TAS2521IRGER [TI]

具有 miniDSP 和 18mW 单声道耳机驱动器的 2W 单声道、数字和模拟输入 D 类音频放大器 | RGE | 24 | -40 to 85;
TAS2521IRGER
型号: TAS2521IRGER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 miniDSP 和 18mW 单声道耳机驱动器的 2W 单声道、数字和模拟输入 D 类音频放大器 | RGE | 24 | -40 to 85

放大器 驱动 商用集成电路 音频放大器 驱动器
文件: 总37页 (文件大小:2269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
具有嵌入式微型数字信号处理器 (miniDSP) 和单声道头戴式耳机放大器  
的数字输入 D 类扬声器放大器  
查询样品: TAS2521  
1 介绍  
1.1 特性  
1
数字输入单声道扬声器放大器  
1.2 应用  
指令可编程嵌入式 miniDSP  
支持 8kHz 192kHz 的采样率  
单声道 D 类平衡桥式功放电路 (BTL) 扬声器驱动  
器(为 4Ω 负载提供 2W 输入功率,或为 8Ω 负载  
提供 1.7W 输入功率)  
便携式音频器件  
大型家用电器  
便携式导航器件  
单声道头戴式耳机驱动器  
具有输出混合和电平控制的两个单端输入  
嵌入式上电复位  
1.3 说明  
TAS2521 是一款低功耗数字输入扬声器放大器,此放  
大器支持 24 位数字 I2S 数据单声道回放。  
集成型低压降稳压器 (LDO)  
除了驱动负载最高为 4Ω 的扬声器放大器,该器件还特  
有一个单声道头戴式耳机驱动器和一个用于信号处理的  
完全可编程 miniDSP。 可对数字音频数据格式进行设  
定以实现与主控,受控,DSP TDM 模式中常见的  
音频标准协议(I2S,左/右平衡)一同工作。 完全可编  
程的 miniDSP 可以支持多种功能,例如音频均衡,多  
频动态范围压缩 (DRC),音调生成和其它几个用户定  
义功能。 一个片载 PLL 提供数字信号处理块所需的高  
速时钟。 音量可以由寄存器控制。 此音频功能由  
I2C™ 串行总线或 SPI 总线控制。 该器件包括一个板  
载低压降稳压器 (LDO),它脱离扬声器电源运行以处  
理所有内部器件模拟和数字电源需求。 所包含的加电  
复位电路 POR 可靠地将器件复位至其缺省状态,因此  
在正常使用时不需要外部复位;但是,该器件没有一个  
适合更加复杂系统初始化所需要的复位引脚。 该器件  
还包括两个模拟输入,用于在扬声器和头戴式耳机模拟  
路径中的混音和多路复用。  
具有用户可编程的双二阶滤波器的内置数字音频处  
理块  
用于可编程数字音频处理器的集成 PLL  
• I2S,左平衡,右平衡,DSP TDM 音频接口  
支持自动递增的 I2C 和串行外设接口 (SPI) 控制  
完全断电控制  
电源:  
模拟:1.5V - 1.95V  
数字内核:1.65V - 1.95V  
数字 I/O1.1V - 3.6V  
– D 类:2.7V - 5.5V (SPKVDDAVDD)  
• 24 引脚四方扁平无引线 (QFN) 封装 (4mm 4mm)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
版权 © 2013, Texas Instruments Incorporated  
English Data Sheet: SLAS687  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
这些装置包含有限的内置 ESD 保护。  
存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。  
AINR  
0 dB to -78 dB and Mute  
(Min 0.5 dB steps)  
AINL  
6 dB to +24 dB  
(6 dB steps)  
0 dB to -78 dB  
and Mute  
(Min 0.5 dB steps)  
SPKP  
SPKM  
DAC Signal  
Proc.  
Dig  
Vol  
Mono S-  
D DAC  
S
-6 dB to +29 dB  
and Mute  
(1 dB steps)  
miniDSP  
HPOUT  
S
0 dB to -78 dB  
and Mute  
(Min 0.5 dB steps)  
POR  
LDO_SEL  
LDO  
SPKVDD  
AVDD  
SPI/I2C  
Control Block  
Secondary I2S  
Interface  
Primary I2S  
Interface  
Interrupt  
Control  
SPI_SEL  
RST  
PLL  
DVDD  
IOVDD  
SPKVSS  
AVSS  
Pin Muxing / Clock Routing  
DVSS  
1-1. 简化方框图  
本数据手册被设计成采用 PDF 文档浏览特性,此特性可实现信息快速访问。 例如,执行一  
0 / 寄存器 27”的全局搜索可在一个列表中生成所有涉及这一页和寄存器的内容。 这样可  
轻松遍历列表并找到所有与某一页和寄存器相关的信息。 请注意,搜索字符串必须为指定格  
式。 此外,本文档包括文档超链接以使用户能够快速找到文档引用。 要返回到原来那一页,  
请单击文件底部 PDF 页码附件的绿色左箭头。 针对此功能的热键是键盘上的左侧 alt 键。 另  
外一个快速查找信息的方法是使用 PDF 书签。  
2
介绍  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
 
