VCCO = 1.4 V  
4
VCCO = 1.65 V  
8
IOL  
Low-level output current  
Input voltage  
mA  
VCCO = 2.3 V  
12  
VCCO = 3 V  
24  
VCCO = 4.5 V  
32  
VI  
0
0
5.5  
V
V
Active State  
Tri-State  
Operating free-air temperature  
VCCO  
5.5  
VO  
TA  
Output voltage  
0
125 °C  
40  
(1) VCCI is the VCC associated with the input port. VCCO is the VCC associated with the output port.  
6.4 Thermal Information  
SN74LXCH1T45  
THERMAL METRIC(1)  
DCK (SC70)  
6 PINS  
205.2  
DRY (SON)  
6 PINS  
293.4  
DTQ (X2SON)  
6 PINS  
285.0  
UNIT  
RθJA  
RθJC(top)  
RθJB  
YJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
132.4  
184.0  
140.0  
65.1  
164.9  
208.5  
48.0  
28.3  
6.1  
Junction-to-board characterization  
parameter  
YJB  
64.9  
N/A  
164.0  
N/A  
207.8  
N/A  
°C/W  
°C/W  
Junction-to-case (bottom) thermal  
resistance  
RθJC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics app report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74LXCH1T45  
 
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
25°C  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
40°C to 85°C  
40°C to 125°C  
1.1 V  
1.1 V  
0.44  
0.60  
0.76  
1.08  
1.48  
2.19  
2.65  
0.17  
0.28  
0.35  
0.56  
0.89  
1.51  
1.88  
0.2  
0.88 0.44  
0.98 0.60  
1.13 0.76  
1.56 1.08  
1.92 1.48  
2.74 2.19  
3.33 2.65  
0.48 0.17  
0.59 0.28  
0.69 0.35  
0.97 0.56  
1.5 0.89  
0.88  
0.98  
1.13  
1.56  
1.92  
2.74  
3.33  
0.48  
0.59  
0.69  
0.97  
1.5  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Positive-  
going input-  
threshold  
voltage  
Control Inputs  
(DIR)  
(Referenced to  
VT+  
V
VCCI  
)
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Negative-  
going input-  
threshold  
voltage  
Control Inputs  
(DIR)  
(Referenced to  
VT-  
V
VCCI  
)
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.97 1.51  
2.4 1.88  
1.97  
2.4  
0.4  
0.2  
0.4  
0.25  
0.3  
0.5 0.25  
0.5  
Input-  
threshold  
Control Input  
(DIR)  
0.55  
0.3  
0.65 0.38  
0.72 0.46  
0.93 0.58  
1.06 0.69  
VCCO  
0.55  
0.65  
0.72  
0.93  
1.06  
0.38  
0.46  
0.58  
0.69  
VCCO  
V
ΔVT  
hysteresis  
(Referenced to  
VCCA  
)
(VT+ VT-)  
4.5 V  
5.5 V  
4.5 V  
5.5 V  
1.1V –  
5.5V  
1.1V –  
5.5V  
IOH = 100 µA  
0.1  
0.1  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1
1.2  
1.9  
2.4  
3.8  
1
1.2  
1.9  
2.4  
3.8  
IOH = 4 mA  
IOH = 8 mA  
IOH = 12 mA  
IOH = 24 mA  
IOH = 32 mA  
High-level  
output  
VOH  
V
voltage (3)  
4.5 V  
4.5 V  
1.1V –  
5.5V  
1.1V –  
5.5V  
IOL = 100 µA  
0.1  
0.1  
IOL = 4 mA  
IOL = 8 mA  
IOL = 12 mA  
IOL = 24 mA  
IOL = 32 mA  
VI = 0.39  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.3  
0.45  
0.3  
0.55  
0.55  
4
0.3  
0.45  
0.3  
Low-level  
output  
VOL  
V
voltage (4)  
0.55  
0.55  
4.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4
15  
VI = 0.49  
10  
Bus-hold low  
sustaining  
current  
VI = 0.58  
25  
20  
IBHL  
µA  
VI = 0.70  
45  
45  
Port A or Port  
B (6)  
VI = 0.80  
75  
75  
VI = 1.35  
4.5 V  
4.5 V  
100  
100  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
25°C  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
40°C to 85°C  
40°C to 125°C  
VI = 0.71 V  
VI = 0.91 V  
VI = 1.07 V  
VI = 1.70 V  
VI = 2.00 V  
1.1 V  
1.1 V  
4  
15  
25  
45  
75  
4  
15  
25  
45  
75  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Bus-hold high  
sustaining  
current  
IBHH  
µA  
Port A or Port  
