TAS2557 [TI]

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器;
TAS2557
型号: TAS2557
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器

放大器 音频放大器
文件: 总110页 (文件大小:3727K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
具有 H 类升压和扬声器检测功能的 TAS2557 5.7W D 类单声道音频放大器  
1 特性  
3 说明  
1
超低噪声单声道升压 D 类放大器  
TAS2557器件是一款先进的 D 类音频放大器,也是一  
套功能完备的片上系统 (SoC)。该器件 具有 超低噪声  
音频 DAC 以及具备扬声器电压和电流感测反馈的 D  
类功率放大器。片上低延迟 DSP 支持德州仪器 (TI) 的  
SmartAmp 扬声器保护算法,能够在维持扬声器处于  
安全状态的同时,最大限度提高扬声器的音量。  
4Ω 负载和 4.2V 电源电压条件下,THD+N  
1% 时的功率为 5.7WTHD+N 10% 时的  
功率为 6.9W  
8Ω 负载和 4.2V 电源电压条件下,THD+N  
1% 时的功率为 3.8WTHD+N 10% 时的  
功率为 4.5W  
该器件可通过 I2S 输出轻松与任何处理器搭配使用,  
而且使用两个 TAS2557器件时能够实现立体声。该器  
件可针对不同的扬声器单独进行调试,这使得客户能够  
在保持原有外形尺寸设计的基础上增添产品价值。此  
外,无论在哪种工作模式下,TAS2557均能以 15.9µV  
超低 ICN 对语音和音频单独进行动态调试,从而使得  
接收器/扬声器的实现成为可能。  
DAC + D 类放大器的输出噪声 (ICN) 15.9µV  
1% THD+N/8Ω 条件下的 DAC + D 类放大器的  
SNR 111dB  
THD+N – 1W/8Ω 以及平坦频率响应条件下为  
90dB  
后置滤波器反馈 (PFFB)  
217Hz 下,对于 200mVpp 的纹波,PSRR 为  
110dB  
H 类升压转换器生成 D 类放大器电源轨。如果音频信  
号仅需要较低的 D 类输出功率,则该升压转换器会通  
过禁用 VBAT 并将其直接连接至 D 类放大器电源来提高  
系统效率。当需要较高的音频输出功率时,多级升压功  
能会迅速激活信号跟踪,从而为负载提供额外的电压。  
输入采样率为 8kHz 96kHz  
内置扬声器检测  
测量扬声器电压和电流  
测量 VBAT 电压和芯片温度  
通过专用实时双核 DSP 提供扬声器保护  
器件信息(1)  
过热和偏移保护  
检测扬声器漏音和受损情况  
器件型号  
TAS2557  
封装  
封装尺寸(标称值)  
具有多级跟踪功能的高效 H 类升压转换器  
DSBGA (42)  
3.47mm x 3.23mm  
500mW8Ω3.6V VBAT 时的效率为 86%  
700mW8Ω4.2V VBAT 时的效率为 87%  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
简化原理图  
可配置自动增益控制 (AGC)  
限制电池电流消耗  
L1  
VBAT  
可调节 D 类开关边沿速率控制  
2
SW  
C1  
过热保护、短路保护和欠压保护  
I2S、左对齐、右对齐、DSP 以及 TDM 输入和输出  
接口、  
VREG  
VBOOST  
2
I2C SPI 接口,用于寄存器控制  
使用两个 TAS2557 器件实现立体声配置  
电源  
C2  
+
Ferrite bead  
(optional)  
OUT+  
MCLK  
I2S  
TAS2557  
To Speaker  
OUT-  
-
升压输入:2.9V 5.5V  
模拟/数字:1.65V 1.95V  
数字 I/O1.62V 3.6V  
4
Ferrite bead  
(optional)  
I2C  
VSENSE+  
VSENSE-  
2
/RESET  
42 焊球、间距为 0.5mm DSBGA 封装  
2 应用  
手机和平板电脑  
可视门铃和支持语音功能的恒温器  
个人计算机  
蓝牙扬声器及配件  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEC2  
 
 
 
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 18  
9.3 Feature Description................................................. 18  
9.4 Device Functional Modes........................................ 29  
9.5 Programming........................................................... 36  
9.6 Register Map........................................................... 39  
10 Application and Implementation........................ 96  
10.1 Application Information.......................................... 96  
10.2 Typical Application ................................................ 96  
10.3 Initialization Setup................................................. 98  
11 Power Supply Recommendations ..................... 99  
11.1 Power Supplies ..................................................... 99  
11.2 Power Supply Sequencing.................................... 99  
12 Layout................................................................. 100  
12.1 Layout Guidelines ............................................... 100  
12.2 Layout Example .................................................. 101  
13 器件和文档支持 ................................................... 102  
13.1 文档支持 ............................................................. 102  
13.2 社区资源.............................................................. 102  
13.3 ..................................................................... 102  
13.4 静电放电警告....................................................... 102  
13.5 术语表 ................................................................. 102  
14 机械、封装和可订购信息..................................... 102  
14.1 封装尺寸.............................................................. 102  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 I2C Timing Requirements ......................................... 9  
7.7 SPI Timing Requirements ........................................ 9  
7.8 I2S/LJF/RJF Timing Requirements (Master Mode) 10  
7.9 I2S/LJF/RJF Timing Requirements (Slave Mode) .. 10  
7.10 DSP Timing Requirements (Master Mode) .......... 11  
7.11 DSP Timing Requirements (Slave Mode) ............ 11  
7.12 Typical Characteristics.......................................... 14  
Parameter Measurement Information ................ 16  
Detailed Description ............................................ 17  
9.1 Overview ................................................................. 17  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (February 2017) to Revision B  
Page  
Added Boost, Switching, Regulator voltage and Note 2 to the Absolute Maximum Ratings table ........................................ 6  
Changed C2 Capacitance at 8.5 V derating MIN value From: 7 μF To: 3.3 μF in 128 ................................................... 97  
Changes from Original (November 2016) to Revision A  
Page  
Changed ESD HBM rating from ±2500 to ±3500 .................................................................................................................. 6  
Changed Power Consumption values .................................................................................................................................... 8  
Fixed incorrect part number.................................................................................................................................................. 30  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
5 Device Comparison Table  
SMART AMP  
BOOST  
CONTROL  
CONTROL  
METHOD  
BOOST  
VOLTAGE  
(1)  
PART NUMBER  
TAS2552  
SNR  
ICN  
THD+N  
-64 dB  
-64 dB  
DIGITAL  
ENGINE  
NO (External  
Processing  
Required)  
I2C  
I2C  
8.5 V  
94 dB  
94 dB  
130 µV  
130 µV  
Class-G  
NO (External  
Processing  
Required)  
TAS2553  
7.5 V  
Class-G  
YES (Processing  
on Chip)  
TAS2555  
TAS2557  
TAS2559  
I2C or SPI  
I2C or SPI  
I2C or SPI  
8.5 V  
8.5 V  
8.5 V  
111 dB  
111 dB  
111 dB  
15.9 µV  
15.9 µV  
15.9 µV  
-90 dB  
-90 dB  
-90 dB  
Class-H  
Class-H  
Class-H  
YES (Processing  
on Chip)  
YES (Processing  
on Chip)  
NO (External  
Processing  
Required)  
TAS2560  
I2C  
8.5 V  
111 dB  
16.2 µV  
-88 dB  
Class-H  
(1) A-weighted data.  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
42-Ball DSBGA  
YZ Package  
(Top View)  
1
2
3
4
5
6
WCLK1  
_GPIO2  
DOUT1  
_GPIO3  
A
B
C
D
E
PGND_B  
PGND_B  
VBAT  
ICC_GPIO10  
IN_P,NC4  
NC3  
ICC_GPIO9  
ICC_GPI3  
DGND  
BCLK1  
_GPIO1  
SW  
VBOOST  
SPK_M  
PGND  
SPK_P  
NC2  
SW  
VBOOST  
VREG  
DIN1_GPI1  
DIN2_GPIO8  
IRQ_GPIO4  
DVDD  
IOGND  
MCLK_GPI2  
WCLK2  
_GPIO6  
DOUT2  
_GPIO7  
VSENSE_P  
VSENSE_M  
NC1  
AGND  
SDA_MOSI  
BCLK2  
_GPIO5  
F
SCL_SSZ  
ADR1_MISO  
AVDD  
ADR0_SCLK  
G
SPI_SELECT  
RESET  
IOVDD  
Not to scale  
Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
BALL NO.  
A1,A2  
A3  
PGND_B  
P
P
Power ground - connect to high current ground plane.  
VBAT  
Battery power supply - connect to 2.9 V to 5.5 V battery supply.  
Stereo inter-chip communication clock or GPIO pin.  
Audio word clock on ASI#1 or GPIO pin.  
Audio data output on ASI#1 or GPIO pin.  
Boost converter switch input .  
A4  
ICC_GPIO9  
WCLK1_GPIO2  
DOUT1_GPIO3  
SW  
I/O  
I/O  
I/O  
P
A5  
A6  
B1,B2  
B3  
ICC_GPIO10  
ICC_GPI3  
DIN1_GPI1  
BCLK1_GPIO1  
VBOOST  
NC4  
I/O  
I
Stereo inter-chip communication data output or GPIO pin.  
Stereo inter-chip communication data input or GPI pin.  
Audio data input to ASI #1 or GPI pin.  
B4  
B5  
I
B6  
I/O  
P
Audio bit clock on ASI#1 or GPIO pin.  
C1,C2  
C3  
Boost converter output.  
-
Float connection - do not route any signal or supply to or through this pin.  
Digital ground pin.  
C4  
DGND  
P
C5  
DIN2_GPIO8  
DVDD  
I/O  
P
Audio data input to ASI #2 or GPIO pin.  
C6  
1.8V digital power supply for digital core logic.  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
BALL NO.  
D1  
NAME  
SPK_M  
O
P
-
Inverting Class-D output.  
Regulator output.  
D2  
VREG  
D3  
NC3  
Float connection - do not route any signal or supply to or through this pin.  
Digital interface ground pin.  
D4  
IOGND  
P
I/O  
I
D5  
IRQ_GPIO4  
MCLK_GPI2  
PGND  
Active-high interrupt pin or GPIO pin  
D6  
Master clock input or GPI pin.  
E1  
P
I
Power ground - connect to high current ground plane.  
Non-inverting voltage sense input.  
E2  
VSENSE_P  
AGND  
E3  
P
I/O  
Analog ground - connect to low noise ground plane.  
Multi-function digital pin for (SPI_SELECT= 0) : Data Pin for I2C control bus. For (SPI_SELECT=  
1): SPI data input.  
E4  
SDA_MOSI  
E5  
E6  
F1  
F2  
F3  
WCLK2_GPIO6  
DOUT2_GPIO7  
SPK_P  
I/O  
I/O  
O
I
Audio word-clock on ASI#2 or GPIO pin.  
Audio data output on ASI#2 or GPIO pin.  
Non-inverting Class-D output.  
VSENSE_M  
SCL_SSZ  
Inverting voltage sense input.  
Multi-function digital input. For (SPI_SELECT= 0) : Clock Pin for I2C Control bus. For  
(SPI_SELECT= 1): SPI chip selection pin.  
I
F4  
F5  
AVDD  
P
I
1.8V analog power supply.  
Multi-function digital pin. For (SPI_SELECT= 0) : Device I2C programming address LSB. For  
(SPI_SELECT= 1): SPI serial bit clock.  
ADR0_SCLK  
F6  
G1  
G2  
G3  
BCLK2_GPIO5  
NC2  
I/O  
-
Audio bit clock on ASI#2 or GPIO pin.  
Float connection - do not route any signal or supply to or through this pin.  
Float connection - do not route any signal or supply to or through this pin.  
NC1  
-
Multi-function digital input / output. For (SPI_SELECT= 0) : Device I2C programming address  
MSB. For (SPI_SELECT= 1): SPI data output  
ADR1_MISO  
I/O  
Control interface select. 0: I2C selected. 1: SPI selected.  
Active-low reset.  
G4  
G5  
G6  
SPI_SELECT  
RESET  
I
I
IOVDD  
P
1.8V or 3.3V digital interface power supply for digital input and output levels.  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range, TA = 25°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.7  
–0.3  
–0.3  
MAX  
UNIT  
V
Battery Voltage  
Analog Supply Voltage  
Digital Supply Voltage  
I/O Supply Voltage  
Boost  
VBAT  
AVDD  
DVDD  
IOVDD  
VBST  
SW  
6
2
2
V
V
3.9  
V
9.2  
V
Switching  
VBST + 1.5(2)  
VBST + 5  
IOVDD + 0.3  
V
Regulator voltage  
Digital Input Voltage  
VREG  
V
V
Output Continuous Total Power Dissipation  
Storage Temperature, Tstg  
See Thermal Information  
–65 150  
NA  
°C  
(1) Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Procedures is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) Cannot exceed 11 V for greater than 10 nS or 10 V continuously.  
7.2 ESD Ratings  
VALUE  
±3500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic Discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
2.9(1)  
1.65  
1.65  
1.62  
3.0  
NOM  
MAX  
5.5  
UNIT  
Battery Voltage  
VBAT  
3.6  
1.8  
1.8  
1.8  
3.3  
V
V
Analog Supply Voltage  
Digital Supply Voltage  
AVDD  
DVDD  
IOVDD  
IOVDD  
1.95  
1.95  
1.98  
3.6  
V
I/O Supply Voltage 1.8V  
I/O Supply Voltage 3.3V  
Operating Free-Air Temperature  
Operating Junction Temperature  
V
V
TA  
TJ  
–40  
85  
°C  
°C  
–40  
150  
(1) Device is functional down to 2.7V. See Battery Tracking AGC  
7.4 Thermal Information  
TAS2557  
THERMAL METRIC(1)  
YZ (DSBGA)  
UNIT  
42 PINS  
49.8  
0.2  
RθJA  
Junction to Ambient Thermal Resistance  
Junction to Case (top) Thermal Resistance  
Junction to Board Thermal Resistance  
RθJC(top)  
RθJB  
7.1  
°C/W  
ψJT  
Junction to Top Characterization Parameter  
Junction to Board Characterization Parameter  
Junction to Case (bottom) Thermal Resistance  
0.8  
ψJB  
7.1  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
7.5 Electrical Characteristics  
VBAT = 3.6V, AVDD = DVDD = IOVDD = 1.8 V, RESET = IOVDD, Gain = 16.4 dB, ERC = 14ns, Boost Inductor = 2.2 µH, RL =  
8 Ω + 33 µH, 1-kHz input frequency, 48- kHz sample rate for digital input, Class-H Boost Enabled, TA= 25°C, ILIM = 3 A  
(unless otherwise noted)  
PARAMETER  
BOOST CONVERTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Boost Output Voltage  
Average voltage (w/o including ripple)  
8.5  
1.77  
3
V
MHz  
A
Boost Converter Switching Frequency  
Boost Converter Current Limit  
High Efficiency Mode: Max inductor inrush  
and startup current after enable  
4
Boost Converter Max In-Rush Current  
A
Normal Efficiency Mode: Max inductor  
inrush and startup current after enable  
1.5  
CLASS-D CHANNEL  
Output Voltage for Full-Scale Digital  
Input  
6.6  
VRMS  
Load Resistance (Load Spec  
Resistance)  
3.6  
8
Ω
Avg Frequency in Spread-Spectrum Mode  
Fixed Frequency  
384  
Class-D Frequency  
kHz  
%
44.1 × 8 48 × 8  
POUT = 3.5 W (sinewave) ROM Mode 1  
POUT = 0.5 W (sinewave) ROM Mode 1  
80  
87  
Class-D + Boost Efficiency  
Class-D Output Current Limit (Short  
Circuit Protection)  
VBOOST = 8.5 V, OUT– shorted to VBAT,  
VBOOST, GND  
6
A
Class-D Output Offset Voltage in  
Digital Input Mode  
–2.5  
±0.5  
150  
110  
99  
2.5  
mV  
dB  
dB  
dB  
dB  
Programmable Channel Gain  
Accuracy  
Device in shutdown or device in normal  
operation and muted  
Mute Attenuation  
VBAT Power Supply Rejection Ratio  
(PSRR)  
Ripple of 200 mVpp at 217 Hz  
Ripple of 200 mVpp at 217 Hz  
AVDD Power Supply Rejection Ratio  
(PSRR)  
1 kHz, POUT = 0.1W  
1 kHz, Po = 0.5W  
1 kHz, Po = 1 W  
1 kHz, Po = 3 W  
0.0041  
0.0036  
0.0035  
0.02  
THD+N  
%
Output Integrated Noise (20Hz-20kHz) A-weighted filter, DAC modulator  
15.9  
µV  
dB  
- 8 Ω  
switching  
Referenced to 1% THD+N at output, A-  
weighted  
Signal-to-Noise Ratio  
110.6  
THD+N=1%, 8-Ω Load  
3.7  
4.5  
5
Max Output Power, 3-A Current Limit THD+N=1%, 6-Ω Load  
THD+N=1%, 4-Ω Load  
W
Startup Pop  
Digital Input, A-weighted output  
10  
10  
mV  
Output Impedance in Shutdown  
/RESET = 0 V  
kΩ  
Time taken from end of configuring device  
in ROM mode1/2 to speaker output signal  
in SPI mode running at 25 MHz with 48  
ksps input  
Startup Time  
8
mS  
µS  
Measured from time when device is  
programmed in software shutdown mode  
Shutdown Time  
100  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VBAT = 3.6V, AVDD = DVDD = IOVDD = 1.8 V, RESET = IOVDD, Gain = 16.4 dB, ERC = 14ns, Boost Inductor = 2.2 µH, RL =  
8 Ω + 33 µH, 1-kHz input frequency, 48- kHz sample rate for digital input, Class-H Boost Enabled, TA= 25°C, ILIM = 3 A  
(unless otherwise noted)  
PARAMETER  
CURRENT SENSE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak current which will give full scale  
digital output 8-Ω load  
1.25  
1.48  
Peak current which will give full scale  
digital output 6-Ω load  
Current Sense Full Scale  
APEAK  
Peak current which will give full scale  
digital output 4-Ω load  
1.76  
1
Current Sense Accuracy  
IOUT = 354 mARMS (1 W)  
%
VOLTAGE SENSE  
Peak voltage which will give full scale  
digital output  
Voltage Sense Full Scale  
9.353  
1
VPEAK  
%
Voltage Sense Accuracy  
VOUT = 2.83 Vrms (1 W)  
INTERFACE  
Voltage and Current Sense Data Rate TDM/I2S  
Voltage and Current Sense ADC OSR TDM/I2S  
MCLK frequency  
48  
64  
kHz  
OSR  
MHz  
FMCLK  
0.512  
49.15  
POWER CONSUMPTION  
From VBAT, PLL on, no signal  
From AVDD, PLL on, no signal  
From DVDD, PLL on, no signal  
From VBAT, PLL on, no signal  
From AVDD, PLL on, no signal  
From DVDD, PLL on, no signal  
From VBAT, /RESET = 0  
From AVDD, /RESET = 0  
From DVDD, /RESET = 0  
From VBAT  
3
3
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Power Consumption with Digital Input  
and Speaker Protection Disabled  
(ROM MODE 1)  
7.2  
4
Power Consumption with Digital Input  
and Speaker Protection Enabled  
5.1  
22  
0.1  
0.2  
2
Power Consumption in Hardware  
Shutdown  
µA  
µA  
0.1  
0.1  
9.7  
µA  
Power Consumption in Software  
Shutdown See Low Power Sleep  
From AVDD  
µA  
From DVDD  
µA  
DIGITAL INPUT / OUTPUT  
0.65 ×  
IOVDD  
VIH  
VIL  
High-Level Digital Input Voltage  
Low-Level Digital input Voltage  
V
V
All digital pins except SDA and SCL,  
IOVDD = 1.8-V operation  
0.35 ×  
IOVDD  
VIH  
VIL  
High-Level Digital Input Voltage  
Low-Level Ddigital Input Voltage  
2
V
V
All digital pins except SDA and SCL,  
IOVDD = 3.3-V operation  
0.45  
0.45  
IOVDD –  
0.45  
All digital pins except SDA and SCL,  
IOVDD = 1.8-V operation For IOL = 2 mA  
and IOH = –2 mA  
VOH  
High-Level Digital Output Voltage  
V
VOL  
VOH  
Low-Level Digital Output Vvoltage  
High-Level Digital Output Voltage  
V
V
All digital pins except SDA and SCL,  
IOVDD = 3.3-V operation For IOL = 2 mA  
and IOH = –2 mA  
2.4  
VOL  
IIH  
Low-Level Digital Output Voltage  
0.4  
5
V
High-Level Digital Input Leakage  
Current  
Input = IOVDD  
Input = Ground  
–5  
–5  
0.1  
0.1  
µA  
Low-Level Digital Input Leakage  
Current  
IIL  
5
µA  
°C  
MISCELLANEOUS  
TTRIP Thermal Trip Point  
140  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
7.6 I2C Timing Requirements  
For I2C interface signals over recommended operating conditions (unless otherwise noted). See 1(1)  
STANDARD-  
FAST-MODE  
MODE  
PARAMETER  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
fSCL  
SCL Clock Frequency  
100  
400  
kHz  
tHD;STA  
Hold Time (repeated) START Condition. After this period, the first clock  
pulse is generated.  
4
0.6  
μs  
tLOW  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
Setup Time for a Repeated START Condition  
Data Hold Time: For I2C Bus Devices  
Data Setup Time  
4.7  
4
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
0.9  
250  
100  
SDA and SCL Rise Time  
1000  
20 +  
0.1 ×  
Cb  
300  
tf  
SDA and SCL Fall Time  
300  
400  
20 +  
0.1 ×  
Cb  
300  
400  
ns  
tSU;STO  
tBUF  
Setup Time for STOP Condition  
4
0.6  
1.3  
μs  
μs  
pF  
Bus Free Time Between a STOP and START Condition  
Capacitive Load for Each Bus Line  
4.7  
Cb  
(1) All timing specifications are measured at characterization but not tested at final test.  
