SN75374 [TI]

QUADRUPLE MOSFET DRIVER; 翻两番MOSFET驱动器
SN75374
型号: SN75374
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUADRUPLE MOSFET DRIVER
翻两番MOSFET驱动器

驱动器
文件: 总13页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
D OR N PACKAGE  
(TOP VIEW)  
Quadruple Circuits Capable of Driving  
High-Capacitance Loads at High Speeds  
Output Supply Voltage Range From 5 V  
V
V
1
2
3
4
5
6
7
8
16  
15  
14  
CC1  
CC2  
1Y  
to 24 V  
4Y  
4A  
Low Standby Power Dissipation  
1A  
1E1  
1E2  
2A  
V  
Supply Maximizes Output Source  
Voltage  
CC3  
13 2E2  
12 2E1  
11  
10  
9
3A  
3Y  
V
description  
2Y  
GND  
CC3  
The SN75374 is a quadruple NAND interface  
circuit designed to drive power MOSFETs from  
TTL inputs. It provides the high current and  
voltage necessary to drive large capacitive loads  
at high speeds.  
schematic (each driver)  
V
CC1  
V
CC3  
V
CC2  
The outputs can be switched very close to the  
To Other  
Drivers  
V
supply rail when V  
is about 3 V higher  
CC2  
CC3  
than V  
. V  
can also be tied directly to V  
CC2 CC3 CC2  
when the source voltage requirements are lower.  
Input A  
The SN75374 is characterized for operation from  
0°C to 70°C.  
Enable  
E1  
Enable  
E2  
Output  
Y
logic symbol  
GND  
To Other  
Drivers  
logic diagram (positive logic)  
4
1E1  
5
1E2  
12  
2E1  
13  
2E2  
2
1Y  
3
1A  
7
2Y  
3Y  
6
2A  
This symbol is in accordance with ANSI/IEEE Std 91-1984  
and IEC Publication 617-12  
10  
15  
11  
3A  
4Y  
14  
4A  
Copyright 1988, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
3–1  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range of V  
Supply voltage range of V  
Supply voltage range of V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 7 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 25 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 30 V  
CC1  
CC2  
CC3  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
I
Peak output current, I (t < 10 ms, duty cycle < 50%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mA  
I
w
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
NOTE 1: Voltage values are with respect to network ground terminal.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T = 70° C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D
N
950 mW  
7.6 mW/°C  
9.2 mW/°C  
608 mW  
1150 mW  
736 mW  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
24  
UNIT  
V
Supply voltage, V  
Supply voltage, V  
Supply voltage, V  
4.75  
5
20  
24  
4
CC1  
CC2  
CC3  
4.75  
V
V
28  
V
CC2  
0
Voltage difference between supply voltages: V  
CC3  
– V  
10  
V
CC2  
High-level input voltage, V  
IH  
2
V
Low-level input voltage, V  
0.8  
10  
40  
V
IL  
High-level output current, I  
High-level output current, I  
mA  
mA  
°C  
OH  
OL  
Operating free-air temperature, T  
0
70  
A
3–2  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
electrical characteristics over recommended ranges of V  
temperature (unless otherwise noted)  
, V  
, V  
, and operating free-air  
CC1 CC2 CC3  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
Input clamp voltage  
