SN75LVPE801DRFT [TI]

8.0Gbps SATA Express 转接驱动器 | DRF | 8 | 0 to 85;
SN75LVPE801DRFT
型号: SN75LVPE801DRFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8.0Gbps SATA Express 转接驱动器 | DRF | 8 | 0 to 85

驱动 光电二极管 商用集成电路 驱动器
文件: 总33页 (文件大小:3249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
SN75LVPE801 8.0Gbps SATA Express 均衡器和转接驱动器  
1 特性  
3 说明  
1
SATA Express 支持  
可选均衡和去加重功能  
SN75LVPE801 是一款通用型单通道 SATA Express  
信号调节器,最高可支持 8Gbps 的数据速率。此器件  
支持 SATA Gen 12 3 规范以及 PCIe 1.02.0 和  
3.0SN75LVPE801 3.3V 单电源供电运行,并且  
配有带自偏置特性的 100Ω 线路端接电阻,适用于交  
流耦合。输入端包含一个带外 (OOB) 检测器,可在输  
入差分电压低于阈值时自动抑制输出端噪声,同时保持  
一个稳定的共模电压。此外,该器件还被设计成依据  
SATA 标准处理扩频时钟 (SSC) 传输。  
支持热插拔功能  
接收器检测与带外 (OOB) 支持  
多速率运行  
SATA1.5Gpbs3.0Gpbs6.0Gpbs  
PCIe2.5Gbps5.0Gbps8.0Gbps  
适用于为长达 40 英寸(1.0 米)的各种尺寸 FR4  
PC 电路板接收 8.0Gbps 数据  
3GHz 频率下,可补偿接收端高达 14dB 的损  
耗,以及发送端 1.2dB 的损耗  
75SNLVPE801 通过可选均衡设置来处理其输入端的  
互连损耗,能够通过编程来匹配通道中的损耗。对于  
8Gbps 及以下的数据传输速率,75SNLVPE801 可为  
长达 50 英寸的 FR4 电路板材料提供信号均衡。对于  
8Gbps 数据传输速率而言,该器件可针对长达 40 英寸  
FR4 材料进行补偿。均衡级别可通过设置信号控制  
引脚 EQ 来控制。  
集成输出噪声抑制  
温度范围:0°C 85°C  
自动低功耗特性,可使功耗降低 90% 以上  
< 100mW(工作模式,典型值)  
< 11mW(自动低功耗模式,典型值)  
3.3V 单电源  
针对静电放电 (ESD) 瞬态的高度保护功能  
器件信息(1)  
器件型号  
封装  
WSON (8)  
封装尺寸(标称值)  
人体放电模式 (HBM)6kV  
组件充电模式 (CDM)1.5kV  
SN75LVPE801  
2.00mm x 2.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
超小型尺寸:2mm × 2mm WSON 封装  
2 应用  
笔记本电脑  
台式机  
扩展坞  
服务器  
工作站  
SATA Express 参考原理图  
Connector  
Host Controller  
Device  
VCC  
1
2
3
4
8
7
6
5
VCC  
RX+  
RX-  
EQ  
DE  
TX+  
220nF  
220nF  
200nF  
TX-  
200nF  
GND  
SN75LVPE801  
330  
330  
VCC  
8
7
6
5
1
2
3
4
DE  
VCC  
RX+  
RX-  
EQ  
220nF  
470nF  
200nF  
200nF  
TX+  
TX-  
220nF  
470nF  
GND  
SN75LVPE801  
330  
330  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEW8  
 
 
 
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 10  
9.3 Feature Description................................................. 10  
9.4 Device Functional Modes........................................ 13  
10 Applications and Implementation...................... 14  
10.1 Application Information.......................................... 14  
10.2 Typical SATA Applications.................................... 14  
11 Power Supply Recommendations ..................... 21  
12 Layout................................................................... 22  
12.1 Layout Guidelines ................................................. 22  
12.2 Layout Example .................................................... 24  
13 器件和文档支持 ..................................................... 26  
13.1 器件支持................................................................ 26  
13.2 接收文档更新通知 ................................................. 26  
13.3 社区资源................................................................ 26  
13.4 ....................................................................... 26  
13.5 静电放电警告......................................................... 26  
13.6 Glossary................................................................ 26  
14 机械、封装和可订购信息....................................... 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 7  
7.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
9.1 Overview ................................................................. 10  
8
9
4 修订历史记录  
日期  
修订版本  
注释  
2016 9 月  
*
最初发布版本。  
2
版权 © 2016, Texas Instruments Incorporated  
 