7.7 SPI Timing Requirements  
For SPI interface signals over recommended operating conditions (unless otherwise noted). See 2(1)  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
PARAMETER  
UNIT  
MIN  
40  
40  
40  
40  
40  
40  
MAX  
MIN  
30  
30  
30  
30  
30  
30  
MAX  
tsck  
SCLK Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsckh  
tsckl  
tlead  
ttrail  
td;seqxfr  
ta  
SCLK Pulse Width High  
SCLK Pulse Width Low  
Enable Lead Time  
Enable Trail Time  
Sequential Transfer Delay  
Slave DOUT Access Time  
Slave DOUT Disable Time  
DIN Data Setup Time  
DIN Data Hold Time  
DOUT Data Valid Time  
SCLK Rise Time  
35  
35  
25  
25  
tdis  
tsu  
8
8
8
8
th;DIN  
tv;DOUT  
tr  
35  
4
25  
4
tf  
SCLK Fall Time  
4
4
(1) All timing specifications are measured at characterization but not tested at final test.  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
7.8 I2S/LJF/RJF Timing Requirements (Master Mode)  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted. See 3(1)  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
50% of BCLK to 50% of  
WCLK  
td(WS)  
BCLK to WCLK delay  
35  
35  
35  
25  
25  
25  
ns  
ns  
ns  
50% of WCLK to 50% of  
DOUT  
td(DO-WS)  
WCLK to DOUT Delay (For LJF Mode Only)  
BCLK to DOUT Delay  
td(DO-  
BCLK)  
50% of BCLK to 50% of  
DOUT  
ts(DI)  
DIN Setup  
DIN Hold  
Rise Time  
Fall Time  
8
8
8
8
4
4
ns  
ns  
ns  
ns  
th(DI)  
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
8
8
(1) All timing specifications are measured at characterization but not tested at final test.  
7.9 I2S/LJF/RJF Timing Requirements (Slave Mode)  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted. See 4(1)  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
PARAMETER  
UNIT  
MIN  
40  
40  
8
MAX  
MIN  
30  
30  
8
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
BCLK High Period  
BCLK Low Period  
(WS)  
ns  
ns  
ns  
ns  
th(WS)  
WCLK Hold  
8
8
50% of WCLK to 50% of  
DOUT  
td(DO-WS)  
WCLK to DOUT Delay (For LJF Mode Only)  
35  
35  
25  
25  
ns  
ns  
50% of BCLK to 50% of  
DOUT  
td(DO-BCLK) BCLK to DOUT Delay  
ts(DI)  
DIN Setup  
DIN Hold  
Rise Time  
Fall Time  
8
8
8
8
ns  
ns  
ns  
ns  
th(DI)  
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
8
8
4
4
(1) All timing specifications are measured at characterization but not tested at final test.  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
7.10 DSP Timing Requirements (Master Mode)  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted. See 5(1)  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
50% of BCLK to 50% of  
WCLK  
td(WS)  
BCLK to WCLK delay  
BCLK to DOUT delay  
35  
25  
ns  
ns  
td(DO-  
BCLK)  
50% of BLCK to 50% of  
DOUT  
35  
25  
ts(DI)  
DIN Setup  
DIN Hold  
Rise Time  
Fall Time  
8
8
8
8
ns  
ns  
ns  
ns  
th(DI)  
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
8
8
4
4
(1) All timing specifications are measured at characterization but not tested at final test.  
7.11 DSP Timing Requirements (Slave Mode)  
All specifications at 25°C, IOVDD = 1.8 V. See 6(1)  
IOVDD=1.8V  
IOVDD=3.3V  
PARAMETER  
UNIT  
MIN  
40  
40  
8
MAX  
MIN  
30  
30  
8
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
BCLK High Period  
BCLK Low Period  
WCLK setup  
ns  
ns  
ns  
ns  
th(WS)  
WCLK Hold  
8
8
td(DO-  
BCLK)  
BCLK to DOUT Delay (For LJF Mode Only)  
50% BCLK to 50% DOUT  
35  
25  
ns  
ts(DI)  
DIN Setup  
DIN Hold  
Rise Time  
Fall Time  
8
8
8
8
ns  
ns  
ns  
ns  
th(DI)  
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
8
8
4
4
(1) All timing specifications are measured at characterization but not tested at final test.  
SDA  
tBUF  
tLOW  
tr  
th(STA)  
SCL  
th(STA)  
th(DAT)  
tHIGH  
tsu(STA)  
tsu(STO)  
STO  
STA  
tf  
tsu(DAT)  
STA  
STO  
1. I2C Timing  
版权 © 2016–2019, Texas Instruments Incorporated  
11  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
SS  
t
td  
tLag  
t
tLead  
sck  
tf  
tr  
SCLK  
MISO  
tsckl  
tsckh  
tv(DOUT)  
tdis  
MSB OUT  
th(DIN)  
BIT 6 . . . 1  
LSB OUT  
t
a
tsu  
MOSI  
MSB IN  
BIT 6 . . . 1  
LSB IN  
2. SPI Interface Timing Diagram  
WCLK  
t
d(WS)  
BCLK  
DOUT  
DIN  
t
d(DO-BCLK)  
t
d(DO-WS)  
t
t
h(DI)  
S(DI)  
3. I2S/LJF/RJF Timing in Master Mode  
WCLK  
th(WS)  
tH(BCLK)  
ts(WS)  
td(DO-WS)  
tL(BCLK)  
td(DO-BCLK)  
BCLK  
DOUT  
DIN  
th(DI)  
ts(DI)  
4. I2S/LJF/RJF Timing in Slave Mode  
12  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
WCLK  
t
d(WS)  
t
d(WS)  
BCLK  
DOUT  
DIN  
t
d(DO-BCLK)  
t
t
h(DI)  
s(DI)  
5. DSP Timing in Master Mode  
WCLK  
t
t
h(ws)  
t
h(ws)  
t
s(ws)  
h(ws)  
t
BCLK  
DOUT  
DIN  
L(BCLK)  
t
H(BCLK)  
t
d(DO-BCLK)  
t
t
h(DI)  
s(DI)  
6. DSP Timing in Slave Mode  
版权 © 2016–2019, Texas Instruments Incorporated  
13  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
7.12 Typical Characteristics  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, RESET = IOVDD, RL = 8 Ω + 33 µH, I2S Digital Input, ROM Mode 1 (Unless  
Otherwise Noted).  
10  
5
10  
5
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2
3 45 7 10  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
D001  
D002  
8 Ω + 33 µH  
Freq = 1 kHz  
4 Ω + 16 µH  
Freq = 1 kHz  
7. THD+N vs Output Power  
8. THD+N vs Output Power  
10  
10  
5
5
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20 30 50 100 200  
500 1000 2000  
Frequency(Hz)  
10000  
50000  
20 30 50 100 200  
500 1000 2000  
Frequency(Hz)  
10000  
50000  
D004  
D003  
4 Ω + 16 µH  
POUT = 1 W  
8 Ω + 33 µH  
POUT = 1 W  
10. THD+N vs Frequency  
9. THD+N vs Frequency  
130  
125  
120  
115  
110  
105  
100  
95  
120  
115  
110  
105  
100  
95  
90  
90  
VBAT=3.0V  
VBAT=3.6V  
VBAT=5.4V  
85  
AVDD=1.8V  
85  
80  
80  
75  
75  
10 20 30 50 100 200 500 1000  
Frequency(Hz)  
10000  
50000  
10 20 30 50 100 200 500 1000  
Frequency(Hz)  
10000  
50000  
D005  
D006  
11. VBAT Supply Ripple Rejection vs Frequency  
12. AVDD Supply Ripple Rejection vs Frequency  
版权 © 2016–2019, Texas Instruments Incorporated  
14  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Typical Characteristics (接下页)  
VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, RESET = IOVDD, RL = 8 Ω + 33 µH, I2S Digital Input, ROM Mode 1 (Unless  
Otherwise Noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
0.0005  
0.01  
0.05  
Pout(W)  
0.2 0.5  
1
2 3 45 710  
0.0005  
0.01  
0.05  
Pout(W)  
0.2 0.5  
1
2 3 45 710  
D007  
D008  
8 Ω + 33 µH  
4 Ω + 16 µH  
13. Efficiency vs Output Power  
14. Efficiency vs Output Power  
7
6.5  
6
10  
9
8
7
6
5
4
3
2
1
5.5  
5
4.5  
4
3.5  
3
2.5  
2
THD+N = 1% 8W  
THD+N = 1% 4W  
1.5  
1
0.5  
0
0
2.5  
3
3.5  
4
VBAT Supply(V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
VBAT Supply(V)  
4.5  
5
5.5  
D009  
D010  
4 Ω + 16 µH  
4 Ω + 16 µH  
15. Output Power for 1% THD+N vs VBAT  
16. Quiescent Current vs VBAT  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
17. TAS2557 Test Circuit  
All typical characteristics for the devices are measured using the bench EVM and an Audio Precision SYS-2722  
Audio Analyzer. A PSIA interface is used to allow the I2S interface to be driven directly into the SYS-2722.  
SPEAKER OUT terminal is connected to Audio Precision Analyzer inputs as shown below. There is a differential  
to single-ended (D2S) filter, with 1st order passive pole at 120 kHz added. This is to ensure high performance  
Class-D amplifier sees a fully differential matched loading at its outputs and while seeing no measurable  
degradation in performance due to loading effects of AUX filter on Class-D outputs.  
18. Differential To Single-Ended (D2S) Filter  
16  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9 Detailed Description  
9.1 Overview  
The TAS2557 device is a state-of-the-art Class-D audio amplifier which is a full system on a chip (SoC). The  
device features a ultra low-noise audio DAC and Class-D power amplifier which incorporates speaker voltage  
and current sensing feedback. An on-chip, low-latency DSP supports Texas Instruments' Smart Amp speaker  
protection algorithms to maximize loudness while maintaining safe speaker conditions. A smart integrated multi-  
level Class-H boost converter maximizes system efficiency at all times by tracking the required output voltage.  
The TAS2557 drives up to 3.8 W from a 4.2-V supply into an 8-Ω speaker with 1% THD, or up to up 5.7 W into a  
4-Ω speaker with 1% THD.  
The TAS2557 , with final processed digital output, can also be used to increase loudness and clarity in both  
Noise Canceling / Echo Cancelling speaker phone applications as well as for music or other sound applications.  
The TAS2557 accepts input audio data rates from 8 kHz to 96 kHz using ROM modes to fully support both  
speakerphone and music applications. When speaker protection system is running the maximum sampling rate is  
limited to 48 kHz.  
The multi-level Class-H boost converter generates the Class-D amplifier supply rail. When the audio signal  
requires a output power below VBAT, the boost improves system efficiency by deactivating and connecting  
VBAT directly to the Class-D amplifier supply. When higher audio output power is required, the boost quickly  
activates and provides a much louder and clearer signal than can be achieved in any standard amplifier speaker  
system design approach. A boost inductor of 1uH can be used with a slight increase in boost ripple.  
On-chip brownout detection system shutdown down audio at the user configurable threshold to avoid undesired  
system reset. In addition, an AGC can be selected to minimize clipping events when a lower power supply  
voltage is provided to the Class-D speaker driver. When this supply voltage drops below the proper level then  
under-voltage protection will be tripped. All protection statuses are available via register reads.  
The Class-D output switching frequency is synchronous with the digital input audio sample rate to avoid left and  
right PWM frequency differences from beating in stereo applications. PWM Edge rate control and Spread  
Spectrum features are available if further EMI reduction is desired in the user’s system.  
The interrupt request pin (IRQ) indicates a device error condition. The interrupt flag condition or conditions are  
selectable via I2C and include: thermal overload, Class-D over-current, VBAT level low, VBOOST level low, and  
PLL out-of-lock conditions. The IRQ signal is active-high for an interrupt request and low during normal  
operation. This behavior can be changed by a register setting to tri-state the pin during normal operation to allow  
the IRQ pin to be tied in parallel with other active-low interrupt request pins on other devices in the system.  
Stereo configuration can be achieved with two TAS2557 devices by using the ADR0_SCLK and ADR1_MISO  
pins to set different I2C addresses in I2C mode or the SCL_SSZ chip enable pin in SPI mode. Refer to the  
General I2C Operation or General SPI Operation sections for more details.  
版权 © 2016–2019, Texas Instruments Incorporated  
17  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.2 Functional Block Diagram  
2.2uH  
10 nF  
PVDD  
22 uF  
VBOOST  
SW  
SW  
VREG  
VBAT  
System Control  
RC CLK  
Boost Converter  
Battery  
PGND  
Audio Clocks  
Missing Clock Detection  
and  
De-Pop and Soft-Start  
MCLK  
RC CLK  
OSC  
OC Trip  
M
U
X
Over Temp  
IRQ_GPIO4  
VBAT LOW  
VBOOST LOW  
VOL_RAMP_Down  
Class-D_PWR_DOWN  
SDA  
SCL  
I2C  
Control  
I/F  
Control  
Registers  
ADR0  
ADR1  
Temp  
Sensor  
BCLK1  
BCLK2  
MCLK  
/RESET  
MCLK  
Programmable  
PLL  
10-Bit SAR ADC  
Class-D Amplifier  
VBOOST  
4Ω to 8Ω  
Speaker  
VOL_RAMP_Down  
DIN1  
SPK_P  
SPK_M  
BaseBand  
and  
Application Processor  
Audio Serial Interface Port #1  
S-D  
DAC  
DSP  
DOUT1  
WCLK1  
Sound Enhancement  
Volume Control  
Speaker Excursion Protection  
Speaker Temperature Protection  
Digital Interpolation Filtering  
Digital Decimation Filtering  
Programmable Format  
Master / Slave  
I2S / TDM / DSP / PDM  
Fs: 8kHz to 96kHz  
BCLK1  
DOUT2  
WCLK2  
Audio Serial Interface Port #2  
Echo Canceller  
Noise Canceller  
Programmable Format  
Master / Slave  
I2S / TDM / DSP / PDM  
Fs: 8kHz to 96kHz  
VSENSE_P  
BCLK2  
IV-Sense and Post-Filter  
Feedback  
S-D  
ADC  
VSENSE_M  
Audio Serial Interface for Multi-Channel  
(ASIM)  
Programmable Format  
Master / Slave  
I2S / TDM / DSP-Link  
Fs: 8kHz to 96kHz  
DVDD  
AVDD  
IOVDD  
AGND  
DGND  
IOGND  
9.3 Feature Description  
9.3.1 General I2C Operation  
The TAS2557 operates as an I2C slave over the IOVDD voltage range. It is adjustable to one of four I2C  
addresses. This allows multiple TAS2557 devices in a system to connect to the same I2C bus. The I2C pins are  
fail-safe. If the part is not powered or is in shutdown the I2C pins will not impact the I2C bus allowing it to remain  
functional.  
To configure the TAS2557 for I2C operation set the SPI_SELECT pin to ground. The I2C address can then be set  
using pins ADR0_SCLK and ADR1_MSIO according to 1. The pins configure the two LSB bits of the following  
7-bit binary address A6-A0 of 10011xx. This permits the I2C address of TAS2557 to be 0x4C(7-bit) through  
0x4F(7-bit). For example, if both ADR0_SCLK and ADR1_MSIO are connected to ground the I2C address for the  
TAS2557 would be 0x4C(7-bit). This is equivalent to 0x98 (8-bit) for writing and 0x99 (8-bit) for reading.  
1. I2C Address Selection  
ADR0_SCLK Pin  
Connection  
ADR1_MSIO Pin  
Connection  
I2C Device Address  
GND  
IOVDD  
GND  
GND  
GND  
0x4C  
0x4D  
0x4E  
0x4F  
IOVDD  
IOVDD  
IOVDD  
18  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. The corresponding pins on the TAS2557 for the two signals are SDA_MOSI and SCL_SSZ. The bus  
transfers data serially, one bit at a time. The address and data (8-bit) bytes are transferred most-significant bit  
(MSB) first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an  
acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and  
ends with the master device driving a stop condition on the bus. The bus uses transitions on the data terminal  
(SDA) while the clock is at logic high to indicate start and stop conditions. A high-to-low transition on SDA  
indicates a start, and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within the  
low time of the clock period. 19 shows a typical sequence.  
The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The device holds SDA low during the acknowledge clock  
period to indicate acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each  
device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same  
signals via a bi-directional bus using a wired-AND connection.  
Use external pull-up resistors for the SDA and SCL signals to set the logic-high level for the bus. Use pull-up  
resistors between 660 Ω and 4.7 kΩ. Do not allow the SDA and SCL voltages to exceed the device supply  
voltage, IOVDD.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
19. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. 19 shows a generic data transfer  
sequence.  
9.3.2 Single-Byte and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for all registers.  
During multiple-byte read operations, the TAS2557 responds with data, a byte at a time, starting at the register  
assigned, as long as the master device continues to respond with acknowledges.  
The TAS2557 supports sequential I2C addressing. For write transactions, if a register is issued followed by data  
for that register and all the remaining registers that follow, a sequential I2C write transaction has taken place. For  
I2C sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines to how many registers are written.  
9.3.3 Single-Byte Write  
As shown in 20, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C device  
address and the read/write bit, the TAS2557 responds with an acknowledge bit. Next, the master transmits the  
register byte corresponding to the device internal memory address being accessed. After receiving the register  
byte, the device again responds with an acknowledge bit. Finally, the master device transmits a stop condition to  
complete the single-byte data-write transfer.  
版权 © 2016–2019, Texas Instruments Incorporated  
19  
 
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
20. Single-Byte Write Transfer  
9.3.4 Multiple-Byte Write and Incremental Multiple-Byte Write  
A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes  
are transmitted by the master device to the TAS2557 as shown in 21. After receiving each data byte, the  
device responds with an acknowledge bit.  
Register  
21. Multiple-Byte Write Transfer  
9.3.5 Single-Byte Read  
As shown in 22, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. For the data-read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte of the internal memory address to be  
read. As a result, the read/write bit is set to a 0.  
After receiving the TAS2557 address and the read/write bit, the device responds with an acknowledge bit. The  
master then sends the internal memory address byte, after which the device issues an acknowledge bit. The  
master device transmits another start condition followed by the TAS2557 address and the read/write bit again.  
This time, the read/write bit is set to 1, indicating a read transfer. Next, the TAS2557 transmits the data byte from  
the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge  
followed by a stop condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
22. Single-Byte Read Transfer  
9.3.6 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS2557 to the master device as shown in 23. With the exception of the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte.  
20  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
Read/Write Bit  
23. Multiple-Byte Read Transfer  
版权 © 2016–2019, Texas Instruments Incorporated  
21  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.3.7 General SPI Operation  
The TAS2557 operates as an SPI slave over the IOVDD voltage range.  
9.3.8 Class-D Edge Rate Control  
The edge rate of the Class-D output is controllable via I2C as shown in 2. This allows adjusting the switching  
edge rate of the Class-D amplifier, trading off efficiency for lower EMI. The default edge rate of 14ns passes EMI  
testing and is recommend but may be changed if required.  
2. Class-D Edge Rate Control  
SPK_GAIN_EDGE[2:0]  
(EDGE_RATE)  
tR AND tF  
(TYPICAL)  
000  
001  
010  
011  
100  
101  
110  
111  
Reserved  
Reserved  
29 ns  
25 ns  
14 ns (default)  
13 ns  
12 ns  
11 ns  
9.3.9 IV Sense  
The TAS2557 provides speaker voltage and current sense for real-time monitoring of loudspeaker behavior. The  
VSENSE_P and VSENSE_N pins should be connected after any ferrite bead filter (or directly to the SPK_P and  
SPK_N connections if no EMI filter is used). The V-Sense terminals are used to eliminate IR drop error due to  
packaging, PCB interconnect, and ferrite bead filter resistance. The V-sense terminals are also used to close the  
Class-D feedback loop post filter. This Post-Filter Feedback (PFFB) minimizes the THD introduced from the filter-  
beads used in the system. Any interconnect resistance or non-linearities after the V-Sense terminals connection  
point will not be corrected for. Therefore, it is advised to connect the sense connections as close to the load as  
possible.  