I = 12 mA  
1.5  
V
IK  
I
V
V
V
V
V
V
= V  
= V  
= V  
= V  
+ 3 V,  
+ 3 V,  
V
V
V
V
= 0.8 V,  
= 0.8 V,  
= 0.8 V,  
= 0.8 V,  
= 10 mA  
= 2 V,  
I
I
I
I
= 100 µA  
= 10 mA  
= 50 µA  
= 10 mA  
V
V
0.3  
1.3  
V
V
V
0.1  
CC3  
CC3  
CC3  
CC3  
CC2  
CC2  
CC2  
CC2  
IL  
OH  
OH  
OH  
OH  
CC2  
CC2  
CC2  
CC2  
CC2  
0.9  
0.7  
1.8  
0.15  
0.25  
IL  
CC2  
High-level output voltage  
V
OH  
,
,
V
–1  
IL  
CC2  
2.5  
CC2  
V
V
IL  
= 2 V,  
I
0.3  
0.5  
IH  
OL  
V
V
Low-level output voltage  
V
V
OL  
= 15 V to 28 V,  
V
IH  
I
= 40 mA  
CC2  
OL  
Output clamp-diode  
forward voltage  
V = 0,  
I
I
F
= 20 mA  
1.5  
1
F
Input current at  
maximum input voltage  
I
I
V = 5.5 V  
I
mA  
µA  
Any A  
Any E  
Any A  
Any E  
40  
80  
High-level  
input current  
I
IH  
V = 2.4 V  
I
–1  
–2  
1.6  
3.2  
low-level  
input current  
I
I
I
I
I
I
I
V = 0.4 V  
I
mA  
IL  
Supply current from  
, all outputs high  
4
2.2  
2.2  
8
0.25  
3.5  
47  
CC1(H)  
CC2(H)  
CC3(H)  
CC1(L)  
CC2(L)  
CC3(L)  
V
CC1  
Supply current from  
, all outputs high  
V
= 5.25 V,  
V
= 24 V,  
V
V
= 28 V,  
CC1  
All inputs at 0 V,  
CC2  
No load  
CC3  
CC3  
mA  
V
CC2  
Supply current from  
, all outputs high  
V
CC3  
Supply current from  
, all outputs low  
31  
V
CC1  
Supply current from  
, all outputs low  
V
= 5.25 V,  
V
= 24 V,  
= 28 V,  
CC1  
All inputs at 5 V,  
CC2  
No load  
2
mA  
V
CC2  
Supply current from  
, all outputs low  
16  
27  
V
CC1  
Supply current from  
, all outputs high  
I
I
0.25  
0.5  
0.25  
0.5  
CC2(H)  
V
CC2  
Supply current from  
, all outputs high  
V
= 5.25 V,  
V
= 24 V,  
V
V
= 24 V,  
= 24 V,  
CC1  
All inputs at 0 V,  
CC2  
No load  
CC3  
mA  
mA  
CC3(H)  
V
CC3  
Supply current from  
, standby condition  
I
I
CC2(S)  
V
V
= 0,  
V
= 24 V,  
CC2  
Supply current from  
, standby condition  
CC1  
All inputs at 0 V,  
CC2  
No load  
CC3  
CC3(S)  
V
CC3  
All typical values are at V  
conditions.  
= 5 V, V  
CC2  
= 20 V, V  
CC3  
= 24 V, and T = 25°C except for V  
OH  
for which V  
and V  
are as stated under test  
CC3  
CC1  
A
CC2  
switching characteristics, V  
= 5 V, V  
= 20 V, V  
= 24 V, T = 25°C  
CC1  
CC2  
CC3  
A
PARAMETER  
Delay time, low-to-high-level output  
Delay time, high-to-low-level output  
TEST CONDITIONS  
MIN  
TYP  
MAX  
30  
UNIT  
ns  
t
t
t
t
t
t
20  
10  
40  
30  
20  
20  
DLH  
DHL  
PLH  
PHL  
TLH  
THL  
20  
ns  
C
R
= 200 pF  
= 24 ,  
L
D
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Transition time, low-to-high-level output  
10  
10  
60  
ns  
50  
ns  
See Figure 1  
30  
ns  
Transition time, high-to-low-level output  
30  
ns  
3–3  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
PARAMETER MEASUREMENT INFORMATION  
24 V  
20 V  
5 V  
Input  
2.4 V  
V
CC1  
V
V
CC2  
CC3  
R
D
Pulse  
Generator  
(see Note A)  
Output  
= 200 pF  
(see Note B)  
C
L
GND  
TEST CIRCUIT  
10 ns  
10 ns  
3 V  
0 V  
90%  
1.5 V  
90%  
Input  
1.5 V  
0.5 µs  
t
10%  
t
10%  
PHL  
t
DHL  
PLH  
DLH  
t
TLH  
t
THL  
V
V
OH  
V
CC2  
–2 V  
V
–2 V  
CC2  
t
Output  
2 V  