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
5 说明 (续)  
发送侧有两个去加重级别可供选择,用于为输出端提供 0dB 1.2dB 的附加高频损耗补偿。  
该器件支持热插拔(1),能够防止器件在插入(例如,异步信号插/拔、不带电插/拔、带电插/拔或意外插/拔)情况  
下遭到损坏。  
(1) 需要在差分输入和输出端使用交流耦合电容。  
6 Pin Configuration and Functions  
DRF Package  
8-Pin WSON  
Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
HIGH SPEED DIFFERENTIAL I/O  
RX+  
RX–  
TX+  
TX–  
2
3
7
6
I
Noninverting and inverting CML differential inputs. These pins are tied to an internal voltage bias by dual  
termination resistor circuit.  
I
O
O
Noninverting and inverting VML differential outputs. These pins are tied to an internal voltage bias by  
dual termination resistor circuit.  
CONTROL PINS  
EQ  
4
8
I
I
Selects equalization settings per Table 1. Internally tied to GND.  
Selects de-emphasis settings per Table 1. Internally tied to GND.  
DE  
POWER  
VCC  
1
5
P
Positive supply must be 3.3 V ±10%  
Supply ground  
GND  
G
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2016, Texas Instruments Incorporated  
3
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–65  
MAX  
UNIT  
V
(2)  
Supply voltage, VCC  
4
4
Differential I/O  
V
Voltage  
Control I/O  
VCC + 0.5  
150  
Storage temperature, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground pin.  
7.2 ESD Ratings  
VALUE  
±6000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
typical values for all parameters are at VCC = 3.3 V and TA = 25°C; all temperature limits are specified by design  
MIN  
3
TYP  
3.3  
MAX  
3.6  
UNIT  
V
VCC  
Supply voltage  
Coupling capacitor  
75  
0
100  
200  
85  
nF  
TA  
Operating free-air temperature  
°C  
7.4 Thermal Information  
SN75LVPE801  
DRF (WSON)  
8 PINS  
97.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
81.9  
65.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJB  
65.6  
RθJCbot  
19.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
 
