SN75LVDM976CDGGR [TI]

9 LINE TRANSCEIVER, PDSO56;
SN75LVDM976CDGGR
型号: SN75LVDM976CDGGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

9 LINE TRANSCEIVER, PDSO56

驱动 光电二极管 接口集成电路 驱动器
文件: 总30页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
FEATURES  
DGG PACKAGE  
(TOP VIEW)  
9 Channels for the Data and Control Paths of  
the Small Computer Systems Interface (SCSI)  
INV/NON  
GND  
CDE2  
CDE1  
CDE0  
9B+  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
Supports Single-Ended and Low-Voltage  
Differential (LVD) SCSI  
2
GND  
3
CMOS Input Levels ('LVDM976) or TTL Input  
Levels ('LVDM977) Available  
1A  
4
1DE/RE  
2A  
9B–  
5
Includes DIFFSENS Comparators on CDE0  
8B+  
6
Single-Ended Receivers Include Noise Pulse  
Rejection Circuitry  
2DE/RE  
3A  
8B–  
7B+  
7
8
Packaged in Thin Shrink Small-Outline  
Package With 20-Mil Terminal Pitch  
3DE/RE  
4A  
7B–  
6B+  
9
10  
11  
12  
Low Disabled Supply Current 7 mA Maximum  
Power-Up/Down Glitch Protection  
4DE/RE  
6B–  
V
V
CC  
CC  
GND 13  
44 GND  
Bus is High-Impedance With VCC = 1.5 V  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin-Compatible With the SN75976ADGG  
High-Voltage Differential Transceiver  
DESCRIPTION  
V
CC  
V
CC  
The SN75LVDM976 and SN75LVDM977 have nine  
transceivers for transmitting or receiving the signals  
to or from a SCSI data bus. They offer electrical  
compatibility to both the single-ended signaling of  
X3.277:1996-SCSI-3 Parallel Interface (Fast-20) and  
the new low-voltage differential signaling method of  
proposed standard 1142-D SCSI Parallel Interface –  
2 (SPI-2).  
5A  
5DE/RE  
6A  
5B+  
5B–  
4B+  
4B–  
3B+  
3B–  
2B+  
2B–  
1B+  
1B–  
6DE/RE  
7A  
7DE/RE  
8A  
8DE/RE  
9A  
9DE/RE  
The differential drivers are nonsymmetrical. The SCSI  
bus uses a dc bias on the line to allow terminated fail  
safe and wired-OR signaling. This bias can be as  
high as 125 mV and induces a difference in the  
high-to-low and low-to-high transition times of a  
symmetrical driver. In order to reduce pulse skew, an  
LVD SCSI driver's output characteristics become  
nonsymmetrical. In other words, there is more  
assertion current than negation current to or from the  
driver. This allows the actual differential signal  
voltage on the bus to be symmetrical about 0 V. Even  
though the driver output characteristics are  
nonsymmetrical, the design of the 'LVDM976 drivers  
maintains balanced signaling. Balanced means that  
the current that flows in each signal line is nearly  
equal but opposite in direction and is one of the keys  
to the low-noise performance of a differential bus.  
AVAILABLE OPTIONS  
PACKAGE  
TSSOP (DGG)  
TTL INPUTS  
LEVELS  
TA  
TSSOP (DGG)  
CMOS INPUT LEVELS  
0°C to  
70°C  
SN75LVDM976DGG  
SN75LVDM977DGG  
SN75LVDM976DGGR(1) SN75LVDM977DGGR(1)  
(1) The R suffix designates a taped and reeled package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 1998–2000, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
DESCRIPTION (CONTINUED)  
The signal symmetry requirements of the LVD-SCSI bus mean you can no longer obtain logical inversion of a  
signal by simply reversing the differential signal connections. This requires the ability to invert the logic  
convention through the INV/NON terminal. This input would be a low for SCSI controllers with active-high data  
and high for active-low data. In either case, the B+ signals of the transceiver must be connected to the SIGNAL+  
line of the SCSI bus and the B- of the transceiver to the SIGNAL- line.  
The CDE0 input incorporates a window comparator to detect the status of the DIFFSENS line of a SCSI bus.  
This line is below 0.5 V, if using single-ended signals, between 1.7 V and 1.9 V if low-voltage differential, and  
between 2.4 V and 5.5 V if high-voltage differential. The outputs assume the characteristics of single-ended or  
LVD accordingly or place the outputs into high-impedance, when HVD is detected. This, and the INV/NON input,  
are the only differences to the trade-standard function of the SN75976A HVD transceiver.  
Two options are offered to minimize the signal noise margins on the interface between the communications  
controller and the transceiver. The SN75LVDM976 has logic input voltage thresholds of about 0.5 VCC. The  