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
2 PACKAGE AND SIGNAL DESCRIPTIONS  
2.1 Package/Ordering Information  
OPERATING  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
TRANSPORT MEDIA,  
ORDERING NUMBER  
PRODUCT  
PACKAGE  
QUANTITY  
TAS2521IRGET  
TAS2521IRGER  
Tape and reel, 250  
Tape and reel, 3000  
TAS2521  
QFN-24  
RGE  
–40°C to 85°C  
2.2 Device Information  
RGE PACKAGE  
(TOP VIEW)  
24 23 22 21 20 19  
GPIO/DOUT  
MISO  
SPI_SEL  
1
2
3
4
5
6
18  
RST  
17  
16  
15  
14  
13  
MCLK  
BCLK  
AINL  
AINR  
HPOUT  
AVSS  
WCLK  
DIN  
7
8
9
10 11 12  
Table 2-1. RGE PIN FUNCTIONS  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
SPI_SEL  
RST  
NO.  
1
I
I
Selects between SPI and I2C digital interface modes; (1 = SPI mode) (0 = I2C mode)  
Reset for logic, state machines, and digital filters; asserted LOW.  
Analog single-ended line left input  
2
AINL  
3
I
AINR  
4
I
Analog single-ended line right input  
HPOUT  
AVSS  
5
O
Headphone and Lineout Driver Output  
6
GND Analog Ground, 0V  
AVDD  
LDO_SEL  
SPKM  
SPKVDD  
SPKVSS  
SPKP  
7
PWR Analog Core Supply Voltage, 1.5V - 1.95V, tied internally to the LDO output  
8
I
Select Pin for LDO; ties to either SPKVDD or SPKVSS  
Class-D speaker driver inverting output  
9
O
10  
11  
12  
13  
14  
15  
16  
PWR Class-D speaker driver power supply  
PWR Class-D speaker driver power supply ground supply  
O
I
Class-D speaker driver non-inverting output  
Audio Serial Data Bus Input Data  
DIN  
WCLK  
BCLK  
I/O  
I/O  
I
Audio Serial Data Bus Word Clock  
Audio Serial Data Bus Bit Clock  
MCLK  
Master CLK Input / Reference CLK for CLK Multiplier - PLL (On startup PLLCLK = CLKIN)  
(1) I = Input, O = Output, GND = Ground, PWR = Power, Z = High Impedance  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
PACKAGE AND SIGNAL DESCRIPTIONS  
3
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
Table 2-1. RGE PIN FUNCTIONS (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
17  
18  
19  
20  
21  
22  
23  
24  
MISO  
O
SPI Serial Data Output  
GPIO/DOUT  
SCL/SSZ  
SDA/MOSI  
SCLK  
I/O/Z GPIO / Audio Serial Bus Output  
I
I
I
Either I2C Input Serial Clock or SPI Chip Select Signal depending on SPI_SEL state  
Either I2C Serial Data Input or SPI Serial Data Input depending on SPI_SEL state.  
Serial clock for SPI interface  
IOVDD  
PWR I/O Power Supply, 1.1V - 3.6V  
PWR Digital Power Supply, 1.65V - 1.95V  
GND Digital Ground, 0V  
DVDD  
DVSS  
3 ELECTRICAL SPECIFICATIONS  
3.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
UNIT  
MIN  
–0.3  
MAX  
2.2  
2.2  
6
AVDD to AVSS  
V
V
DVDD to DVSS  
–0.3  
SPKVDD to SPKVSS  
IOVDD to IOVSS  
–0.3  
V
–0.3  
3.9  
V
Digital input voltage  
IOVSS – 0.3  
AVSS – 0.3  
–40  
IOVDD + 0.3  
V
Analog input voltage  
Operating temperature range  
Storage temperature range  
Junction temperature (TJ Max)  
AVDD + 0.3  
V
85  
°C  
°C  
°C  
W
–55  
150  
105  
QFN  
Power dissipation(with thermal pad soldered to board)  
(TJ Max – TA) / θJA  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
3.2 THERMAL INFORMATION  
TAS2521  
THERMAL METRIC(1)  
UNITS  
RGE (24 PINS)  
θJA  
Junction-to-ambient thermal resistance  
32.2  
30.0  
9.2  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
9.2  
θJCbot  
2.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
4
ELECTRICAL SPECIFICATIONS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
3.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.5  
1.65  
2.7  
1.1  
4
NOM  
1.8  
MAX  
1.95  
1.95  
5.5  
UNIT  
AVDD(1)  
DVDD  
SPKVDD(1)  
Referenced to AVSS(2)  
Power-supply voltage range  
(2)  
Referenced to DVSS  
1.8  
V
(2)  
Referenced to SPKVSS  
(2)  
IOVDD  
Referenced to IOVSS  
1.8  
3.6  
Speaker impedance  
Load applied across class-D output pins (BTL)  
AC-coupled to RL  
Headphone impedance  
16  
Analog audio full-scale input  
voltage  
VI  
AVDD = 1.8 V, single-ended  
0.5  
10  
VRMS  
Line output load impedance  
(in half drive ability mode)  
AC-coupled to RL  
kΩ  
MCLK(3)  
SCL  
Master clock frequency  
SCL clock frequency  
IOVDD = DVDD = 1.8V  
50  
400  
85  
MHz  
kHz  
°C  
TA  
Operating free-air temperature  
–40  
(1) To minimize battery-current leakage, the SPKVDD voltage level should not be below the AVDD voltage level.  
(2) All grounds on board are tied together, so they should not differ in voltage by more than 0.2 V maximum for any combination of ground  
signals. By use of a wide trace or ground plane, ensure a low-impedance connection between AVSS and DVSS.  
(3) The maximum input frequency should be 50 MHz for any digital pin used as a general-purpose clock.  
3.4 Electrical Characteristics  
At 25°C, AVDD = 1.8V, IOVDD = 1.8 V, SPKVDD = 3.6 V, DVDD = 1.8 V, fS (audio) = 48 kHz, CODEC_CLKIN = 256 × fS,  
PLL = Off  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INTERNAL OSCILLATOR—RC_CLK  
Oscillator frequency  
8.48  
MHz  
Audio DAC – Stereo Single-Ended Headphone Output  
Load = 16Ω (single-ended), Input & Output CM =  
0.9V, DOSR = 128, Device Setup MCLK = 256* fs,  
Channel Gain = 0dB word length = 16 bits;  
Processing Block = PRB_P1 Power Tune =  
PTM_P3  
Device Setup  
Full-scale output voltage (0 dB)  
Idle channel noise  
0.5  
20.7  
-78.2  
103.7  
47.2  
88.1  
±0.3  
11  
Vrms  
μVms  
dB  
ICN  
Measured as idle-channel noise, A-weighted(1) (2)  
THD+N  
Total harmonic distortion + noise 0-dBFS input, 1-kHz input signal  
Mute attenuation  
Power-supply rejection ratio(3)  
Dynamic range, A-weighted(1) (2) –60dB 1kHz input full-scale signal  
Mute  
dB  
PSRR  
DR  
Ripple on AVDD (1.8 V) = 200 mVPP at 1 kHz  
dB  
Gain error  
0dB, 1kHz input full scale signal  
RL = 32 , THD+N –40 dB  
RL = 16 , THD+N –40 dB  
dB  
PO  
Maximum output power  
mW  
18  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the inputs short-circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(3) DAC to headphone-out PSRR measurement is calculated as PSRR = 20 X log(VHP / VAVDD).  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
5
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
Electrical Characteristics (continued)  
At 25°C, AVDD = 1.8V, IOVDD = 1.8 V, SPKVDD = 3.6 V, DVDD = 1.8 V, fS (audio) = 48 kHz, CODEC_CLKIN = 256 × fS,  
PLL = Off  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Audio DAC – Stereo Single-Ended Headphone Output  
Load = 16Ω (single-ended), Input & Output CM =  
0.75V, DOSR = 128, Device Setup MCLK = 256*  
fs, Channel Gain = 0dB word length = 16 bits;  
Processing Block = PRB_P1 Power Tune =  
PTM_P3  
Device Setup  
Full-scale output voltage (0 dB)  
Idle channel noise  
0.375  
18.1  
-78.2  
105.5  
48.4  
86.8  
±0.3  
8
Vrms  
μVms  
dB  
ICN  
Measured as idle-channel noise, A-weighted(1) (2)  
THD+N  
Total harmonic distortion + noise 0-dBFS input, 1-kHz input signal  
Mute attenuation  
Power-supply rejection ratio(3)  
Dynamic range, A-weighted(1) (2) –60dB 1kHz input full-scale signal  
Mute  
dB  
PSRR  
DR  
Ripple on AVDD (1.8 V) = 200 mVPP at 1 kHz  
dB  
Gain error  
0dB, 1kHz input full scale signal  
RL = 32 , THD+N –40 dB  
RL = 16 , THD+N –40 dB  
dB  
PO  
Maximum output power  
mW  
16  
DAC DIGITAL INTERPOLATION FILTER CHARACTERISTICS  
See for DAC interpolation filter characteristics.  
DAC OUTPUT TO CLASS-D SPEAKER OUTPUT; LOAD = 4 Ω (DIFFERENTIAL)  
BTL measurement, class-D gain = 6 dB, Measured  
as idle-channel noise, A-weighted(1) (2)  
ICN  
Idle channel noise  
37  
1.4  
μVms  
Vrms  
dB  
BTL measurement, class-D gain = 6 dB, -3dBFS  
input  
Output voltage  
BTL measurement, DAC input = –6 dBFS, class-D  
gain = 6 dB  
THD+N  
PSRR  
Total harmonic distortion + noise  
–73.9  
BTL measurement, ripple on SPKVDD = 200 mVPP  
at 1 kHz  
Power-supply rejection ratio  
Mute attenuation  
55  
103  
1.1  
dB  
dB  
Mute  
SPKVDD = 3.6 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 10%  
SPKVDD = 4.2 V, BTL measurement, CM = 0.9 V,  
class-D gain = 18 dB, THD = 10%  
1.4  
0.8  
1.1  
SPKVDD = 3.6 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 1%  
PO  
Maximum output power  
W
SPKVDD = 4.2 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 1%  
SPKVDD = 5.5 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB  
2
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the inputs short-circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(3) DAC to headphone-out PSRR measurement is calculated as PSRR = 20 X log(VHP / VAVDD).  
6
ELECTRICAL SPECIFICATIONS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
 