B (7)  
100  
100  
VI = 3.15 V  
4.5 V  
4.5 V  
1.3 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
5.5 V  
1.3 V  
1.3 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
5.5 V  
1.3 V  
75  
125  
200  
300  
500  
900  
75  
125  
200  
300  
500  
900  
Bus-hold low  
Ramp input up  
VI = 0 to VCCI  
IBHLO overdrive  
µA  
current (8)  
75  
75  
125  
125  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
5.5 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
5.5 V  
200  
200  
Bus-hold high  
Ramp input down  
VI = VCCI to 0  
IBHHO overdrive  
µA  
300  
300  
current (9)  
500  
500  
900  
900  
Control input  
(DIR)  
VI = VCCA or GND  
1.1V –  
5.5V  
1.1V –  
5.5V  
-0.1  
1
1
-0.1  
2
1
-0.1  
2
2
µA  
µA  
µA  
Input leakage  
current  
II  
Data Inputs (5)  
(Ax, Bx)  
VI = VCCI or GND  
1.1V –  
5.5V  
1.1V –  
5.5V  
0.3  
1  
2  
A Port or B Port  
VI or VO = 0 V - 5.5  
V
0 V  
0 V - 5.5 V  
1
1
2
2
2
2.5  
2.5  
2.5  
1  
1  
2  
2  
2  
2.5  
2.5  
2.5  
Partial power  
down current  
Ioff  
0 V - 5.5 V 0 V  
Floating (10) 0 V - 5.5 V  
1.5  
Floating  
1.5  
supply Partial A Port or B Port  
power down VI or VO = GND  
current  
Ioff-float  
µA  
µA  
0 V - 5.5 V Floating (10)  
1.5  
2
2
2
2.5  
4
1.5  
0.2  
2  
2.5  
1.1V –  
1.1V –  
5.5V  
5.5V  
VI = VCCI or GND  
IO = 0  
0 V  
5.5 V  
0 V  
0.5  
1  
VCCA supply  
ICCA  
current  
5.5 V  
1
1
2
2
VI = GND  
IO = 0  
5.5 V  
Floating (10)  
1.5  
1.5  
1.1V –  
5.5V  
1.1V –  
5.5V  
2
1
2
1
4
2
VI = VCCI or GND  
IO = 0  
0 V  
5.5 V  
0 V  
VCCB supply  
current  
ICCB  
µA  
5.5 V  
0.2  
0.5  
1  
VI = GND  
IO = 0  
Floating (10) 5.5 V  
1.5  
1.5  
2
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74LXCH1T45  
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
25°C  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
40°C to 85°C  
40°C to 125°C  
Combined  
supply  
current  
ICCA  
ICCB  
+
VI = VCCI or GND  
IO = 0  
1.1V –  
5.5V  
1.1V –  
5.5V  
3
4
6
µA  
Control input (DIR):  
VI = VCCA 0.6 V  
A port = VCCA or  
GND  
3.0V - 5.5V 3.0V - 5.5V  
3.0V - 5.5V 3.0V - 5.5V  
3.0V - 5.5V 3.0V - 5.5V  
50  
75  
VCCA  
additional  
supply  
current per  
input  
B Port = open  
µA  
ΔICCA  
A Port: VI = VCCA  
0.6 V  
50  
50  
75  
DIR = VCCA, B Port  
= open  
VCCB  
additional  
supply  
current per  
input  
B Port: VI = VCCB  
0.6 V  
-
75 µA  
ΔICCB  
DIR = GND, A Port  
= open  
Control Input  
Capacitance  
Ci  
VI = 3.3 V or GND  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
2.2  
4.9  
4
4
7
pF  
pF  
VCCO = 0V VO  
=
Data I/O  
Capacitance  
Cio  
1.65V DC +1 MHz  
-16 dBm sine wave  
10  
(1) VCCI is the VCC associated with the input port  
(2) VCCO is the VCC associated with the output port  
(3) Tested at VI = VT+(MAX)  
(4) Tested at VI = VT-(MIN)  
(5) For I/O ports, the parameter Il includes the IOZ current  
(6) IBHL should be measured after lowering VI to GND and then raising it to the defined input voltage  
(7) IBHH should be measured after raising VI to VCCI and then lowering it to the defined input voltage  
(8) An external driver must source at least IBHLO to switch this node from low-to-high  
(9) An external driver must sink at least IBHHO to switch this node from high to low  
(10) Floating is defined as a node that is both not actively driven by an external device and has leakage not exeeding 10nA  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
 