SPK_P  
fb  
SPK_N  
fb  
VSENSE_P  
VSENSE_N  
24. V-Sense Connections  
The I-Sense can be configured for three ranges and shown in 3. This should be set appropriately based on  
the DC resistance of the speaker. I-Sense and V-Sense can additionally be powered down as shown in 4 and  
5. When powered down, the device will return null samples for the powered down sense channels.  
3. I-Sense Current Range  
SNS_CTRL[2:1] (ISNS_SCALE)  
Full Scale Current  
1.25 A (default)  
1.5 A  
Speaker Load Impedance  
00  
01  
10  
11  
8 Ω  
6 Ω  
1.75 A  
4 Ω  
Reserved  
Reserved  
22  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
4. I-Sense Mute  
MUTE[1] (MUTE_ISNS)  
Setting  
0
1
I-Sense is active (default)  
I-Sense channel is muted  
5. V-Sense Mute  
MUTE[0] (MUTE_VSNS)  
Setting  
0
1
V-Sense is active (default)  
V-Sense channel is muted  
6. I-Sense Power Down  
POWER_2[1] (PWR_ISNS)  
Setting  
0
1
I-Sense is active (default)  
I-Sense is powered down  
7. V-Sense Power Down  
POWER_2[0] (PWR_VSNS)  
Setting  
0
1
V-Sense is active (default)  
V-Sense is powered down  
9.3.10 Battery Tracking AGC  
The TAS2557 monitors the battery voltage and audio signal to automatically decrease gain when the battery  
voltage is low and audio output power is high. This provides louder audio while preventing early shutdown at  
end-of-charge battery voltage levels. The battery tracking AGC starts to attenuate the signal once the voltage at  
the Class-D output exceeds VLIM for a given battery voltage (VBAT). If the Class-D output voltage is below the  
VLIM value, no attenuation occurs. If the Class-D output exceeds the VLIM value the AGC starts to attack the  
signal and reduce the gain until the output is reduced to VLIM. Once the signal returns below VLIM plus some  
hysteresis the gain reduction decays. The VLIM is constant above the user configurable inflection point. Below the  
inflection point the VLIM is reduced by a user configurable slope in relation to the battery voltage. The attack time,  
decay time, inflection point and VLIM/VBAT slope below the inflection point are user configurable. The parameters  
for the battery tracking AGC are part of the DSP core and can be set using the PurePath™ Console 3 Software  
TAS2557 Application software for the TAS2557 part under the Device Control Tab. Below a VBAT level of 2.9 V,  
the boost will turn on to ensure correct operation but results in increased current consumption. The device is  
functional until the set brownout level is reached and the device shuts down. The minimum brownout voltage is  
2.7 V.  
Shutdown  
Battery Guard  
Speaker Guard  
VLIMPeak  
Brownout  
Inflection Point  
VBAT  
25. VLIM versus Supply Voltage (VBAT)  
版权 © 2016–2019, Texas Instruments Incorporated  
23  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.3.11 Boost Control  
9.3.11.1 Boost Mode  
The TAS2557 internal processing algorithm automatically enables the boost when needed. A look-ahead  
algorithm monitors the battery voltage and the digital audio stream. When the speaker output approaches the  
battery voltage the boost is enabled in-time to supply the required speaker output voltage. When the boost is no  
longer required it is disabled and bypassed to maximize efficiency. The boost can be configured in one of two  
modes. The first is low in-rush (Class-G) supporting only boost on-off and has the lowest in-rush current. The  
second is high-efficiency (Class-H) where the boost voltage level is adjusted to a value just above what is  
needed. This mode is more efficient but has a higher in-rush current to quickly transition the levels. This can be  
configured using 8.  
Class-G  
Class-H  
Time  
26. Boost Mode Signal Tracking Example  
8. Boost Mode  
SPK_CTRL[4] (BST_MODE)  
Boost Mode  
0
1
Class-H - High efficiency  
Class-G - Low in-rush (default)  
9.3.11.2 Configurable Boost Current Limit (ILIM)  
The TAS2557 device has a configurable boost current limit (ILIM). The default current limit is 3 A but this limit  
may be set lower based on selection of passive components connected to the boost. The TAS2557 device  
supports 4 different boost limits.  
9. Current Limit Settings  
BOOST_CTRL_2[1:0] (BST_ILM)  
BOOST CURRENT LIMIT (A)  
00  
01  
10  
11  
1.5  
2.0  
2.5  
3.0 (default)  
9.3.12 Thermal Fold-back  
The TAS2557 monitors the die temperature and prevents it from going over a set limit. When enabled, an  
internal controller will automatically adjust the signal path gain to prevent the die temperature from exceeding this  
limit. This allows instantaneous peak power to be delivered to the speaker while limiting the continuous power to  
prevent thermal shutdown. The configuration parameters for the thermal fold-back are part of the DSP core and  
can be set using the PurePath™ Console 3 Software TAS2557 Application software for the TAS2557 part under  
the Device Control Tab.  
9.3.13 Fault Protection  
The TAS2557 has several protection blocks to prevent damage. Use of these blocks including how to resume  
from a fault are presented in this section.  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.3.13.1 Speaker Over-Current  
The TAS2557 has an integrated over-current protection that is enabled once the Class-D is powered up. Large  
currents in the range of 3-5 A on the Class-D output will trigger an over-current fault. Once the fault is detected,  
the TAS2557 disables the audio channel and powers down the Class-D amplifier. When an over-current event  
occurs, a status flag INT_OC is set. This register is sticky, and the bit remains high until the bit is read or the  
device is reset. The over-current event can also be used to generate an interrupt if required. Refer to IRQs and  
Flags section for more details. To re-enable the audio channel after a fault the Class-D, the device must be  
hardware or software reset and configuration must be re-loaded.  
9.3.13.2 Analog Under-Voltage  
The TAS2557 has integrated undervoltage protection on the analog power supply lines AVDD and VBAT. The  
undervoltage limit fault is triggered when AVDD is less than 1.5 V or when VBAT is less than 2.4 V. Once the  
fault is detected the TAS2557 will disable the audio channel and power down the Class-D amplifier. When an  
under-voltage event occurs, a status flag INT_UV is set. This register is sticky and the bit will remain high until  
the bit is read or the device is reset. The undervoltage event can also be used to generate an interrupt if  
required. Refer to IRQs and Flags section for more details. To re-enable the audio channel after a fault, the  
Class-D must be re-enabled by setting PWR_SPK high. All other configurations are preserved and the audio  
channel will power up with the last configured settings.  
9.3.13.3 Die Over-Temperature  
The TAS2557 has an integrated over-temperature protection that is enabled once the Class-D is powered up. If  
the device internal junction temperature exceeds the safe operating region it will trigger the over-temperature  
fault. Once the fault is detected the TAS2557 disables the audio channel and powers down the Class-D amplifier.  
The device waits until the user reads the over-temperature flag INT_OT to re-enable the Class-D amplifier if the  
junction temperature returns into a safe operating region. When an over-temperature event occurs, a status flag  
INT_OT is set. This register is sticky and the bit will remain high for as long as it is not read, or the device is not  
reset. The over-temperature event can also be used to generate an interrupt if required. Refer to IRQs and Flags  
section for more details. The over-temperature automatic re-enable can be disabled by setting OT_RT signal. If  
the automatic re-enable is disabled, the Class-D must be re-enabled by setting PWR_SPK high after the over-  
temperature fault. All other configurations are preserved and the audio channel will power up with the last  
configured settings.  
9.3.13.4 Clocking Faults  
The TAS2557 has two clock error detection blocks. The first is on the Audio Serial Interfaces (ASI). If a clock  
error is detected on the ASI interfaces, audio artifacts can occur at the Class-D output. When enabled, the ASI  
clock error detection can mute the device and shutdown the Class-D and DSP core. The clock error detection  
block is enabled by setting register signal CE1_EN. The ASI1 or ASI2 clocks can be routed to the block for  
detection using register CE1_IC. Additionally, the clock error can be routed to an interrupt pin, and the sticky bit  
INT_CLK1 indicates whether the clock error occurred. The second clock error detection block can monitor the  
DAC, ADC, and PLL clocks. When a clock error is detected, the output is soft-muted and the Class-D powered  
down. This clock error detection is enabled using bit signal CE2_EN and can be routed to the interrupt pin. It is  
indicated in the sticky bit INT_CLK2.  
When a clocking error occurs, the following sequence should be performed to restart the device.  
Clear the clock error interrupts by reading the sticky flags at registers INT_STICKY_2 and INT_STICKY_2  
Clear the power error signal PWR_ERR in register POWER_1  
9.3.14 Brownout  
The TAS2557 has an integrated brownout system to shutdown the device when the battery voltage drops to an  
insufficient level. This user configurable level can be set under Device Control in the PurePath™ Console 3  
Software TAS2557 Application. When brownout event occurs a status flag INT_BO is set. This register is sticky,  
and the bit remains high until the bit is read or the device is reset. The brownout event can also be used to  
generate an interrupt if required. Refer to IRQs and Flags section for more details. Once the battery voltage  
drops below the defined threshold, the following actions occur.  
The audio playback is muted in a soft-stepping manner  
DSP, clock dividers, and analog blocks are powered down  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Sticky bit INT_BO is set  
Once the host is aware of the brownout, it should set PWR_ERR register signal low to put the TAS2557 device  
in software shutdown and enters low power mode. Once the battery supply is stable above the defined brownout  
threshold the host can re-enable the device using the power control registers POWER_1 and POWER_2.  
9.3.15 Spread Spectrum vs Synchronized  
The Class-D switching frequency can be selected to work in two different modes of operations. This configuration  
needs to be done before powering up the audio channel. The first is a synchronized mode where the Class-D  
frequency is synchronized to the audio input sample rate. This is the default mode of operation and should be  
used in stereo applications to avoid inter-modulation beating of the Class-D frequency from multiple chips. The  
Class-D switching frequency in this mode can be configured as 384 kHz or 352.8 kHz. The 384 kHz frequency is  
the default mode of operation and can be used for input signals running on clock rates of 48 kHz or its sub-  
multiples. For input signals running on clock rate of 44.1 kHz and its sub-multiples, the switching frequency can  
be selected as 352.8 kHz using 10.  
The second mode uses the internal oscillator to generate the ramp clock. This is enabled using 11. This mode  
is generally used with 12 enabled for spread-spectrum. Spread-specturm is used to reduce wideband spectral  
content improving EMI emissions radiated by the speaker. In this mode, the Class-D switching frequency can  
varies ±5% or ±10% as set by 13 about the set frequency 10.  
The configuration for this block should be set using the PurePath™ Console 3 Software TAS2557 Application  
software for the TAS2557 part under the Device Control Tab.  
10. Ramp Clock Frequency  
RAMP_CTRL[5:4] (RAMP_FREQ)  
Setting  
384 kHz (default)  
352.8 kHz  
00  
01  
10  
11  
Reserved  
Reserved  
11. Ramp Clock Source  
RAMP_DSP[7] (RAMP_SRC)  
Setting  
0
Sync Mode - ramp generated from digital audio  
clock (default)  
1
Fixed Frequency Mode(FFM) - ramp generated  
from internal oscillator  
12. Ramp Clock SSM  
SSM_CTRL[0] (SSM_EN)  
Setting  
0
1
SSM mode is disabled  
SSM mode is enabled(1)  
(1) Ramp clock source must be from internal oscillator  
13. Ramp SSM Mode  
RAMP_CTRL[1:0] (RAMP_FREQMOD)  
Setting  
00  
01  
Reserved  
SSM mode enabled with ramp frequency modulated  
for ±5 % (default)  
10  
11  
SSM mode enabled with ramp frequency modulated  
for ±10 %  
Reserved  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.3.16 IRQs and Flags  
Internal device flags such as over-current, under-voltage, etc. can be routed as interrupts. The device has 4  
interrupts (INT1 - INT4) that can be routed to any of the 10 GPIO pins. If more than one flag is assigned to the  
same interrupt, the interrupt output is the logical OR-ing of all flags. If multiple flag's are assigned to the same  
interrupt, the host should then query the flags sticky register to determine which event triggered the interrupt. The  
10 GPIO pins can be configured for any interrupt and can be configured using GPIOx_PIN registers.  
14. Interrupt Registers  
Flag Description  
Over-Current  
Under-Voltage  
Over-Temperature  
Brownout  
Sticky Register Bit  
INT_DET_1[7] (INT_OC)  
INT_DET_1[6] (INT_UV)  
INT_DET_1[4] (INT_OT)  
INT_DET_1[3] (INT_BO)  
INT_DET_1[2] (INT_CL)  
INT_DET_1[1] (INT_SC)  
INT_DET_2[3] (INT_CE1)  
INT_DET_2[2] (INT_CE2)  
Register to Route Flag to Interrupt  
INT_GEN_1[6:4] (INT_GEN_OC)  
INT_GEN_1[2:0] (INT_GEN_OV)  
INT_GEN_2[2:0] (INT_GEN_OT)  
INT_GEN_3[6:4] (INT_GEN_BO)  
INT_GEN_4[2:0] (INT_GEN_CL)  
INT_GEN_4[6:4] (INT_GEN_SC)  
INT_GEN_2[6:4] (INT_GEN_CE1)  
INT_GEN_3[3:0] (INT_GEN_CE2)  
Clock Lost  
SAR Complete  
Clock Error 1  
Clock Error 2  
For example, to route the brownout and under-voltage flags to GPIO5 (Pin IRQ_GPIO5) the following register  
settings would be used. The brownout flag would be routed to INT1 by setting INT_GEN_BO=001, and under-  
voltage flag would also be routed to INT1 by setting INT_GEN_OV=001. The pin IRQ_GPIO4 would be set to  
use INT1 by setting GP4_OUT=0x07  
9.3.17 Software Reset  
The TAS2557 internal logic must be initialized to a known condition for proper device function by doing a  
software reset. Performing software reset after a hardware reset is mandatory for reliable device boot up. To  
perform software reset, write high register signal RESET. After reset, all registers are initialized with default  
values as listed in the Register Map, and no register read/write should be performed within 100us.  
9.3.18 PurePath™ Console 3 Software TAS2557 Application  
The TAS2557 contains an integrated DSP engine for speaker protection. PurePath™ Console 3 (PPC3) is the  
software tool used to setup most device configurations and tuning features. Once the software is downloaded  
and installed from the TI website, the TAS2557 application can be download from within the software. This  
datasheet refers to options that can be configured using the PPC3 software tool.  
PurePath Console 3 is an intuitive graphical user interface (GUI) for characterizing and tuning speakers. Step-by-  
step wizards guide developers through speaker characterization and system calibration. After characterization,  
the PPC3 provides visual representations of speaker capabilities and frequency response. Easy to use, real-time  
tuning information supported via mouse-over and complete process walk-throughs. PPC3 has full access to  
device registers and is the simplest way to modify device settings, EVM and learning board configuration. From  
speaker assessment to production, PPC3 is your simple, single development tool.  
9.3.19 Operational Modes  
9.3.19.1 Hardware Shutdown  
The device enters hardware shutdown mode if the RESETZ pin is asserted low. In hardware shutdown mode, the  
device consumes the minimum quiescent current from VDD and VBAT supplies. All registers loose state in this  
mode and I2C communication is disabled.  
If RESETZ is asserted low while audio is playing, the device immediately stops operation and enters hardware  
shutdown mode. This may result in pops or clicks. It is recommend to first enter software shutdown before  
entering hardware shutdown.  
When RESETZ is released, the device will enter software shutdown. A power up sequence such as with the  
appropriate mode selected should be executed to exit shutdown in the desired mode of operation.  
版权 © 2016–2019, Texas Instruments Incorporated  
27  
 
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.3.19.2 Software Shutdown  
Software shutdown mode powers down all analog blocks required to playback audio, but does not cause the  
device to lose register state. Software shutdown is enabled by following Device Power Up and Unmute  
Sequence.  
9.3.19.3 Low Power Sleep  
The device has a low power sleep (15) mode option to reduce the power consumption on analog supply  
VBAT. In order to use this operating mode, the VBAT and AVDD supply should remain powered up when in this  
mode. This mode disables the Power-on Reset connected to the VBAT supply reducing current consumption.  
15. Low Power Sleep  
LOW_PWR[7] (VBAT_POR)  
Low Power Sleep Mode  
Disabled (default)  
0
1
Enabled - VBAT POR shutdown  
9.3.19.4 Software Reset  
The TAS2557 internal logic must be initialized to a known condition for proper device function by doing a  
software reset. Performing software reset after a hardware reset is mandatory for reliable device boot up. A  
software reset can be accomplished by asserting RESET bit in 16, which is self clearing. This will restore all  
registers to their default values. After software reset is performed, no register read/write should be performed  
within 100us while initialization sequence occurs.  
16. Software Reset  
RESET[0] (RESET)  
Action  
0
1
Don't reset (default)  
Reset(Self clearing)  
9.3.19.5 Device Processing Modes  
The TAS2557 DSP can be initialized into one of three modes. The advanced processing features in these  
modes, such as battery guard, thermal fold-back, brownout, and boost are configured using PurePath™ Console  
3 Software TAS2557 Application  
17. Device Power Mode  
BOOT_MODE[3:0] (DSP_MODE)  
Operating Mode  
Reserved  
0000  
0001  
0010  
0011  
Mode 1 - PCM input playback only (default)  
Mode 2 - PCM input playback + PCM IVsense output  
Mode 3 - Smart Amp Mode  
9.3.19.5.1 Mode 1 - PCM input playback only  
ROM mode 1 provides the quickest initialization for the TAS2557 power up and is the lowest power mode. This  
mode can be used to play a known power up audio sequence before the rest of the audio system software is  
loaded. The mode provides fault protection, brownout protection, volume control, and Class-H controller. The EQ  
and Battery Guard can be enabled wth minimal additional configuration. The speaker protection algorithm is not  
running in this mode and the I/V sense ADCs are powered down to minimize power consumption. The PLL can  
be disabled for even lower power consumption if the MCLK supplied is at least 12.288MHz for any fs which is  
multiple or sub-multiple of 48kHz, or 11.2896 MHz for Fs of 44.1kHz. This mode should be used to characterize  
the electrical performance on the TAS2557 without any influence from the protection algorithm present in other  
modes.  
28  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Boost  
On/Off  
Boost  
Level  
Vbatt  
Vbatt  
DAC  
Brownout  
Class-H  
6 Biquad  
EQ  
Battery  
Guard  
27. ROM Mode 1 Processing Block Diagram  
9.3.19.5.2 Mode 2 - PCM input playback + PCM IVsense output  
ROM mode 2 is similar to ROM mode 1 except the I/V sense ADCs are powered up and the data is routed back  
on the L/R return channels of the ASI port. This mode can be used to return the I/V data to the host and perform  
alternate computations on the speaker I/V measurements.  
Boost  
On/Off  
Boost  
Level  
Vbatt  
Vbatt  
DAC  
Brownout  
Class-H  
6 Biquad  
EQ  
Battery  
Guard  
ICN/IVsense Control  
ADC V  
ADC I  
28. ROM Mode 2 Processing Block Diagram  
9.3.19.5.3 Mode 3 - Smart Amp Mode  
Smart Amp Mode is used to run the TI Smart Amp algorithm on the built in DSP. This mode involves loading  
larger output files generated from the PurePath™ Console 3 Software TAS2557 Application. The generated files  
contain the speaker models, equalization, and additional configuration parameters in a format to load over the  
I2C or SPI interface. TI's Smart Amp provides thermal and excursion protection using initial speaker models and  
the current and voltage feedback. This allows TAS2557 to determine exact coil temperature and update the initial  
model due to variations in speaker and ambient conditions. More information about this mode can be found in  
the PurePath™ Console 3 Software TAS2557 Application.  
9.4 Device Functional Modes  
9.4.1 Audio Digital I/O Interface  
Audio data is transferred between the host processor and the TAS2557 via the digital audio serial interface (ASI),  
or audio bus. The ASI buses (ASI1 and ASI2) can be configured for left or right-justified, I2S, DSP, or TDM  
modes of operation. Standard telephony PCM interfaces are supported within the TDM mode.. These modes are  
all MSB-first, with data width programmable to 16, 20, 24, or 32 bits. In addition, the WCLK and BCLK can be  
independently configured in either master or slave mode for flexible connectivity to a wide variety of processors.  
The word clock is used to define the beginning of a frame, and may be programmed as either a pulse or a  
square-wave signal. The frequency of this clock corresponds to the maximum of the selected ADC and DAC  
sampling frequencies.  
18. ASI PCM Mode  
ASI1_FORMAT[4:2]  
(ASI1_MODE)  
ASI2_FORMAT[4:2]  
(ASI2_MODE)  
ASI Function Mode  
000  
001  
010  
000  
001  
010  
I2S Mode (default)  
DSP Mode  
Right-Justified Mode (RJF)  
版权 © 2016–2019, Texas Instruments Incorporated  
29  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
18. ASI PCM Mode (接下页)  
ASI1_FORMAT[4:2]  
(ASI1_MODE)  
ASI2_FORMAT[4:2]  
(ASI2_MODE)  
ASI Function Mode  
011  
100  
011  
100  
Left-Justified Mode (LJF)  
Mono PCM Mode  
19. ASI PCM Input Word Length  
ASI1_FORMAT[1:0]  
(ASI1_LENGTH)  
ASI2_FORMAT[1:0]  
(ASI2_LENGTH)  
Word Length  
00  
01  
10  
11  
00  
01  
10  
11  
16 bits  
20 bits  
24 bits (default)  
32 bits  
The bit clock (BCLK) is used to clock in and clock out the digital audio data across the serial bus. This signal can  
be programmed to generate variable clock pulses by controlling the BCLK multiply-divide factor in Registers 0x08  
through 0x10. The number of BCLK pulses in a frame may need adjustment to accommodate various word-  
lengths as well as to support the case when multiple TAS2557 devices may share the same audio bus.  
The TAS2557 also includes a feature to offset the position of start of data transfer with respect to the wordclock  
(WCLK). This offset is specified in number of BCLKs. This can be used in cases where there is a non-zero bit-  
clock delay from WCLK edge or to support TDM modes of operation. The TAS2557 can place the DOUT line into  
a Hi-Z (tri-state) condition during all BCLKs when valid data is not being sent. TDM mode is useable with I2S,  
LJF, RJF, and DSP interface modes and is required for stereo applications when more than one TAS2557 part is  
used. The TAS2557 also has a bus keeper circuit that can be enabled in tri-sate mode. The bus-keeper is a  
weak internal latch that will hold the data line state without the need for external pull-up or pull-down resistors  
while signal lines are in the Hi-Z or non-driven state.  
20. ASI OFFSET1  
ASI1_OFFSET_1  
(ASI_OFFSET1)  
ASI2_OFFSET_1  
(ASI2_OFFSET1)  
BCLKs from WCLK edge for  
data channel  
0x00  
0x01  
0x02  
...  
0x00  
0x01  
0x02  
...  
0 (default)  
1
2
...  