2 V  
OL  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuit and Voltage Waveforms, Each Driver  
NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, Z 50 .  
O
B.  
C includes probe and jig capacitance.  
L
3–4  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
V
V
CC2  
CC2  
V
V
= 5 V  
CC1  
CC2  
= V  
= 20 V  
CC3  
V1 = 0.8 V  
– 0.5  
– 1  
0.5  
–1  
T
= 70°C  
= 0°C  
A
T
A
T
= 25°C  
A
– 1.5  
– 2  
1.5  
–2  
T
A
= 70°C  
T
A
= 0°C  
V
V
V
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
– 2.5  
2.5  
–3  
V = 0.8 V  
I
– 3  
– 0.01  
– 0.1  
– 1  
– 10  
– 100  
0.01  
0.1  
–1  
10  
100  
I
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
OH  
Figure 2  
Figure 3  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
VOLTAGE TRANSFER CHARACTERISTICS  
LOW-LEVEL OUTPUT CURRENT  
0.5  
0.4  
0.3  
0.2  
0.1  
0
24  
20  
16  
12  
8
V
V
V
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
V = 2 V  
I
T
A
= 70°C  
T
A
= 0°C  
V
V
V
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
4
T
= 25°C  
A
No Load  
0
0
20  
40  
60  
80  
100  
0
0.5  
1
1.5  
2
2.5  
I
– Low-Level Output Current – mA  
V – Input Voltage – V  
I
OL  
Figure 4  
Figure 5  
3–5  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
TYPICAL CHARACTERISTICS  
PROPAGATION DELAY TIME  
LOW-TO-HIGH-LEVEL OUTPUT  
vs  
PROPAGATION DELAY TIME  
HIGH-TO-LOW-LEVEL OUTPUT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
C
= 4000 pF  
L
V
V
V
= 5 V  
= 20 V  
= 24 V  
C
= 4000 pF  
= 2000 pF  
CC1  
CC2  
CC3  
L
V
V
V
= 5V  
= 20V  
= 24V  
R
= 24 Ω  
CC1  
CC2  
CC3  
D
See Figure 1  
C
C
= 2000 pF  
= 1000 pF  
L
L
R = 24 Ω  
See Figure 1  
D
C
C
L
L
= 1000 pF  
= 200 pF  
50  
50  
C
C
= 200 pF  
= 50 pF  
C
L
L
L
25  
0
25  
0
C
= 50 pF  
L
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 6  
Figure 7  
PROPAGATION DELAY TIME  
PROPAGATION DELAY TIME  
LOW-TO-HIIGH-LEVEL OUTPUT  
vs  
HIGH-TO-LOW-LEVEL OUTPUT  
vs  
V
SUPPLY VOLTAGE  
V
SUPPLY VOLTAGE  
CC2  
CC2  
250  
250  
225  
200  
175  
150  
125  
100  
75  
V
V
R
= 5 V  
= V  
= 24 Ω  
= 25°C  
CC1  
CC3  
D
V
CC1  
V
CC3  
= 5 V  
+ 4 V  
225  
200  
175  
150  
125  
100  
75  
CC2  
= V  
+ 4 V  
CC2  
C
= 4000 pF  
L
C = 4000 pF  
L
R
= 24 Ω  
D
T
A
T
A
= 25°C  
See Figure 1  
See Figure 1  
C
= 2000 pF  
C
= 2000 pF  
= 1000 pF  
L
L
C
C
= 1000 pF  
= 200 pF  
C
L
L
50  
50  
C
= 50 pF  
C
= 200 pF  
L
C = 50 pF  
L
L
L
25  
0
25  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
V
CC2  
– Supply Voltage – V  
V
CC2  
– Supply Voltage – V  
Figure 8  
Figure 9  
3–6  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
TYPICAL CHARACTERISTICS  
PROPAGATION DELAY TIME  
LOW-TO-HIGH-LEVEL OUTPUT  
PROPAGATION DELAY TIME  
HIGH-TO-LOW-LEVEL OUTPUT  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
V
V
V
T
= 5 V  
= 20 V  
= 24 V  
V
V
V
T
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
CC1  
CC2  
CC3  
= 25°C  
= 25°C  
A
A
See Figure 1  
See Figure 1  
R
R
= 24 Ω  
= 10 Ω  
R
R
= 24 Ω  
= 10 Ω  
D
D
D
D
R
= 0  
R
= 0  
D
D
50  
50  
25  
25  
0
0
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