SN75LVDM977 has a fixed logic input voltage threshold of about 1.5 V. The input voltage threshold should be  
selected to be near the middle of the output voltage swing of the corresponding driver circuit.  
The SN75LVDM976 and SN75LVDM977 are characterized for operation over an free-air temperature range of TA  
= 0°C to 70°C.  
2
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
LOGIC DIAGRAM (POSITIVE LOGIC)  
2.4 V  
A
CDE1  
(Internal)  
+
LVD  
CDE0  
B
+
0.5 V  
(Internal)  
SE  
INV/NON  
1DEb  
1REb  
1DE/RE  
1DEb  
1DEa  
1B–  
1A  
1B+  
1DEa  
1REa  
1REb  
1REa  
2A  
2DE/RE  
3A  
3DE/RE  
4A  
2B–  
2B+  
3B–  
3B+  
4B–  
4B+  
Channel 2  
Channel 3  
Channel 4  
4DE/RE  
INV/NON  
CDE2  
SE  
LVD  
5A  
5DE/RE  
6A  
6DE/RE  
7A  
7DE/RE  
8A  
8DE/RE  
5B–  
5B+  
6B–  
6B+  
7B–  
7B+  
8B–  
8B+  
Channel 5  
Channel 6  
Channel 7  
Channel 8  
INV/NON  
SE  
LVD  
9DEb  
9REb  
9DE/RE  
9DEb  
9DEa  
9B–  
9B+  
9A  
9DEa  
9REa  
9REb  
9REa  
3
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
LOGIC DIAGRAMS AND FUNCTION TABLES  
FUNCTION TABLE  
B−  
V
ID  
A
INPUTS  
OUTPUTS  
B+  
(B+ – B–)  
ID 30 mV  
DE/RE  
A
B+  
Z
B–  
Z
A
L
?
DE/RE  
V
L
L
NA  
NA  
–30 mV < VID < 30  
mV  
Z
Z
VID– 30 mV  
Open circuit  
NA  
L
L
NA  
NA  
L
Z
Z
H
L
Z
Z
L
H
?
Figure 1. Inverting LVD Transceiver  
H
H
Z
Z
NA  
H
H
A
B−  
FUNCTION TABLE  
DE/RE  
INPUTS  
OUTPUTS  
B–  
DE/RE  
A
NA  
NA  
NA  
L
B+  
L
B–  
Z
A
H
L
L
L
H
?
B+  
L
Open circuit  
NA  
L
Z
L
L
Z
Figure 2. Inverting Single-Ended Transceiver  
H
H
L
H
L
Z
Z
NA  
H
L
A
FUNCTION TABLE  
B−  
INPUT  
OUTPUTS  
A
L
B+  
L
B–  
H
B+  
H
L
L
Figure 3. Inverting Single-Ended Driver  
FUNCTION TABLE  
INPUT  
OUTPUTS  
B−  
A
L
B+  
H
B–  
L
A
B+  
H
L
H
Figure 4. Inverting LVD Driver  
4
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
FUNCTION TABLE  
B−  
B+  
INPUT  
OUTPUTS  
A
A
L
B+  
L
B–  
H
Figure 5. Noninverting LVD Driver  
H
H
L
FUNCTION TABLE  
B−  
ID  
V
A
INPUTS  
OUTPUTS  
B+  
(B+ – B–)  
DE/RE  
A
B+  
Z
B–  
Z
A
H
?
DE/RE  
VID 30 mV  
L
L
NA  
NA  
–30 mV < VID < 30  
mV  
Z
Z
V
ID– 30 mV  
L
L
NA  
NA  
L
Z
Z
L
Z
Z
H
L
L
?
Z
Z
Figure 6. Noninverting LVD Transceiver  
Open circuit  
NA  
NA  
H
H
H
H
A
B−  
FUNCTION TABLE  
DE/RE  
INPUTS  
OUTPUTS  
B–  
DE/RE  
A
NA  
NA  
NA  
L
B+  
L
B–  
Z
A
H
L
L
H
L
?
Z
Z
B+  
L
Open circuit  
NA  
L
Z
L
L
Z
Figure 7. Noninverting Single-Ended Transceiver  
H
H
L
L
NA  
H
L
H
B−  
B+  
A
FUNCTION TABLE  
INPUT  
OUTPUTS  
A
L
B+  
L
B–  
L
H
L
H
Figure 8. Noninverting Single-Ended Driver  
5
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
1B−  
1B+  
1B−  
1B+  
1B−  
1A  
1A  
1A  
2A  
3A  
4A  
1B+  
1DE/RE  
1DE/RE  
2B−  
2B+  
2B−  
2B+  
2B−  
2A  
2A  
2B+  
2DE/RE  
2DE/RE  
3B−  
3B+  
3B−  
3B+  
3B−  
3A  
3A  
3B+  
3DE/RE  
3DE/RE  
4B−  
4B+  
4B−  
4B+  
4B−  
4A  
4A  
4B+  
4DE/RE  
4DE/RE  
5B−  
5B+  
5B−  
5B+  
5B−  
5A  
5A  
5A  
5B+  
5DE/RE  
5DE/RE  
6B−  
6B+  
6B−  
6B+  
6B−  
6A  
6A  
6A  
7A  
6B+  
6DE/RE  
6DE/RE  
7B−  
7B+  
7B−  
7B+  
7B−  
7A  
7A  
7B+  
7DE/RE  
7DE/RE  
8B−  
8B+  
8B−  
8B+  
8B−  
8A  
8A  
8A  
8B+  
8DE/RE  
8DE/RE  
9B−  
9B+  
9B−  
9B+  
9B−  
9A  
9A  
9A  
9B+  
9DE/RE  
9DE/RE  
9DE/RE  
Control Inputs  
Control Inputs  
Control Inputs  
CDE0 0.7 V < V < 1.9 V  
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
I
L
L
L
L
L
H
INV/NON  
CDE1  
L
H
L
CDE2  
CDE2  
CDE2  
(a)  
(b)  
(c)  
Figure 9. Logic Diagrams  
6
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
1B−  
1B+  
1B−  
1A  
1B−  
1B+  
1A  
1A  
1B+  
1DE/RE  
1DE/RE  
2B−  
2B+  
2B−  
2A  
2B−  
2B+  
2A  
2A  
3A  
4A  
5A  
6A  
7A  
8A  
2B+  
2DE/RE  
2DE/RE  
3B−  
3B+  
3B−  
3A  
3B−  
3B+  
3A  
3B+  
3DE/RE  
3DE/RE  
4B−  
4B+  
4B−  
4A  
4B−  
4B+  
4A  
4B+  
4DE/RE  
4DE/RE  
5B−  
5B+  
5B−  
5A  
5B−  
5B+  
5A  
5B+  
5DE/RE  
6B−  
6B+  
6B−  
6A  
6A  
6B−  
6B+  
6B+  
6DE/RE  
7B−  
7B+  
7B−  
7A  
7B−  
7B+  
7A  
7B+  
7DE/RE  
8B−  
8B+  
8B−  
8A  
8B−  
8B+  
8A  
8B+  
8DE/RE  
9B−  
9B+  
9B−  
9B+  
9A  
9B−  
9A  
9A  
9DE/RE  
9B+  
9DE/RE  
9DE/RE  
Control Inputs  
Control Inputs  
Control Inputs  
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
L
H
H
H
L
L
H
L
CDE2  
CDE2  
CDE2  
H
(a)  
(C)  
(b)  
Figure 10. Logic Diagrams  
7
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
1A  
1B−  
1A  
1B−  
1B−  