0xFF  
0xFF  
255  
21. ASI Tri-state  
ASI1_FORMAT[0]  
(ASI1_TRISTATE)  
ASI2_FORMAT[0]  
(ASI2_TRISTATE)  
Tri-state DOUT for extra BCLK  
cycles after frame is complete  
0
1
0
1
disabled (default)  
enabled  
22. ASI Bus-keeper  
Tri-state DOUT for extra BCLK  
cycles after frame is complete  
ASI1_BUSKEEP[7] (ASI1_BKP) ASI2_BUSKEEP[7] (ASI2_BKP)  
0
1
0
1
disabled (default)  
enabled  
Additional configuration options for the ASI1 and ASI2 interface can be found in the Register Map. It is  
recommended to use the PurePath™ Console 3 Software TAS2557 Application software for TAS2557 to  
configure the ASI interfaces.  
30  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.4.1.1 I2S Mode  
In I2S mode, the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge  
of the word clock. Similarly the MSB of the right channel is valid on the second rising edge of the bit clock after  
the rising edge of the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
29. Timing Diagram for I2S Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
DATA  
5
4
3
2
1
0
5
4
3
2
1
0
5
1
1
1
LD(n)  
LD(n) = n'th sample of left channel data  
RD(n)  
RD(n) = n'th sample of right channel data  
LD(n+1)  
30. Timing Diagram for I2S Mode with ASI_OFFSET1 = 2  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
31. Timing Diagram for I2S Mode with ASI_OFFSET1 = 0 and Inverted Bit Clock  
For I2S mode, the number of bit-clocks per channel should be greater than or equal to the programmed word-  
length of the data. Also the programmed offset value should be less than the number of bit-clocks per frame by  
at least the programmed word-length of the data.  
版权 © 2016–2019, Texas Instruments Incorporated  
31  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.4.1.2 DSP Mode  
In DSP mode, the rising edge of the word clock starts the data transfer with the left channel data first and  
immediately followed by the right channel data. Each data bit is valid on the falling edge of the bit clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
32. Timing Diagram for DSP Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
33. Timing Diagram for DSP Mode with ASI_OFFSET1=1  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
34. Timing Diagram for DSP Mode with ASI_OFFSET1=0 and Inverted Bit Clock  
For DSP mode, the number of bit-clocks per frame should be greater than twice the programmed word-length of  
the data. Also the programmed offset value should be less than the number of bit-clocks per frame by at least  
the programmed word-length of the data.  
9.4.1.3 Right-Justified Mode (RJF)  
In right-justified mode, the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling  
edge of the word clock. Similarly, the LSB of the right channel is valid on the rising edge of the bit clock  
preceding the rising edge of the word clock.  
32  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
1/fs  
WCLK  
BCLK  
Left Channel  
n-1 n-2 n-3  
MSB  
Right Channel  
DIN/  
DOUT  
0
2
1
0
n-1 n-2 n-3  
MSB  
2
1
0
LSB  
LSB  
35. Timing Diagram for Right-Justified Mode  
For right-justified mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data.  
版权 © 2016–2019, Texas Instruments Incorporated  
33  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.4.1.4 Left-Justified Mode (LJF)  
In left-justified mode, the MSB of the right channel is valid on the rising edge of the bit clock following the falling  
edge of the word clock. Similarly the MSB of the left channel is valid on the rising edge of the bit clock following  
the rising edge of the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
36. Timing Diagram for Left-Justified Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
37. Timing Diagram for Light-Left Mode with ASI_OFFSET1 = 1  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
38. Timing Diagram for Left-Justified Mode with ASI_OFFSET1 = 0 and Inverted Bit Clock  
For left-justified mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data. Also, the programmed offset value should be less than the number of bit-clocks per frame by  
at least the programmed word-length of the data.  
9.4.2 Mono PCM Mode  
In mono PCM mode, the rising edge of the word clock starts the data transfer of the single channel of data. Each  
data bit is valid on the falling edge of the bit clock.  
34  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n)  
D(n+1)  
D(n+2)  
39. Timing Diagram for Mono PCM Mode  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n+1)  
D(n)  
D(n+2)  
40. Timing Diagram for Mono PCM Mode with ASI_OFFSET1=2  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n+1)  
D(n)  
D(n+2)  
41. Timing Diagram for Mono PCM Mode with ASI_OFFSET1=2 and Bit Clock Inverted  
For mono PCM mode, the programmed offset value should be less than the number of bit-clocks per frame by at  
least the programmed word-length of the data.  
版权 © 2016–2019, Texas Instruments Incorporated  
35  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.4.3 Stereo Application Example - TDM Mode  
Time-division multiplexing (TDM) is required for two or more devices to share a common DIN connection and a  
common DOUT connection. Using TDM mode, all devices transmit their DOUT data in user-specified sub-frames  
within one WCLK period. When one device transmits its DOUT information, the other devices place their DOUT  
terminals in a high impedance tri-state mode. The host processor can operate in I2S mode while the TAS2557 is  
running in I2S TDM mode to support sharing of the same DOUT line.  
TDM mode is useable with I2S, LJF, RJF, and DSP interface modes. Refer to the respective sections for a  
description of how to set the TAS2557 into those modes.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
DATA  
5
4
3
2
1
0
5
4
3
2
1
0
5
1
1
1
LD(n)  
LD(n) = n'th sample of left channel data  
RD(n)  
RD(n) = n'th sample of right channel data  
LD(n+1)  
42. Timing Diagram for I2S in TDM Mode with ASI_OFFSET1=2  
For TDM mode, the number of bit-clocks per frame should be less than the programmed word-length of the data.  
Also the programmed offset value should be less than the number of bit-clocks per frame by at least the  
programmed word-length of the data.  
9.5 Programming  
While the below scripts are provided as configuration examples, it is recommended to use PurePath™ Console 3  
Software TAS2557 Application software to generate the device configuration files. This software contains  
configuration checks to ensure proper settings are used in the device for various cases and loaded the needed  
fixed-function DSP patches.  
9.5.1 Code Loading and CRC check  
The TI Smart Amp software is loaded into program ram (PRAM) through writes to mapped memory registers.  
The encrypted binary software is downloaded and decoded on chip. Therefore read-back of the PRAM is  
disabled. However an 8-bit CRC checksum is provided to the customer to verify the code was correctly written to  
PRAM error-free. Once the software download is complete, the calculated 8-bit CRC checksum can be read from  
register CRC_CHECKSUM. If this value matches the checksum supplied with the program, the load to PRAM  
was successful. If new PRAM code is loaded the TAS2557 device should first be software or hardware reset to  
clear the CRC checksum register so that a proper checksum from the new code to be loaded.  
36  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Programming (接下页)  
The following is an example script used to load the DSP software and verify the CRC checksum.  
#############################################################################################  
#This script is a demo for downloading the PRAM code and checking CRC checksum  
i i2cstd  
#mclk expected is 24.576 MHz  
#configuring device registers for 8 ohm speaker load  
###########################  
w 98 00 00 #Page-0  
DEVICE INIT SEQ START##############################################  
w 98 7f 00 #Book-0  
w 98 01 01 #Software reset  
d 1  
# wait 100us time for OTP-One Time Programmable memory values to be transferred to device  
##### INIT SECTION START  
w 98 7f 64 # book 100  
w 98 46 01 # IRAM boot  
w 98 7f 00 # book 0  
##### INIT SECTION END  
##### DSP PROG SETTING START  
w 98 7f 64  
w 98 00 01  
#add writes for download to PRAM here  
w 98 00 00  
w 98 7f 00  
##### DSP PROG SETTING END  
###########################  
DEVICE INIT SEQ END ###############################################  
r 98 20 1 # reading the CRC checksum for the PRAM download , if read = CRC checksum provided to  
customer => PRAM download success  
###################  
CHANNEL POWER UP  
####################################################  
w 98 05 A3 # Power up Analog Blocks  
w 98 04 B8 # Power up DSP and clock dividers  
w 98 07 00 # Unmute Analog Blocks  
w 98 7f 64 # switch to book100  
w 98 07 00 # Soft stepped unmute of audio playback  
############################################################################################  
##### DSP coeff update START  
# d 1  
# DSP filter coefficient update if required  
##### DSP coeff update END  
############device powered up and running##########  
###################  
w 98 07 01 # Soft stepped mute of audio playback  
d 10 # wait for DSP to mute classD after soft step down of audio  
CHANNEL POWER DOWN ####################################################  
# instead of delay alternatively status flag B120_P15_R120_R121_R122_R123 polling can be done and wait  
till R122_D0 = '1'.  
w 98 7f 00 # switch to book0  
w 98 07 03 # Mute Analog Blocks  
w 98 04 20 # Power down DSP and clock dividers (except Ndivider)  
w 98 05 00 # Power down Analog Blocks  
w 98 00 00 # NOP  
w 98 04 00 # Power down Ndivider  
#############################################################################################  
#optional(ending the script in B0_P0)  
w 98 00 00 # page 0  
w 98 7f 00 # book 0  
#############################################################################################  
版权 © 2016–2019, Texas Instruments Incorporated  
37  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Programming (接下页)  
9.5.2 Device Power Up and Unmute Sequence  
The following code example provide the correct sequence to power up and unmute the device. The PurePath™  
Console 3 Software TAS2557 Application software will create output files with these commands. The following is  
a example of powering up the part in DSP Mode 2 with proper sequencing.  
Example script (ROM Mode 2):  
#############################################################################################  
i i2cstd  
#mclk expected is 24.576 MHz  
#configuring device registers for 8 ohm speaker load  
###########################  
w 98 00 00 #Page-0  
DEVICE INIT SEQ START##############################################  
w 98 7f 00 #Book-0  
w 98 01 01 #Software reset  
d 1  
# wait 100us time for OTP-One Time Programmable memory values to be transferred to device  
##### DSP PROG SETTING START  
w 98 22 22 # use default coefficients and operate DSP in rom mode 2  
##### DSP PROG SETTING END  
###########################  
DEVICE INIT SEQ END ###############################################  
###################  
CHANNEL POWER UP ####################################################  
w 98 05 A3 # Power up Analog Blocks  
w 98 04 B8 # Power up DSP and clock dividers  
w 98 07 00 # Unmute Analog Blocks  
w 98 7f 64 # switch to book100  
w 98 07 00 # Soft stepped unmute of audio playback  
############################################################################################  
##### DSP coeff update START  
# d 1  
# DSP filter coefficient update if required  
##### DSP coeff update END  
b ############device powered up and running##########  
38  
版权 © 2016–2019, Texas Instruments Incorporated  
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Programming (接下页)  
9.5.3 Device Mute and Power Down Sequence  
The following code example provide the correct sequence to mute and power down the device. The PurePath™  
Console 3 Software TAS2557 Application software will create output files with these commands.  
Example script (ROM Mode 2):  
#############################################################################################  
i i2cstd  
###################  
w 98 07 01 # Soft stepped mute of audio playback  
d 10 # wait for DSP to mute classD after soft step down of audio  
CHANNEL POWER DOWN ####################################################  
# instead of delay alternatively status flag B120_P15_R120_R121_R122_R123 polling can be done and wait  
till R122_D0 = '1'.  
w 98 7f 00 # switch to book0  
w 98 07 03 # Mute Analog Blocks  
w 98 04 20 # Power down DSP and clock dividers (except Ndivider)  
w 98 05 00 # Power down Analog Blocks  
w 98 00 00 # NOP  
w 98 04 00 # Power down Ndivider  
#############################################################################################  
#optional(ending the script in B0_P0)  
w 98 00 00 # page 0  
w 98 7f 00 # book 0  
#############################################################################################  
9.6 Register Map  
See the General I2C Operation section for more details on addressing. Register settings should be set based on  
the files generated from the PPC3 GUI. Because the TAS2557 is a complex system including the internal  
software, changes made in the TAS2557 registers not known in the PPC3 generated configurations can result in  
the speaker protection not operating correctly. Changes should be made from within PurePath™ Console 3  
Software TAS2557 Application instead of manually changing registers when possible. Configuration files with  
needed options can be generated from PPC3 to prevent invalid configurations.  
9.6.1 Register Map Summary  
9.6.1.1 Register Summary Table Book=0x00 Page=0x00  
Addr  
0x00  
0x01  
0x04  
0x05  
0x06  
Register  
Description  
Section  
PAGE  
Page Select  
Software Reset  
Power Up 1  
Power Up 2  
PAGE (book=0x00 page=0x02 address=0x00) [reset=1h]  
RESET (book=0x00 page=0x00 address=0x01) [reset=0h]  
POWER_1 (book=0x00 page=0x00 address=0x04) [reset=0h]  
POWER_2 (book=0x00 page=0x00 address=0x05) [reset=0h]  
RESET  
POWER_1  
POWER_2  
SPK_GAIN_EDGE  
Class-D Speaker Configuration  
SPK_GAIN_EDGE (book=0x00 page=0x00 address=0x06)  
[reset=0h]  
0x07  
0x08  
0x09  
MUTE  
Mute Configuration  
Sense Channel Control  
Boost Control 1  
MUTE (book=0x00 page=0x00 address=0x07) [reset=0h]  
SNS_CTRL (book=0x00 page=0x00 address=0x08) [reset=0h]  
SNS_CTRL  
BOOST_CTRL_1  
BOOST_CTRL_1 (book=0x00 page=0x00 address=0x09)  
[reset=0h]  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
SAR_CTRL_2  
SAR Control 2  
SAR_CTRL_2 (book=0x00 page=0x00 address=0x14)  
[reset=32h]  
SAR_CTRL_3  
SAR Control 3  
SAR_CTRL_3 (book=0x00 page=0x00 address=0x15)  
[reset=4h]  
SAR_VBAT_MSB  
SAR_VBAT_LSB  
SAR_VBST_MSB  
SAR_VBST_LSB  
SAR_TMP1_MSB  
SAR VBAT Readback  
SAR VBAT Readback  
SAR VBOOST Readback  
SAR VBOOST Readback  
SAR TEMP1 Readback  
SAR_VBAT_MSB (book=0x00 page=0x00 address=0x16)  
[reset=0h]  
SAR_VBAT_LSB (book=0x00 page=0x00 address=0x17)  
[reset=0h]  
SAR_VBST_MSB (book=0x00 page=0x00 address=0x18)  
[reset=0h]  
SAR_VBST_LSB (book=0x00 page=0x00 address=0x19)  
[reset=0h]  
SAR_TMP1_MSB (book=0x00 page=0x00 address=0x1A)  
[reset=0h]  
Copyright © 2016–2019, Texas Instruments Incorporated  
39  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Register Map (continued)  
0x1B  
0x1C  
0x1D  
0x20  
0x21  
SAR_TMP1_LSB  
SAR_TMP2_MSB  
SAR_TMP2_LSB  
CRC_CHECKSUM  
CRC_RESET  
SAR TEMP1 Readback  
SAR TEMP2 Readback  
SAR TEMP2 Readback  
Checksum  
SAR_TMP1_LSB (book=0x00 page=0x00 address=0x1B)  
[reset=0h]  
SAR_TMP2_MSB (book=0x00 page=0x00 address=0x1C)  
[reset=0h]  
SAR_TMP2_LSB (book=0x00 page=0x00 address=0x1D)  
[reset=0h]  
CRC_CHECKSUM (book=0x00 page=0x00 address=0x20)  
[reset=0h]  
Checksum Reset  
CRC_RESET (book=0x00 page=0x00 address=0x21)  
[reset=0h]  
0x22  
0x28  
0x2A  
DSP_CTRL  
SSM_CTRL  
ASI_CTRL_1  
DSP Control  
DSP_CTRL (book=0x00 page=0x00 address=0x22) [reset=1h]  
SSM_CTRL (book=0x00 page=0x00 address=0x28) [reset=0h]  
Spread-Spectrum Control  
ASI Control 1  
ASI_CTRL_1 (book=0x00 page=0x00 address=0x2A)  
[reset=0h]  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x32  
BOOST_CTRL_2  
CLOCK_CTRL_1  
CLOCK_CTRL_2  
CLOCK_CTRL_3  
ASI_CTRL_2  
Boost Control 1  
Clock Control 1  
Clock Control 2  
Clock Control 3  
ASI Control 2  
BOOST_CTRL_2 (book=0x00 page=0x00 address=0x2B)  
[reset=3h]  
CLOCK_CTRL_1 (book=0x00 page=0x00 address=0x2C)  
[reset=0h]  
CLOCK_CTRL_2 (book=0x00 page=0x00 address=0x2D)  
[reset=17h]  
CLOCK_CTRL_3 (book=0x00 page=0x00 address=0x2E)  
[reset=0h]  
ASI_CTRL_2 (book=0x00 page=0x00 address=0x2F)  
[reset=0h]  
CLOCK_CTRL_4  
Clock Control 4  
CLOCK_CTRL_4 (book=0x00 page=0x00 address=0x32)  
[reset=0h]  
0x35  
0x64  
DEBUG_1  
Debug Register 1  
Power Up Status  
DEBUG_1 (book=0x00 page=0x00 address=0x35) [reset=0h]  
POWER_STATUS  
POWER_STATUS (book=0x00 page=0x00 address=0x64)  
[reset=0h]  
0x65  
DSP_BOOT_STATUS  
DSP Boost Status  
DSP_BOOT_STATUS (book=0x00 page=0x00 address=0x65)  
[reset=0h]  
0x68  
0x6C  
INT_DET_1  
INT_DET_2  
Interrupt Detected 1  
Interrupt Detected 2  
INT_DET_1 (book=0x00 page=0x00 address=0x68) [reset=0h]  
INT_DET_2 (book=0x00 page=0x00 address=0x6C)  
[reset=0h]  
0x79  
0x7F  
LOW_POWER  
BOOK  
Lower Power Shutdown  
Book Selection  
LOW_POWER (book=0x00 page=0x00 address=0x79)  
[reset=0h]  
BOOK (book=0x00 page=0x00 address=0x7F) [reset=0h]  
9.6.1.2 Register Summary Table Book=0x00 Page=0x01  
Addr  
0x00  
0x01  
Register  
Description  
Section  
PAGE  
Page Select  
ASI1 Format  
PAGE (book=0x00 page=0x02 address=0x00) [reset=1h]  
ASI1_FORMAT  
ASI1_FORMAT (book=0x00 page=0x01 address=0x01)  
[reset=10h]  
0x03  
ASI1_OFFSET_1  
ASI1 Offset  
ASI1_OFFSET_1 (book=0x00 page=0x01 address=0x03)  
[reset=0h]  
0x04  
0x05  
ASI1_OFFSET_2  
ASI1_BUSKEEP  
ASI1 Offset Second Slot  
ASI1 Buskeeper  
ASI1_BUSKEEP (book=0x00 page=0x01 address=0x05)  
[reset=0h]  
0x08  
0x09  
ASI1_BCLK  
ASI1_WCLK  
ASI1 BCLK  
ASI1 WCLK  
ASI1_BCLK (book=0x00 page=0x01 address=0x08) [reset=0h]  
ASI1_WCLK (book=0x00 page=0x01 address=0x09)  
[reset=8h]  
0x0C  
0x0D  
0x0E  
0x0F  
ASI1_DIN_DOUT  
ASI1_BDIV_CLK  
ASI1_BDIV_RATIO  
ASI1_WDIV_RATIO  
ASI1 DIN/DOUT  
ASI1 BDIV Clock  
ASI1 BDIV Ratio  
ASI1 WDIV Ratio  
ASI1_DIN_DOUT (book=0x00 page=0x01 address=0x0C)  
[reset=0h]  
ASI1_BDIV_CLK (book=0x00 page=0x01 address=0x0D)  
[reset=1h]  
ASI1_BDIV_RATIO (book=0x00 page=0x01 address=0x0E)  
[reset=2h]  
ASI1_WDIV_RATIO (book=0x00 page=0x01 address=0x0F)  
[reset=20h]  
40  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
0x10  
0x15  
0x17  
ASI1_CLK_OUT  
ASI2_FORMAT  
ASI2_OFFSET_1  
ASI1 Clock Source  
ASI2 Format  
ASI1_CLK_OUT (book=0x00 page=0x01 address=0x10)  
[reset=0h]  
ASI2_FORMAT (book=0x00 page=0x01 address=0x15)  
[reset=10h]  