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
7.5 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
DEVICE PARAMETERS  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
ICCMax-s  
ICCPS  
Active mode supply current  
Auto power save mode ICC  
Maximum data rate  
EQ/DE = NC, K28.5 pattern at 8 Gbps, VID = 700 mVpp  
When auto low power conditions are met  
29  
40  
5.9  
8
mA  
mA  
3.3  
Gbps  
OOB  
VOOB  
Input OOB threshold  
F = 750 MHz  
50  
1.4  
10  
70  
90  
25  
50  
mVpp  
mV  
DVdiffOOB  
DVCMOOB  
OOB differential delta  
OOB common-mode delta  
mV  
CONTROL LOGIC  
VIH  
High-level input voltage  
For all control pins  
V
V
VIL  
Low-level input voltage  
Input hysteresis  
0.5  
20  
VINHYS  
IIH  
115  
mV  
μA  
μA  
High-level input current  
Low-level input current  
VIH = VCC (DE/EQ)  
VIL = 0V (DE/EQ)  
IIL  
RECEIVER AC/DC  
ZDIFFRX Differential input impedance  
ZSERX  
85 100 115  
V
Single-ended input impedance  
Common-mode voltage  
40  
VCMRX  
1.7  
f = 150 MHz to 300 MHz  
f = 300 MHz to 600 MHz  
f = 600 MHz to 1.2 GHz  
f = 1.2 GHz to 2.4 GHz  
f = 2.4 GHz to 3 GHz  
20  
18  
14  
10  
8
26  
22  
17  
12  
12  
11  
–13  
9
Differential mode return loss  
(RL)  
RLDiffRX  
dB  
dB/dec  
dB  
f = 3 GHz to 5 GHz  
6
RXDiffRLSlope Differential mode RL slope  
f = 300 MHz to 6 GHz (see Figure 6)  
f = 150 MHz to 300 MHz  
f = 300 MHz to 600 MHz  
f = 600 MHz to 1.2 GHz  
f = 1.2 GHz to 2.4 GHz  
f = 2.4 GHz to 3 GHz  
8
14  
12  
8
17  
18  
10  
8
RLCMRX  
Common-mode return loss  
Differential input voltage PP  
6
f = 3 GHz to 5 GHz  
6
8.5  
VdiffRX  
f = 1.5 GHz and 3 GHz  
f = 150 MHz to 300 MHz  
f = 300 MHz to 600 MHz  
f = 600 MHz to 1.2 GHz  
f = 1.2 GHz to 2.4 GHz  
f = 2.4 GHz to 3 GHz  
120  
30  
34  
24  
14  
12  
6
1600  
mVpp  
41  
41  
33  
24  
26  
18  
18  
IBRX  
Impedance balance  
dB  
f = 3 GHz to 5 GHz  
f = 5 GHz to 6.5 GHz  
5
TRANSMITTER AC/DC  
ZdiffTX Pair differential impedance  
ZSETX  
85 100 122  
40  
Single-ended input impedance  
Sequencing transient voltage  
Transient voltages on the serial data bus during power  
sequencing (lab load)  
VTXtrans  
–1.2  
0.3  
1.2  
V
Copyright © 2016, Texas Instruments Incorporated  
5
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
dB  
f = 150 MHz to 300 MHz  
f = 300 MHz to 600 MHz  
f = 600 MHz to 1.2 GHz  
f = 1.2 GHz to 2.4 GHz  
f = 2.4 GHz to 3 GHz  
14  
12  
11  
10  
10  
8
22  
21  
18  
14  
14  
14  
–13  
20  
16  
13.5  
8.5  
8
RLDiffTX  
Differential mode return loss  
Differential mode RL slope  
Common-mode return loss  
f = 3 GHz to 5 GHz  
TXDiffRLSlope  
f = 300 MHz to 3 GHz (see Figure 6)  
f = 150 MHz to 300 MHz  
f = 300 MHz to 600 MHz  
f = 600 MHz to 1.2 GHz  
f = 1.2 GHz to 2.4 GHz  
f = 2.4 GHz to 3 GHz  
dB/dec  
dB  
10  
9
8
RLCMTX  
6
5
f = 3 GHz to 5 GHz  
4
7
f = 150 MHz to 300 MHz  
f = 300 MHz to 600 MHz  
f = 600 MHz to 1.2 GHz  
f = 1.2 GHz to 2.4 GHz  
f = 2.4 GHz to 3 GHz  
34  
32  
24  
18  
18  
12  
8
38  
38  
33  
25  
25  
21  
21  
IBTX  
Impedance balance  
dB  
f = 3 GHz to 5 GHz  
f = 5 GHz to 6.5 GHz  
Differential output voltage  