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
Electrical Characteristics (continued)  
At 25°C, AVDD = 1.8V, IOVDD = 1.8 V, SPKVDD = 3.6 V, DVDD = 1.8 V, fS (audio) = 48 kHz, CODEC_CLKIN = 256 × fS,  
PLL = Off  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DAC OUTPUT TO CLASS-D SPEAKER OUTPUT; LOAD = 8 (DIFFERENTIAL)  
BTL measurement, class-D gain = 6 dB, Measured  
as idle-channel noise, A-weighted(1) (2)  
ICN  
Idle channel noise  
35.2  
1.4  
μVms  
Vrms  
dB  
BTL measurement, class-D gain = 6 dB, -3dBFS  
input  
Output voltage  
BTL measurement, DAC input = –6 dBFS, class-D  
gain = 6 dB  
THD+N  
Total harmonic distortion + noise  
–73.6  
0.7  
SPKVDD = 3.6 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 10%  
SPKVDD = 4.2 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 10%  
1
SPKVDD = 5.5 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 10%  
1.7  
PO  
Maximum output power  
W
SPKVDD = 3.6 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 1%  
0.5  
SPKVDD = 4.2 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 1%  
0.8  
SPKVDD = 5.5 V, BTL measurement, CM = 0.9V,  
class-D gain = 18 dB, THD = 1%  
1.3  
ANALOG BYPASS TO HEADPHONE AMPLIFIER  
AC-COUPLED LOAD = 16 Ω (SINGLE-ENDED),  
Device Setup  
DRIVER GAIN = 0 dB, Input and output common-  
mode = 0.9 V, input signal frequency fi = 1kHz  
Voltage Gain  
Gain Error  
Input common-mode = 0.9 V  
1
V/V  
dB  
-1dBFS (446mVrms), 1-kHz input signal  
±0.8  
Idle channel, IN1L and IN1R ac-shorted to ground,  
Measured as idle-channel noise, A-weighted(1) (2)  
ICN  
Idle channel noise  
10.2  
μVms  
THD+N  
Total harmonic distortion + noise -1 dBFS (446mVrms), 1-kHz input signal  
-80.4  
dB  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the inputs short-circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
7
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
Electrical Characteristics (continued)  
At 25°C, AVDD = 1.8V, IOVDD = 1.8 V, SPKVDD = 3.6 V, DVDD = 1.8 V, fS (audio) = 48 kHz, CODEC_CLKIN = 256 × fS,  
PLL = Off  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG BYPASS TO CLASS-D SPEAKER AMPLIFIER  
BTL measurement, DRIVER GAIN = 6 dB, LOAD  
= 4 Ω (DIFFERENTIAL), 50 pF, input signal  
frequency fi = 1 KHz  
Device Setup  
Voltage Gain  
Gain Error  
Input common-mode = 0.9 V  
4
V/V  
dB  
-1dBFS (446mVrms), 1-kHz input signal  
±0.7  
Idle channel, IN1L and IN1R ac-shorted to ground,  
Measured as idle-channel noise, A-weighted(1) (2)  
ICN  
Idle channel noise  
32.6  
μVms  
THD+N  
Total harmonic distortion + noise -1 dBFS (446mVrms), 1-kHz input signal  
-73.7  
dB  
LOW DROPOUT REGULATOR (AVDD)  
SPKVDD = 2.7V, Page 1, Reg 2, D5-D4 = 00, IO  
50mA  
=
=
=
AVDD Output Voltage 1.8V  
1.79  
1.79  
1.79  
V
V
V
SPKVDD = 3.6V, Page 1, Reg 2, D5-D4 = 00, IO  
50mA  
SPKVDD = 5.5V, Page 1, Reg 2, D5-D4 = 00, IO  
50mA  
Output Voltage Accuracy  
Load Regulation  
SPVDD = 2.7V  
±2  
7
%
mV  
mV  
uF  
SPVDD = 2.7V, 0A to 50mA  
Input Supply Range 2.7V to 5.5V  
Line Regulation  
0.6  
Decoupling Capacitor  
Bias Current  
1.0  
55  
166  
174  
uA  
uV  
uV  
Noise @0A Load  
A-weighted, 20Hz to 20kHz bandwidth  
A-weighted, 20Hz to 20kHz bandwidth  
Noise @50mA Load  
SHUTDOWN POWER CONSUMPTION  
Power down POR, /RST held low, AVDD = 1.8V,  
IOVDD = 1.8 V, SPKVDD = 4.2 V, DVDD = 1.8 V  
Device Setup  
I(AVDD)  
I(DVDD)  
1.32  
0.04  
0.68  
2.24  
µA  
µA  
µA  
µA  
I(IOVDD)  
I(SPKVDD)  
DIGITAL INPUT/OUTPUT  
Logic family  
CMOS  
0.7 ×  
IOVDD  
IIH = 5 μA, IOVDD 1.6 V  
IIH = 5 μA, IOVDD < 1.6 V  
IIL = 5 μA, IOVDD 1.6 V  
IIL = 5 μA, IOVDD < 1.6 V  
IOH = 2 TTL loads  
VIH  
V
IOVDD  
0.3 ×  
–0.3  
IOVDD  
VIL  
Logic level  
V
V
0
0.8 ×  
IOVDD  
VOH  
VOL  
IOL = 2 TTL loads  
0.25  
V
Capacitive load  
10  
pF  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the inputs short-circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
8
ELECTRICAL SPECIFICATIONS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
3.5 Timing Characteristics  
3.5.1 I2S/LJF/RJF Timing in Master Mode  
All specifications at 25°C, DVDD = 1.8 V  
Note: All timing specifications are measured at characterization but not tested at final test.  
WCLK  
td(WS)  
tr  
BCLK  
tf  
tS(DI)  
th(DI)  
DIN  
T0145-10  
PARAMETER  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(WS)  
ts(DI)  
th(DI)  
tr  
WCLK delay  
DIN setup  
DIN hold  
45  
45  
ns  
ns  
ns  
ns  
ns  
8
8
6
6
Rise time  
Fall time  
25  
25  
10  
10  
tf  
Figure 3-1. I2S/LJF/RJF Timing in Master Mode  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
9
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
3.5.2 I2S/LJF/RJF Timing in Slave Mode  
All specifications at 25°C, DVDD = 1.8 V  
Note: All timing specifications are measured at characterization but not tested at final test.  
WCLK  
th(WS)  
tr  
tH(BCLK)  
tS(WS)  
BCLK  
tL(BCLK)  
tS(DI)  
tf  
DIN  
th(DI)  
T0145-11  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
PARAMETER  
UNIT  
MIN  
35  
35  
8
MAX  
MIN  
35  
35  
6
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
th(WS)  
ts(DI)  
th(DI)  
tr  
BCLK high period  
BCLK low period  
WCLK setup  
WCLK hold  
DIN setup  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
6
8
6
DIN hold  
8
6
Rise time  
4
4
4
4
tf  
Fall time  
Figure 3-2. I2S/LJF/RJF Timing in Slave Mode  
10  
ELECTRICAL SPECIFICATIONS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
3.5.3 DSP Timing in Master Mode  
All specifications at 25°C, DVDD = 1.8 V  