ASI2 Offset  
ASI2_OFFSET_1 (book=0x00 page=0x01 address=0x17)  
[reset=0h]  
0x18  
0x19  
ASI2_OFFSET_2  
ASI2_BUSKEEP  
ASI2 Offset Second Slot  
ASI2 Buskeeper  
ASI2_BUSKEEP (book=0x00 page=0x01 address=0x19)  
[reset=0h]  
0x1C  
0x1D  
0x20  
0x21  
0x22  
0x23  
0x24  
0x3D  
ASI2_BCLK  
ASI2 BCLK  
ASI2_BCLK (book=0x00 page=0x01 address=0x1C)  
[reset=20h]  
ASI2_WCLK  
ASI2 WCLK  
ASI2_WCLK (book=0x00 page=0x01 address=0x1D)  
[reset=28h]  
ASI2_DIN_DOUT  
ASI2_BDIV_CLK  
ASI2_BDIV_RATIO  
ASI2_WDIV_RATIO  
ASI2_CLK_OUT  
GPIO1_PIN  
ASI2 DIN/DOUT  
ASI2 BDIV Clock  
ASI2 BDIV Ratio  
ASI2 WDIV Ratio  
ASI2 Clock Source  
GPIO1  
ASI2_DIN_DOUT (book=0x00 page=0x01 address=0x20)  
[reset=38h]  
ASI2_BDIV_CLK (book=0x00 page=0x01 address=0x21)  
[reset=1h]  
ASI2_BDIV_RATIO (book=0x00 page=0x01 address=0x22)  
[reset=2h]  
ASI2_WDIV_RATIO (book=0x00 page=0x01 address=0x23)  
[reset=20h]  
ASI2_CLK_OUT (book=0x00 page=0x01 address=0x24)  
[reset=33h]  
GPIO1_PIN (book=0x00 page=0x01 address=0x3D)  
[reset=1h]  
0x3E  
0x3F  
GPIO2_PIN  
GPIO3_PIN  
GPIO2  
GPIO3  
GPIO2_PIN (book=0x00 page=0x01 address=0x3E) [reset=1h]  
GPIO3_PIN (book=0x00 page=0x01 address=0x3F)  
[reset=10h]  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
GPIO4_PIN  
GPIO5_PIN  
GPIO6_PIN  
GPIO7_PIN  
GPIO8_PIN  
GPIO9_PIN  
GPIO10_PIN  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO4_PIN (book=0x00 page=0x01 address=0x40) [reset=7h]  
GPIO5_PIN (book=0x00 page=0x01 address=0x41) [reset=0h]  
GPIO6_PIN (book=0x00 page=0x01 address=0x42) [reset=0h]  
GPIO7_PIN (book=0x00 page=0x01 address=0x43) [reset=0h]  
GPIO8_PIN (book=0x00 page=0x01 address=0x44) [reset=0h]  
GPIO9_PIN (book=0x00 page=0x01 address=0x45) [reset=0h]  
GPIO10_PIN (book=0x00 page=0x01 address=0x46)  
[reset=0h]  
0x4D  
0x4F  
GPI_PIN  
GPI Pin Mode  
GPIO HiZ 1  
GPI_PIN (book=0x00 page=0x01 address=0x4D) [reset=0h]  
GPIO_HIZ_1  
GPIO_HIZ_1 (book=0x00 page=0x01 address=0x4F)  
[reset=0h]  
0x50  
0x51  
0x52  
0x53  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x60  
0x61  
0x62  
GPIO_HIZ_2  
GPIO HiZ 2  
GPIO_HIZ_2 (book=0x00 page=0x01 address=0x50)  
[reset=0h]  
GPIO_HIZ_3  
GPIO HiZ 3  
GPIO_HIZ_3 (book=0x00 page=0x01 address=0x51)  
[reset=0h]  
GPIO_HIZ_4  
GPIO HiZ 4  
GPIO_HIZ_4 (book=0x00 page=0x01 address=0x52)  
[reset=0h]  
GPIO_HIZ_5  
GPIO HiZ 5  
GPIO_HIZ_5 (book=0x00 page=0x01 address=0x53)  
[reset=0h]  
BIT_BANG_OUT1  
BIT_BANG_OUT2  
BIT_BANG_IN1  
BIT_BANG_IN2  
BIT_BANG_IN3  
ASIM_BUSKEEP  
ASIM_MODE  
Bit Bang Output 1  
Bit Bang Output 2  
Bit Bang Input 1  
Bit Bang Input 2  
Bit Bang Input 3  
ASIM Buskeeper  
ASIM Mode  
BIT_BANG_OUT1 (book=0x00 page=0x01 address=0x58)  
[reset=0h]  
BIT_BANG_OUT2 (book=0x00 page=0x01 address=0x59)  
[reset=0h]  
BIT_BANG_IN1 (book=0x00 page=0x01 address=0x5A)  
[reset=0h]  
BIT_BANG_IN2 (book=0x00 page=0x01 address=0x5B)  
[reset=0h]  
BIT_BANG_IN3 (book=0x00 page=0x01 address=0x5C)  
[reset=0h]  
ASIM_BUSKEEP (book=0x00 page=0x01 address=0x60)  
[reset=0h]  
ASIM_MODE (book=0x00 page=0x01 address=0x61)  
[reset=8h]  
ASIM_NUM_DEV  
ASIM Number Devices  
ASIM_NUM_DEV (book=0x00 page=0x01 address=0x62)  
[reset=0h]  
Copyright © 2016–2019, Texas Instruments Incorporated  
41  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
ASIM_FORMAT  
ASIM Format  
ASIM_FORMAT (book=0x00 page=0x01 address=0x63)  
[reset=10h]  
ASIM_BDIV_CLK  
ASIM_BDIV_RATIO  
ASIM_WDIV_RATIO_1  
ASIM_WDIV_RATIO_2  
ASIM_BCLK  
ASIM BDIV Clock  
ASIM BDIV Ratio  
ASIM WDIV Ratio  
ASIM WDIV Ratio  
ASI1 BCLK  
ASIM_BDIV_CLK (book=0x00 page=0x01 address=0x64)  
[reset=1h]  
ASIM_BDIV_RATIO (book=0x00 page=0x01 address=0x65)  
[reset=2h]  
ASIM_WDIV_RATIO_1 (book=0x00 page=0x01  
address=0x66) [reset=0h]  
ASIM_WDIV_RATIO_2 (book=0x00 page=0x01  
address=0x67) [reset=20h]  
ASIM_BCLK (book=0x00 page=0x01 address=0x68)  
[reset=40h]  
ASIM_WCLK  
ASI1 WCLK  
ASIM_WCLK (book=0x00 page=0x01 address=0x69)  
[reset=38h]  
0x6A  
0x6C  
ASIM_DIN  
ASI1 DIN  
ASIM_DIN (book=0x00 page=0x01 address=0x6A) [reset=70h]  
INT_GEN_1  
Interrupt Generation 1  
INT_GEN_1 (book=0x00 page=0x01 address=0x6C)  
[reset=0h]  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
INT_GEN_2  
Interrupt Generation 2  
Interrupt Generation 3  
Interrupt Generation 4  
Interrupt Generation 5  
Interrupt Generation 6  
Interrupt Indication Mode  
Main Clock Source  
INT_GEN_2 (book=0x00 page=0x01 address=0x6D)  
[reset=0h]  
INT_GEN_3  
INT_GEN_3 (book=0x00 page=0x01 address=0x6E)  
[reset=0h]  
INT_GEN_4  
INT_GEN_4 (book=0x00 page=0x01 address=0x6F)  
[reset=0h]  
INT_GEN_5  
INT_GEN_5 (book=0x00 page=0x01 address=0x70)  
[reset=0h]  
INT_GEN_6  
INT_GEN_6 (book=0x00 page=0x01 address=0x71)  
[reset=0h]  
INT_IND_MODE  
MAIN_CLK_PIN  
PLL_CLK_PIN  
CLKOUT_MUX  
CLKOUT_CDIV_RATIO  
INT_IND_MODE (book=0x00 page=0x01 address=0x72)  
[reset=0h]  
MAIN_CLK_PIN (book=0x00 page=0x01 address=0x73)  
[reset=Dh]  
PLL Clock Source  
PLL_CLK_PIN (book=0x00 page=0x01 address=0x74)  
[reset=Dh]  
CDIV_CLKIN Clock Source  
CLKOUT CDIV Ratio  
CLKOUT_MUX (book=0x00 page=0x01 address=0x75)  
[reset=Dh]  
CLKOUT_CDIV_RATIO (book=0x00 page=0x01  
address=0x76) [reset=1h]  
0x7C  
0x7D  
I2C_MISC  
I2C Misc  
I2C_MISC (book=0x00 page=0x01 address=0x7C) [reset=0h]  
DEVICE_ID  
Device ID  
DEVICE_ID (book=0x00 page=0x01 address=0x7D)  
[reset=12h]  
9.6.1.3 Register Summary Table Book=0x00 Page=0x02  
Addr  
0x00  
0x06  
Register  
Description  
Section  
PAGE  
Page Select  
PAGE (book=0x00 page=0x02 address=0x00) [reset=1h]  
RAMP_CTRL  
Class-D Ramp Control  
RAMP_CTRL (book=0x00 page=0x02 address=0x06)  
[reset=0h]  
0x09  
PROTECTION_CFG  
Configures the Devices Protection Blocks  
PROTECTION_CFG (book=0x00 page=0x02 address=0x09)  
[reset=3h]  
9.6.2 Register Maps  
9.6.2.1 PAGE (book=0x00 page=0x00 address=0x00) [reset=0h]  
Selects the page for the next read or write.  
Figure 43. PAGE Register Address: 0x00  
7
6
5
4
3
2
1
0
PAGE[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
42  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 23. Page Select Field Descriptions  
Bit  
Field  
PAGE[7:0]  
Type  
Reset  
Description  
Selects the Register Page for the next read or write command  
7-0  
RW  
0h  
9.6.2.2 RESET (book=0x00 page=0x00 address=0x01) [reset=0h]  
Controls the software reset  
Figure 44. RESET Register Address: 0x01  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
RESET  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. Software Reset Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
RESET  
Reserved  
RW  
0h  
0 = Don't care  
1 = Self clearing software reset  
9.6.2.3 POWER_1 (book=0x00 page=0x00 address=0x04) [reset=0h]  
This register controls device power up  
Figure 45. POWER_1 Register Address: 0x04  
7
6
5
4
3
2
1
0
PWR_DSP  
RW-0h  
PWR_PLL  
RW-0h  
PWR_NDIV  
RW-0h  
PWR_MDAC  
RW-0h  
PWR_MADC  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
PWR_ERR  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Power Up 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWR_DSP  
RW  
0h  
DSP is  
0 = Powered-down  
1 = Powered-up  
6
5
4
3
PWR_PLL  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
PLL is  
0 = Powered-down  
1 = Powered-up  
PWR_NDIV  
PWR_MDAC  
PWR_MADC  
NDIV is  
0 = Powered-down  
1 = Powered-up  
MDAC is  
0 = Powered-down  
1 = Powered-up  
MADC is  
0 = Powered-down  
1 = Powered-up  
2
1
0
Reserved  
Reserved  
PWR_ERR  
RW  
RW  
RW  
0h  
0h  
0h  
Reserved  
Reserved  
Reports when a VBAT brownout or clock halt condition was  
detected. When this is detected several internal blocks are  
powered down. This register must be cleared first before re-  
power device. Reason for error is indicated in interrupt register.  
0 = No error condition  
1 = Error condition detected  
Copyright © 2016–2019, Texas Instruments Incorporated  
43  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.6.2.4 POWER_2 (book=0x00 page=0x00 address=0x05) [reset=0h]  
This register controls device power up  
Figure 46. POWER_2 Register Address: 0x05  
7
6
5
4
3
2
1
0
PWR_SPK  
RW-0h  
Reserved  
RW-0h  
PWR_BOOST  
RW-0h  
Reserved  
RW-0h  
PWR_ISNS  
RW-0h  
PWR_VSNS  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. Power Up 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWR_SPK  
RW  
0h  
Class-D output is  
0 = Powered-down  
1 = Powered-up  
6
5
Reserved  
RW  
RW  
0h  
0h  
Reserved  
PWR_BOOST  
Boost is  
0 = Powered-down  
1 = Powered-up  
4-2  
1
Reserved  
RW  
RW  
0h  
0h  
Reserved  
PWR_ISNS  
Current-sense ADC is  
0 = Powered-down  
1 = Powered-up  
0
PWR_VSNS  
RW  
0h  
Voltage-sense ADC is  
0 = Powered-down  
1 = Powered-up  
9.6.2.5 SPK_GAIN_EDGE (book=0x00 page=0x00 address=0x06) [reset=0h]  
This register controls the DAC gain and edge rate control.  
Figure 47. SPK_GAIN_EDGE Register Address: 0x06  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
DAC_GAIN[3:0]  
RW-0h  
EDGE_RATE[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. Class-D Speaker Configuration Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
DAC_GAIN[3:0]  
Reserved  
6-3  
RW  
0h  
DAC gain is  
0 = 0db  
1 = 1db  
2 = 2db  
...  
14 = 14db  
15 = 15db  
2-0  
EDGE_RATE[2:0]  
RW  
0h  
Class-D output edge rate control is  
0 = 50ns  
1 = 40ns  
2 = 29ns  
3 = 25ns  
4 = 14ns  
5 = 13ns  
6 = 12ns  
7 = 11ns  
44  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.6.2.6 MUTE (book=0x00 page=0x00 address=0x07) [reset=0h]  
This register controls muting of various system blocks.  
Figure 48. MUTE Register Address: 0x07  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
MUTE_ISNS  
RW-0h  
MUTE_VSNS  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. Mute Configuration Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MUTE_ISNS  
6
0h  
5
0h  
4-3  
2
0h  
0h  
1
0h  
Current-sense is  
0 = Unmuted  
1 = Muted  
0
MUTE_VSNS  
RW  
0h  
Voltage-sense is  
0 = Unmuted  
1 = Muted  
9.6.2.7 SNS_CTRL (book=0x00 page=0x00 address=0x08) [reset=0h]  
This register controls the full scale values of current and voltage sense channels.  
Figure 49. SNS_CTRL Register Address: 0x08  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
ISNS_SCALE[1:0]  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. Sense Channel Control Field Descriptions  
Bit  
7-6  
5-4  
3
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ISNS_SCALE[1:0]  
0h  
0h  
2-1  
0h  
Sets the current and voltage sense input range for various  
speaker loads. Select the value closet to the nominal load.  
0 = 8 ohm load, i-sense full-scale: 1.25A  
1 = 6 ohm load, i-sense full-scale: 1.5A  
2 = 4 ohm load, i-sense full-scale: 1.75A  
0
Reserved  
RW  
0h  
Reserved  
9.6.2.8 BOOST_CTRL_1 (book=0x00 page=0x00 address=0x09) [reset=0h]  
This register controls the boost operation.  
Figure 50. BOOST_CTRL_1 Register Address: 0x09  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
BST_MODE  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
45  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 30. Boost Control 1 Field Descriptions  
Bit  
7-6  
5-4  
3-2  
1
Field  
Type  
RW  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BST_MODE  
0h  
0h  
0h  
0
0h  
Contols the boost operation mode.  
0 = Class-H operation using multi-levels.  
1 = Class-G operation using one level turned on and off as  
needed.  
9.6.2.9 SAR_CTRL_2 (book=0x00 page=0x00 address=0x14) [reset=32h]  
This register controls the SAR ADC repeat interval, readback register halt, mode, and power state.  
Figure 51. SAR_CTRL_2 Register Address: 0x14  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
SAR_RPT[2:0]  
RW-3h  
SAR_RBH  
RW-0h  
SAR_MODE[1:0]  
RW-1h  
SAR_PWR  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. SAR Control 2 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
SAR_RPT[2:0]  
Reserved  
6-4  
RW  
3h  
The SAR ADC repeat interval is  
0 = 0 us  
1 = 50 us  
2 = 250 us  
3 = 1 ms  
4 = 5 ms  
5 = 25 ms  
6 = 100 ms  
7 = 1 s  
3
2-1  
0
SAR_RBH  
RW  
RW  
RW  
0h  
1h  
0h  
Updates to SAR readback registers halt. The readback registers  
should be halted while read to avoid data corruptions issues  
from new SAR conversions.  
0 = SAR updates readback registers  
1 = SAR updates halted  
SAR_MODE[1:0]  
SAR_PWR  
Configures the SAR ADC mode of operation  
0 = One-shot mode  
1 = Repeated scan mode  
2 = DSP triggered mode  
3 = Reserved  
SAR ADC is  
0 = Powered-down  
1 = Powered-up  
9.6.2.10 SAR_CTRL_3 (book=0x00 page=0x00 address=0x15) [reset=4h]  
This register controls the SAR ADC inputs.  
Figure 52. SAR_CTRL_3 Register Address: 0x15  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
SAR_INVBT  
RW-1h  
SAR_INVBO  
RW-0h  
SAR_INTMP  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
46  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 32. SAR Control 3 Field Descriptions  
Bit  
7-4  
3
Field  
Type  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
SAR_INVBT  
Reserved  
Reserved  
0h  
2
1h  
SAR VBAT measurement is  
0 = disabled  
1 = enabled  
1
0
SAR_INVBO  
SAR_INTMP  
RW  
RW  
0h  
0h  
SAR VBOOST measurement is  
0 = disabled  
1 = enabled  
SAR temperature measurement is  
0 = disabled  
1 = enabled  
9.6.2.11 SAR_VBAT_MSB (book=0x00 page=0x00 address=0x16) [reset=0h]  
This register contains the VBAT measurement.  
Figure 53. SAR_VBAT_MSB Register Address: 0x16  
7
6
5
4
3
2
1
0
SR_VBAT[9:2]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. SAR VBAT Readback Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
VBAT Measured data by SAR ADC[9:2]  
7--2  
SR_VBAT[9:0]  
R
0h  
9.6.2.12 SAR_VBAT_LSB (book=0x00 page=0x00 address=0x17) [reset=0h]  
This register contains the VBAT measurement.  
Figure 54. SAR_VBAT_LSB Register Address: 0x17  
7
6
5
4
3
2
1
0
SR_VBAT[1:0]  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. SAR VBAT Readback Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
SR_VBAT[1:0]  
Reserved  
VBAT Measured data by SAR ADC[1:0]  
Reserved  
R
0h  
9.6.2.13 SAR_VBST_MSB (book=0x00 page=0x00 address=0x18) [reset=0h]  
This register contains the VBOOST measurement.  
Figure 55. SAR_VBST_MSB Register Address: 0x18  
7
6
5
4
3
2
1
0
SR_VBST[9:2]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
47  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 35. SAR VBOOST Readback Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7--2  
SR_VBST[9:0]  
R
0h  
VBOOST Measured data by SAR ADC[9:2]  
9.6.2.14 SAR_VBST_LSB (book=0x00 page=0x00 address=0x19) [reset=0h]  
This register contains the VBOOST measurement.  
Figure 56. SAR_VBST_LSB Register Address: 0x19  
7
6
5
4
3
2
1
0
SR_VBST[1:0]  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. SAR VBOOST Readback Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
SR_VBST[1:0]  
Reserved  
VBOOST Measured data by SAR ADC[1:0]  
Reserved  
R
0h  
9.6.2.15 SAR_TMP1_MSB (book=0x00 page=0x00 address=0x1A) [reset=0h]  
This register contains the TEMP1 measurement.  
Figure 57. SAR_TMP1_MSB Register Address: 0x1A  
7
6
5
4
3
2
1
0
SR_TMP1[9:2]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. SAR TEMP1 Readback Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TEMP1 Measured data by SAR ADC[9:2]  
7--2  
SR_TMP1[9:0]  
R
0h  
9.6.2.16 SAR_TMP1_LSB (book=0x00 page=0x00 address=0x1B) [reset=0h]  
This register contains the TEMP1 measurement.  
Figure 58. SAR_TMP1_LSB Register Address: 0x1B  
7
6
5
4
3
2
1
0
SR_TMP1[1:0]  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. SAR TEMP1 Readback Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
SR_TMP1[1:0]  
Reserved  
TEMP1 Measured data by SAR ADC[1:0]  
Reserved  
R
0h  
9.6.2.17 SAR_TMP2_MSB (book=0x00 page=0x00 address=0x1C) [reset=0h]  
This register contains the TEMP2 measurement.  
48  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Figure 59. SAR_TMP2_MSB Register Address: 0x1C  
7
6
5
4
3
2
1
0
SR_TMP2[9:2]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. SAR TEMP2 Readback Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TEMP2 Measured data by SAR ADC[9:2]  
7--2  
SR_TMP2[9:0]  
R
0h  
9.6.2.18 SAR_TMP2_LSB (book=0x00 page=0x00 address=0x1D) [reset=0h]  
This register contains the TEMP2 measurement.  
Figure 60. SAR_TMP2_LSB Register Address: 0x1D  
7
6
5
4
3
2
1
0
SR_TMP2[1:0]  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. SAR TEMP2 Readback Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
SR_TMP2[1:0]  
Reserved  
TEMP2 Measured data by SAR ADC[1:0]  
Reserved  
R
0h  
9.6.2.19 CRC_CHECKSUM (book=0x00 page=0x00 address=0x20) [reset=0h]  
Hold the running CRC8 checksum of I2C transactions  
Figure 61. CRC_CHECKSUM Register Address: 0x20  
7
6
5
4
3
2
1
0
CRC_VAL[7:0]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 41. Checksum Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current CRC value ot all I2C transactions  
7-0  
CRC_VAL[7:0]  
R
0h  
9.6.2.20 CRC_RESET (book=0x00 page=0x00 address=0x21) [reset=0h]  
This register is used to reset the CRC checksum.  
Figure 62. CRC_RESET Register Address: 0x21  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
CRC_RST  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
49  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 42. Checksum Reset Field Descriptions  
Bit  
7-1  
0
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
CRC_RST  
Reserved  
RW  
0h  
This self clearing bit is used to reset the CRC checksum. This is  
recommended to be done before PRAM code download. After  
download the checksum value can be read to confirm download  
process had any errors or was successful.  
0 = normal CRC operation  
1 = reset CRC and clear  
9.6.2.21 DSP_CTRL (book=0x00 page=0x00 address=0x22) [reset=1h]  
This controls the booting mode of the DSP  
Figure 63. DSP_CTRL Register Address: 0x22  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
DSP_MODE[3:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 43. DSP Control Field Descriptions  
Bit  
7-6  
5
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DSP_MODE[3:0]  
0h  
4
0h  
3-0  
1h  
DSP boot in mode  
0 = Reserved  
1 = PCM input playback only  
2 = PCM input playback and IV-sense output  
3 = Smart Amp  
4 = Smart Amp w/ voice on ASI2  
5-15 = Reserved  
9.6.2.22 SSM_CTRL (book=0x00 page=0x00 address=0x28) [reset=0h]  
This enables spread-spectrum mode.  
Figure 64. SSM_CTRL Register Address: 0x28  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
SSM_EN  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 44. Spread-Spectrum Control Field Descriptions  
Bit  
7-1  
0
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
SSM_EN  
Reserved  
RW  
0h  
Enables spread-specturm mode of the modulator. Ramp clock  
must be using internal clock not sync mode. This is set in  
B100_P0_R40  
0 = disabled  
1 = enabled  
9.6.2.23 ASI_CTRL_1 (book=0x00 page=0x00 address=0x2A) [reset=0h]  
This register configures the ASI stereo input modes and soft stepping for mute.  