 
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.6 Switching Characteristics, VCCA = 1.2 ± 0.1 V  
See 7-1 and 7-1 for test circuit and loading. See 7-2, 7-3, and 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
1.8 ± 0.15 V  
2.5 ± 0.2 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
6
8
85  
55  
4
6
41  
37  
71  
47  
53  
47  
47  
48  
110  
89  
89  
79  
3
5
36  
33  
67  
43  
53  
47  
41  
41  
99  
80  
84  
73  
1
3
33  
30  
60  
38  
53  
47  
34  
34  
86  
68  
81  
68  
1
3
34  
30  
57  
37  
53  
47  
33  
33  
83  
65  
82  
67  
1
2
44  
33  
58  
36  
53  
47  
32  
32  
85  
63  
92  
70  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
6
85  
5
4
3
3
3
B
8
55  
6
6
5
4
4
5
53  
5
5
5
5
4
DIR  
DIR  
DIR  
DIR  
7
47  
7
7
7
7
7
Disable time  
Enable time  
ns  
ns  
10  
14  
21  
27  
16  
19  
85  
7
6
5
5
4
71  
11  
17  
23  
14  
18  
10  
16  
21  
13  
17  
8
8
6
150  
121  
118  
97  
13  
17  
12  
16  
13  
17  
11  
15  
12  
15  
11  
14  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.7 Switching Characteristics, VCCA = 1.5 ± 0.1 V  
See 7-1 and 7-1 for test circuit and loading. See 7-2, 7-3, and 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
1.8 ± 0.15 V  
2.5 ± 0.2 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
1
1
70  
46  
1
1
29  
29  
29  
29  
29  
29  
45  
46  
69  
70  
53  
54  
1
1
24  
24  
26  
26  
29  
29  
38  
40  
59  
61  
48  
49  
1
1
20  
21  
23  
23  
29  
29  
31  
32  
49  
51  
43  
44  
1
1
19  
19  
21  
21  
29  
29  
30  
31  
46  
48  
41  
42  
1
1
19  
20  
21  
21  
29  
29  
28  
29  
44  
45  
41  
42  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
1
39  
1
1
1
1
1
B
1
36  
1
1
1
1
1
3
29  
3
3
3
3
3
DIR  
DIR  
DIR  
DIR  
5
29  
5
5
5
5
5
Disable time  
Enable time  
ns  
ns  
11  
15  
19  
27  
12  
16  
78  
8
7
5
5
4
70  
14  
15  
23  
10  
14  
11  
13  
21  
9
10  
11  
18  
8
9
8
113  
101  
91  
11  
17  
8
9
15  
7
71  
13  
12  
12  
11  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.8 Switching Characteristics, VCCA = 1.8 ± 0.15 V  
See 7-1 and 7-1 for test circuit and loading. See 7-2, 7-3, and 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
1.8 ± 0.15 V  
2.5 ± 0.2 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
1
1
66  
43  
35  
32  
22  
23  
73  
64  
103  
90  
80  
61  
1
1
26  
27  
24  
24  
22  
31  
40  
42  
59  
61  
44  
45  
1
1
21  
22  
21  
22  
23  
23  
34  
36  
50  
53  
39  
40  
1
1
17  
18  
18  
19  
23  
23  
27  
28  
40  
43  
34  
36  
1
1
16  
17  
17  
18  
22  
23  
25  
27  
38  
39  
33  
34  
1
1
15  
16  
17  
17  
22  
23  
23  
25  
35  
37  
32  
35  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
1
1
1
1
1
1
B
1
1
1
1
1
1
2
2
2
2
2
2
DIR  
DIR  
DIR  
DIR  
4
4
4
4
4
4
Disable time  
Enable time  
ns  
ns  
9
7
6
4
4
3
15  
17  
23  
11  
14  
13  
13  
21  
9
11  
12  
19  
8
6
8
6
9
9
7
16  
7
12  
6
12  
6
12  
11  
10  
10  
9
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.9 Switching Characteristics, VCCA = 2.5 ± 0.2 V  
See 7-1 and 7-1 for test circuit and loading. See 7-2, 7-3, and 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
1.8 ± 0.15 V  
2.5 ± 0.2 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
1
1
59  
38  
32  
29  
16  
16  
63  
56  
91  
76  
67  
49  
1
1
23  
23  
20  
21  
23  
16  
35  
37  
49  
51  
33  
34  
1
1
19  
19  
17  
18  
16  
16  
29  
31  
41  
44  
33  
30  
1
1
15  
15  
15  
15  
16  
25  
23  
25  
33  
35  
25  
27  
1
1
13  
14  
14  
14  
20  
16  
22  
23  
30  
32  
24  
27  
1
1
12  
13  
13  
14  
16  
16  
19  
20  
27  
29  
23  
24  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
1
1
1
1
1
1
B
1
1
1
1
1
1
1
1
1
1
1
1
DIR  
DIR  
DIR  
DIR  
2
2
2
2
2
2
Disable time  
Enable time  
ns  
ns  
8
6
5
3
3
2
13  
14  
21  
8
10  
11  
18  
6
10  
10  
16  
5
8
7
5
8
7
6
14  
4
13  
4
10  
4
11  
9
8
7
7
6
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.10 Switching Characteristics, VCCA = 3.3 ± 0.3 V  
See 7-1 and 7-1 for test circuit and loading. See 7-2, 7-3, and 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
1.8 ± 0.15 V  
2.5 ± 0.2 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
1
1
57  
36  
33  
29  
14  
34  
59  
52  
86  
71  
64  
46  
1
1
21  
22  
19  
19  
14  
15  
32  
33  
44  
46  
30  
31  
1
1
17  
18  
16  
17  
14  
15  
27  
29  
37  
39  
27  
28  
1
1
14  
14  
13  
14  
14  
15  
21  
23  
30  
32  
23  
24  
1
1
12  
13  
12  
13  
20  
15  
20  
22  
28  
29  
22  
23  
1
1
11  
12  
12  
12  
14  
17  
18  
19  
25  
26  
22  
22  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
1
1
1
1
1
1
B
1
1
1
1
1
1
1
1
1
1
1
1
DIR  
DIR  
DIR  
DIR  
1
1
1
1
1
1
Disable time  
Enable time  
ns  
ns  
7
5
5
3
3
2
12  
13  
19  
8
9
9
7
7
5
10  
16  
6
9
7
7
5
14  
5
12  
4
12  
4
10  
3
10  
9
8
7
6
6
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.11 Switching Characteristics, VCCA = 5.0 ± 0.5 V  
See 7-1 and 7-1 for test circuit and loading. See 7-2, 7-3, and 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