Note: All timing specifications are measured at characterization but not tested at final test.  
WCLK  
td(WS)  
td(WS)  
tf  
BCLK  
tS(DI)  
tr  
DIN  
th(DI)  
T0146-09  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(WS)  
ts(DI)  
th(DI)  
tr  
WCLK delay  
DIN setup  
DIN hold  
45  
45  
ns  
ns  
ns  
ns  
ns  
8
8
6
6
Rise time  
Fall time  
25  
25  
10  
10  
tf  
Figure 3-3. DSP Timing in Master Mode  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
11  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
3.5.4 DSP Timing in Slave Mode  
All specifications at 25°C, DVDD = 1.8 V  
Note: All timing specifications are measured at characterization but not tested at final test.  
WCLK  
tS(WS)  
th(WS)  
tS(WS)  
th(WS)  
tL(BCLK)  
tf  
BCLK  
tH(BCLK)  
tS(DI)  
tr  
DIN  
th(DI)  
T0146-10  
IOVDD = 1.8V  
IOVDD = 3.3 V  
PARAMETER  
UNIT  
MIN  
35  
35  
8
MAX  
MIN  
35  
35  
8
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
th(WS)  
ts(DI)  
th(DI)  
tr  
BCLK high period  
BCLK low period  
WCLK setup  
WCLK hold  
DIN setup  
ns  
ns  
ns  
ns  
ns  
ns  
8
8
8
8
DIN hold  
8
8
Rise time  
4
4
4
ns  
ns  
tf  
Fall time  
4
Figure 3-4. DSP Timing in Slave Mode  
12  
ELECTRICAL SPECIFICATIONS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
3.5.5 I2C Interface Timing  
All specifications at 25°C, DVDD = 1.8 V  
Note: All timing specifications are measured at characterization but not tested at final test.  
SDA  
tBUF  
tLOW  
tr  
tHIGH  
tf  
tHD;STA  
SCL  
tHD;STA  
tSU;DAT  
tHD;DAT  
tSU;STO  
tSU;STA  
STO  
STA  
STA  
STO  
T0295-02  
PARAMETER  
SCL clock frequency  
Standard-Mode  
MIN TYP  
Fast-Mode  
UNITS  
MAX  
MIN  
TYP  
MAX  
400  
fSCL  
0
100  
0
kHz  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD;STA  
4
0.8  
μs  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4
1.3  
0.6  
μs  
μs  
Setup time for a repeated START  
condition  
Data hold time: For I2C bus devices  
tSU;STA  
4.7  
0
0.8  
μs  
tHD;DAT  
tSU;DAT  
tr  
3.45  
0
0.9  
μs  
ns  
ns  
ns  
μs  
Data setup time  
250  
100  
SDA and SCL rise time  
1000  
300  
20 + 0.1 Cb  
20 + 0.1 Cb  
0.8  
300  
300  
tf  
SDA and SCL fall time  
tSU;STO  
Set-up time for STOP condition  
4
Bus free time between a STOP and  
START condition  
tBUF  
Cb  
4.7  
1.3  
μs  
Capacitive load for each bus line  
400  
400  
pF  
Figure 3-5. I2C Interface Timing  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
13  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
3.5.6 SPI Interface Timing  
SS  
t
td  
tLag  
t
tLead  
sck  
tf  
tr  
SCLK  
MISO  
tsckl  
tsckh  
tv(DOUT)  
tdis  
MSB OUT  
thi  
BIT 6 . . . 1  
LSB OUT  
t
a
tsu  
MOSI  
MSB IN  
BIT 6 . . . 1  
LSB IN  
Figure 3-6. SPI Interface Timing Diagram  
Timing Requirements  
At 25°C, DVDD = 1.8V  
Table 3-1. SPI Interface Timing  
PARAMETER  
TEST CONDITION  
IOVDD=1.8V  
MIN TYP MAX  
IOVDD=3.3V  
MIN TYP  
UNITS  
MAX  
(1)  
tsck  
tsckh  
tsckl  
tlead  
tlag  
td  
SCLK Period  
100  
50  
50  
30  
30  
40  
50  
25  
25  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse width High  
SCLK Pulse width Low  
Enable Lead Time  
Enable Lag Time  
Sequential Transfer Delay  
Slave DOUT access time  
Slave DOUT disable time  
DIN data setup time  
DIN data hold time  
ta  
40  
40  
40  
40  
tdis  
tsu  
15  
15  
15  
10  
thi  
tv;DOUT DOUT data valid time  
25  
4
18  
4
tr  
tf  
SCLK Rise Time  
SCLK Fall Time  
4
4
(1) These parameters are based on characterization and are not tested in production.  
14  
ELECTRICAL SPECIFICATIONS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
4 Typical Performance  
4.1 Class D Speaker Driver Performance  
20  
0
20  
0
œ20  
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
0
4000  
8000  
12000  
16000  
20000  
0
4000  
8000  
12000  
16000  
20000  
C001  
C002  
Frequency (Hz)  
Frequency (Hz)  
Figure 4-1. DAC To Speaker Amplitude at 0 dBFS vs Frequency (4  
Figure 4-2. AINL To Speaker FFT Amplitude at 0 dBFS vs  
Ω Load)  
Frequency (4 Ω Load)  
100  
100.00  
10.00  
1.00  
Gain = 6 dB  
Gain = 12 dB  
Gain = 18 dB  
10  
1
Gain = 24 dB  
SPKVDD=2.7V  
SPKVDD=3V  
SPKVDD=3.3V  
0.1  
0.01  
0.10  
0.01  
SPKVDD=3.6V  
SPKVDD=4.2V  
SPKVDD=5.5V  
Sri7  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
C003  
C004  
Output Power (W)  
Output Power (W)  
Figure 4-3. Total Harmonic Distortion + Noise vs 4 Ω Speaker  
Figure 4-4. Total Harmonic Distortion + Noise + NOISE vs 4 Ω  
Power (SPKVDD = 5.5 V)  
Speaker Power (Gain = 18 dB)  
100.00  
100  
10  
1
Gain = 6 dB  
Series1  
Gain = 12 dB  
Gain = 18 dB  
10.00  
Gain = 24 dB  
1.00  
0.10  
0.01  
SPKVDD = 2.7 V  
SPKVDD = 3 V  
SPKVDD=3.3 V  
SPKVDD=3.6 V  
SPKVDD=4.2 V  
SPKVDDi=5.5 V  
0.1  
0.01  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
C005  
C006  
Output Power (W)  
Output Power (W)  
Figure 4-5. Total Harmonic Distortion + Noise + NOISE vs 8 Ω  
Figure 4-6. Total Harmonic Distortion + Noise + NOISE vs 8 Ω  
Speaker Power (SPKVDD = 5.5 V)  
Speaker Power (Gain = 18 dB)  
Copyright © 2013, Texas Instruments Incorporated  
Typical Performance  
15  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
90  
80  
70  
60  
50  
40  
30  
20  
10  
SPKVDD = 2.7 V  
SPKVDD = 3 V  
SPKVDD = 3.3 V  
SPKVDD = 3.6 V  
SPKVDD = 4.2 V  
SPKVDD = 5.5 V  
0
0
200 400 600 800 1000 1200 1400 1600 1800  
C007  
Output Power (mWatt)  
Figure 4-7. Total Power Consumption vs Output Power Consumption (Gain = 18 dB, Load = 4 Ω)  
16  