1A  
1DE/RE  
1DE/RE  
1B+  
1B+  
2B−  
1B+  
2B−  
2A  
2A  
2B−  
2A  
2DE/RE  
2DE/RE  
2B+  
2B+  
3B−  
2B+  
3B−  
3A  
3A  
3B−  
3A  
3DE/RE  
3DE/RE  
3B+  
3B+  
4B−  
3B+  
4B−  
4A  
4A  
4B−  
4A  
4DE/RE  
4DE/RE  
4B+  
4B+  
5B−  
4B+  
5B−  
5A  
5A  
6A  
7A  
8A  
5B−  
5A  
5DE/RE  
5B+  
5B+  
5B+  
6B−  
6A  
6B−  
6B+  
6B−  
6A  
6DE/RE  
6B+  
6B+  
7B−  
7A  
7B−  
7B+  
7B−  
7A  
7DE/RE  
7B+  
7B+  
8B−  
8A  
8B−  
8B+  
8B−  
8A  
8DE/RE  
8B+  
8B+  
9B−  
9A  
9A  
9B−  
9B+  
9B−  
9A  
9DE/RE  
9DE/RE  
9B+  
9DE/RE  
9B+  
Control Inputs  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
I
I
H
H
H
L
L
L
L
L
H
CDE1  
CDE2  
CDE1  
CDE2  
CDE2  
(a)  
(b)  
(c)  
Figure 11. Logic Diagrams  
8
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
1A  
1B−  
1B+  
1A  
2A  
1A  
1B−  
1B−  
1B+  
1DE/RE  
1B+  
2B−  
2A  
2B−  
2B+  
2A  
2B−  
2B+  
2DE/RE  
2B+  
3B−  
3A  
4A  
3B−  
3B+  
3B−  
3B+  
3A  
4A  
5A  
6A  
3A  
3DE/RE  
3B+  
4B−  
4B−  
4B+  
4A  
4B−  
4B+  
4DE/RE  
4B+  
5B−  
5A  
5B−  
5A  
5B−  
5B+  
5DE/RE  
5DE/RE  
5B+  
6B−  
5B+  
6B−  
6A  
6A  
6B−  
6B+  
6DE/RE  
6DE/RE  
6B+  
7B−  
6B+  
7B−  
7A  
7A  
8A  
7A  
7B−  
7B+  
7DE/RE  
7DE/RE  
7B+  
8B−  
7B+  
8B−  
8A  
8A  
8B−  
8B+  
8DE/RE  
8DE/RE  
8B+  
9B−  
8B+  
9B−  
9A  
9A  
9A  
9B−  
9B+  
9DE/RE  
9DE/RE  
9DE/RE  
9B+  
9B+  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
CDE0  
INV/NON  
CDE1  
V < 0.5 V  
I
I
I
H
L
L
L
H
L
L
CDE1  
CDE2  
CDE1  
CDE2  
H
H
CDE2  
(c)  
(a)  
(b)  
Figure 12. Logic Diagrams  
9
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
1B−  
1B+  
1A  
2A  
1A  
1B−  
1B−  
1B+  
1A  
2A  
1DE/RE  
1B+  
2B−  
2B−  
2B+  
2A  
2B−  
2B+  
2DE/RE  
2B+  
3B−  
3B−  
3B+  
3A  
4A  
3A  
3B−  
3B+  
3A  
4A  
5A  
6A  
3DE/RE  
3B+  
4B−  
4B−  
4B+  
4A  
4B−  
4B+  
4DE/RE  
4B+  
5B−  
5B−  
5A  
5A  
6A  
7A  
8A  
5B−  
5B+  
5DE/RE  
5B+  
5B+  
6B−  
6A  
6B−  
6B+  
6B−  
6B+  
6DE/RE  
6B+  
7B−  
7A  
7B−  
7B+  
7B−  
7B+  
7A  
8A  
7DE/RE  
7B+  
8B−  
8A  
8B−  
8B+  
8B−  
8B+  
9B−  
8DE/RE  
8B+  
9B−  
9A  
9A  
9A  
9DE/RE  
9B−  
9B+  
9DE/RE  
9DE/RE  
9B+  
9B+  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
I
I
I
H
H
L
H
H
H
H
L
CDE1  
CDE2  
CDE1  
CDE2  
CDE1  
CDE2  
H
(b)  
(a)  
(c)  
Figure 13. Logic Diagrams  
10  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
1A  
1B–  
1B+  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
2A  
2B–  
2B+  
High Z  
High Z  
3B–  
3B+  
3A  
High Z  
High Z  
4A  
4B–  
4B+  
High Z  
High Z  
5A  
5B–  
5B+  
High Z  
High Z  
6A  
6B–  
6B+  
High Z  
High Z  
7A  
7B–  
7B+  
High Z  
High Z  
8A  
8B–  
8B+  
High Z  
High Z  
9A  
9B–  
9B+  
High Z  
High Z  
Control Inputs  
CDE0  
INV/NON  
CDE1  
V > 2.5 V  
I
X
X
X
CDE2  
Figure 14. Logic Diagrams  
11  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
INPUT AND OUTPUT EQUIVALENT SCHEMATIC DIAGRAMS  
CDE1, CDE2, DE/RE Inputs  
A and INV/NON Inputs  
V
CC  
V
CC  
10uA  
Input  
10uA  
Input  
CDE0 Input  
A Output  
V
CC  
V
CC  
Input  
A
B+ Input  
B– Input  
I
ref  
I
ref  
37  
37 Ω  
BP  
BN  
I
ref  
I
ref  
113 Ω  
15 Ω  
113 Ω  
V
CC  
V
CC  
V
CC  
15 Ω  
15 Ω  
113 Ω  
12  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
Terminal Functions  
'LVDM977  
Logic  
Level  
Terminat  
ion  
'LVDM976  
Logic  
Level  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
1A - 9A  
NO.  
4,6,8,10,  
19,21,23,  
25,27  
CMOS  
TTL  
I/O  
I/O  
Pullup  
None  
1A - 9A carry data to and from the communication controller.  
1B–– 9B– 29,31,33,  
35,37,46,  
LVD or  
TTL  
LVD or  
TTL  
1B- to 9B- are the signals to and from the data bus. When INV/NON  
is low, the logic sense is the opposite that of the A input (inverted).  
When INV/NON is high, the logic sense is the same as the A input  
(noninverted).  
48,50,52  
1B+ - 9B+ 30,32,34,  
36,38,47,  
LVD or  
GND  
LVD or  
GND  
I/O  
None  
None  
When in the LVD mode, 1B+ - 9B+ are signals to or from the data  
bus and follow the same logic sense as the A input when INV/NON  
is low (noninverted). The logic sense is opposite that of the A input  
(inverted) when INV/NON is high. When in single-ended mode,  
these terminals become a ground connection through a transistor  
and do not switch.  
49,51,53  
CDE0  
54  