1.8 ± 0.15 V  
2.5 ± 0.2 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
1
1
57  
36  
47  
33  
12  
12  
57  
50  
98  
73  
62  
43  
1
1
21  
21  
19  
20  
12  
12  
30  
31  
42  
44  
28  
28  
1
1
17  
17  
15  
16  
21  
20  
25  
27  
34  
36  
24  
25  
1
1
13  
14  
12  
13  
12  
12  
20  
21  
27  
29  
20  
21  
1
1
12  
12  
11  
12  
15  
12  
19  
20  
25  
27  
19  
20  
1
1
1
1
1
1
2
4
5
9
2
4
11  
11  
11  
11  
12  
12  
17  
18  
23  
24  
18  
19  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
1
1
1
1
1
B
1
1
1
1
1
1
1
1
1
1
DIR  
DIR  
DIR  
DIR  
1
1
1
1
1
Disable time  
Enable time  
ns  
ns  
1
1
4
3
3
11  
8
9
8
6
6
6
8
7
7
18  
6
15  
4
13  
3
11  
3
11  
2
9
7
6
5
4
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.12 Switching Characteristics: Tsk, TMAX  
over operating free-air temperature range (unless otherwise noted)  
Operating free-air  
temperature (TA)  
PARAMETER  
TEST CONDITIONS  
VCCI  
VCCO  
UNIT  
-40°C to 125°C  
MIN TYP MAX  
200  
150  
100  
20  
420  
300  
200  
40  
3.0 V 3.6 V  
2.25 V - 2.75 V  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.1 V 1.3 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
3.0 V 3.6 V  
3.0 V 3.6 V  
1.65 V 1.95 V  
3.0 V 3.6 V  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.1 V 1.3 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
3.0 V 3.6 V  
3.0 V 3.6 V  
1.65 V 1.95 V  
4.5 V 5.5 V  
4.5 V - 5.5 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
3.0 V 3.6 V  
3.0 V 3.6 V  
1.65 V 1.95 V  
3.0 V 3.6 V  
2.25 V - 2.75 V  
Up Translation  
100  
10  
210  
20  
50% Duty Cycle  
Input  
One channel  
switching  
20% of pulse >  
0.7*VCCO  
5
10  
TMAX - Maximum  
Data Rate  
Mbps  
100  
75  
210  
140  
75  
20% of pulse <  
0.3*VCCO  
50  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.1 V 1.3 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
4.5 V 5.5 V  
3.0 V 3.6 V  
3.0 V 3.6 V  
1.65 V 1.95 V  
3.0 V 3.6 V  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.65 V 1.95 V  
1.1 V 1.3 V  
1.1 V 1.3 V  
Down Translation  
15  
30  
40  
75  
10  
20  
5
10  
1
2
3
Up Translation  
2.5  
3.5  
4.5  
1
Timing skew  
between any two  
switching outputs  
within the same  
device  
ns  
tsk Output skew  
2
3
Down Translation  
3
4
5
6.13 Operating Characteristics  
TA = 25(1)  
Supply Voltage (VCCB = VCCA  
)
PARAMETER  
Test Conditions 1.2 ± 0.1V 1.5 ± 0.1V 1.8 ± 0.15V 2.5 ± 0.2V 3.3 ± 0.3V 5.0 ± 0.5V UNIT  
TYP  
TYP  
TYP  
TYP  
TYP  
TYP  
A to B  
B to A  
A to B  
B to A  
A Port  
CL = 0, RL = Open  
f = 10 MHz  
3.5  
3.7  
3.9  
4.2  
4.5  
5
(2)  
(2)  
CpdA  
pF  
pF  
20.2  
20.2  
3.5  
20.5  
20.5  
3.7  
20.7  
20.8  
3.9  
21.5  
21.5  
4.2  
22.8  
22.8  
4.5  
24.9  
24.8  
5.1  
trise = tfall = 1 ns  
B Port  
CL = 0, RL = Open  
f = 10 MHz  
CpdB  
trise = tfall = 1 ns  
(1) See the CMOS Power Consumption and Cpd Calculation application report for more information about power dissipation capacitance.  
(2) CpdA and CpdB are respectively A-Port and B-Port power dissipation capacitances per transceiver.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
6.14 Typical Characteristics  
5
4.5  
4
1.8  
1.6  
1.4  
1.2  
1
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
VCC = 1.8 V  
VCC = 1.5 V  
VCC = 1.2 V  
1.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
IOH Output High Current (mA)  
IOH Output High Current (mA)  
6-1. Typical (TA=25°C) Output High Voltage (VOH) vs Source  
Current (IOH  
6-2. Typical (TA=25°C) Output High Voltage (VOH) vs Source  
Current (IOH  
)
)
0.45  
0.4  
0.45  
0.4  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
VCC = 1.8 V  
VCC = 1.5 V  
VCC = 1.2 V  
0.05  
0
0.05  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
IOL Output Low Current (mA)  
IOL Output Low Current (mA)  
6-3. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
6-4. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
)
)
2
1.8  
1.6  
1.4  
1.2  
1
0.22  
0.2  
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
VCC = 1.8 V  
VCC = 1.5 V  
VCC = 1.2 V  
0.18  
0.16  
0.14  
0.12  
0.1  
0.8  
0.6  
0.4  
0.2  
0
0.08  
0.06  
0.04  
0.02  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
VIN Input Voltage (V)  
VIN Input Voltage (V)  
6-5. Typical (TA=25°C) Supply Current (ICC) vs Input Voltage  
6-6. Typical (TA=25°C) Supply Current (ICC) vs Input Voltage  
(VIN)  
(VIN)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Load Circuit and Voltage Waveforms  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f = 1 MHz  
ZO = 50 Ω  
• Δt/ΔV 1 ns/V  
Measurement Point  
2 x VCCO  
RL  
S1  
Output Pin  
Under Test  
Open  
(1)  
GND  
CL  
RL  
A. CL includes probe and jig capacitance.  
7-1. Load Circuit  
7-1. Load Circuit Conditions  
Parameter  
VCCO  
RL  
CL  
S1  
VTP  
N/A  
tpd  
Propagation (delay) time  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
Open  
1.1 V 5.5 V  
1.1 V 1.6 V  
1.65 V 2.7 V  
3.0 V 5.5 V  
1.1 V 1.6 V  
1.65 V 2.7 V  
3.0 V 5.5 V  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 × VCCO  