Typical Performance  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
4.2 HP Driver Performance  
20  
0
20  
0
œ20  
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
0dBFS  
0dBFS  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
0
4000  
8000  
12000  
16000  
20000  
0
4000  
8000  
12000  
16000  
20000  
C008  
C008  
Frequency (Hz)  
Frequency (Hz)  
Figure 4-8. DAC TO HP FFT Amplitude at 0 dBFS vs Frequency  
Figure 4-9. AINL TO HP FFT Amplitude at 0 dBFS vs Frequency  
(16 Ω Load)  
(16 Ω Load)  
0
œ10  
œ20  
œ30  
œ40  
0
œ10  
œ20  
œ30  
œ40  
CM=0.75V,  
AVDD=1.5V  
CM=0.75V,AVDD=1.5V  
œ50  
œ50  
CM=0.75V,  
AVDD=1.8V  
CM=0.75V,AVDD=1.8V  
œ60  
œ60  
CM=0.75V,  
AVDD=1.95V  
CM=0.75V,AVDD=1.95V  
œ70  
œ70  
CM=0.9V,
CM=0.9V,AVDD=1.8V  
AVDD=1.8V  
œ80  
œ80  
CM=0.9V,AVDD=1.95V  
CM=0.9V,
AVDD=1.95V  
œ90  
œ90  
0.0  
5.0  
10.0 15.0 20.0 25.0 30.0 35.0 40.0  
0.0  
5.0  
10.0  
15.0  
20.0  
25.0  
C010  
C011  
Output Power (mW)  
Output Power (mW)  
Figure 4-10. Total Harmonic Distortion + Noise vs HP Power  
(Gain = 9 dB)  
Figure 4-11. Total Harmonic Distortion + Noise vs HP Power  
(Gain = 32 dB)  
Copyright © 2013, Texas Instruments Incorporated  
Typical Performance  
17  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
5 Application Overview  
The TAS2521 offers a wide range of configuration options. 1-1 shows the simplified functional blocks of  
the device.  
5.1 Typical Circuit Configuration  
+1.8VA  
SVDD  
IOVDD  
0.1mF  
22mF  
0.1mF  
22mF  
2.7k  
2.7k  
AVSS  
AVDD  
LDO_SEL  
SPKVSS  
SPKVDD  
GPIO/DOUT  
SDA/MOSI  
SCL/SSZ  
MCLK  
8-W or  
4-W  
Speaker  
SPKP  
SPKM  
WCLK  
DIN  
TAS2521  
BCLK  
Headphone jack  
RST  
HPOUT  
0.1mF  
0.1mF  
47mF  
AINL  
AINR  
MISO  
Analog Input  
SCLK  
SPI_SEL  
DVDD DVSS  
IOVDD IOVSS  
+1.8VD  
IOVDD  
0.1mF  
10mF  
10mF  
0.1mF  
Figure 5-1. Typical Circuit Configuration  
18  
Application Overview  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
5.2 Circuit Configuration with Internal LDO  
SVDD  
IOVDD  
0.1mF  
0.1mF  
22mF  
10mF  
0.1mF  
22mF  
2.7k  
2.7k  
DVSS  
AVDD  
DVDD  
AVSS  
LDO_SEL SPKVSS  
SPKVDD  
GPIO/DOUT  
SDA/MOSI  
SCL/SSZ  
MCLK  
8-W or  
4-W  
Speaker  
SPKP  
SPKM  
WCLK  
DIN  
TAS2521  
BCLK  
RST  
HPOUT  
0.1mF  
0.1mF  
47mF  
AINL  
AINR  
MISO  
Analog Input  
SCLK  
SPI_SEL  
IOVDD IOVSS  
IOVDD  
0.1mF  
10mF  
Figure 5-2. Application Schematics for LDO  
5.3 Device Connections  
5.3.1 Digital Pins  
Only a small number of digital pins are dedicated to a single function; whenever possible, the digital pins  
have a default function, and also can be reprogrammed to cover alternative functions for various  
applications.  
The fixed-function pins are RST LDO_SEL and the SPI_SEL pin, which are HW control pins. Depending  
on the state of SPI_SEL, the two control-bus pins SCL/SSZ and SDA/MOSI are configured for either I2C  
or SPI protocol.  
Other digital IO pins can be configured for various functions via register control. An overview of available  
functionality is given in Section 5.3.3.  
5.3.2 Analog Pins  
Analog functions can also be configured to a large degree. For minimum power consumption, analog  
blocks are powered down by default. The blocks can be powered up with fine granularity according to the  
application needs.  
Copyright © 2013, Texas Instruments Incorporated  
Application Overview  
19  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
5.3.3 Multifunction Pins  
Table 5-1 shows the possible allocation of pins for specific functions. The PLL input, for example, can be  
programmed to be any of 4 pins (MCLK, BCLK, DIN, GPIO).  
Table 5-1. Multifunction Pin Assignments  
1
2
3
4
5
6
7
Pin Function  
MCLK  
BCLK  
WCLK  
DIN  
GPIO  
SCLK  
MISO  
/DOUT  
A
B
C
D
E
F
G
H
I
PLL Input  
S(1)  
S(1),D(4)  
S(2)  
S(2)  
S(2),D  
E(5)  
E
S(3)  
S(3)  
Codec Clock Input  
I2S BCLK input  
I2S BCLK output  
I2S WCLK input  
I2S WCLK output  
I2S DIN  
I2S DOUT  
E, D  
E
E, D  
E
E
General Purpose Output I  
General Purpose Output II  
General Purpose Input I  
General Purpose Input II  
General Purpose Input III  
INT1 output  
I
E
J
E
J
E
J
E
K
L
M
N
O
P
Q
R
S
E
E
E
E
E
E
E
E
E
INT2 output  
Secondary I2S BCLK input  
Secondary I2S WCLK input  
Secondary I2S DIN  
Secondary I2S BCLK OUT  
Secondary I2S WCLK OUT  
Secondary I2S DOUT  
Aux Clock Output  
E
E
E
E
E
E
E
E
(1) S(1): The MCLK pin can drive the PLL and Codec Clock inputs simultaneously.  
(2) S(2): The BCLK pin can drive the PLL and Codec Clock and audio interface bit clock inputs simultaneously.  
(3) S(3): The GPIO/DOUT pin can drive the PLL and Codec Clock inputs simultaneously.  
(4) D: Default Function  
(5) E: The pin is exclusively used for this function, no other function can be implemented with the same pin. (If GPIO/DOUT has been  
allocated for General Purpose Output, it cannot be used as the INT1 output at the same time.)  
5.4 Audio Analog I/O  
The TAS2521 features a mono audio DAC. It supports a wide range of analog interfaces to support  
different headsets such as 16-Ω to 200-Ω impedance and analog line outputs. TheTAS2521 can drive a  
speaker upto 4-impedance.  
5.5 Analog Signals  
The TAS2521 analog signals consist of:  
Analog inputs AINR and AINL, which can be used to pass-through or mix analog signals to output  
stages  
Analog outputs class-D speaker driver and headphone/lineout driver providing output capability for the  
DAC, AINR, AINL, or a mix of the three  
20  
Application Overview  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
 