Trinary  
Trinary  
Input  
CDE0 is the common driver enable 0. With the driver enabled and  
the CDE0 input less than 0.5 V, the driver output is single-ended  
mode. With the driver enabled and the CDE0 input between 0.7 V  
and 1.9 V the driver output is LVD mode. All drivers are disabled  
when the input is greater than 2.4 V.  
CDE1  
CDE2  
55  
56  
CMOS  
CMOS  
CMOS  
TTL  
TTL  
TTL  
Input Pulldown CDE1 is the common driver enable 1. When CDE1 is high, drivers  
1–4 are enabled  
Input Pulldown CDE2 is the common driver enable 2. When CDE2 is high, drivers 5  
to 8 are enabled.  
1DE/RE - 5,7,9,11,  
9DE/RE  
Input Pulldown 1DE/RE–9DE/RE are direction controls that transmit data to the bus  
when it is high and CDE0 is below 2.2 V. Data is received from the  
bus when 1DE/RE- 9DE/RE, CDE1, and CDE2 are low.  
20,22,24,  
26,28  
GND  
2,3,13,14,  
15,16,17,  
40,41,42,  
43,44  
NA  
NA  
Power  
NA  
GND is the circuit ground.  
INV/NON  
VCC  
1
CMOS  
NA  
CMOS  
NA  
Input  
Pullup  
NA  
A high-level input to INV/NON inverts the logic to and from the A  
terminals. (i.e., the voltage at A terminal and the corresponding B-  
terminal are in phase.)  
12,18,39,  
45  
Power  
Supply voltage  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
–0.5 V to 7 V  
VCC  
VI  
Supply voltage range(2)  
Input voltage range  
(A, INV/NON)  
–0.5 V to VCC + 0.5 V  
–0.5 V to 5.25 V  
See Dissipation Rating Table  
–65°C to 150°C  
260°C  
(DE/RE, B+, B-, CDE0, CDE1, CDE2)  
Continuous total power dissipation  
Tstg  
Storage temperature range,  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND unless otherwise noted.  
13  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
DISSIPATION RATING TABLE  
TA25°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
PACKAGE  
DGG  
978 mW  
10.8 mW/°C  
492 mW  
RECOMMENDED OPERATING CONDITIONS (see Figure 15)  
MIN NOM  
MAX UNIT  
VCC  
VIH  
Supply voltage  
4.75  
0.7 VCC  
2
5
5.25  
V
SN75LVDM976  
SN75LVDM977  
SN75LVDM976  
SN75LVDM977  
Differential receiver  
High-level input voltage  
V
0.3 VCC  
0.8  
VIL  
Low-level input voltage  
V
|VID  
|
Differential input voltage  
0.03  
0.7  
3.6  
V
V
VIC  
Common-mode input voltage  
1.8  
Differential output voltage  
bias  
VOD(bias)  
IOH  
Differential  
100  
125  
mV  
mA  
Single-ended driver  
Receiver  
7
2
High-level output current  
Low-level output current  
Single-ended driver  
Receiver  
48  
2
IOL  
mA  
ZL  
TA  
Differential load impedance  
40  
0
65  
70  
Operating free-air temperature  
°C  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CDE1 and CDE2  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
50  
µA  
50  
IIH High-level input current  
INV/NON  
CDE1 and CDE2  
INV/NON  
50  
µA  
50  
IIL  
Low-level input current  
Disabled  
7
LVD drivers enabled,  
No load  
No load  
No load  
26  
ICC Supply current  
Single-ended drivers enabled,  
LVD receivers enabled,  
10  
26  
7
mA  
pF  
Singled-ended receivers enabled, No load  
CI  
Input capacitance  
Bus terminal  
VI = 0.2 sin (2 π (1E06)t) + 0.5 ± 0.01 V  
9.5  
CI Difference in input capacitance between B+ and B–  
0.2  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
14  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
DIFFSENS (CDE0) RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range (unless otherwise noted)  
TYP(  
PARAMETER  
Input threshold voltage  
TEST CONDITIONS  
MIN  
MAX UNIT  
1)  
VIT1  
VIT2  
II  
0.5  
1.9  
0.6  
2.1  
0.7  
V
Input threshold voltage  
Input current  
2.4  
0 V VI 2.7 V  
±1  
±1  
µA  
µA  
II(OFF)  
Power-off input current  
VCC = 0, 0 V VI 2.7 V  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
LVD DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
270  
TYP(1)  
MAX  
UNIT  
460  
780  
VI(1) = 0.96 V, VI(2) = 0.53 V,  
See Figure 16  
0.69|VOD(L) |+50  
270  
1.45|VOD(L) |–65  
780  
Driver differential high-level output  
voltage  
VOD(H)  
mV  
500  
VI(1) = 1.96 V, VI(2) = 1.53 V,  
See Figure 16  
0.69|VOD(L) |+50  
1.45|VOD(L) |–65  
VI(1) = 0.96 V, VI(2) = 0.53 V,  
See Figure 16  
260  
260  
1.1  
400  
400  
1.2  
640  
640  
1.5  
Driver differential low-level output  
voltage  
VOD(L)  
mV  
VI(1) = 1.96 V, VI(2) = 1.53 V,  
See Figure 16  
Steady-state common-mode output  
voltage  
VOC(SS)  
V
Change in steady-state  