50  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Figure 65. ASI_CTRL_1 Register Address: 0x2A  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI2_CH[1:0]  
RW-0h  
ASI1_CH[1:0]  
RW-0h  
MUTE_SS  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 45. ASI Control 1 Field Descriptions  
Bit  
7-5  
4-3  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASI2_CH[1:0]  
Reserved  
RW  
0h  
Configures the ASI2 input to use  
0 = left channel  
1 = right channel  
2 = (left + right) / 2  
3 = monoPCM  
2-1  
0
ASI1_CH[1:0]  
MUTE_SS  
RW  
RW  
0h  
0h  
Configures the ASI1 input to use  
0 = left channel  
1 = right channel  
2 = (left + right) / 2  
3 = monoPCM  
When muting and un-muting the channel the audio playback is  
soft stepped.  
0 = enable  
1 = disable  
9.6.2.24 BOOST_CTRL_2 (book=0x00 page=0x00 address=0x2B) [reset=3h]  
This register controls the boost operation.  
Figure 66. BOOST_CTRL_2 Register Address: 0x2B  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
BST_ILIM[1:0]  
RW-3h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 46. Boost Control 1 Field Descriptions  
Bit  
7-4  
3
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BST_ILIM[1:0]  
0h  
2
0h  
1-0  
3h  
Boost current limit  
0 = 1.5A  
1 = 2.0A  
2 = 2.5A  
3 = 3.0A  
9.6.2.25 CLOCK_CTRL_1 (book=0x00 page=0x00 address=0x2C) [reset=0h]  
Configures the clock error detection handling  
Figure 67. CLOCK_CTRL_1 Register Address: 0x2C  
7
6
5
4
3
2
1
0
DSP_RSTM  
RW-0h  
Reserved  
RW-0h  
CE1_SM  
RW-0h  
CE1_IC  
RW-0h  
CE2_IC[1:0]  
RW-0h  
CE1_EN  
RW-0h  
CE2_EN  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
51  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 47. Clock Control 1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
Reset  
0h  
Description  
0 = Reserved  
Reserved  
DSP_RSTM  
Reserved  
CE1_SM  
6
0h  
5
0h  
When clock error1 is detected do soft mute using  
0 = hardware mute sequence  
1 = DSP mute sequence  
4
CE1_IC  
RW  
RW  
0h  
0h  
Clock error detection block 1 input clock is  
0 = ASI1  
1 = ASI2  
3-2  
CE2_IC[1:0]  
Clock error detection block 2 input clock is  
0 = DAC modulator clock  
1 = ADC modulator clock  
2 = PLL clock  
3 = reserved  
1
0
CE1_EN  
CE2_EN  
RW  
RW  
0h  
0h  
Clock error detection block 1 is  
0 = disabled  
1 = enabled  
Clock error detection block 2 is  
0 = disabled  
1 = enabled  
9.6.2.26 CLOCK_CTRL_2 (book=0x00 page=0x00 address=0x2D) [reset=17h]  
Configures the clock error detection timeouts  
Figure 68. CLOCK_CTRL_2 Register Address: 0x2D  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-2h  
CE1_STO[2:0]  
RW-7h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 48. Clock Control 2 Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CE1_STO[2:0]  
6
0h  
5-3  
2-0  
2h  
7h  
Clock error detection block 1 will shutdown the device and set  
signal PWR_ERR if a clock input does not occur for  
0 = 2.73 ms  
1 = 22 ms  
2 = 44 ms  
3 = 87ms  
4 = 174 ms  
5 = 350 ms  
6 = 700 ms  
7 = 1.4s  
9.6.2.27 CLOCK_CTRL_3 (book=0x00 page=0x00 address=0x2E) [reset=0h]  
Configures the clock error detection timeouts  
Figure 69. CLOCK_CTRL_3 Register Address: 0x2E  
7
6
5
4
3
2
1
0
CE2_DRR[1:0]  
RW-0h  
Reserved  
RW-0h  
CE2_STO[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
52  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 49. Clock Control 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CE2_DRR[1:0]  
RW  
0h  
For clock error detection block 2 gain ramp-down for DAC  
channel is  
0 = 15 us per dB  
1 = 30 us per dB  
2 = 60 us per dB  
3 = 120 us per dB  
5-3  
2-0  
Reserved  
RW  
RW  
0h  
0h  
Reserved  
CE2_STO[2:0]  
Clock error detection block 2 will shutdown the device and set  
signal PWR_ERR if a clock input does not occur for  
0 = 2.73 ms  
1 = 22 ms  
2 = 44 ms  
3 = 87ms  
4 = 174 ms  
5 = 350 ms  
6 = 700 ms  
7 = 1.4s  
9.6.2.28 ASI_CTRL_2 (book=0x00 page=0x00 address=0x2F) [reset=0h]  
This register sets the PCM sampling rate.  
Figure 70. ASI_CTRL_2 Register Address: 0x2F  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
ASI_SR[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 50. ASI Control 2 Field Descriptions  
Bit  
7-3  
2
Field  
Type  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
ASI_SR[1:0]  
0h  
1-0  
0h  
Sets the sampling rate of the ASI input data in PCM mode to  
0 = 8kHz  
1 = 16kHz  
2 = 48 kHz  
3 = 96kHz  
9.6.2.29 CLOCK_CTRL_4 (book=0x00 page=0x00 address=0x32) [reset=0h]  
Configures the clock error detection recovery  
Figure 71. CLOCK_CTRL_4 Register Address: 0x32  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
CE2_RM  
RW-0h  
CE1_RM  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 51. Clock Control 4 Field Descriptions  
Bit  
7-2  
1
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
CE2_RM  
Reserved  
RW  
0h  
Device automatic recovery when clock error occurs on clock  
error block 2  
0 = enabled  
1 = disabled  
Copyright © 2016–2019, Texas Instruments Incorporated  
53  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 51. Clock Control 4 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
CE1_RM  
RW  
0h  
Device automatic recovery when clock error occurs on clock  
error block 1  
0 = enabled  
1 = disabled  
9.6.2.30 DEBUG_1 (book=0x00 page=0x00 address=0x35) [reset=0h]  
Debug Register 1  
Figure 72. DEBUG_1 Register Address: 0x35  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
DPU_FRC  
RW-0h  
TM_I2V  
RW-0h  
INTG1_EN  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 52. Debug Register 1 Field Descriptions  
Bit  
7-3  
2
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
DPU_FRC  
Reserved  
RW  
0h  
0 = don't force power down of dummy power up  
1 = force power down of dummy power up (use this if dummy  
power up scheme is going to a hang state)  
1
0
TM_I2V  
RW  
RW  
0h  
0h  
cont_tm_i2v_startup_en  
enz_intg1_clamping  
INTG1_EN  
9.6.2.31 POWER_STATUS (book=0x00 page=0x00 address=0x64) [reset=0h]  
This reports the blocks power state  
Figure 73. POWER_STATUS Register Address: 0x64  
7
6
5
4
3
2
1
0
PUS_DAC  
R-0h  
PUS_SPK  
R-0h  
PUS_BST  
R-0h  
PUS_BPT  
R-0h  
PUS_ISNS  
R-0h  
PUS_VSNS  
R-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 53. Power Up Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PUS_DAC  
R
0h  
DAC is  
0 = powered down  
1 = powered up  
6
5
PUS_SPK  
PUS_BST  
PUS_BPT  
PUS_ISNS  
PUS_VSNS  
Reserved  
R
0h  
0h  
0h  
0h  
0h  
0h  
Class-D output is  
0 = powered down  
1 = powered up  
R
Boost is  
0 = powered down  
1 = powered up  
4
R
Boost pass-thru is  
0 = disabled  
1 = enabled  
3
R
Current-sense ADC is  
0 = powered down  
1 = powered up  
2
R
Voltage-sense ADC is  
0 = powered down  
1 = powered up  
1-0  
RW  
Reserved  
54  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.6.2.32 DSP_BOOT_STATUS (book=0x00 page=0x00 address=0x65) [reset=0h]  
Reports the status of the DSP booting.  
Figure 74. DSP_BOOT_STATUS Register Address: 0x65  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
DSP_BS  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 54. DSP Boost Status Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
DSP_BS  
Reserved  
R
0h  
The DSP booting is  
0 = completed; Host can write coefficient memories  
0 = in progress ; Host cannot write coefficient memories  
1-0  
Reserved  
R
0h  
Reserved  
9.6.2.33 INT_DET_1 (book=0x00 page=0x00 address=0x68) [reset=0h]  
Sticky register used to indicate the source of an interrupt trigger. Register is cleared once read.  
Figure 75. INT_DET_1 Register Address: 0x68  
7
6
5
4
3
2
1
0
INT_OC  
R-0h  
INT_UV  
R-0h  
Reserved  
R-0h  
INT_OT  
R-0h  
INT_BO  
R-0h  
INT_CL  
R-0h  
INT_SC  
R-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 55. Interrupt Detected 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_OC  
R
0h  
Sticky bit indicating that speaker over current condition  
0 = did not occurred since last read  
1 = occurred since last read  
6
INT_UV  
R
0h  
Sticky bit indicating that analog under voltage condition  
0 = did not occurred since last read  
1 = occurred since last read  
5
4
Reserved  
INT_OT  
R
R
0h  
0h  
Reserved  
Sticky bit indicating that die over-temperature condition  
0 = did not occurred since last read  
1 = occurred since last read  
3
2
1
0
INT_BO  
INT_CL  
INT_SC  
Reserved  
R
0h  
0h  
0h  
0h  
Sticky bit indicating that brownout condition  
0 = did not occurred since last read  
1 = occurred since last read  
R
Sticky bit indicating that the clock is lost condition  
0 = did not occurred since last read  
1 = occurred since last read  
R
Sticky bit indicating that the SAR complete condition  
0 = did not occurred since last read  
1 = occurred since last read  
RW  
Reserved  
9.6.2.34 INT_DET_2 (book=0x00 page=0x00 address=0x6C) [reset=0h]  
Sticky register used to indicate the source of an interrupt trigger. Register is cleared once read.  
Copyright © 2016–2019, Texas Instruments Incorporated  
55  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Figure 76. INT_DET_2 Register Address: 0x6C  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
INT_CLK1  
R-0h  
INT_CLK2  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 56. Interrupt Detected 2 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
INT_CLK1  
6
R
0h  
5
R
0h  
4
R
0h  
3
R
0h  
Sticky bit indicating that clock error 1 condition  
0 = did not occurred since last read  
1 = occurred since last read  
2
INT_CLK2  
R
0h  
Sticky bit indicating that the clock error 2 condition  
0 = did not occurred since last read  
1 = occurred since last read  
1
0
Reserved  
Reserved  
R
R
0h  
0h  
Reserved  
Reserved  
9.6.2.35 LOW_POWER (book=0x00 page=0x00 address=0x79) [reset=0h]  
Configures the low power shutdown mode.  
Figure 77. LOW_POWER Register Address: 0x79  
7
6
5
4
3
2
1
0
VBAT_POR  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 57. Lower Power Shutdown Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VBAT_POR  
RW  
0h  
Disable POR and enter lower power mode. The AVDD and  
VBATT must be present when this mode is used. Low power is  
0 = disabled  
1 = enabled  
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
9.6.2.36 BOOK (book=0x00 page=0x00 address=0x7F) [reset=0h]  
Book Selection  
Figure 78. BOOK Register Address: 0x7F  
7
6
5
4
3
2
1
0
BOOK[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
56  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 58. Book Selection Field Descriptions  
Bit  
Field  
BOOK[7:0]  
Type  
Reset  
Description  
7-0  
RW  
0h  
Set the device book  
0 = Book 0  
1 = Book 1  
...  
255 = Book 255  
9.6.2.37 PAGE (book=0x00 page=0x01 address=0x00) [reset=1h]  
Selects the page for the next read or write.  
Figure 79. PAGE Register Address: 0x00  
7
6
5
4
3
2
1
0
PAGE[7:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 59. Page Select Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects the Register Page for the next read or write command  
7-0  
PAGE[7:0]  
RW  
1h  
9.6.2.38 ASI1_FORMAT (book=0x00 page=0x01 address=0x01) [reset=10h]  
Configures the ASI1 format, wordlength, and tristate.  
Figure 80. ASI1_FORMAT Register Address: 0x01  
7
6
5
4
3
2
1
0
ASI1_MODE[2:0]  
ASI1_LENGTH[1:0]  
Reserved  
RW-0h  
ASI1_TRISTAT  
E
RW-0h  
RW-2h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 60. ASI1 Format Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
ASI1_MODE[2:0]  
RW  
0h  
The ASI1 Input mode format is set to  
0 = I2S  
1 = DSP  
2 = RJF , For non-zero values of ASI1_OFFSET1, LJF is  
preferred  
3 = LJF  
4 = MonoPCM  
5-15 = Reserved  
4-3  
ASI1_LENGTH[1:0]  
RW  
2h  
Sets the ASI1 input word-length to  
0 = 16bits  
1 = 20bits  
2 = 24bits  
3 = 32bits  
2-1  
0
Reserved  
RW  
RW  
0h  
0h  
Reserved  
ASI1_TRISTATE  
Tri-stating of DOUT for the extra ASI1_BCLK cycles after Data  
Transfer is over for a frame is  
0 = Disabled  
1 = Enabled  
9.6.2.39 ASI1_OFFSET_1 (book=0x00 page=0x01 address=0x03) [reset=0h]  
Configures the ASI input offset. Offset is measured with respect to WCLK-rising edge in DSP Mode. Offset is not  
supported for RJF mode  
Copyright © 2016–2019, Texas Instruments Incorporated  
57  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Figure 81. ASI1_OFFSET_1 Register Address: 0x03  
7
6
5
4
3
2
1
0
ASI1_OFFSET1[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 61. ASI1 Offset Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ASI1_OFFSET1[7:0]  
RW  
0h  
ASI1_OFFSET1[7:0]  
9.6.2.40 ASI1_BUSKEEP (book=0x00 page=0x01 address=0x05) [reset=0h]  
Configures the buskeeper operation.  
Figure 82. ASI1_BUSKEEP Register Address: 0x05  
7
6
5
4
3
2
1
0
ASI1_BKP  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 62. ASI1 Buskeeper Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI1_BKP  
RW  
0h  
Bus keep power down when DOUT is tri-stated to save IO  
power is  
0 = disabled  
1 = enabled  
6-0  
Reserved  
RW  
0h  
Reserved  
9.6.2.41 ASI1_BCLK (book=0x00 page=0x01 address=0x08) [reset=0h]  
Configures the bit clock pin, timing, and free running mode  
Figure 83. ASI1_BCLK Register Address: 0x08  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI1_BCLK[3:0]  
RW-0h  
Reserved  
RW-0h  
ASI1_BCT  
RW-0h  
ASI1_FRM  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 63. ASI1 BCLK Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASI1_BCLK[3:0]  
Reserved  
6-3  
RW  
0h  
ASI1 BCLK input is from  
0 = GPIO1 (Preferred pin usage)  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2
Reserved  
RW  
0h  
Reserved  
58  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 63. ASI1 BCLK Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
ASI1_BCT  
RW  
0h  
ASI1 BCLK timing as per timing protocol is  
0 = normal  
1 = inverted  
0
ASI1_FRM  
RW  
0h  
ASI1 BLCK and WCLK are  
0 = active in output modes only when ASI1 is active and codec  
is powered up  
1 = is free-running  
9.6.2.42 ASI1_WCLK (book=0x00 page=0x01 address=0x09) [reset=8h]  
Configures the word clock pin and timing  
Figure 84. ASI1_WCLK Register Address: 0x09  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI1_WCLK[3:0]  
RW-1h  
Reserved  
RW-0h  
ASI1_WCT  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 64. ASI1 WCLK Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-3  
ASI1_WCLK[3:0]  
RW  
1h  
ASI1 WCLK input is from  
0 = GPIO1  
1 = GPIO2 (Preferred pin usage)  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2
1
Reserved  
RW  
RW  
0h  
0h  
Reserved  
ASI1_WCT  
ASI1 WCLK timing as per timing protocol is  
0 = normal  
1 = inverted  
0
Reserved  
RW  
0h  
Reserved  
9.6.2.43 ASI1_DIN_DOUT (book=0x00 page=0x01 address=0x0C) [reset=0h]  
Configures the digital input and output ports.  
Figure 85. ASI1_DIN_DOUT Register Address: 0x0C  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI1_DIN[3:0]  
RW-0h  
Reserved  
RW-0h  
ASI1_DOUT[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
59  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 65. ASI1 DIN/DOUT Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASI1_DIN[3:0]  
Reserved  
6-3  
RW  
0h  
ASI1 DIN input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1 (Preferred pin usage)  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2
Reserved  
RW  
RW  
0h  
0h  
Reserved  
1-0  
ASI1_DOUT[1:0]  
ASI1 DOUT output is  
0 = DOUT path, output buffer enabled only if i-sense is powered  
up  
1 = ASI1_DIN, loopback  
2 = ASI2_DIN, loopback  
3 = DOUT path, output buffer enable controlled only based on  
ASI1 configuration  
9.6.2.44 ASI1_BDIV_CLK (book=0x00 page=0x01 address=0x0D) [reset=1h]  
Selects the BDIV clock source  
Figure 86. ASI1_BDIV_CLK Register Address: 0x0D  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI1_BDIV_SRC[2:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 66. ASI1 BDIV Clock Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
ASI1_BDIV_SRC[2:0]  
RW  
1h  
ASI1 bit clock divider (BDIV) source is  
0 = NDIV_CLK (Generated On-Chip)  
1 = DAC_MOD_CLK (Generated On-Chip)  
2 = Reserved  
3 = ADC_MOD_CLK (Generated On-Chip)  
4 = ASI1_DAC_BCLK (at pin)  
5 = Reserved  
6 = ASI2_DAC_BCLK (at pin)  
7 = Reserved  
9.6.2.45 ASI1_BDIV_RATIO (book=0x00 page=0x01 address=0x0E) [reset=2h]  
Configure the BDIV ratio and power.  
Figure 87. ASI1_BDIV_RATIO Register Address: 0x0E  
7
6
5
4
3
2
1
0
ASI1_BDIV_P  
WR  
ASI1_BDIV_RTO[6:0]  
RW-0h  
RW-2h  
60  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 67. ASI1 BDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI1_BDIV_PWR  
RW  
0h  
The ASI1 BDIV divider is  
0 = powered down  
1 = powered up  
6-0  
ASI1_BDIV_RTO[6:0]  
RW  
2h  
The ASI1 BDIV ratio is  
0 = 128  
1 = 1  
2 = 2  
...  
126 = 126  
127 = 127  
9.6.2.46 ASI1_WDIV_RATIO (book=0x00 page=0x01 address=0x0F) [reset=20h]  
Configure the WDIV ratio and power.  
Figure 88. ASI1_WDIV_RATIO Register Address: 0x0F  
7
6
5
4
3
2
1
0
ASI1_WDIV_P  
WR  
ASI1_WDIV_RTO[6:0]  
RW-0h  
RW-20h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 68. ASI1 WDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI1_WDIV_PWR  
RW  
0h  
The ASI1 WDIV divider is  
0 = powered down  
1 = powered up  
6-0  
ASI1_WDIV_RTO[6:0]  
RW  
20h  
The ASI1 WDIV ratio is  
0 = 128  
1 = 1  
2 = 2  
...  
126 = 126  
127 = 127  
9.6.2.47 ASI1_CLK_OUT (book=0x00 page=0x01 address=0x10) [reset=0h]  
Configures the clock source for BCLK and WCLK  
Figure 89. ASI1_CLK_OUT Register Address: 0x10  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI1_BCLKS[2:0]  
RW-0h  
Reserved  
RW-0h  
ASI1_WCLKS[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 69. ASI1 Clock Source Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
ASI1_BCLKS[2:0]  
RW  
0h  
ASI1 bit clock(BCLK) output source is  
0 = ASI1 BDIV divider output  
1 = ASI1 DAC clock  
2 = Reserved  
3 = ASI2 BDIV divider output  
4 = ASI2 DAC clock  
5=15 = Reserved  
3
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
61  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 69. ASI1 Clock Source Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
ASI1_WCLKS[2:0]  
RW  
0h  
ASI1 bit clock(WCLK) output source is  
0 = ASI1 WDIV divider output  
1 = ASI1 DAC clock  
2 = Reserved  
3 = ASI2 WDIV divider output  
4 = ASI2 DAC clock  
5=15 = Reserved  
9.6.2.48 ASI2_FORMAT (book=0x00 page=0x01 address=0x15) [reset=10h]  
Configures the ASI2 format, wordlength, and tristate.  
Figure 90. ASI2_FORMAT Register Address: 0x15  
7
6
5
4
3
2
1
0
ASI2_MODE[2:0]  
ASI2_LENGTH[1:0]  
Reserved  
RW-0h  
ASI2_TRISTAT  
E
RW-0h  
RW-2h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 70. ASI2 Format Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
ASI2_MODE[2:0]  
RW  
0h  
The ASI1 Input mode format is set to  
0 = I2S  
1 = DSP  
2 = RJF , For non-zero values of ASI2_OFFSET1, LJF is  
preferred  
3 = LJF  
4 = MonoPCM  
5-15 = Reserved  
4-3  
ASI2_LENGTH[1:0]  
RW  
2h  
Sets the ASI2 input word-length to  
0 = 16bits  
1 = 20bits  
2 = 24bits  
3 = 32bits  
2-1  
0
Reserved  
RW  
RW  
0h  
0h  
Reserved  
ASI2_TRISTATE  
Tri-stating of DOUT for the extra ASI2_BCLK cycles after Data  
Transfer is over for a frame is  
0 = Disabled  
1 = Enabled  
9.6.2.49 ASI2_OFFSET_1 (book=0x00 page=0x01 address=0x17) [reset=0h]  
Configures the ASI input offset. Offset is measured with respect to WCLK-rising edge in DSP Mode. Offset is not  
supported for RJF mode  
Figure 91. ASI2_OFFSET_1 Register Address: 0x17  
7
6
5
4
3
2
1
0
ASI2_OFFSET1[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 71. ASI2 Offset Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ASI2_OFFSET1[7:0]  
RW  
0h  
ASI2_OFFSET1[7:0]  
62  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.6.2.50 ASI2_BUSKEEP (book=0x00 page=0x01 address=0x19) [reset=0h]  
Configures the buskeeper operation.  