2 × VCCO  
2 × VCCO  
GND  
0.1 V  
0.15 V  
0.3 V  
0.1 V  
0.15 V  
0.3 V  
ten, tdis Enable time or disable time  
ten, tdis Enable time or disable time  
GND  
GND  
(1)  
VCCI  
(1)  
VCCI  
100 kHz  
Input A, B  
VCCI / 2  
VCCI / 2  
Input A, B  
500 ps/V œ 1 s/V  
0 V  
0 V  
VOH  
tpd  
tpd  
(2)  
VOH  
(2)  
Ensure Monotonic  
Rising and Falling Edge  
Output B, A  
Output B, A  
VCCI / 2  
VCCI / 2  
(2)  
VOL  
(2)  
VOL  
1. VCCI is the supply pin associated with the input port.  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1.  
7-3. Input Transition Rise and Fall Rate  
7-2. Propagation Delay  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
VCCA  
GND  
OE  
VCCA / 2  
VCCA / 2  
tdis  
ten  
(3)  
VCCO  
Output(1)  
VCCO / 2  
VOL + VTP  
(4)  
VOL  
(4)  
VOH  
VOH - VTP  
Output(2)  
VCCO / 2  
GND  
1. Output waveform on the condition that input is driven to a valid Logic Low.  
2. Output waveform on the condition that input is driven to a valid Logic High.  
3. VCCO is the supply pin associated with the output port.  
4. VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
7-4. Enable Time And Disable Time  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74LXCH1T45 is a 1-bit translating transceiver that uses two individually configurable power-supply rails.  
The device is operational with VCCA and VCCB supplies as low as 1.1 V and as high as 5.5 V. Additionally, the  
device operates with VCCA = VCCB. The A port is designed to track VCCA, and the B port is designed to track  
VCCB  
.
The SN74LXCH1T45 device is designed for asynchronous communication between data buses and transmits  
data from the A bus to the B bus or from the B bus to the A bus based on the logic level of the direction-control  
input (DIR). The control pin of the SN74LXCH1T45 (DIR) is referenced to VCCA  
.
This device is fully specified for partial-power-down applications using the Ioff current. The Ioff protection circuitry  
ensures that no excessive current is drawn from or sourced into an input, output, or I/O while the device is  
powered down.  
The VCC isolation and VCC disconnect feature ensures that if either VCC is less than 100 mV or floating with the  
complementary supply within the recommended operating conditions, both I/O ports are set to the high-  
impedance state by disabling their outputs and the supply current is maintained.  
Glitch-free power supply sequencing allows either supply rail to power on or off in any order while providing  
robust power sequencing performance.  
8.2 Functional Block Diagram  
VCCA  
VCCB  
DIR  
A
Bus-Hold  
Bus-Hold  
B
Note: Bus-hold circuits are only present for data inputs, not control inputs  
8.3 Feature Description  
8.3.1 CMOS Schmitt-Trigger Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using ohm's law (R = V ÷ I).  
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics,  
which makes this device extremely tolerant to slow or noisy inputs. Driving the inputs slowly will increase  
dynamic current consumption of the device. See Understanding Schmitt Triggers for additional information  
regarding Schmitt-trigger inputs.  
8.3.1.1 Control Inputs with Integrated Static Pull-Down Resistors  
Similar to the data I/O's, floating control inputs can cause high current consumption. This device has integrated  
weak static pull-downs of 5-MΩ typical on the control inputs (DIR and OE) to help avoid this concern. These  
pull-downs are always present. For example, if the DIR pin is left floating, then the B port will be configured as an  
input and the A port will be configured as an output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at  
all times.  
8.3.3 Partial Power Down (Ioff)  
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting  
current backflow into the device. Ioff in the Electrical Characteristics specifies the maximum leakage into or out of  
any input or output pin on the device.  
8.3.4 VCC Isolation and VCC Disconnect  
The inputs and outputs for this device enter a high-impedance state when either supply is <100 mV, requiring  
one supply to connect to the device. Note: the bus-hold circuitry always remains active even when the device is  
disabled and all outputs are in the high-impedance state.  
Either supply can be disconnected (floated), while the other supply is still connected and the device will maitain  
the maximum supply current specified by ICCx(floating), in the Electrical Characteristics. The I/O's will not enter a  
high-impedance state unless the supply is disconnected after it is driven to <100 mV. Ioff(float) in the Electrical  
Characteristics specifies the maximum leakage into or out of any input or output pin on the device.  
VCCA  
VCCB  
ICCB maintained  
Supply disconnected  
VCCA  
VCCB  
DIR  
OE  
Disabled  
Hi-Z  
B1  
Hi-Z  
A1  
Bus-Hold  
Bus-Hold  
Ioff(float)  
Ioff(float)  
Disabled  
GND  
8-1. VCC Disconnect Feature  
8.3.5 Over-Voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage as long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