VOC(SS) common-mode output voltage  
VI(1) = 1.41 V, VI(2) = 0.99 V,  
See Figure 17  
±50  
80  
±120  
150  
mV  
between logic states  
Peak-to-peak common-mode  
output voltage  
VOC(PP)  
mV  
µA  
A
7
8
IIH  
High-level input current  
VIH = 3.3 V ('976) VIH = 2 V ('977)  
VIL = 1.6 V ('976)VIL = 0.8 V ('977)  
DE/RE  
A
50  
30  
IIL  
Low-level input current  
Power-off output current  
µA  
DE/RE  
IO(OFF)  
IOS  
VCC = 0, 0 V VO 2.5 V  
0 V VO 2.5 V  
±1  
±24  
±1  
µA  
mA  
µA  
Short-circuit output current  
IOZ  
High-impedance output current  
VO = 0 or 2.5 V  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
LVD DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted) (See Figure 16)  
TYP(  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
1)  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
Differential output signal rise time  
2.9  
2.9  
1
8.8  
8.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VCC = 5 V,  
VI2 = 0.99 V,  
VI1 = 1.41 V,  
TA = 25°C  
3
3
6
6
tf  
Differential output signal fall time  
1
tsk(p)  
Pulse skew (|tPHL– tPLH|)  
3.7  
5.9  
50  
33  
tsk(lim) Skew limit(2)  
tPHZ Propagation delay time, high-level to high-impedance output  
ten Enable time, receiver to driver  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
VI1 = 1.41 V,  
See Figure 18  
VI2 = 0.99 V,  
(2) tsk(lim) is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the  
same ambient temperature.  
15  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
SINGLE-ENDED DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
IOH = –7 mA,  
IOH = 0 mA  
VCC = 5 V,  
See Figure 19  
2
3.24  
3.7  
V
V
V
VOH  
High-level output voltage  
B– output  
B– output  
B+  
IOL = 48 mA  
0.5  
VOL  
Low-level output voltage  
IOL = –25 mA  
IOL = 25 mA  
–0.5  
0.5  
V
A
–7  
8
IIH  
High-level input current  
Low-level input current  
VIH = 3.3 V ('976), VIH = 2 V ('977)  
VIL = 1.6 V ('976), VIL = 0.8 V ('977)  
µA  
µA  
DE/RE  
A
50  
–30  
IIL  
DE/RE  
B–  
IO(OFF)  
IOZ  
Power-off output current  
VCC = 0,  
0 V VO 5.25 V  
±1  
±1  
µA  
µA  
High-impedance output current  
VO = 0 or VCC  
SINGLE-ENDED DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
MI TYP(  
N
PARAMETER  
TEST CONDITIONS  
MAX UNIT  
1)  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
Differential output signal rise time  
2.7  
2.7  
0.5  
0.5  
8.2  
8.2  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VCC = 5 V, TA = 25°C, See Figure 19  
tf  
Differential output signal fall time  
4
tsk(p)  
Pulse skew (|tPHL– tPLH|)  
3.4  
5.5  
50  
tsk(lim) Skew limit(2)  
ten  
Enable time, receiver to driver  
See Figure 20  
Propagation delay time, low-level to high-impedance  
output  
tPLZ  
30  
ns  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
(2) tsk(lim) is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the  
same ambient temperature.  
LVD RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
mV  
mV  
V
VIT+ Positive-going differential input voltage threshold  
30  
See Figure 21  
VIT-  
Negative-going differential input voltage threshold  
–30  
VOH High-level output voltage  
IOH = –2 mA  
IOL = 2 mA  
3.7  
0.5  
±1  
VOL  
II  
Low-level output voltage  
Input current, B+ or B–  
V
VI = 0 V to 2.5 V  
µA  
II(OFF  
Power-off Input current, B+ or B–  
VCC = 0,  
VI = 0 V to 2.5 V  
±1  
µA  
)
IIH  
High-level input current, DE/RE  
Low-level input current, DE/RE  
High-impedance output current  
VIH = 3.3 V ('976), VIH = 2 V ('977)  
VIL = 1.6 V ('976), VIL = 0.8 V ('977)  
VO = 0 or VCC  
50  
µA  
µA  
µA  
IIL  
8
IOZ  
±30  
16  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
LVD RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
TYP(  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
1)  
tPLH  
tPHL  
tsk(p)  
tr  
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
Pulse skew (|tPHL– tPLH|)  
4.5  
4.5  
10  
10  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VCC = 5 V, TA = 25°C, See  
Figure 21  
Output signal rise time  
8
tf  
Output signal fall time  
8
tsk(lim) Skew limit(2)  
5.5  
42  
20  
26  
tPHZ  
tPLZ  
ten  
Propagation delay time, high-level to high-impedance output  
Propagation delay time, low-level to high-impedance output See Figure 18  
Enable time, driver to receiver  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