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
5.5.1 Analog Inputs AINL and AINR  
AINL (pin 3 or C2) and AINR (pin 4 or B2) are inputs to Mixer P and Mixer M along with the DAC output.  
Also AINL and AINR can be configured inputs to HP driver. Page1 / register 12 provides control signals for  
determining the signals routed through Mixer P, Mixer M and HP driver. Input of Mixer P can be  
attenuated by Page1 / register 24, input of Mixer M can be attenuated by Page1 / register 25 and input of  
HP driver can be attenuated by Page1 / register 22. Also AINL and AINR can be configured to a monaural  
differential input with use Mixer P and Mixer M by Page1 / register 12 setting.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6 Audio DAC and Audio Analog Outputs  
The mono audio DAC consists of a digital audio processing block, a digital interpolation filter, a digital  
delta-sigma modulator, and an analog reconstruction filter. The high oversampling ratio (normally DOSR is  
between 32 and 128) exhibits good dynamic range by ensuring that the quantization noise generated  
within the delta-sigma modulator stays outside of the audio frequency band. Audio analog outputs include  
mono headphone and lineout and mono class-D speaker outputs. Because the TAS2521 contains a mono  
DAC, it inputs the mono data from the left channel, the right channel, or a mix of the left and right  
channels as [(L + R) ÷ 2], selected by page 0, register 63, bits D5–D4.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.1 DAC  
The TAS2521 mono audio DAC supports data rates from 8 kHz to 192 kHz. The audio channel of the  
mono DAC consists of a signal-processing engine with fixed processing blocks, a programmable miniDSP,  
a digital interpolation filter, multibit digital delta-sigma modulator, and an analog reconstruction filter. The  
DAC is designed to provide enhanced performance at low sampling rates through increased oversampling  
and image filtering, thereby keeping quantization noise generated within the delta-sigma modulator and  
observed in the signal images strongly suppressed within the audio band to beyond 20 kHz. To handle  
multiple input rates and optimize power dissipation and performance, the TAS2521 allows the system  
designer to program the oversampling rates over a wide range from 1 to 1024 by configuring page 0,  
register 13 and page 0 / register 14. The system designer can choose higher oversampling ratios for lower  
input data rates and lower oversampling ratios for higher input data rates.  
The TAS2521 DAC channel includes a built-in digital interpolation filter to generate oversampled data for  
the delta-sigma modulator. The interpolation filter can be chosen from three different types, depending on  
required frequency response, group delay, and sampling rate.  
The DAC path of the TAS2521 features many options for signal conditioning and signal routing:  
Digital volume control with a range of -63.5 to +24dB  
Mute function  
In addition to the standard set of DAC features the TAS2521 also offers the following special features:  
Digital auto mute  
Adaptive filter mode  
5.6.1.1 DAC Processing Blocks — Overview  
The TAS2521 implements signal-processing capabilities and interpolation filtering via processing blocks.  
These fixed processing blocks give users the choice of how much and what type of signal processing they  
may use and which interpolation filter is applied.  
The choices among these processing blocks allows the system designer to balance power conservation  
and signal-processing flexibility. Table 5-2 gives an overview of all available processing blocks of the DAC  
channel and their properties. The resource-class column gives an approximate indication of power  
consumption for the digital (DVDD) supply; however, based on the out-of-band noise spectrum, the analog  
power consumption of the drivers (AVDD) may differ.  
Copyright © 2013, Texas Instruments Incorporated  
Application Overview  
21  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
The signal-processing blocks available are:  
First-order IIR  
Scalable number of biquad filters  
The processing blocks are tuned for common cases and can achieve high image rejection or low group  
delay in combination with various signal-processing effects such as audio effects and frequency shaping.  
The available first-order IIR and biquad filters have fully user-programmable coefficients.  
Table 5-2. Overview – DAC Predefined Processing Blocks  
Processing  
Block No.  
First-Order  
IIR Available  
Number of  
Biquads  
Resource  
Class  
Interpolation Filter  
Channel  
PRB_P1  
PRB_P2  
PRB_P3  
A
A
B
Mono  
Mono  
Mono  
Yes  
No  
6
3
6
6
4
4
Yes  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.2 Digital Mixing and Routing  
The TAS2521 has four digital mixing blocks. Each mixer can provide either mixing or multiplexing of the  
digital audio data. The first mixer/multiplexer can be used to select input data for the mono DAC from left  
channel, right channel, or (left channel + right channel) / 2 mixing. This digital routing can be configured by  
writing to page 0, register 63, bits D5–D4.  
5.6.3 Analog Audio Routing  
The TAS2521 has the capability to route the DAC output to either the headphone or the speaker output. If  
desirable, both output drivers can be operated at the same time while playing at different volume levels.  
The TAS2521 provides various digital routing capabilities, allowing digital mixing or even channel  
swapping in the digital domain. All analog outputs other than the selected ones can be powered down for  
optimal power consumption.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.4 5V LDO  
The TAS2521 has a built-in LDO which can generate the analog supply (AVDD) also the digital supply  
(DVDD) from input voltage range of 2.7 V to 5.5 V with high PSRR. If combined power supply current is  
50 mA or less, then this LDO can deliver power to both analog and digital power supplies. If the only  
speaker power supply is present and LDO Select pin is enabled, the LDO can power up without requiring  
other supplies. This LDO requires a minimum dropout voltage of 300 mV and can support load currents up  
to 50 mA. For stability reasons the LDO requires a minimum decoupling capacitor of 1 µF (±50%) on the  
analog supply (AVDD) pin and the digital supply (DVDD) pin. If use this LDO output voltage for the digital  
supply (DVDD) pin, the analog supply (AVDD) pin connected to the digital supply (DVDD) externally is  
required.  
The LDO is by default powered down for low sleep mode currents and can be enabled driving the  
LDO_SELECT pin to SPKVDD (Speaker power supply). When the LDO is disabled the AVDD pin is tri-  
stated and the device AVDD needs to be powered using external supply. In that case the DVDD pin is  
also tri-stated and the device DVDD needs to be powered using external supply. The output voltage of this  
LDO can be adjusted to a few different values as given in the Table 5-3.  
22  
Application Overview  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
Table 5-3. AVDD LDO Settings  
Page-1, Register 2, D(5:4)  
00  
LDO Output  
1.8 V  
1.6 V  
1.7 V  
1.5 V  
01  
10  
00  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.5 POR  
TAS2521 has a POR (Power On Reset) function. This function insures that all registers are automatically  
set to defaults when a proper power up sequence is executed.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.6 CLOCK Generation and PLL  
The TAS2521 supports a wide range of options for generating clocks for the DAC sections as well as  
interface and other control blocks. The clocks for the DAC require a source reference clock. This clock can  
be provided on a variety of device pins, such as the MCLK, BCLK, or GPIO pins. The source reference  
clock for the codec can be chosen by programming the CODEC_CLKIN value on page 0, register 4, bits  
D1–D0. The CODEC_CLKIN can then be routed through highly-flexible clock dividers shown in to  
generate the various clocks required for the DAC and the miniDSP section. In the event that the desired  
audio clocks cannot be generated from the reference clocks on MCLK, BCLK, or GPIO, the TAS2521 also  
provides the option of using the on-chip PLL which supports a wide range of fractional multiplication  
values to generate the required clocks. Starting from CODEC_CLKIN, the TAS2521 provides several  
programmable clock dividers to help achieve a variety of sampling rates for the DAC and clocks for the  
miniDSP sections.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.7 Digital Audio and Control Interface  
5.6.7.1 Digital Audio Interface  
Audio data is transferred between the host processor and the TAS2521 via the digital audio data serial  
interface, or audio bus. The audio bus on this device is flexible, including left- or right-justified data  
options, support for I2S or PCM protocols, programmable data-length options, a TDM mode for  
multichannel operation, flexible master/slave configurability for each bus clock line, and the ability to  
communicate with multiple devices within a system directly.  
The audio bus of the TAS2521 can be configured for left- or right-justified, I2S, DSP, or TDM modes of  
operation, where communication with standard telephony PCM interfaces is supported within the TDM  
mode. These modes are all MSB-first, with data width programmable as 16, 20, 24, or 32 bits by  
configuring page 0, register 27, bits D5–D4. In addition, the word clock and bit clock can be independently  
configured in either master or slave mode for flexible connectivity to a wide variety of processors. The  
word clock is used to define the beginning of a frame, and may be programmed as either a pulse or a  
square-wave signal. The frequency of this clock corresponds to the maximum of the selected DAC  
sampling frequencies.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.7.2 Control Interface  
The TAS2521 control interface supports SPI or I2C communication protocols, with the protocol selectable  
using the SPI_SEL pin. For SPI, SPI_SEL should be tied high; for I2C, SPI_SEL should be tied low. It is  
not recommended to change the state of SPI_SEL during device operation.  
Copyright © 2013, Texas Instruments Incorporated  
Application Overview  
23  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
5.6.7.2.1 I2C Control Mode  
The TAS2521 supports the I2C control protocol, and will respond to the I2C address of 0011 000. I2C is a  
two-wire, open-drain interface supporting multiple devices and masters on a single bus. Devices on the  