C
– Load Capacitance – pF  
C
– Load Capacitance – pF  
L
L
Figure 10  
Figure 11  
POWER DISSIPATION (ALL DRIVERS)  
vs  
FREQUENCY  
V
CC1  
V
CC2  
V
CC3  
= 5 V  
= 20 V  
= 24 V  
Input: 3-V Square Wave  
(50% duty cycle)  
2000  
1800  
1600  
T
= 25°C  
A
C
= 600 pF  
L
1400  
1200  
C
= 1000 pF  
L
C
= 2000 pF  
L
1000  
800  
600  
400  
C
= 4000 pF  
L
C
= 400 pF  
400  
L
200  
0
10  
20  
40  
70 100  
200  
1000  
f – Frequency – khz  
Figure 12  
NOTE: For R = 0, operation with C > 2000 pF violates absolute maximum current rating.  
D
L
3–7  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
THERMAL INFORMATION  
power dissipation precautions  
Significant power may be dissipated in the SN75374 driver when charging and discharging high-capacitance  
loads over a wide voltage range at high frequencies. Figure 12 shows the power dissipated in a typical SN75374  
as a function of frequency and load capacitance. Average power dissipated by this driver is derived from the  
equation  
P
= P  
+ P  
+ P  
T(AV)  
DC(AV)  
C(AV) S(AV)  
where P  
is the steady-state power dissipation with the output high or low, P  
is the power level during  
DC(AV)  
C(AV)  
charging or discharging of the load capacitance, and P  
is the power dissipation during switching between  
S(AV)  
the low and high levels. None of these include energy transferred to the load and all are averaged over a full  
cycle.  
The power components per driver channel are  
P
P
t
t
t
H H  
t
L L  
LH  
HL  
P
P
P
DC(AV)  
C(AV)  
S(AV)  
T
2Cf  
t
C V  
H
P
t
P
t
LH  
LH  
HL HL  
t
L
T
T = 1/f  
Figure 13. Output Voltage Waveform  
where the times are as defined in Figure 15.  
3–8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
THERMAL INFORMATION  
P , P , P , and P are the respective instantaneous levels of power dissipation, C is the load capacitance.  
L
H
LH  
HL  
V is the voltage across the load capacitance during the charge cycle shown by the equation  
C
V = V  
– V  
OL  
C
OH  
P
may be ignored for power calculations at low frequencies.  
S(AV)  
In the following power calculation, all four channels are operating under identical conditions: f = 0.2 MHz,  
= 19.9 V and V = 0.15 V with V = 5 V, V = 20 V, V = 24 V, V = 19.75 V, C = 1000 pF, and the  
V
OH  
OL  
CC1  
CC2  
S(AV)  
CC3  
C
duty cycle = 60%. At 0.2 MHz for C < 2000 pF, P  
is low, I  
is negligible and can be ignored. When the output voltage  
L
is negligible and can be ignored.  
CC2  
On a per-channel basis using data sheet values,  
4 mA  
2.2 mA  
2.2 mA  
4
P
(5 V)  
(5 V)  
(20 V)  
(20 V)  
(24 V)  
(0.6)  
DC(AV)  
4
4
31 mA  
4
0 mA  
4
16 mA  
(24 V)  
(0.4)  
4
P
= 58.2 mW per channel  
DC(AV)  
Power during the charging time of the load capacitance is  
2
P
= (1000 pF) (19.75 V) (0.2 MHz) = 78 mW per channel  
C(AV)  
Total power for each driver is  
= 58.2 mW + 78 mW = 136.2 mW  
P
T(AV)  
The total package power is  
= (136.2) (4) = 544.8 mW  
P
T(AV)  
3–9  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
APPLICATION INFORMATION  
driving power MOSFETs  