(2) tsk(lim) is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the  
same ambient temperature.  
SINGLE-ENDED RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
VIT+ Positive-going input voltage threshold B–  
Negative-going input voltage  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
1.6  
1.9  
V
VIT–  
B–  
1
1.1  
V
threshold  
VOH High-level output voltage  
VOL Low-level output voltage  
IOH = –2 mA  
3.7  
4.6  
0.3  
V
V
IOL = 2 mA  
0.5  
±1  
II  
Input current  
B–  
B–  
VI = 0 to VCC  
µA  
II(OFF  
Power-off Input current  
VCC = 0 V, VI = 0 to 5.25 V  
±1  
50  
µA  
)
IIH  
High-level input current  
DE/RE  
DE/RE  
VIH = 3.3 V ('976), VIH = 2 V ('977)  
VIL = 1.6 V ('976), VIL = 0.8 V ('977)  
VO = 0 or VCC  
µA  
µA  
µA  
IIL  
Low-level input current  
8
IOZ  
High-impedance output current  
-30  
SINGLE-ENDED RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
Pulse skew (|tPHL– tPLH|)  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tr  
7
7
12.5  
12.5  
3.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
VCC = 5 V, TA = 25°C, See  
Figure 22  
Output signal rise time  
tf  
Output signal fall time  
tsk(lim) Skew limit(1)  
8
5.5  
Propagation delay time, high-level to high-impedance  
output  
tPHZ  
20  
ns  
Propagation delay time, low-level to high-impedance  
output  
See Figure 20  
tPLZ  
ten  
30  
48  
ns  
ns  
Enable time, driver to receiver  
(1) tsk(lim) is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the  
same ambient temperature.  
17  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
I +  
OB  
B+  
I
I
A
I –  
OB  
V
OD  
V
) V  
OB)  
OB*  
2
V
OB+  
B–  
V
OC  
V
I
V
OB–  
Figure 15. Voltage and Current Definitions  
50  
100 Ω  
Input  
5 V  
A
B–  
V1  
V2  
DE/RE  
CDE0  
C
C
= 10 pF  
= 10 pF  
+
L
1.3 V  
V
OD  
75 Ω  
Open  
CDE1  
Open  
CDE2  
B+  
0 V or 5 V  
INV/NON  
100 Ω  
+
L
0.7 V (’976)  
CC  
2 V (’977)  
INPUT  
Solid line is INV/NON at 0 V.  
Dashed line is INV/NON at 5 V.  
0.3 V (’976)  
CC  
0.8 V (’977)  
t
t
PHL  
PLH  
100%  
80%  
V
OD(H)  
OUTPUT  
0 V  
V
OD(L)  
20%  
0%  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf < 1 ns, pulse repetition rate  
(PRR) = 10 Mpps, pulsewidth = 50 ns ±5 ns, Zo = 50 .  
B. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
Figure 16. Differential Output Signal Test Circuit, Timing, and Voltage Definitions  
18  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION (continued)  
V1  
50  
100 Ω  
Input  
5 V  
A
V
L
OC  
B–  
B+  
37.5 Ω  
DE/RE  
CDE0  
1.3 V  
Open  
CDE1  
C
= 50 pF  
Open  
CDE2  
37.5 Ω  
100 Ω  
0 V or 5 V  
INV/NON  
V2  
0.7 V (’976)  
CC  
Input  
2 V (’977)  
0.3 V (’976)  
CC  
0.8 V (’977)  
V
OC(PP)  
V
OC(SS)  
Output  
A. NOTES: . All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse  
repetition rate (PRR) = 10 Mpps, pulsewidth = 50 ns ±5 ns, Zo = 50 .  
B. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
C. The measurement of VOC(PP) is made on test equipment with a -3 dB bandwidth of at least 300 MHz.  
Figure 17. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
19  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION (continued)  
V1  
100  
C
L
= 50 pF  
C
L
= 50 pF  
A
B–  
37.5 Ω  
37.5 Ω  
620 Ω  
V
V
OD  
Input  
1.3 V  
DE/RE  
CDE0  
B+  
C
L
= 50 pF  
Open  
CDE1  
Open  
CDE2  
0 V or 5 V  
INV/NON  
100 Ω  
V2  
TEST CIRCUIT  
V at 5 V, INV/NON at 0 V  
V at 0 V, INV/NON at 5 V  
0.7 V (’976)  
0.7 V (’976)  
CC  
CC  
2 V (’977)  
2 V (’977)  
50%  
Input  
50%  
0.3 V (’976)  
CC  
0.3 V (’976)  
CC  
0.8 V (’977)  
0.8 V (’977)  
t
t
t
t
PHZ(d)  
en(d)  
PHZ(d)  
en(d)  
0.4 V  
0.4 V  
V
OD  
0 V  
0 V  
–0.12 V  
–0.12 V  
t
t
en(d)  
t
t
en(r)  
en(d)  
en(r)  
5 V  
5 V  
V
A
1.4 V  
1.4 V  
0.2 V  
0.2 V  
VOLTAGE WAVEFORMS  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition rate  
(PRR) = 1 Mpps, pulsewidth = 500 ns ±50 ns, Zo = 50 .  
B. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
Figure 18. LVD Transceiver Enable and Disable Time Test Circuit and Definitions  
20  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION (continued)  
50  
Input  
0 V  
A
I
O
DE/RE  
CDE0  
CDE1  
CDE2  
INV/NON  
47 Ω  
B–  
0 V  
Open  
C
L
= 10 pF  
+
Open  
2.5 V  
V
O
0 V or 5 V  
0.7 V (’976)  
CC  
2 V (’977)  
Solid line is INV/NON  