Figure 92. ASI2_BUSKEEP Register Address: 0x19  
7
6
5
4
3
2
1
0
ASI2_BKP  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 72. ASI2 Buskeeper Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI2_BKP  
RW  
0h  
Bus keep power down when DOUT is tri-stated to save IO  
power is  
0 = disabled  
1 = enabled  
6-0  
Reserved  
RW  
0h  
Reserved  
9.6.2.51 ASI2_BCLK (book=0x00 page=0x01 address=0x1C) [reset=20h]  
Configures the bit clock pin, timing, and free running mode  
Figure 93. ASI2_BCLK Register Address: 0x1C  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI2_BCLK[3:0]  
RW-4h  
Reserved  
RW-0h  
ASI2_BCT  
RW-0h  
ASI2_FRM  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 73. ASI2 BCLK Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASI2_BCLK[3:0]  
Reserved  
6-3  
RW  
4h  
ASI2 BCLK input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5 (Preferred pin usage)  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2
1
Reserved  
RW  
RW  
0h  
0h  
Reserved  
ASI2_BCT  
ASI2 BCLK timing as per timing protocol is  
0 = normal  
1 = inverted  
0
ASI2_FRM  
RW  
0h  
ASI2 BLCK and WCLK are  
0 = active in output modes only when ASI2 is active and codec  
is powered up  
1 = is free-running  
9.6.2.52 ASI2_WCLK (book=0x00 page=0x01 address=0x1D) [reset=28h]  
Configures the word clock pin and timing  
Copyright © 2016–2019, Texas Instruments Incorporated  
63  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Figure 94. ASI2_WCLK Register Address: 0x1D  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI2_WCLK[3:0]  
RW-5h  
Reserved  
RW-0h  
ASI2_WCT  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 74. ASI2 WCLK Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-3  
ASI2_WCLK[3:0]  
RW  
5h  
ASI2 WCLK input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6 (Preferred pin usage)  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2
1
Reserved  
RW  
RW  
0h  
0h  
Reserved  
ASI2_WCT  
ASI2 WCLK timing as per timing protocol is  
0 = normal  
1 = inverted  
0
Reserved  
RW  
0h  
Reserved  
9.6.2.53 ASI2_DIN_DOUT (book=0x00 page=0x01 address=0x20) [reset=38h]  
Configures the digital input and output ports.  
Figure 95. ASI2_DIN_DOUT Register Address: 0x20  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI2_DIN[3:0]  
RW-7h  
Reserved  
RW-0h  
ASI2_DOUT[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 75. ASI2 DIN/DOUT Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASI2_DIN[3:0]  
Reserved  
6-3  
RW  
7h  
ASI2 DIN input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8 (Preferred pin usage)  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2
Reserved  
RW  
0h  
Reserved  
64  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 75. ASI2 DIN/DOUT Field Descriptions (continued)  
Bit  
Field  
ASI2_DOUT[1:0]  
Type  
Reset  
Description  
1-0  
RW  
0h  
ASI2 DOUT output is  
0 = DOUT path, output buffer enabled only if i-sense is powered  
up  
1 = ASI1_DIN, loopback  
2 = ASI2_DIN, loopback  
3 = DOUT path, output buffer enable controlled only based on  
ASI1 configuration  
9.6.2.54 ASI2_BDIV_CLK (book=0x00 page=0x01 address=0x21) [reset=1h]  
Selects the BDIV clock source  
Figure 96. ASI2_BDIV_CLK Register Address: 0x21  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI2_BDIV_SRC[2:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 76. ASI2 BDIV Clock Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
ASI2_BDIV_SRC[2:0]  
RW  
1h  
ASI1 bit clock divider (BDIV) source is  
0 = NDIV_CLK (Generated On-Chip)  
1 = DAC_MOD_CLK (Generated On-Chip)  
2 = Reserved  
3 = ADC_MOD_CLK (Generated On-Chip)  
4 = ASI1_DAC_BCLK (at pin)  
5 = Reserved  
6 = ASI2_DAC_BCLK (at pin)  
7 = Reserved  
9.6.2.55 ASI2_BDIV_RATIO (book=0x00 page=0x01 address=0x22) [reset=2h]  
Configure the BDIV ratio and power.  
Figure 97. ASI2_BDIV_RATIO Register Address: 0x22  
7
6
5
4
3
2
1
0
ASI2_BDIV_P  
WR  
ASI2_BDIV_RTO[6:0]  
RW-0h  
RW-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 77. ASI2 BDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI2_BDIV_PWR  
RW  
0h  
The ASI2 BDIV divider is  
0 = powered down  
1 = powered up  
6-0  
ASI2_BDIV_RTO[6:0]  
RW  
2h  
The ASI2 BDIV ratio is  
0 = 128  
1 = 1  
2 = 2  
...  
126 = 126  
127 = 127  
Copyright © 2016–2019, Texas Instruments Incorporated  
65  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.6.2.56 ASI2_WDIV_RATIO (book=0x00 page=0x01 address=0x23) [reset=20h]  
Configure the WDIV ratio and power.  
Figure 98. ASI2_WDIV_RATIO Register Address: 0x23  
7
6
5
4
3
2
1
0
ASI2_WDIV_P  
WR  
ASI2_WDIV_RTO[6:0]  
RW-0h  
RW-20h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 78. ASI2 WDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI2_WDIV_PWR  
RW  
0h  
The ASI2 WDIV divider is  
0 = powered down  
1 = powered up  
6-0  
ASI2_WDIV_RTO[6:0]  
RW  
20h  
The ASI2 WDIV ratio is  
0 = 128  
1 = 1  
2 = 2  
...  
126 = 126  
127 = 127  
9.6.2.57 ASI2_CLK_OUT (book=0x00 page=0x01 address=0x24) [reset=33h]  
Configures the clock source for BCLK and WCLK  
Figure 99. ASI2_CLK_OUT Register Address: 0x24  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI2_BCLKS[2:0]  
RW-3h  
Reserved  
RW-0h  
ASI2_WCLKS[2:0]  
RW-3h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 79. ASI2 Clock Source Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
ASI2_BCLKS[2:0]  
RW  
3h  
ASI2 bit clock(BCLK) output source is  
0 = ASI1 BDIV divider output  
1 = ASI1 DAC clock  
2 = Reserved  
3 = ASI2 BDIV divider output  
4 = ASI2 DAC clock  
5=15 = Reserved  
3
Reserved  
RW  
RW  
0h  
3h  
Reserved  
2-0  
ASI2_WCLKS[2:0]  
ASI2 bit clock(WCLK) output source is  
0 = ASI1 WDIV divider output  
1 = ASI1 DAC clock  
2 = Reserved  
3 = ASI2 WDIV divider output  
4 = ASI2 DAC clock  
5=15 = Reserved  
9.6.2.58 GPIO1_PIN (book=0x00 page=0x01 address=0x3D) [reset=1h]  
Configures BCLK1_GPIO1 pin.  
66  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Figure 100. GPIO1_PIN Register Address: 0x3D  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP1_VAL  
RW-0h  
Reserved  
RW-0h  
GP1_OUT[4:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 80. GPIO1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP1_VAL  
Reserved  
6
RW  
0h  
When value GP1_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
RW  
0h  
1h  
Reserved  
4-0  
GP1_OUT[4:0]  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP1_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.59 GPIO2_PIN (book=0x00 page=0x01 address=0x3E) [reset=1h]  
Configures WCLK1_GPIO2 pin.  
Figure 101. GPIO2_PIN Register Address: 0x3E  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP2_VAL  
RW-0h  
Reserved  
RW-0h  
GP2_OUT[4:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 81. GPIO2 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP2_VAL  
Reserved  
6
RW  
0h  
When value GP2_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
67  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 81. GPIO2 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
GP2_OUT[4:0]  
RW  
1h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP2_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.60 GPIO3_PIN (book=0x00 page=0x01 address=0x3F) [reset=10h]  
Configures DOUT1_GPIO3 pin.  
Figure 102. GPIO3_PIN Register Address: 0x3F  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP3_VAL  
RW-0h  
Reserved  
RW-0h  
GP3_OUT[4:0]  
RW-10h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 82. GPIO3 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP3_VAL  
Reserved  
6
RW  
0h  
When value GP3_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
68  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 82. GPIO3 Field Descriptions (continued)  
Bit  
Field  
GP3_OUT[4:0]  
Type  
Reset  
Description  
4-0  
RW  
10h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP3_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.61 GPIO4_PIN (book=0x00 page=0x01 address=0x40) [reset=7h]  
Configures IRQ_GPIO4 pin.  
Figure 103. GPIO4_PIN Register Address: 0x40  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP4_VAL  
RW-0h  
Reserved  
RW-0h  
GP4_OUT[4:0]  
RW-7h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 83. GPIO4 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP4_VAL  
Reserved  
6
RW  
0h  
When value GP4_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
69  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 83. GPIO4 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
GP4_OUT[4:0]  
RW  
7h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP4_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.62 GPIO5_PIN (book=0x00 page=0x01 address=0x41) [reset=0h]  
Configures BCLK2_GPIO5 pin.  
Figure 104. GPIO5_PIN Register Address: 0x41  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP5_VAL  
RW-0h  
Reserved  
RW-0h  
GP5_OUT[4:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 84. GPIO5 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP5_VAL  
Reserved  
6
RW  
0h  
When value GP5_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
70  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 84. GPIO5 Field Descriptions (continued)  
Bit  
Field  
GP5_OUT[4:0]  
Type  
Reset  
Description  
4-0  
RW  
0h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP5_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.63 GPIO6_PIN (book=0x00 page=0x01 address=0x42) [reset=0h]  
Configures WCLK2_GPIO6 pin.  
Figure 105. GPIO6_PIN Register Address: 0x42  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP6_VAL  
RW-0h  
Reserved  
RW-0h  
GP6_OUT[4:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 85. GPIO6 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP6_VAL  
Reserved  
6
RW  
0h  
When value GP6_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
71  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 85. GPIO6 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
GP6_OUT[4:0]  
RW  
0h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP6_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.64 GPIO7_PIN (book=0x00 page=0x01 address=0x43) [reset=0h]  
Configures DOUT2_GPIO7 pin.  
Figure 106. GPIO7_PIN Register Address: 0x43  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP7_VAL  
RW-0h  
Reserved  
RW-0h  
GP7_OUT[4:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 86. GPIO7 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP7_VAL  
Reserved  
6
RW  
0h  
When value GP7_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
72  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 86. GPIO7 Field Descriptions (continued)  
Bit  
Field  
GP7_OUT[4:0]  
Type  
Reset  
Description  
4-0  
RW  
0h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP7_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.65 GPIO8_PIN (book=0x00 page=0x01 address=0x44) [reset=0h]  
Configures DIN2_GPIO8 pin.  
Figure 107. GPIO8_PIN Register Address: 0x44  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP8_VAL  
RW-0h  
Reserved  
RW-0h  
GP8_OUT[4:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 87. GPIO8 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP8_VAL  
Reserved  
6
RW  
0h  
When value GP8_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
73  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 87. GPIO8 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
GP8_OUT[4:0]  
RW  
0h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP8_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.66 GPIO9_PIN (book=0x00 page=0x01 address=0x45) [reset=0h]  
Configures ICC_CLK_GPIO9 pin.  
Figure 108. GPIO9_PIN Register Address: 0x45  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP9_VAL  
RW-0h  
Reserved  
RW-0h  
GP9_OUT[4:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 88. GPIO9 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP9_VAL  
Reserved  
6
RW  
0h  
When value GP9_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
74  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 88. GPIO9 Field Descriptions (continued)  
Bit  
Field  
GP9_OUT[4:0]  
Type  
Reset  
Description  
4-0  
RW  
0h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP9_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.67 GPIO10_PIN (book=0x00 page=0x01 address=0x46) [reset=0h]  
Configures ICC_DOUT_GPIO10 pin.  
Figure 109. GPIO10_PIN Register Address: 0x46  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP10_VAL  
RW-0h  
Reserved  
RW-0h  
GP10_OUT[4:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 89. GPIO10 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP10_VAL  
Reserved  
6
RW  
0h  
When value GP10_OUT=3, configure pin output to  
0 = Low  
1 = High  
5
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
75  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 89. GPIO10 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
GP10_OUT[4:0]  
RW  
0h  
Pin is configured to  
0 = disabled, buffers powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = output, use GP10_VAL to set value  
4 = output, use GPBB_VAL to set value  
5 = output, PDM clk output for PDM data input  
6 = output, CLKOUT output  
7 = output, INT1 interrupt  
8 = output, INT2 interrupt  
9 = output, INT3 interrupt  
10 = output, INT4 interrupt  
11 = Reserved  
12 = output, ASI1_WCLK_OUT  
13 = output, ASI1_BCLK_OUT  
14-15 = Reserved  
16 = ASI1_DOUT  
17 = ASI1_WCLK_OUT  
18 = ASI2_BCLK_OUT  
19-20 = Reserved  
21 = ASI2_DOUT  
22-26 = Reserved  
27 = ASIM_WCLK_OUT  
28 = ASIM_BCLK_OUT  
29 = ASIM_DOUT  
30-31 = Reserved  
9.6.2.68 GPI_PIN (book=0x00 page=0x01 address=0x4D) [reset=0h]  
Configures the GPI pins  
Figure 110. GPI_PIN Register Address: 0x4D  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GPI3_MODE[1:0]  
RW-0h  
GPI2_MODE[1:0]  
RW-0h  
GPI1_MODE[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 90. GPI Pin Mode Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
GPI3_MODE[1:0]  
RW  
0h  
Pin GPI3 mode is  
0 = disabled, powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = Reserved  
3-2  
1-0  
GPI2_MODE[1:0]  
GPI1_MODE[1:0]  
RW  
RW  
0h  
0h  
Pin GPI2 mode is  
0 = disabled, powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = Reserved  
Pin GPI1 mode is  
0 = disabled, powered down  
1 = input, use input MUX for relevant function  
2 = Reserved  
3 = Reserved  
9.6.2.69 GPIO_HIZ_1 (book=0x00 page=0x01 address=0x4F) [reset=0h]  
Configures high-Z state of GPIO1 and GPIO2  
76  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Figure 111. GPIO_HIZ_1 Register Address: 0x4F  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP2_HIZ[2:0]  
RW-0h  
Reserved  
RW-0h  
GP1_HIZ[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 91. GPIO HiZ 1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP2_HIZ[2:0]  
Reserved  
6-4  
RW  
0h  
Pin GPIO2 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
GP1_HIZ[2:0]  
Pin GPIO1 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
9.6.2.70 GPIO_HIZ_2 (book=0x00 page=0x01 address=0x50) [reset=0h]  
Configures high-Z state of GPIO3 and GPIO4  
Figure 112. GPIO_HIZ_2 Register Address: 0x50  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP4_HIZ[2:0]  
RW-0h  
Reserved  
RW-0h  
GP3_HIZ[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 92. GPIO HiZ 2 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP4_HIZ[2:0]  
Reserved  
6-4  
RW  
0h  
Pin GPIO4 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
3
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
77  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 92. GPIO HiZ 2 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
GP3_HIZ[2:0]  
RW  
0h  
Pin GPIO3 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
9.6.2.71 GPIO_HIZ_3 (book=0x00 page=0x01 address=0x51) [reset=0h]  
Configures high-Z state of GPIO5 and GPIO6  
Figure 113. GPIO_HIZ_3 Register Address: 0x51  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP6_HIZ[2:0]  
RW-0h  
Reserved  
RW-0h  
GP5_HIZ[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 93. GPIO HiZ 3 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP6_HIZ[2:0]  
Reserved  
6-4  
RW  
0h  
Pin GPIO6 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
GP5_HIZ[2:0]  
Pin GPIO5 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
9.6.2.72 GPIO_HIZ_4 (book=0x00 page=0x01 address=0x52) [reset=0h]  
Configures high-Z state of GPIO7 and GPIO8  
Figure 114. GPIO_HIZ_4 Register Address: 0x52  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP8_HIZ[2:0]  
RW-0h  
Reserved  
RW-0h  
GP7_HIZ[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
78  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 94. GPIO HiZ 4 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
GP8_HIZ[2:0]  
RW  
0h  
Pin GPIO8 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
GP7_HIZ[2:0]  
Pin GPIO7 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
9.6.2.73 GPIO_HIZ_5 (book=0x00 page=0x01 address=0x53) [reset=0h]  
Configures high-Z state of GPIO9 and GPIO10  
Figure 115. GPIO_HIZ_5 Register Address: 0x53  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
GP10_HIZ[2:0]  
RW-0h  
Reserved  
RW-0h  
GP9_HIZ[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 95. GPIO HiZ 5 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
GP10_HIZ[2:0]  
Reserved  
6-4  
RW  
0h  
Pin GPIO10 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
GP9_HIZ[2:0]  
Pin GPIO9 output is  
0 = driven both LO/HI  
1 = driven both LO/HI with buskeeper for use with outputs  
needing tri-stated  
2 = Reserved  
3 = Reserved  
4 = Reserved  
5 = Reserved  
6 = Reserved  
7 = Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
79  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.6.2.74 BIT_BANG_OUT1 (book=0x00 page=0x01 address=0x58) [reset=0h]  
GPIO pin state when using bit-bang output.  
Figure 116. BIT_BANG_OUT1 Register Address: 0x58  
7
6
5
4
3
2
1
0
BBO_GP8  
RW-0h  
BBO_GP7  
RW-0h  
BBO_GP6  
RW-0h  
BBO_GP5  
RW-0h  
BBO_GP4  
RW-0h  
BBO_GP3  
RW-0h  
BBO_GP2  
RW-0h  
BBO_GP1  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 96. Bit Bang Output 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BBO_GP8  
RW  
0h  
GPIO8 pin output is  
0 = low  
1 = high  
6
5
4
3
2
1
0
BBO_GP7  
BBO_GP6  
BBO_GP5  
BBO_GP4  
BBO_GP3  
BBO_GP2  
BBO_GP1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
GPIO7 pin output is  
0 = low  
1 = high  
GPIO6 pin output is  
0 = low  
1 = high  
GPIO5 pin output is  
0 = low  
1 = high  
GPIO4 pin output is  
0 = low  
1 = high  
GPIO3 pin output is  
0 = low  
1 = high  
GPIO2 pin output is  
0 = low  
1 = high  
GPIO1 pin output is  
0 = low  
1 = high  
9.6.2.75 BIT_BANG_OUT2 (book=0x00 page=0x01 address=0x59) [reset=0h]  
GPIO pin state when using pin as bit-bang output.  
Figure 117. BIT_BANG_OUT2 Register Address: 0x59  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
BBO_GP10  
RW-0h  
BBO_GP9  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 97. Bit Bang Output 2 Field Descriptions  
Bit  
7-2  
1
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
BBO_GP10  
Reserved  
RW  
0h  
GPIO10 pin output is  
0 = low  
1 = high  
0
BBO_GP9  
RW  
0h  
GPIO9 pin output is  
0 = low  
1 = high  
80  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.6.2.76 BIT_BANG_IN1 (book=0x00 page=0x01 address=0x5A) [reset=0h]  
GPIO pin value when used as bit-bang input.  
Figure 118. BIT_BANG_IN1 Register Address: 0x5A  
7
6
5
4
3
2
1
0
BBI_GP8  
R-0h  
BBI_GP7  
R-0h  
BBI_GP6  
R-0h  
BBI_GP5  
R-0h  
BBI_GP4  
R-0h  
BBI_GP3  
R-0h  
BBI_GP2  
R-0h  
BBI_GP1  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 98. Bit Bang Input 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BBI_GP8  
R
0h  
GPIO8 pin input is  
0 = low  
1 = high  
6
5
4
3
2
1
0
BBI_GP7  
BBI_GP6  
BBI_GP5  
BBI_GP4  
BBI_GP3  
BBI_GP2  
BBI_GP1  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
GPIO7 pin input is  
0 = low  
1 = high  
GPIO6 pin input is  
0 = low  
1 = high  
GPIO5 pin input is  
0 = low  
1 = high  
GPIO4 pin input is  
0 = low  
1 = high  
GPIO3 pin input is  
0 = low  
1 = high  
GPIO2 pin input is  
0 = low  
1 = high  
GPIO1 pin input is  
0 = low  
1 = high  
9.6.2.77 BIT_BANG_IN2 (book=0x00 page=0x01 address=0x5B) [reset=0h]  
GPIO pin value when used as bit-bang input.  
Figure 119. BIT_BANG_IN2 Register Address: 0x5B  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
BBI_GP10  
RW-0h  
BBI_GP9  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 99. Bit Bang Input 2 Field Descriptions  
Bit  
7-2  
1
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
BBI_GP10  
Reserved  
RW  
0h  
GPIO10 pin input is  
0 = low  
1 = high  
0
BBI_GP9  
RW  
0h  
GPIO9 pin input is  
0 = low  
1 = high  
Copyright © 2016–2019, Texas Instruments Incorporated  
81  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.6.2.78 BIT_BANG_IN3 (book=0x00 page=0x01 address=0x5C) [reset=0h]  
GPI pin value when used as bit-bang input.  
Figure 120. BIT_BANG_IN3 Register Address: 0x5C  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
BBI_GPI3  
RW-0h  
BBI_GPI2  
RW-0h  
BBI_GPI1  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 100. Bit Bang Input 3 Field Descriptions  
Bit  
7-3  
2
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
BBI_GPI3  
Reserved  
RW  
0h  
GPI3 pin input is  
0 = low  
1 = high  
1
0
BBI_GPI2  
BBI_GPI1  
RW  
RW  
0h  
0h  
GPI2 pin input is  
0 = low  
1 = high  
GPI1 pin input is  
0 = low  
1 = high  
9.6.2.79 ASIM_BUSKEEP (book=0x00 page=0x01 address=0x60) [reset=0h]  
Configures the buskeeper operation.  