swing  
DiffVppTX  
f = 3 GHz (under no interconnect loss)  
400 650 900  
mVpp  
mVpp  
At 1.5 GHz  
At 3 GHz  
15  
10  
50  
26  
dBmV  
(rms)  
VCMAC_TX  
TX AC CM voltage  
dBmV  
(rms)  
At 6 GHz  
12  
30  
VCMTX  
Common-mode voltage  
1.70  
V
TRANSMITTER JITTER 3 Gbps  
VID = 500 mVpp, UI = 333 ps, K28.5 control character,  
see Figure 7  
DJTX  
RJTX  
Residual deterministic jitter  
Random jitter  
0.12 0.19  
UIpp  
VID = 500 mVpp, UI = 333 ps, K28.7 control character,  
see Figure 7  
1
2
ps-rms  
TRANSMITTER JITTER 6 Gbps  
VID = 500 mVpp, UI = 167 ps, K28.5 control character,  
see Figure 7  
DJTX  
RJTX  
Residual deterministic jitter  
Random jitter  
0.12 0.34  
UIpp  
VID = 500 mVpp, UI = 167 ps, K28.7 control character,  
see Figure 7  
0.95  
2
ps-rms  
TRANSMITTER JITTER 8 Gbps  
VID = 500 mVpp, UI = 125 ps, K28.5 control character,  
see Figure 7  
DJTX  
RJTX  
DJTX  
RJTX  
Residual deterministic jitter  
4.7 5.76  
8.7 (ps) (DD)  
ps-rms  
2.7 (ps) (DD)  
0.9 0.92 0.93 ps-rms  
VID = 500 mVpp, UI = 125 ps, K28.5 control character,  
see Figure 7  
Random jitter  
0.93 0.94 0.95  
0.8 1.24  
VID = 500 mVpp, UI = 125 ps, K28.7 control character,  
see Figure 7  
Residual deterministic jitter  
Random jitter  
VID = 500 mVpp, UI = 125 ps, K28.7 control character,  
see Figure 7  
6
Copyright © 2016, Texas Instruments Incorporated  
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
7.6 Timing Requirements  
MIN TYP MAX  
UNIT  
DEVICE PARAMETERS  
tPDelay  
Propagation delay  
Measured using K28.5 pattern (see Figure 1)  
Electrical idle at input (see Figure 3)  
After first signal activity (see Figure 3)  
275 350  
11  
ps  
μs  
ns  
AutoLPENTRY Auto low power entry time  
AutoLPEXIT  
OOB  
Auto low power exit time  
33  
50  
tOOB1  
OOB mode enter  
OOB mode exit  
See Figure 2  
See Figure 2  
1
1
5
5
ns  
ns  
tOOB2  
RECEIVER AC/DC  
Rise times and fall times measured between 20% and  
80% of the signal. SATA 8 Gbps speed measured 1" from  
device pin.  
t20-80RX Rise and fall time  
62  
44  
75  
30  
ps  
ps  
Difference between the single-ended mid-point of the RX+  
signal rising and falling edge, and the single-ended mid-  
point of the RX– signal falling and rising edge.  
tskewRX  
TRANSMITTER AC/DC  
t20-80TX Rise and fall time  
Differential skew  
Rise times and fall times measured between 20% and  
80% of the signal. At 8 Gbps under no load conditions  
measured at the pin.  
58  
2
85  
15  
ps  
ps  
Difference between the single-ended mid-point of the TX+  
signal rising edge and falling edge, and the single-ended  
mid-point of the TX– signal falling edge and rising edge,  
D1, D0 = VCC  
tskewTX  
Differential skew  
txR/Flmb  
TX rise and fall imbalance  
TX amplitude imbalance  
At 8 Gbps  
6% 20%  
1% 10%  
txAmplmb  
TRANSMITTER JITTER  
46.5 47.5 48.3  
Rise and Fall time  
%
%
%
Rise and Fall mismatch  
1.5%  
3%  
IN  
t
t
PDelay  
PDelay  
OUT  
Figure 1. Propagation Delay Timing Diagram  
IN+  
Vcm  
IN-  
50 mV  
t
t
OOB2  
OOB1  
OUT+  
Vcm  
OUT-  
Figure 2. OOB Enter and Exit Timing  
Copyright © 2016, Texas Instruments Incorporated  
7
 