The drive requirements of power MOSFETs are much lower than comparable bipolar power transistors. The  
input impedance of a FET consists of a reverse biased PN junction that can be described as a large capacitance  
in parallel with a very high resistance. For this reason, the commonly used open-collector driver with a pullup  
resistor is not satisfactory for high-speed applications. In Figure 13(a), an IRF151 power MOSFET switching  
an inductive load is driven by an open-collector transistor driver with a 470-pullup resistor. The input  
capacitance (C ) specification for an IRF151 is 4000 pF maximum. The resulting long turn-on time due to the  
ISS  
product of input capacitance and the pullup resistor is shown in Figure 13(b).  
48 V  
5 V  
M
4
470 Ω  
3
2
4
8
IRF151  
7
3
5
TLC555  
1
0
6
2
1
1/2 SN75447  
0
0.5  
1
1.5  
2
2.5  
3
t – Time – µs  
(a)  
(b)  
Figure 14. Power MOSFET Drive Using SN75447  
A faster, more efficient drive circuit uses an active pull-up as well as an active pull-down output configuration,  
referred to as a totem-pole output. The SN75374 driver provides the high-speed totem-pole drive desired in an  
application of this type, see Figure 14(a). The resulting faster switching speeds are shown in Figure 14(b).  
48 V  
5 V  
M
4
3
2
1
0
4
8
7
3
5
TLC555  
IRF151  
6
1/4 SN75374  
2
1
0
0.5  
1
1.5  
2
2.5  
3
t – Time – µs  
(a)  
(b)  
Figure 15. Power MOSFET Drive Using SN75374  
3–10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75374  
QUADRUPLE MOSFET DRIVER  
SLRS028 – SEPTEMBER 1988  
APPLICATION INFORMATION  
Power MOSFET drivers must be capable of supplying high peak currents to achieve fast switching speeds as  
shown by the equation  
VC  
I
PK  
t
r
where C is the capacitive load, and t is the desired rise time. V is the voltage that the capacitance is charged  
r
to. In the circuit shown in Figure 14(a), V is found by the equation  
V = V  
– V  
OL  
OH  
Peak current required to maintain a rise time of 100 ns in the circuit of Figure 14(a) is  
9
(3 0)4(10  
100(10  
)
I
120 mA  
PK  
9
)
Circuit capacitance can be ignored because it is very small compared to the input capacitance of the IRF151.  
With a V of 5 V and assuming worst-case conditions, the gate drive voltage is 3 V.  
CC  
For applications in which the full voltage of V  
must be supplied to the MOSFET gate, V  
should be at least  
CC2  
CC3  
3 V higher than V  
.
CC2  
3–11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
3–12  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SN75374D

QUADRUPLE MOSFET DRIVER
TI

SN75374D-00R

0.5A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDSO16
TI

SN75374DE4

QUADRUPLE MOSFET DRIVER
TI

SN75374DG4

Quadruple MOSFET Drivers 16-SOIC 0 to 70
TI

SN75374DR

QUADRUPLE MOSFET DRIVER
TI

SN75374DRE4

QUADRUPLE MOSFET DRIVER
TI

SN75374DRG4

四路 MOSFET 驱动器 | D | 16 | 0 to 70
TI

SN75374N

QUADRUPLE MOSFET DRIVER
TI

SN75374N-00

0.5A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDIP16
TI

SN75374NE4

QUADRUPLE MOSFET DRIVER
TI

SN75374_06

QUADRUPLE MOSFET DRIVER
TI

SN75403NE

IC,PERIPHERAL DRIVER,2 DRIVER,BIPOLAR,DIP,14PIN,PLASTIC
TI