at a high-level input.  
INPUT  
0.3 V (’976)  
CC  
Dashed line is INV/NON  
at a low-level input.  
0.8 V (’977)  
t
t
PHL  
PLH  
100%  
80%  
OUTPUT  
1.4 V  
20%  
0%  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf < 1 ns, pulse repetition rate  
(PRR) = 10 Mpps, pulsewidth = 50 ns ±5 ns, Zo = 50 .  
B. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
Figure 19. Single-Ended Driver Switching Test Circuit  
21  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION (continued)  
C
L
= 50 pF  
V
A
47  
B–  
V
A
620 Ω  
Input  
0 V  
DE/RE  
CDE0  
CDE1  
CDE2  
INV/NON  
C
L
= 10 pF  
+
2.5 V  
V
B
Open  
Open  
0 V or 5 V  
TEST CIRCUIT  
V and INV/NON at 5 V  
V and INV/NON at 0 V  
0.7 V  
50%  
0.3 V  
0.7 V  
50%  
0.3 V  
CC  
CC  
Input  
CC  
CC  
t
PHZ(r)  
t
en(r)  
t
t
en(r)  
PLZ(r)  
V
OL  
V
A
0.5 V  
V
OL  
0.5 V  
t
t
t
t
PLZ(d)  
PLZ(d)  
en(d)  
en(d)  
V
B
V
OL  
V
OL  
0.5 V  
0.5 V  
VOLTAGE WAVEFORMS  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition rate  
(PRR) = 1 Mpps, pulsewidth = 500 ns ±50 ns, Zo = 50 .  
B. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
Figure 20. Single-Ended Transceiver Enable and Disable Timing Measurements  
22  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION (continued)  
50  
I
IB+  
I
O
V
ID  
V
IB  
C
L
= 15 pF  
50 Ω  
V
O
I
IB–  
V
IB–  
0 V  
DE/RE  
CDE0  
1.3 V  
Open  
CDE1  
Open  
CDE2  
0 or 5 V  
INV/NON  
TEST CIRCUIT  
V
1.4 V  
1 V  
IB  
V
IB–  
0.4 V  
0 V  
V
ID  
–0.4 V  
t
t
PLH  
PHL  
Solid line is INV/NON  
at a high-level input.  
V
OH  
80%  
20%  
50%  
V
O
V
OL  
Dashed line is INV/NON  
at a low-level input.  
t
f
t
r
VOLTAGE WAVEFORMS  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition  
rate(PRR) = 10 Mpps, pulsewidth = 50 ns ±5 ns, Zo = 50 .  
B. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
Figure 21. LVD Receiver Switching Characteristic Test Circuit  
23  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION (continued)  
Input  
B–  
I
O
GND  
GND  
DE/RE  
CDE0  
A
Open  
Open  
CDE1  
C
L
= 15 pF  
CDE2  
V
O
GND or V  
INV/NON  
CC  
2 V  
1.4 V  
0.8 V  
Solid line is INV/NON at a high-level input.  
Dashed line is INV/NONat a low-level input.  
INPUT  
t
t
PHL  
PLH  
V
OH  
100%  
80%  
OUTPUT  
–1.4 V  
20%  
0%  
V
OL  
t
r
t
f
A. All input pulses are supplied by a generator having the following characteristics: tr or tf < 1 ns, pulse repetition rate  
(PRR) = 10 Mpps, pulsewidth = 50 ns ±5 ns.  
B. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
Figure 22. Single-Ended Receiver Timing Test Circuit  
24  
Submit Documentation Feedback  
SN75LVDM976  
SN75LVDM977  
www.ti.com  
SLLS292BAPRIL 1998REVISED JANUARY 2000  
APPLICATION INFORMATION  
U1  
‘LVDM976  
8.2 k, 1/8 W, 5%  
0.022 µF, 6 V, 10%  
CDE0  
DIFFSENS  
U2  
‘LVDM976  
CDE0  
U3  
‘LVDM976  
CDE0  
Figure 23. Low-Pass Filter for Connecting DIFFSENS to CDE0  
25  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2008  
PACKAGING INFORMATION  
Orderable Device  
SN75LVDM976DGG  
SN75LVDM976DGGG4  
SN75LVDM976DGGR  
SN75LVDM976DGGRG4  
SN75LVDM976DL  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
DGG  
56  
56  
56  
56  
56  
56  
56  
56  
56  
56  
56  
56  
35 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
SSOP  
DGG  
DGG  
DGG  
DL  
35 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
20 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SN75LVDM976DLG4  
SN75LVDM977DGG  
SN75LVDM977DGGG4  
SN75LVDM977DGGR  
SN75LVDM977DGGRG4  
SN75LVDM977DL  
SSOP  
DL  
20 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SSOP  
DGG  
DGG  
DGG  
DGG  
DL  
35 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
35 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
20 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SN75LVDM977DLG4  
SSOP  
DL  
20 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2008  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
SN75LVDM976DGGR  
SN75LVDM977DGGR  
TSSOP  
TSSOP  
DGG  
DGG  
56  
56  
2000  
2000  
330.0  
330.0  
24.4  
24.4  
8.6  
8.6  
15.6  
15.6  
1.8  
1.8  
12.0  
12.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN75LVDM976DGGR  
SN75LVDM977DGGR  
TSSOP  
TSSOP  
DGG  
DGG  
56  
56  
2000  
2000  
346.0  
346.0  
346.0  
346.0  
41.0  
41.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