8.3.6 Glitch-Free Power Supply Sequencing  
Either supply rail may be powered on or off in any order without producing a glitch on the I/Os (that is, where the  
output erroneously transitions to VCC when it should be held low or vice versa). Glitches of this nature can be  
misinterpreted by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a  
false device configuration of the peripheral, or even a false data initialization by the peripheral.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
8.3.7 Negative Clamping Diodes  
The inputs and outputs to this device have negative clamping diodes as depicted in 8-2.  
CAUTION  
Voltages beyond the values specified in 6.1 table can cause damage to the device. The input  
negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current  
ratings are observed.  
VCCA VCCB  
Device  
Input or I/O  
configured  
as input  
Level  
Shifter  
I/O configured  
as output  
-IIK  
-IOK  
GND  
8-2. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.8 Fully Configurable Dual-Rail Design  
The VCCA and VCCB pins can be supplied at any voltage from 1.1 V to 5.5 V, making the device suitable for  
translating between any of the voltage nodes (1.2 V, 1.5 V, 1.8 V, 3.3 V, and 5.0 V).  
8.3.9 Supports High-Speed Translation  
The SN74LXCH1T45 device can support high data-rate applications. The translated signal data rate can be up  
to 420 Mbps when the signal is translated from 3.3 V to 5.0 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN74LXCH1T45  
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
8.3.10 Bus-Hold Data Inputs  
Each data input on this device includes a weak latch that maintains a valid logic level on the input. The state of  
these latches is unknown at startup and remains unknown until the input has been forced to a valid high or low  
state. After data is sent through a channel, the latch maintains the previous state on the input (if the line is left  
floating). It is not recommended to use pull-up or pull-down resistors together with a bus-hold input, as it may  
cause undefined inputs to occur which leads to excessive current consumption.  
Bus-hold data inputs prevent floating inputs on this device. The Implications of Slow or Floating CMOS Inputs  
application report explains the problems associated with leaving the CMOS inputs floating. These latches remain  
active at all times, independent of all control signals such as direction control or output enable. The latches also  
remain active when the device is in the partial power down state, corresponding supply is still present, or when  
the I/O's are floated. The Bus-Hold Circuit application report has additional details regarding bus-hold inputs.  
Level  
Bus-Hold  
Bus-Hold  
Ax  
Bx  
Shifter  
8-3. Schematic Description of Location of Bus-Hold Circuits  
8.4 Device Functional Modes  
8-1. Function Table(1)  
CONTROL INPUTS  
PORT STATUS  
OPERATION  
OE  
L
DIR  
L
A PORT  
Output (Enabled)  
Input (Hi-Z)  
B PORT  
Input (Hi-Z)  
B data to A bus  
A data to B bus  
Isolation  
L
H
Output (Enabled)  
Input (Hi-Z)  
H
X
Input (Hi-Z)  
(1) Input circuits of the data I/Os are always active.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN74LXCH1T45 device can be used in level-translation applications for interfacing devices or systems  
operating at different interface voltages with one another. The SN74LXCH1T45 device is ideal for use in  
applications where a push-pull driver is connected to the data I/O. The maximum data rate can be up to 420  
Mbps when the device translates a signal from 3.3 V to 5.0 V.  
9.2 Enable Times  
Calculate the enable times for the SN74LXCH1T45 using the following formulas:  
tA_en (DIR to A) = tdis (DIR to B) + tpd (B to A)  
tB_en (DIR to B) = tdis (DIR to A) + tpd (A to B)  
(1)  
(2)  
In a bidirectional application, these enable times provide the maximum delay time from the time the DIR bit is  
switched until an output is expected. For example, if the SN74LXCH1T45 initially is transmitting from A to B, then  
the DIR bit is switched; the B port of the device must be disabled (tdis) before presenting it with an input. After the  
B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified  
propagation delay (tpd). To avoid bus contention, care should be taken to not apply an input signal prior to the  
output being disabled (tdis maximum).  
9.3 Typical Application  
5.0 V  
1.5 V  
0.1 µF  
0.1 µF  
System  
Controller  
LDO  
VCCB  
VCCA  
RESET  
SN74LXCH1T45  
GND  
GPIO1  
B1  
DIR  
A1  
9-1. LED Driver Application  
9.3.1 Design Requirements  
Use the parameters listed in 9-1 for this design example.  
9-1. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUES  
1.1 V to 5.5 V  
Input voltage range  
Output voltage range  
1.1 V to 5.5 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
9.3.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range:  
Use the supply voltage of the device that is driving the SN74LXCH1T45 device to determine the input  
voltage range. The value must exceed the high-level input voltage (VIH) of the input port for a valid logic-  