 
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
RX1,2P  
RX1,2N  
TX1,2P  
TX1,2N  
VCM  
RX  
t
OOB1  
AutoLP  
EXIT  
VCM  
TX  
Power Saving  
Mode  
AutoLP  
ENTRY  
Figure 3. Auto Low Power Mode Entry and Exit Timing  
7.7 Typical Characteristics  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
8" EQ = 1, DE = 0  
16" EQ = 1, DE = 0  
24" EQ = 1, DE = 0  
32" EQ = 1, DE = 1  
36" EQ = 1, DE = 1  
1.5 Gbps  
3.0 Gbps  
6.0 Gbps  
8.0 Gpbs  
0
0
300  
400  
500  
600  
700  
800  
900  
1
2
3
4
5
6
7
8
Input Voltage (mV)  
Data Rate (Gbps)  
D002  
D001  
Function of data rate after equalizing for 32" of input  
FR = 4 trace, EQ = 1, DE = 1  
A function of input trace length of 4 mil FR-4  
xx  
Figure 5. Deterministic Jitter vs Launch Amplitude  
Figure 4. Deterministic Jitter vs Data Rate  
8
Copyright © 2016, Texas Instruments Incorporated  
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
8 Parameter Measurement Information  
-RL  
dB  
Rx0.  
TX  
0.3  
4
Log Frequency - GHz  
6
Figure 6. TX, RX Differential Return Loss Limits  
Jitter  
Measurement  
CP  
40" 4mil  
Stripline  
AWG  
4" 4mil Stripline  
Figure 7. Jitter Measurement Test Condition  
Copyright © 2016, Texas Instruments Incorporated  
9
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The SN75LVPE801 is a single channel equalizer and redriver. The device operates over a wide range of  
signaling rates, supporting operation from DC to 8 Gbps. The wide operating range supports SATA Gen 1,2,3  
(1.5 Gbps, 3.0 Gbps, and 6.0 Gbps respectively) as well as PCI Express 1.0, 2.0, 3.0 (2.5 Gbps, 5.0 Gbps, and  
8.0 Gbps). The device also supports SATA Express (SATA 3.2) which is a form factor specification that allows  
for SATA and PCI Express signaling over a single connector.  
9.2 Functional Block Diagram  
VCC[1]  
GND[5]  
VBB = 1.7 V TYP  
RT  
LVPE801  
RX+ [2]  
RX– [3]  
TX+ [7]  
TX– [6]  
Equalizer  
Driver  
RT  
OOB  
Detect  
CTRL  
EQ  
[4]  
DE  
[8]  
Copyright © 2016, Texas Instruments Incorporated  
9.3 Feature Description  
9.3.1 SATA Express  
SATA Express (sometimes SATAe) is an electro-mechanical standard that supports both SATA and PCI Express  
storage devices. SATAe is standardized in the SATA 3.2 standard. The standard is concerned with providing a  
smooth transition from SATA to PCIe storage devices. The standard provides for standardized cables and  
connectors, and muxes the PCIe and SATA lanes at the host side so that either SATA compliant or PCIe  
compliant devices may operate with a host.  
SATAe provides support for SATA1, SATA2 and SATA3 devices (operating from 1.5 Gbps to 6.0 Gbps), as well  
as PCIe1, PCIe2 and PCIe3 devices (operating from 2.5 Gbps to 8.0 Gbps).  
The SN75LVPE801 provides for equalization and re-drive of a single channel input signal complying with any of  
the SATA or PCIe standards available with SATAe.  
The SATAe standard provides for a mechanism for a host to recognize and detect whether a SATA or PCIe  
device is plugged into the host. See the Typical SATA Applications section for the details of the SATA Express  
Interface Detect operation.  
9.3.2 Receiver Termination  
The receiver has integrated terminations to an internal bias voltage. The receiver differential input impedance is  
nominally 100 Ω, with a ±15% variation.  
For PCI Express compatibility it is necessary to include 330 Ω pull-down resistors between the connector and the  
AC capacitors, refer to Figure 24 for more information.  
9.3.3 Receiver Internal Bias  
The SN75LVPE801 receiver is internally biased to 1.7 V, providing support for AC coupled inputs.  
10  
Copyright © 2016, Texas Instruments Incorporated  
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
Feature Description (continued)  
9.3.4 Receiver Equalization  
The SN75LVPE801 incorporates programmable equalization. The EQ input controls the level of equalization that  
is used to open the eye of the received input signal. If the EQ input is left open, or pulled LO, 8 dB (at 4 GHz) of  
equalization is applied. When the EQ input is HIGH, the equalization is set to 16 dB (again at 4 GHz).Table 1  
shows the equalization values discussed.  
Table 1. EQ and DE Settings  
EQUALIZATION  
dB (at 8 Gbps)  
EQ  
DE  
DE-EMPHASIS  
0 (default)  
1
8
0 (default)  
1
0
16  
–1.2  
9.3.5 OOB/Squelch  
The SN75LVPE801 receiver incorporates an Out-Of-Band (OOB) detection circuit in addition to the main signal  
chain receiver. The OOB detector continuously monitors the differential input signal to the device. The OOB  
detector has a 50-mVpp entry threshold. If the differential signal at the receiver input is less than the OOB entry  
threshold, the device transmitter transitions to squelch. The SN75LVPE801 enters squelch within 5 ns of the  
input signal falling below the OOB entry threshold. The SN75LVPE801 continues to monitor the input signal while  
in squelch. While in squelch, if the OOB detector determines that the input signal now exceeds the 90 mVpp exit  
threshold, the SN75LVPE801 exits squelch within 5 ns. See Figure 8.  
IN+  
Vcm  
IN-  
50 mV  
t
t
OOB2  
OOB1  
OUT+  
Vcm  
OUT-  
Figure 8. OOB Enter and Exit Timing  
Receiver Input Termination is Disabled  
When the SN75LVPE801 enters squelch state the transmitter output is squelched. The transmitter non-inverting  
(TX+) output and the transmitter inverting output (TX-) are both driven to the transmitter nominal common mode  
voltage which is 1.7 V .  
9.3.6 Auto Low Power  
The SN75LVPE801 also includes an Auto Low Power Mode (ALP). ALP is entered when the differential input  
signal has been less than 50 mV for > 10 µs. The device enters and exits Low Power Mode by actively  
monitoring the input signal level. In this state the device selectively shuts off internal circuitry to lower power by >  
90% of its normal operating power. While in ALP mode the device continues to actively monitor input signal  
levels. When the input signal exceeds the OOB exit threshold level, the device reverts to the active state. Exit  
time from Auto Low Power Mode is < 50 ns (max). See Figure 9.  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
 