SN75LVDM976CDL

9 LINE TRANSCEIVER, PDSO56
TI

SN75LVDM976DGG

9-CHANNEL DUAL-MODE TRANSCEIVERS
TI

SN75LVDM976DGGG4

9 LINE TRANSCEIVER, PDSO56, 0.50 MM PITCH, GREEN, PLASTIC, TSSOP-56
TI

SN75LVDM976DGGR

9-CHANNEL DUAL-MODE TRANSCEIVERS
TI

SN75LVDM976DGGRG4

9 LINE TRANSCEIVER, PDSO56, 0.50 MM PITCH, GREEN, PLASTIC, TSSOP-56
TI

SN75LVDM976DLG4

9 LINE TRANSCEIVER, PDSO56, GREEN, PLASTIC, SSOP-56
TI

SN75LVDM976DLR

暂无描述
TI

SN75LVDM976DLRG4

9 LINE TRANSCEIVER, PDSO56, GREEN, PLASTIC, SSOP-56
TI

SN75LVDM977

9-CHANNEL DUAL-MODE TRANSCEIVERS
TI

SN75LVDM977CDGGR

9 LINE TRANSCEIVER, PDSO56
TI

SN75LVDM977CDLR

9 LINE TRANSCEIVER, PDSO56
TI

SN75LVDM977DGG

9-CHANNEL DUAL-MODE TRANSCEIVERS
TI