high. The value must be less than the low-level input voltage (VIL) of the input port for a valid logic low.  
Output voltage range:  
Use the device's supply voltage that the SN74LXCH1T45 device is driving to determine the output voltage  
range.  
9.3.3 Application Curve  
9-2. Up Translation at 2.5 MHz (1.2 V to 5 V)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing  
without any supply sequencing requirements such as ramp order or ramp rate.  
8.3.6 describes how this device was designed with various power supply sequencing methods in mind to help  
prevent unintended triggering of downstream devices.  
11 Layout  
11.1 Layout Guidelines  
Following common printed-circuit board layout guidelines are recommended to ensure reliability of the device,  
which follows:  
Use bypass capacitors on the power supply pins and place them as close to the device as possible. A 0.1 µF  
capacitor is recommended, but transient performance can be improved by having both 1 µF and 0.1 µF  
capacitors in parallel as bypass capacitors.  
The high drive capability of this device creates fast edges into light loads; so routing and load conditions  
should be considered to prevent ringing.  
11.2 Layout Example  
Legend  
Via to VCCA  
Via to VCCB  
A
B
G
Via to GND  
Copper Traces  
SN74LXCH1T45DTQ  
B
VCCA  
1
VCCB  
6
A
01005  
0.1µF  
01005  
0.1µF  
4 mil  
GND  
DIR  
2
5
G
G
G
A
B
4
Reset Flag  
to Controller  
Reset Flag  
from LDO  
3
11-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
SN74LXCH1T45  
ZHCSOE9 APRIL 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, CMOS Power Consumption and Cpd Calculation application report  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics appliction report  
Texas Instruments, System Considerations for Using Bus-Hold Curcuits to Avoid Floating Inputs application  
report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN74LXCH1T45  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LXCH1T45DCKR  
SN74LXCH1T45DRYR  
SN74LXCH1T45DTQR  
ACTIVE  
ACTIVE  
ACTIVE  
SC70  
SON  
DCK  
DRY  
DTQ  
6
6
6
3000 RoHS & Green  
5000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
2NNT  
MJ  
NIPDAU  
NIPDAU  
X2SON  
MF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Apr-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DTQ0006A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.40 MAX  
(0.1) TYP  
C
SEATING PLANE  
0.05 C  
(0.1)  
2X 0.6  
0.4  
0.05  
0.00  
(0.027) TYP  
3
4
PKG  
+0.05  
-0.03  
0.25  
TYP  
2
5
(0.08)  
0.25  
4X  
0.17  
1
6
PIN 1 ID  
(OPTIONAL)  
NOTE 5  
PKG  
0.30  
4X  
0.22  
0.1  
0.05  
C A B  
C
4224056/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. The size and shape of this feature may vary.  
5. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DTQ0006A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
0.05 MIN  
ALL AROUND  
TYP  
SOLDER MASK OPEING  
TYP  
SYMM  
4X (0.25)  
6
(0.25)  
TYP  
1
4X (0.4)  
SYMM  
(0.8)  
2
5
(0.2) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
3
4
(0.2)  
TYP  
(0.027) TYP  
(R0.05) TYP  
(0.4)  
(0.6)  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:50X  
4224056/A 11/2017  
NOTES: (continued)  
6. This package is designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
7. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DTQ0006A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.25)  
SYMM  
(0.027) TYP  
(0.279)  
TYP  
6
1
4X (0.4)  
SYMM  
(0.8)  
5
2
(0.2) TYP  
SOLDER MASK  
EDGE, 2X  
3
METAL UNDER  
SOLDER MASK  
TYP  
4
(0.2)  
TYP  
(R0.05) TYP  
(0.21)  
(0.367)  
4X (0.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.07 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:50X  
4224056/A 11/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
DRY 6  
USON - 0.6 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4207181/G  
PACKAGE OUTLINE  
DRY0006A  
USON - 0.6 mm max height  
S
C
A
L
E
8
.
5
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
PIN 1 INDEX AREA  
1.5  
1.4  
C
0.6 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3X 0.6  
SYMM  
(0.127) TYP  
(0.05) TYP  
3
4
4X  
0.5  
SYMM  
2X  
1
6
1
0.25  
6X  
0.15  
0.4  
0.3  
0.1  
C A B  
C
0.05  
PIN 1 ID  
(OPTIONAL)  
0.35  
0.25  
5X  
4222894/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRY0006A  
USON - 0.6 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
(0.35)  
5X (0.3)  
6
1
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
LAND PATTERN EXAMPLE  
1:1 RATIO WITH PKG SOLDER PADS  
EXPOSED METAL SHOWN  
SCALE:40X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
EXPOSED  
METAL  
METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222894/A 01/2018  
NOTES: (continued)  
3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRY0006A  
USON - 0.6 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
(0.35)  
5X (0.3)  
1
6
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1 mm THICK STENCIL  
SCALE:40X  
4222894/A 01/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74LXCH8T245