 
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
RX1,2P  
RX1,2N  
TX1,2P  
TX1,2N  
VCM  
RX  
t
OOB1  
AutoLP  
EXIT  
VCM  
TX  
Power Saving  
Mode  
AutoLP  
ENTRY  
Figure 9. Auto Low Power Mode Entry and Exit Timing  
9.3.7 Transmitter Output Signal  
The SN75LVPE801 differential output signal is 650 mVpp when de-emphasis is disabled (DE input is open or  
pulled low).  
9.3.8 Transmitter Common Mode  
The SN75LVPE801 transmitter common mode output is set to 1.7 V.  
9.3.9 De-Emphasis  
The SN75LVPE801 transmitter incorporates programmable de-emphasis to provide signal conditioning to offset  
the anticipated channel losses based on expected use cases for the device. Figure 10 shows an example of a  
SATA host communicating with a SATA device through a backplane. In such a use case, an SN75LVPE801  
would be located at the end of the interconnect channels (i.e. at the device end for the host TX channel, and at  
the host end for the host RX channel. These locations are selected based on the signal conditioning that is  
incorporated into the SN75LVPE801. The SN75LVPE801 provides up to 16 dB of equalization, while supporting  
up to 1.2 dB of de-emphasis. The optimum location would therefore be at the end of the interconnect, allowing  
the receiver equalization to address the majority of the channel loss, while the de-emphasis would be employed  
to overcome the much shorter interconnect length.  
The DE input controls the amount of de-emphasis that is applied at the transmitter output. The de-emphasis  
selections are shown in Table 1. When DE is left open, or pulled low, de-emphasis shall be off. When DE is  
pulled HIGH, 1.2 dB of de-emphasis is used at the transmitter output.  
Figure 10. Trace Length Example  
12  
Copyright © 2016, Texas Instruments Incorporated  
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
9.3.10 Transmitter Termination  
The SN75LVPE801 transmitter includes integrated terminations. The receiver differential output impedance is  
nominally 100 Ω, with a 22% variation.  
9.4 Device Functional Modes  
9.4.1 Active  
Active mode is the normal operating mode. When power is applied to the device, and the differential input signal  
to the receiver is greater than 90 mVpp, the device is in active mode and meets all the specifications in the data  
sheet.  
9.4.2 Squelch  
When the device is powered, and the differential input signal to the receiver is less than 50 mVpp, the device is in  
squelch mode. In squelch mode the transmitter outputs are both set to VCMTX or 1.7 V.  
9.4.3 Auto Low Power  
When the device is powered and the differential input signal to the receiver has been less than 50 mVpp for  
greater than 10 ns, the device transitions to Auto Low Power (ALP) mode. In ALP, the transmitter outputs are  
both set to VCMTX. In addition, while in ALP, the device shuts off internal circuitry to lower power to less than  
10% of the power in the Active mode.  
Copyright © 2016, Texas Instruments Incorporated  
13  
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The SN75LVPE801 can be used for SATA applications as well as SATA Express applications. The device  
supports SATA Gen1, Gen2, and Gen3 applications with data rates from 1.5 to 8 Gbps. The built-in equalization  
circuits provide up to 16 dB of equalization at 4 GHz. This equalization can support SATA GEN2 (3 Gbps)  
applications over up to 50 inches of FR-4 material. The same 16 dB equalizer is suited to SATA Gen3 (8 Gbps)  
applications up to 40 inches of FR4.  
In addition to SATA applications, the SN75LVPE801 can support SATA Express applications. SATA Express  
provides a standardized interface to support both SATA (Gen1, Gen2, and Gen3) and PCI Express (PCIe 1.0,  
2.0 and 3.0).  
All applications of the SN75LVPE801 share some common applications issues. For example, power supply  
filtering, board layout, and equalization performance with varying interconnect losses. Other applications issues  
are specific, such as implementing receiver detection for SATA Express applications. The Typical Application  
examples demonstrate common implementations of the SN75LVPE801 supporting SATA, as well as SATA  
Express applications.  
10.2 Typical SATA Applications  
Copyright © 2016, Texas Instruments Incorporated  
(1) Place supply caps close to the device pin  
(2) EQ and DE selection at 8 dB and 0 dB respectively  
(3) Actual EQ and DE settings depend on the device placement relative to the host and SATA connector  
Figure 11. Typical Device Implementation  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
Typical SATA Applications (continued)  
10.2.1 Design Requirements  
DESIGN PARAMETERS  
SATA Signaling Rate  
VALUE  
1.5 - 6.0 Gbps  
10 nF  
AC Coupling Capacitance  
Interconnect Characteristic Impedance  
100 Ohms  
Up to 50" FR4 for SATA Gen2  
Up to 40" FR4 for SATA Gen3  
Interconnect Length  
Termination Resistance  
100 Ohms differential integrated into TX and RX  
10.2.2 Detailed Design Procedure  
Figure 11 shows a typical SATA Application. The SATA host, which may be a notebook or desktop,  
communicates with a SATA sink, which could be a SSD mass storage device. The SATA host and sink  
communicate over a backplane differential pair, or a SATA cable. When using the SN75LVPE801 as an  
equalizer/redriver, the designer would optimally place the SN75LVPE801 close to the end of the interconnect.  
The SN75LVPE801 provides up to 16 dB of equalization, and up to 1.2 dB of de-emphasis. Placing the  
SN75LVPE801 close to the end of the interconnect allows the device equalizer to address the majority of the  
high frequency losses introduced in the channel.  
Ensure that the channel loss for the interconnect material and length is matched reasonably well to the  
selectable equalization and de-emphasis settings available on the SN75LVPE801. The table above provides an  
estimate of the amount of FR4 material that could be used as a function of the signal rate. In any case, channel  