I2C bus only drive the bus lines LOW by connecting them to ground; they never drive the bus lines HIGH.  
Instead, the bus wires are pulled HIGH by pullup resistors, so the bus wires are HIGH when no device is  
driving them LOW. This way, two devices cannot conflict; if two devices drive the bus simultaneously,  
there is no driver contention.  
5.6.7.2.2 SPI Digital Interface  
In the SPI control mode,the TAS2521 uses the pins SCL/SSZ=SSZ, SCLK=SCLK, MISO=MISO,  
SDA/MOSI=MOSI as a standard SPI port with clock polarity setting of 0 (typical microprocessor SPI  
control bit CPOL = 0). The SPI port allows full-duplex, synchronous, serial communication between a host  
processor (the master) and peripheral devices (slaves). The SPI master (in this case, the host processor)  
generates the synchronizing clock (driven onto SCLK) and initiates transmissions. The SPI slave devices  
(such as the TAS2521) depend on a master to start and synchronize transmissions. A transmission begins  
when initiated by an SPI master.The byte from the SPI master begins shifting in on the slave MOSI pin  
under the control of the master serial clock(driven onto SCLK). As the byte shifts in on the MOSI pin, a  
byte shifts out on the MISO pin to the master shif tregister.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.7.3 Power Supply  
The TAS2521 integrates a large amount of digital and analog functionality, and each of these blocks can  
be powered separately to enable the system to select appropriate power supplies for desired performance  
and power consumption. The device has separate power domains for digital IO, digital core, analog core,  
analog input, headphone driver, and speaker drivers. If desired, all of the supplies (except for the supplies  
for speaker drivers, which can directly connect to the battery) can be connected together and be supplied  
from one source in the range of 1.65 to 1.95V. Individually, the IOVDD voltage can be supplied in the  
range of 1.1V to 3.6V. For improved power efficiency, the digital core power supply can range from 1.26V  
to 1.95V. The analog core supply can either be derived from the internal LDO accepting an SPKVDD  
voltage in the range of 2.7V to 5.5V, or the AVDD pin can directly be driven with a voltage in the range of  
1.5V to 1.95V. The speaker driver voltages (SPKVDD) can range from 2.7V to 5.5V.  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.7.4 Device Special Functions  
Interrupt generation  
Flexible pin multiplexing  
For more detailed information see the TAS2521 Application Reference Guide (SLAU456).  
5.6.7.5 miniDSP  
The TAS2521 features a miniDSP core which is tightly coupled to the DAC. The fully programmable  
algorithms for the miniDSP must be loaded into the device after power up. The miniDSP has direct access  
to the digital audio stream, offering the possibility for advanced, very low-group-delay DSP algorithms. The  
miniDSP has 512 programmable instructions, 896 data memory locations, and 512 programmable  
coefficients (in the adaptive mode, each bank has 256 programmable coefficients).  
24  
Application Overview  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
5.6.7.5.1 Software  
Software development for the TAS2521 is supported through TI's comprehensive PurePath™ Studio  
software development environment, a powerful, easy-to-use tool designed specifically to simplify software  
development on Texas Instruments miniDSP audio platforms. The graphical development environment  
consists of a library of common audio functions that can be dragged and dropped into an audio signal flow  
and graphically connected together. The DSP code can then be assembled from the graphical signal flow  
with the click of a mouse. See the TAS2521 product folder on www.ti.com to learn more about PurePath  
Studio and the latest status on available, ready-to-use DSP algorithms.  
Copyright © 2013, Texas Instruments Incorporated  
Application Overview  
25  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
6 Register Map  
6.1 Register Map Summary  
Table 6-1. Summary of Register Map  
Decimal  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
PAGE NO. REG. NO.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
Page Select Register  
1
Software Reset Register  
2 - 3  
4
0x02 - 0x03 Reserved Registers  
0x04  
0x05  
0x06  
0x07  
0x08  
Clock Setting Register 1, Multiplexers  
5
Clock Setting Register 2, PLL P and R Values  
Clock Setting Register 3, PLL J Values  
6
7
Clock Setting Register 4, PLL D Values (MSB)  
Clock Setting Register 5, PLL D Values (LSB)  
8
9 - 10  
11  
0x09 - 0x0A Reserved Registers  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
Clock Setting Register 6, NDAC Values  
12  
Clock Setting Register 7, MDAC Values  
DAC OSR Setting Register 1, MSB Value  
DAC OSR Setting Register 2, LSB Value  
miniDSP_D Instruction Control Register 1  
miniDSP_D Instruction Control Register 2  
miniDSP_D Interpolation Factor Setting Register  
13  
14  
15  
16  
17  
18 - 24  
25  
0x12 - 0x18 Reserved Registers  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
Clock Setting Register 10, Multiplexers  
26  
Clock Setting Register 11, CLKOUT M divider value  
Audio Interface Setting Register 1  
27  
28  
Audio Interface Setting Register 2, Data offset setting  
Audio Interface Setting Register 3  
29  
30  
Clock Setting Register 12, BCLK N Divider  
Audio Interface Setting Register 4, Secondary Audio Interface  
Audio Interface Setting Register 5  
31  
32  
33  
Audio Interface Setting Register 6  
34  
Reserved Register  
35 - 36  
37  
0x23 - 0x24 Reserved Registers  
0x25  
DAC Flag Register 1  
38  
0x26  
DAC Flag Register 2  
39-41  
42  
0x27-0x29  
0x2A  
Reserved Registers  
Sticky Flag Register 1  
Interrupt Flag Register 1  
Sticky Flag Register 2  
Reserved Register  
43  
0x2B  
44  
0x2C  
45  
0x2D  
46  
0x2E  
Interrupt Flag Register 2  
Reserved Register  
47  
0x2F  
48  
0x30  
INT1 Interrupt Control Register  
INT2 Interrupt Control Register  
Reserved Registers  
49  
0x31  
50-51  
52  
0x32-0x33  
0x34  
GPIO/DOUT Control Register  
DOUT Function Control Register  
53  
0x35  
26  
Register Map  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
www.ti.com.cn  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
Table 6-1. Summary of Register Map (continued)  
Decimal  
PAGE NO. REG. NO.  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
0
54  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x36  
DIN Function Control Register  
0
55  
0x37  
MISO Function Control Register  
SCLK/DMDIN2 Function Control Register  
Reserved Registers  
0
56  
0x38  
0
57-59  
60  
0x39-0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0
DAC Instruction Set  
0
61  
Reserved Registers  
0
62  
miniDSP_D Configuration Register  
DAC Channel Setup Register 1  
DAC Channel Setup Register 2  
DAC Channel Digital Volume Control Register  
0
63  
0
64  
0x40  
0
65  
0x41  
0
66 - 80  
81  
0x42 - 0x50 Reserved Registers  
0x51 Dig_Mic Control Register  
0x52 - 0x7F Reserved Registers  
0
0
82 - 127  
0
1
0x00  
0x01  
0x02  
0x03  
Page Select Register  
1
1
REF, POR and LDO BGAP Control Register  
LDO Control Register  
1
2
1
3
Playback Configuration Register 1  
1
4 - 7  
8
0x04 - 0x07 Reserved Registers  
1
0x08  
0x09  
0x0A  
0x0B  
0x0C  
DAC PGA Control Register  
1
9
Output Drivers, AINL, AINR, Control Register  
Common Mode Control Register  
1
10  
1
11  
HP Over Current Protection Configuration Register  
HP Routing Selection Register  
1
12  
1
13 - 15  
16  
0x0D - 0x0F Reserved Registers  
1
0x10  
HP Driver Gain Setting Register  
1
17 - 19  
20  
0x11 - 0x13 HPR Driver Gain Setting Register  
1
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
Headphone Driver Startup Control Register  
Reserved Register  
1
21  
1
22  
HP Volume Control Register  
Reserved Register  
1
23  
1
24  
AINL Volume Control Register  
AINR Volume Control Register  
1
25  
1
26 - 44  
45  
0x1A - 0x2C Reserved Registers  
1
0x2D  
0x2E  
0x2F  
0x30  
Speaker Amplifier Control 1  
1
46  
Speaker Volume Control Register  
Reserved Register  
1
47  
1
48  
Speaker Amplifier Volume Control 2  
1
49 - 62  
64 - 121  
122  
123 - 127  
0 - 127  
0
0x31 - 0x3E Right MICPGA Positive Terminal Input Routing Configuration Register  
0x40 - 0x79 Reserved Registers  
1
1
0x7A  
0x7B - 0x7F Reserved Registers  
0x02 - 0x2B 0x00 - 0x7F Reserved Registers  
Reference Power Up Delay  
1
2 - 43  
44  
44  
44  
44  
0x2C  
0x2C  
0x2C  
0x2C  
0x00  
0x01  
Page Select Register  
1
DAC Adaptive Filter Configuration Register  
2 - 7  
8 - 127  
0x02 - 0x07 Reserved  
0x08 - 0x7F DAC Coefficients Buffer-A C(0:29)  
Copyright © 2013, Texas Instruments Incorporated  
Register Map  
27  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
TAS2521  
ZHCSAR2A FEBRUARY 2013REVISED FEBRUARY 2013  
www.ti.com.cn  
Table 6-1. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
PAGE NO. REG. NO.  
0x2D-0x34 0x00  
45 - 52  
0
Page Select Register  
45 - 52  
1 - 7  
8 - 127  
0 - 127  
0
0x2D-0x34 0x01 - 0x07 Reserved.  
45 - 52  
0x2D-0x34 0x08 - 0x7F DAC Coefficients Buffer-A C(30:255)  
0x35 - 0x3D 0x00 - 0x7F Reserved Registers  
53 - 61  
62 - 70  
0x3E-0x46  
0x3E-0x46  
0x3E-0x46  
0x00  
Page Select Register  
62 - 70  
1 - 7  
8 - 127  
0 - 127  
0
0x01 - 0x07 Reserved Registers  
62 - 70  
0x08 - 0x7F DAC Coefficients Buffer-B C(0:255)  
71 - 151  
152 - 169  
152 - 169  
152 - 169  
170 - 255  
0x47 - 0x97 0x00 - 0x7F Reserved Registers  
0x98-0xA9  
0x98-0xA9  
0x98-0xA9  
0x00  
Page Select Register  
1 - 7  
8 - 127  
0 - 127  
0x01 - 0x07 Reserved Registers  
0x08 - 0x7F miniDSP_D Instructions  
0xAA - 0x7F 0x00 - 0x7F Reserved Registers  
spacer  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (February 2013) to Revision A  
Page  
Deleted PO (Max Output power) SPKVDD = 5.5 V, THD = 10% .............................................................. 6  
Changed PO (Max Output power) SPKVDD = 5.5 V value From: TYP = 2.1 W To: MAX = 2 W ......................... 6  
28  
Register Map  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TAS2521  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS2521IRGER  
TAS2521IRGET  
ACTIVE  
VQFN  
VQFN  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TAS  
2521  
ACTIVE  
RGE  
NIPDAU  
TAS  
2521  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS2521IRGER  
TAS2521IRGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS2521IRGER  
TAS2521IRGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS2521IRGET