具有可配置电压转换和三态输出的 8 位双电源总线收发器
TI

SN74LXCH8T245PWR

具有可配置电压转换和三态输出的 8 位双电源总线收发器 | PW | 24 | -40 to 125
TI

SN74LXCH8T245RHLR

具有可配置电压转换和三态输出的 8 位双电源总线收发器 | RHL | 24 | -40 to 125
TI

SN74S

Pocket Data Book
TI

SN74S00

QUADRUPLE 2-INPUT POSITIVE-NAND GATES
TI

SN74S00D

QUADRUPLE 2-INPUT POSITIVE-NAND GATES
TI

SN74S00D3

IC,LOGIC GATE,QUAD 2-INPUT NAND,S-TTL,SOP,14PIN,PLASTIC
TI

SN74S00DE4

QUADRUPLE 2-INPUT POSITIVE-NAND GATES
TI

SN74S00DG4

QUADRUPLE 2-INPUT POSITIVE-NAND GATES
TI

SN74S00DG4

NAND Gate, S Series, 4-Func, 2-Input, TTL, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
ROCHESTER

SN74S00DR

QUADRUPLE 2-INPUT POSITIVE-NAND GATES
TI

SN74S00DRE4

QUADRUPLE 2-INPUT POSITIVE-NAND GATES
TI