modeling would be prudent to ensure that the SATA host, interconnect, SATA equalizer/re-driver, and SATA Sink  
can establish and maintain a low BER link.  
The AC coupling capacitors of 10 nF are chosen to comply with the SATA standard (< 12 nF)  
Often a designer may not be sure whether a signal conditioning device like the SN75LVPE801 is needed in their  
specific application. The SN75LVPE801 allows the user to take the guess work of using a signal conditioning  
device in a SATA link. With the SN75LVPE801 the designer has the option to use or remove the device based  
on signal conditioning needs. Figure 12 shows guidelines that could be used to allow in situ testing when a board  
is available. The designer would start with 0 Ω resistors in place to determine if the eye quality at the end of the  
link is satisfactory. If the eye opening is not sufficient, the 0 Ω resistors could be replaced with the  
SN75LVPE801.  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
Figure 12. Implementation Guideline  
To demonstrate the effectiveness of the SN75LVPE801 signal conditioning for varied configurations that may be  
encountered, Figure 13 is used as a reference. A Gen3, 6 Gbps SATA host communicates with a sink located at  
point B. The host and sink are separated by “X+Y” inches, where X represents the distance between the host  
and the SN75LVPE801, while Y represents the distance between the SN75LVPE801 and the sink. The  
Application Curves are for a 6-Gbps K28.5 pattern, with VCC = 3.3 V and at an ambient temperature of 25°C.  
DE  
EQ  
A
B
X
Y
SATA 6G  
Host  
801  
(4 mil)  
(4 mil)  
Figure 13. Test Points  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
10.2.3 Application Curves  
All graphs at 6 Gbps  
DE = 1  
EQ = 0  
DE = 1  
EQ = 0  
Figure 14. Eye Pattern at A X = 8”; Y = 2”  
Figure 15. Eye Pattern at B X = 8”; Y = 2”  
DE = 1  
EQ = 0  
DE = 1  
EQ = 0  
Figure 16. Eye Pattern at A X = 16”; Y = 2”  
Figure 17. Eye Pattern at B X = 16”; Y = 2”  
DE = 1  
EQ = 0  
DE = 1  
EQ = 0  
Figure 18. Eye Pattern at A X = 24”; Y = 2”  
Figure 19. Eye Pattern at BX = 24”; Y = 2”  
Copyright © 2016, Texas Instruments Incorporated  
17  
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
DE = 1  
EQ = 1  
DE = 1  
EQ = 1  
Figure 20. Eye Pattern at A X = 32”; Y = 2”  
Figure 21. Eye Pattern at B X = 32”; Y = 2”  
DE = 1  
EQ = 1  
DE = 1  
EQ = 1  
Figure 22. Eye Pattern at A X = 40”; Y = 2”  
Figure 23. Eye Pattern at B X = 40”; Y = 2”  
18  
Copyright © 2016, Texas Instruments Incorporated  
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
10.2.4 SATA Express Applications  
Connector  
Host Controller  
Device  
VCC  
1
2
3
4
8
7
6
5
VCC  
RX+  
RX-  
EQ  
DE  
TX+  
220nF  
220nF  
200nF  
TX-  
200nF  
GND  
SN75LVPE801  
330  
330  
VCC  
8
7
6
5
1
2
3
4
DE  
VCC  
RX+  
RX-  
EQ  
220nF  
470nF  
200nF  
200nF  
TX+  
TX-  
220nF  
470nF  
GND  
SN75LVPE801  
330  
330  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. SN75LVPE801 SATA Express Reference Schematic  
EQ: 8 dB when Floated, DE: 0 dB when Floated  
10.2.4.1 Design Requirements  
DESIGN PARAMETERS  
VALUE  
1.5 - 8.0 Gbps  
200 - 220 nF  
100 Ω  
SATA Express Signaling Rate  
AC Coupling Capacitance  
Interconnect Characteristic Impedance  
Up to 50" FR4 for SATA Gen2  
Up to 40" FR4 for SATA Gen3  
Interconnect Length  
Receiver pull-down terminations  
Termination Resistance  
330 Ω  
100 Ohms differential integrated into TX and RX  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
10.2.4.2 Detailed Design Procedure  
Figure 24 is a reference schematic of a SATAe implementation using the SN75LVPE801. With a SATAe design,  
both SATA and PCI Express must be supported. SATAe supports both cabled and direct connections. Using a  
cabled application as an example, the SATAe power connector includes an Interface Detect (IFDet, power  
connector pin P4) signal that indicates whether a SATA client or a PCIe client is connected.  
When the SATAe host determines that a PCIe client is connected, the SATAe host performs receiver detection.  
Receiver detection determines the presence of a client by detecting the load impedance. The transmitter  
performs a common mode voltage shift, and measures the rate at which the voltage at the transmitter output  
changes. The rate of change indicates if a client is present (fast charging when a low impedance load is present,  
or slow charging when the load is open or high impedance). With the implementation in Figure 24, 330-Ω  
pulldowns have been inserted between the host and the SN75LVPE801. The pulldown resistors indicate to the  
host that a client is present. While an actual client would be expected to have an active load of 50 Ω single  
ended, the 330 Ω is chosen here to meet two requirements. The 330 Ω is low enough to force the SATAe host to  
decide that a receiver is present, while also high enough to only marginally affect the load when the  
SN75LVPE801 is active, and presenting a 50-Ω load. With the 50 Ω and 330 Ω are both present, the parallel  
combination of 43 Ω is satisfactory for most applications.  
Assuming that the SATAe host has detected (via IFDet) that a SATA client is present, the SATAe host  
communicates with the client via the SN75LVPE801. The SATA standard does not have a receiver detection  
mode as is present in PCIe. A SATA host does use OOB signaling to communicate identification information. The  
SN75LVPE801 incorporates an OOB detector in order to support OOB signaling through the device. The OOB  
detector drives a squelch circuit on the SN75LVPE801 output transmitter. (See OOB/Squelch for more details on  
the OOB/Squelch circuitry.)  
Returning again to Figure 24, we see 200-nF AC coupling capacitors on the device or client side of the interface.  
These capacitors allow interfacing to both SATA and PCIe clients. In the case of a PCIe client, the 200 nF is  
within the acceptable range for all PCIe devices. When a SATA client is present, the 200 nF capacitor has little  