Digital Input Class-D Speaker Amplifier with Embedded miniDSP and mono headphone amplifier
TAOS

TAS2521IRGET

具有 miniDSP 和 18mW 单声道耳机驱动器的 2W 单声道、数字和模拟输入 D 类音频放大器 | RGE | 24 | -40 to 85
TI

TAS2552

具有 I/V 感应扬声器保护和集成 8.5V 升压的 4W 数字/模拟输入智能放大器
TI

TAS2552YFFR

具有 I/V 感应扬声器保护和集成 8.5V 升压的 4W 数字/模拟输入智能放大器 | YFF | 30 | -40 to 85
TI

TAS2552YFFT

具有 I/V 感应扬声器保护和集成 8.5V 升压的 4W 数字/模拟输入智能放大器 | YFF | 30 | -40 to 85
TI

TAS2553

具有 I/V 感应扬声器保护和集成 7.5V 升压的 2.8W 数字/模拟输入智能放大器
TI

TAS2553YFFR

具有 I/V 感应扬声器保护和集成 7.5V 升压的 2.8W 数字/模拟输入智能放大器 | YFF | 30 | -40 to 85
TI

TAS2553YFFT

具有 I/V 感应扬声器保护和集成 7.5V 升压的 2.8W 数字/模拟输入智能放大器 | YFF | 30 | -40 to 85
TI

TAS2555

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器
TI

TAS2555YZR

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2555YZT

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2557

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器
TI