effect on the overall link, as it appears in series with the 12-nF (max) AC coupling capacitor incorporated into the  
SATA client. The 200 nF in series with the 12 nF presents an effective capacitance of 11.3 nF, as expected less  
than the 12-nF maximum permitted.  
The physical placement of the resistors on the high-speed transmission lines can be made as not to create a  
stub on the transmission line by using resistors with the 0201 package size, an example is provided in Figure 25.  
SN75LVPE801  
0201 Package Size  
300-W Resistor  
Rx +/-  
TRACE  
VIA to GND  
Figure 25. Resistor Placement to Avoid Stub (All Dimensions in mm)  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
10.2.4.3 Application Curve  
Eye-diagrams were taken on the SN75LVPE801 configured as in Figure 24 above. Testing was performed at a  
PCIe 3.0 speed of 8Gbps.  
Figure 26. SN75LVPE801 8-Gbps Eye-Diagram  
10.2.5 PCIe Applications  
PCIe-only applications are implemented in a manner very similar to SATA Express applications as covered in  
Detailed Design Procedure. Looking at Figure 27, and comparing it to the SATA Express application in Figure 24,  
a single change is noted. For PCIe applications the 220 nF AC-coupling capacitors on the Host-to-Device link are  
relocated from the Device side of the connector to the Host side. No other changes are required.  
Connector  
VCC  
Host Controller  
Device  
1
2
3
4
8
7
6
5
VCC  
RX+  
RX-  
EQ  
DE  
TX+  
220nF  
220nF  
220nF  
220nF  
TX-  
GND  
SN75LVPE801  
330  
330  
VCC  
8
7
6
5
1
2
3
4
DE  
VCC  
RX+  
RX-  
EQ  
220nF  
470nF  
200nF  
200nF  
TX+  
TX-  
220nF  
470nF  
GND  
SN75LVPE801  
330  
330  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. SN75LVPE801 PCI-Express Reference Schematic  
EQ: 7 dB when Floated, DE: 0 dB when Floated  
11 Power Supply Recommendations  
The SN75LVPE801DRF is designed to operate from a single 3.3-V supply. Always practice proper power-supply  
sequencing procedure. Apply VCC first before any input signals are applied to the device. The power-down  
sequence is in reverse order.  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Return Current and Plane References  
High frequency return signal/current is defined as the path that a signal follows back to its original source as all  
signals flow in a closed loop. Minimizing the loop area of the closed loop is beneficial for both EMI (Electro-  
Magnetic Interference) reduction and signal integrity.  
The best way to minimize loop area is to always have a signal reference their nearest solid ground or power  
plane. Obstructions to the return signal causes signal integrity problems like reflections, crosstalk, undershoot  
and overshoot.  
Signals can reference either power or ground planes, but ground is preferred. Without solid plane references,  
single ended and differential impedance control is very hard to accomplish; crosstalk to other signals may  
happen as the return signals have no other path. This type of crosstalk is difficult to troubleshoot.  
Symmetric pairing of solid planes in the layer stackup can significantly reduce warping of the PCB during the  
manufacturing process. Warping of the PCB is crucial to minimize on boards that uses BGA components.  
12.1.2 Split Planes – What to Avoid  
Never route signals over splits in their perspective reference planes.  
Figure 28. Overlapping Analog and Digital Planes  
22  
Copyright © 2016, Texas Instruments Incorporated  
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
Layout Guidelines (continued)  
Figure 29. Incorrect Routing  
Figure 30. Proper Routing  
Copyright © 2016, Texas Instruments Incorporated  
23  
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
Layout Guidelines (continued)  
12.1.3 Avoiding Crosstalk  
Crosstalk is defined as interference from one trace to another by either or both inductive and capacitive coupling.  
Best ways to avoid crosstalk are:  
Provide stable reference planes for all high speed signals (as noted in previous sections).  
Use the 3W rule (3 times the width of trace for separation) where applicable on all signals, but absolutely use  
on clock signals.  
Use ground traces/guards around either victim or aggressor signals prone to crosstalk.  
When space is constrained and limited on areas of the PCB to route parallel buses, series or end termination  
resistors can be used to route traces closer than what is normally recommended. However, calculations and  
simulations must be done to validate the use of series or end termination resistors to eliminate crosstalk.  
Figure 31. Ways to Avoid Crosstalk  
12.2 Layout Example  
Figure 32. Printed-Circuit Board Stackup (FR-4 Example)  
24  
版权 © 2016, Texas Instruments Incorporated  
SN75LVPE801  
www.ti.com.cn  
ZHCSFI1 SEPTEMBER 2016  
Layout Example (接下页)  
PCB layer configuration suggestions for stackup symmetry and signal integrity.  
Figure 33. PCB Layer Configuration Suggestions  
版权 © 2016, Texas Instruments Incorporated  
25  
SN75LVPE801  
ZHCSFI1 SEPTEMBER 2016  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN75LVPE801DRFR  
SN75LVPE801DRFT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRF  
DRF  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
0 to 85  
0 to 85  
801  
801  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SN75LVPE802

双通道 8.0Gbps SATA Express 转接驱动器
TI

SN75LVPE802RTJR

双通道 8.0Gbps SATA Express 转接驱动器 | RTJ | 20 | 0 to 85
TI

SN75LVPE802RTJT

双通道 8.0Gbps SATA Express 转接驱动器 | RTJ | 20 | 0 to 85
TI

SN75LVTH543

3.3-V ABT OCTAL REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
TI

SN76002ND

2.5-WATT POWER AMPLIFIER
TI

SN761026

电子音量控制器件
TI

SN76110

Stereo demodulator
TI

SN76115N

Stereo Demodlator
TI

SN761210

VIDEO-PROCESSING CIRCUIT
TI

SN761210FR

336- 】 244-pixel ccd image sensor
TI

SN761631

RF FRONT END FOR AM/FM IF SAMPLING RADIO
TI

SN761631PAPR

RF FRONT END FOR AM/FM IF SAMPLING RADIO
TI