Figure 121. ASIM_BUSKEEP Register Address: 0x60  
7
6
5
4
3
2
1
0
ASIM_BKP  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 101. ASIM Buskeeper Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASIM_BKP  
RW  
0h  
Bus keep power down when DOUT is tri-stated to save IO  
power is  
0 = disabled  
1 = enabled  
6-0  
Reserved  
RW  
0h  
Reserved  
9.6.2.80 ASIM_MODE (book=0x00 page=0x01 address=0x61) [reset=8h]  
specifies the format and slots for the Interchip Communication (ICC) Interface  
Figure 122. ASIM_MODE Register Address: 0x61  
7
6
5
4
3
2
1
0
ASIM_INT  
RW-0h  
Reserved  
RW-0h  
ASIM_WCNT[3:0]  
RW-2h  
ASIM_RS  
RW-0h  
ASIM_WS  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 102. ASIM Mode Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASIM_INT  
RW  
0h  
ASIM interface is  
0 = Non-ICC set by ASIM_FORMAT  
1 = ICC interface for multichip  
6
Reserved  
RW  
0h  
Reserved  
82  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 102. ASIM Mode Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-2  
ASIM_WCNT[3:0]  
RW  
2h  
The number of words(32-bit samples) in one frame of the ICC.  
The total number of bit transmissed is (1+words)*33  
0 = Reserved  
1 = 1 word  
2 = 2 words  
...  
13 = 13 words  
14 = 14 words  
15 = Reserved  
1
0
ASIM_RS  
ASIM_WS  
RW  
RW  
0h  
0h  
The device will read the following ICC slots and transfer data to  
DSP  
0 = only it own slot  
1 = all slots  
The device will write the following ICC slots and transfer data to  
DSP  
0 = only it own slot  
1 = all slots  
9.6.2.81 ASIM_NUM_DEV (book=0x00 page=0x01 address=0x62) [reset=0h]  
specifies the number of devices on the Interchip Communication (ICC) Interface  
Figure 123. ASIM_NUM_DEV Register Address: 0x62  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASIM_TND[2:0]  
RW-0h  
Reserved  
RW-0h  
ASIM_DN[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 103. ASIM Number Devices Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASIM_TND[2:0]  
Reserved  
6-4  
RW  
0h  
Total number of devices on the ICC interface bus  
0 = 8  
1 = 1  
2 = 2  
...  
6 = 6  
7 = 7  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
ASIM_DN[2:0]  
The device number for this device on the ICC interface bus  
0 = 1  
1 = 2  
...  
6 = 7  
7 = 8  
9.6.2.82 ASIM_FORMAT (book=0x00 page=0x01 address=0x63) [reset=10h]  
Configures the ASI2 format, wordlength, and tristate.  
Figure 124. ASIM_FORMAT Register Address: 0x63  
7
6
5
4
3
2
1
0
ASIM_MODE[2:0]  
ASI2_LENGTH[1:0]  
Reserved  
RW-0h  
ASI2_TRISTAT  
E
RW-0h  
RW-2h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
83  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 104. ASIM Format Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
ASIM_MODE[2:0]  
RW  
0h  
The ASIM Input mode format is set to  
0 = I2S  
1 = DSP  
2 = RJF , For non-zero values of ASIM_OFFSET1, LJF is  
preferred  
3 = LJF  
4 = MonoPCM  
5-15 = Reserved  
4-3  
ASI2_LENGTH[1:0]  
RW  
2h  
Sets the ASIM input word-length to  
0 = 16bits  
1 = 20bits  
2 = 24bits  
3 = 32bits  
2-1  
0
Reserved  
RW  
RW  
0h  
0h  
Reserved  
ASI2_TRISTATE  
Tri-stating of DOUT for the extra ASIM_BCLK cycles after Data  
Transfer is over for a frame is  
0 = Disabled  
1 = Enabled  
9.6.2.83 ASIM_BDIV_CLK (book=0x00 page=0x01 address=0x64) [reset=1h]  
Selects the BDIV clock source and input/output mode for WCLK/BCLK.  
Figure 125. ASIM_BDIV_CLK Register Address: 0x64  
7
6
5
4
3
2
1
0
ASIM_BCD  
RW-0h  
ASIM_WCD  
RW-0h  
Reserved  
RW-0h  
ASIM_BDIV_SRC[2:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 105. ASIM BDIV Clock Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASIM_BCD  
RW  
0h  
ASIM BCLK is  
0 = input  
1 = output; use only in ICC mode if device number is 1  
6
ASIM_WCD  
RW  
0h  
ASIM WCLK is  
0 = input  
1 = output  
5-3  
2-0  
Reserved  
RW  
RW  
0h  
1h  
Reserved  
ASIM_BDIV_SRC[2:0]  
ASIM bit clock divider (BDIV) source is  
0 = NDIV_CLK (Generated On-Chip)  
1 = DAC_MOD_CLK (Generated On-Chip)  
2 = Reserved  
3 = ADC_MOD_CLK (Generated On-Chip)  
4 = ASI1_DAC_BCLK (at pin)  
5 = ASI1_ADC_BLKC (at pin)  
6 = ASI2_DAC_BCLK (at pin)  
7 = ASI2_ADC_BCLK (at pin)  
9.6.2.84 ASIM_BDIV_RATIO (book=0x00 page=0x01 address=0x65) [reset=2h]  
Configure the BDIV ratio and power.  
Figure 126. ASIM_BDIV_RATIO Register Address: 0x65  
7
6
5
4
3
2
1
0
ASIM_BDIV_P  
WR  
ASIM_BDIV_RTO[6:0]  
RW-0h  
RW-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
84  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 106. ASIM BDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASIM_BDIV_PWR  
RW  
0h  
The ASIM BDIV divider is  
0 = powered down  
1 = powered up  
6-0  
ASIM_BDIV_RTO[6:0]  
RW  
2h  
The ASIM BDIV ratio is  
0 = 128  
1 = 1  
2 = 2  
...  
126 = 126  
127 = 127  
9.6.2.85 ASIM_WDIV_RATIO_1 (book=0x00 page=0x01 address=0x66) [reset=0h]  
Configure the WDIV ratio and power.  
Figure 127. ASIM_WDIV_RATIO_1 Register Address: 0x66  
7
6
5
4
3
2
1
0
ASIM_WDIV_P  
WR  
Reserved  
ASIM_WDIV_RTO[9:8]  
RW-0h  
RW-0h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 107. ASIM WDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASIM_WDIV_PWR  
RW  
0h  
The ASIM WDIV divider is  
0 = powered down  
1 = powered up  
6-2  
Reserved  
RW  
RW  
0h  
0h  
Reserved  
1--8  
ASIM_WDIV_RTO[9:0]  
MSB for ASIM WDIV divider  
9.6.2.86 ASIM_WDIV_RATIO_2 (book=0x00 page=0x01 address=0x67) [reset=20h]  
Configure the WDIV ratio.  
Figure 128. ASIM_WDIV_RATIO_2 Register Address: 0x67  
7
6
5
4
3
2
1
0
ASIM_WDIV_RTO[7:0]  
RW-20h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 108. ASIM WDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ASIM_WDIV_RTO[7:0]  
RW  
20h  
LSB for ASIM WDIV. Number for ASIM_BDIV clock cycles in on  
ASIM_WCLK frame  
0 = 1024  
1 = 1  
2 = 2  
...  
1022 = 1022  
1023 = 1023  
9.6.2.87 ASIM_BCLK (book=0x00 page=0x01 address=0x68) [reset=40h]  
Configures the bit clock pin.  
Copyright © 2016–2019, Texas Instruments Incorporated  
85  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Figure 129. ASIM_BCLK Register Address: 0x68  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI1_BCLK[3:0]  
RW-8h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 109. ASI1 BCLK Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASI1_BCLK[3:0]  
Reserved  
6-3  
RW  
8h  
ASIM BCLK input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9 (Preferred pin usage)  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2-0  
Reserved  
RW  
0h  
Reserved  
9.6.2.88 ASIM_WCLK (book=0x00 page=0x01 address=0x69) [reset=38h]  
Configures the word clock pin.  
Figure 130. ASIM_WCLK Register Address: 0x69  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASIM_WCLK[3:0]  
RW-7h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 110. ASI1 WCLK Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-3  
ASIM_WCLK[3:0]  
RW  
7h  
ASIM BCLK input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8 (Preferred pin usage)  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3  
15-31 = Reserved  
2-0  
Reserved  
RW  
0h  
Reserved  
86  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.6.2.89 ASIM_DIN (book=0x00 page=0x01 address=0x6A) [reset=70h]  
Configures the ASIM data input pin and clock detection 2 interrupt generation.  
Figure 131. ASIM_DIN Register Address: 0x6A  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASIM_DIN[3:0]  
RW-Eh  
INT_GEN_CH2[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 111. ASI1 DIN Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASIM_DIN[3:0]  
Reserved  
6-3  
RW  
Eh  
ASIM BCLK input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2  
14 = GPI3 (Preferred pin usage)  
15-31 = Reserved  
2-0  
INT_GEN_CH2[2:0]  
RW  
0h  
Clock halt detection 2 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
9.6.2.90 INT_GEN_1 (book=0x00 page=0x01 address=0x6C) [reset=0h]  
Assign speaker over-current and device over-voltage to specific interrupt  
Figure 132. INT_GEN_1 Register Address: 0x6C  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
INT_GEN_OC[2:0]  
RW-0h  
Reserved  
RW-0h  
INT_GEN_OV[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 112. Interrupt Generation 1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
INT_GEN_OC[2:0]  
RW  
0h  
Speaker over current is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
3
Reserved  
RW  
0h  
Reserved  
Copyright © 2016–2019, Texas Instruments Incorporated  
87  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 112. Interrupt Generation 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
INT_GEN_OV[2:0]  
RW  
0h  
Device over voltage is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
9.6.2.91 INT_GEN_2 (book=0x00 page=0x01 address=0x6D) [reset=0h]  
Assign clock error deteciton 1 and die over temperature to specific interrupt  
Figure 133. INT_GEN_2 Register Address: 0x6D  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
INT_GEN_CE1[2:0]  
RW-0h  
Reserved  
RW-0h  
INT_GEN_OT[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 113. Interrupt Generation 2 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
INT_GEN_CE1[2:0]  
RW  
0h  
Clock error detection 1 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
INT_GEN_OT[2:0]  
Die over-temperature is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
9.6.2.92 INT_GEN_3 (book=0x00 page=0x01 address=0x6E) [reset=0h]  
Assign clock error deteciton 2 and brownout to specific interrupt  
Figure 134. INT_GEN_3 Register Address: 0x6E  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
INT_GEN_BO[2:0]  
RW-0h  
Reserved  
RW-0h  
INT_GEN_CE2[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 114. Interrupt Generation 3 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
INT_GEN_BO[2:0]  
RW  
0h  
Device brownout is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
88  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 114. Interrupt Generation 3 Field Descriptions (continued)  
Bit  
3
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
2-0  
INT_GEN_CE2[2:0]  
RW  
0h  
Clock error detection 2 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
9.6.2.93 INT_GEN_4 (book=0x00 page=0x01 address=0x6F) [reset=0h]  
Assign SAR complete and clock halt 1 to specific interrupt  
Figure 135. INT_GEN_4 Register Address: 0x6F  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
INT_GEN_SC[2:0]  
RW-0h  
Reserved  
RW-0h  
INT_GEN_CL[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 115. Interrupt Generation 4 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
INT_GEN_SC[2:0]  
RW  
0h  
SAR measurement complete is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
INT_GEN_CL[2:0]  
Clock lost halt 1 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
9.6.2.94 INT_GEN_5 (book=0x00 page=0x01 address=0x70) [reset=0h]  
Assign DSP Interrupt 1 and DSP interrupt 2 to specific interrupt  
Figure 136. INT_GEN_5 Register Address: 0x70  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
INT_GEN_DSP1[2:0]  
RW-0h  
Reserved  
RW-0h  
INT_GEN_DSP2[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
89  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 116. Interrupt Generation 5 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
INT_GEN_DSP1[2:0]  
RW  
0h  
DSP output interrupt 1 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
INT_GEN_DSP2[2:0]  
DSP output interrupt 2 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
9.6.2.95 INT_GEN_6 (book=0x00 page=0x01 address=0x71) [reset=0h]  
Assign DSP Interrupt 3 and DSP interrupt 4 to specific interrupt  
Figure 137. INT_GEN_6 Register Address: 0x71  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
INT_GEN_DSP3[2:0]  
RW-0h  
Reserved  
RW-0h  
INT_GEN_DSP4[2:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 117. Interrupt Generation 6 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
6-4  
INT_GEN_DSP3[2:0]  
RW  
0h  
DSP output interrupt 3 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
3
Reserved  
RW  
RW  
0h  
0h  
Reserved  
2-0  
INT_GEN_DSP4[2:0]  
DSP output interrupt 4 is  
0 = not used in the generation of interrupt  
1 = used in the generation of INT1  
2 = used in the generation of INT2  
3 = used in the generation of INT3  
4 = used in the generation of INT4  
5-7 = Reserved  
9.6.2.96 INT_IND_MODE (book=0x00 page=0x01 address=0x72) [reset=0h]  
Configure how interrupts are reported.  
Figure 138. INT_IND_MODE Register Address: 0x72  
7
6
5
4
3
2
1
0
INT1_IND[1:0]  
RW-0h  
INT2_IND[1:0]  
RW-0h  
INT3_IND[1:0]  
RW-0h  
INT4_IND[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
90  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 118. Interrupt Indication Mode Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
INT1_IND[1:0]  
INT2_IND[1:0]  
INT3_IND[1:0]  
INT4_IND[1:0]  
RW  
0h  
Interrupt 1 pin will indicate an interrupt as  
0 = one active high pulse of duration 2 ms  
1 = multiple active high pulses of duration 2 ms with period 4 ms  
until INT_STICKY_1 and INT_STICKY_2 are read to be cleared.  
2 = active high until INT_STICKY_1 and INT_STICKY_2 are  
read to be cleared.  
2 = active high based instantaneous interrupt value  
5-4  
3-2  
1-0  
RW  
RW  
RW  
0h  
0h  
0h  
Interrupt 2 pin will indicate an interrupt as  
0 = one active high pulse of duration 2 ms  
1 = multiple active high pulses of duration 2 ms with period 4 ms  
until INT_STICKY_1 and INT_STICKY_2 are read to be cleared.  
2 = active high until INT_STICKY_1 and INT_STICKY_2 are  
read to be cleared.  
2 = active high based instantaneous interrupt value  
Interrupt 3 pin will indicate an interrupt as  
0 = one active high pulse of duration 2 ms  
1 = multiple active high pulses of duration 2 ms with period 4 ms  
until INT_STICKY_1 and INT_STICKY_2 are read to be cleared.  
2 = active high until INT_STICKY_1 and INT_STICKY_2 are  
read to be cleared.  
2 = active high based instantaneous interrupt value  
Interrupt 4 pin will indicate an interrupt as  
0 = one active high pulse of duration 2 ms  
1 = multiple active high pulses of duration 2 ms with period 4 ms  
until INT_STICKY_1 and INT_STICKY_2 are read to be cleared.  
2 = active high until INT_STICKY_1 and INT_STICKY_2 are  
read to be cleared.  
2 = active high based instantaneous interrupt value  
9.6.2.97 MAIN_CLK_PIN (book=0x00 page=0x01 address=0x73) [reset=Dh]  
Configures the main clock input source.  
Figure 139. MAIN_CLK_PIN Register Address: 0x73  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
MAIN_CLK_DIN[3:0]  
RW-Dh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 119. Main Clock Source Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
MAIN_CLK_DIN[3:0]  
RW  
Dh  
NDIV_MUX_CLKIN input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2 (Preferred pin usage)  
14 = GPI3  
15 = PLL_CLK generated on-cchip  
Copyright © 2016–2019, Texas Instruments Incorporated  
91  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
9.6.2.98 PLL_CLK_PIN (book=0x00 page=0x01 address=0x74) [reset=Dh]  
Configures the PLL clock input source.  
Figure 140. PLL_CLK_PIN Register Address: 0x74  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
PLL_CLK_DIN[3:0]  
RW-Dh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 120. PLL Clock Source Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
PLL_CLK_DIN[3:0]  
RW  
Dh  
PLL_CLKIN input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2 (Preferred pin usage)  
14 = GPI3  
15 = from internal oscillator  
9.6.2.99 CLKOUT_MUX (book=0x00 page=0x01 address=0x75) [reset=Dh]  
Configures the CDIV_CLKIN clock input source.  
Figure 141. CLKOUT_MUX Register Address: 0x75  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
CLKOUT_DIN[4:0]  
RW-Dh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 121. CDIV_CLKIN Clock Source Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
CLKOUT_DIN[4:0]  
RW  
Dh  
CDIV_CLKIN input is from  
0 = GPIO1  
1 = GPIO2  
2 = GPIO3  
3 = GPIO4  
4 = GPIO5  
5 = GPIO6  
6 = GPIO7  
7 = GPIO8  
8 = GPIO9  
9 = GPIO10  
10-11 = Reserved  
12 = GPI1  
13 = GPI2 (Preferred pin usage)  
14 = GPI3  
15 = PLL_CLK  
16 = DAC_MOD_CLK  
17 = ADC_MOD_CLK  
18 = NDIV_CLK  
19-31 = Reserved  
92  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
9.6.2.100 CLKOUT_CDIV_RATIO (book=0x00 page=0x01 address=0x76) [reset=1h]  
Configure the CDIV ratio and power.  
Figure 142. CLKOUT_CDIV_RATIO Register Address: 0x76  
7
6
5
4
3
2
1
0
CDIV_PWR  
RW-0h  
CDIV_RTO[6:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 122. CLKOUT CDIV Ratio Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CDIV_PWR  
RW  
0h  
The CDIV divider is  
0 = powered down  
1 = powered up  
6-0  
CDIV_RTO[6:0]  
RW  
1h  
The CDIV ratio is  
0 = 128  
1 = 1  
2 = 2  
...  
126 = 126  
127 = 127  
9.6.2.101 I2C_MISC (book=0x00 page=0x01 address=0x7C) [reset=0h]  
Configures various I2C options  
Figure 143. I2C_MISC Register Address: 0x7C  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
I2C_HD  
RW-0h  
I2C_GCAE  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 123. I2C Misc Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
I2C_HD  
Reserved  
6
RW  
0h  
I2C hang deteciton. Read to clear. Do not write this bit high. I2C  
hang is  
0 = detected  
1 = not detected  
5
I2C_GCAE  
Reserved  
RW  
0h  
When enabled the part will respond to the configured I2C  
address as well as the general call I2C address. I2C general call  
address for multi-part loading is  
0 = disabled  
1 = enabled  
4-0  
RW  
0h  
Reserved  
9.6.2.102 DEVICE_ID (book=0x00 page=0x01 address=0x7D) [reset=12h]  
Used to indicate device  
Figure 144. DEVICE_ID Register Address: 0x7D  
7
6
5
4
3
2
1
0
DEV_ID[7:0]  
R-12h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2019, Texas Instruments Incorporated  
93  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 124. Device ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DEV_ID[7:0]  
R
12h  
9.6.2.103 PAGE (book=0x00 page=0x02 address=0x00) [reset=1h]  
Selects the page for the next read or write.  
Figure 145. PAGE Register Address: 0x00  
7
6
5
4
3
2
1
0
PAGE[7:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 125. Page Select Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects the Register Page for the next read or write command  
7-0  
PAGE[7:0]  
RW  
1h  
9.6.2.104 RAMP_CTRL (book=0x00 page=0x02 address=0x06) [reset=0h]  
Class-D Ramp Control  
Figure 146. RAMP_CTRL Register Address: 0x06  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
RAMP_FREQ[1:0]  
RW-0h  
Reserved  
RW-0h  
RAMP_FREQMOD[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 126. Class-D Ramp Control Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
RAMP_FREQ[1:0]  
RW  
0h  
Rampgen frequency is  
0 = 384kHz, use this for Fs of 48ksps and its multiples  
1 = 352.8kHz, Use this for Fs of 44.1ksps and its multiples  
2 = Reserved  
3-2  
1-0  
Reserved  
RW  
RW  
0h  
0h  
Reserved  
RAMP_FREQMOD[1:0]  
When SSM is enabled the ramp is modulated by  
0 = Reserved  
1 = +-5 %  
2 = +-10 %  
3 = Reserved  
9.6.2.105 PROTECTION_CFG (book=0x00 page=0x02 address=0x09) [reset=3h]  
Configures the Devices Protection Blocks  
Figure 147. PROTECTION_CFG Register Address: 0x09  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
OT_RT  
RW-0h  
Reserved  
RW-1h  
Reserved  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
94  
Copyright © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Table 127. Configures the Devices Protection Blocks Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
OT_RT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
Die over-temperature retry is  
0 = Enabled  
1 = Disabled  
1
0
Reserved  
Reserved  
RW  
RW  
1h  
1h  
Reserved  
Reserved  
版权 © 2016–2019, Texas Instruments Incorporated  
95  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TAS2557 is a digital input high efficiency Class-D audio power amplifier with advanced battery current  
management and an integrated Class-H boost converter. In auto-passthrough mode, the Class-H boost converter  
generates the Class-D amplifier supply rail. During low Class-D output power, the boost improves efficiency by  
deactivating and connecting VBAT directly to the Class-D amplifier supply. When high power audio is required,  
the boost quickly activates to provide louder audio than a stand-alone amplifier connected directly to the battery.  
To enable load monitoring, the TAS2557 constantly measures the current and voltage across the load and  
provides a digital stream of this information back to a processor.  
10.2 Typical Application  
1.65 V À  
1.95 V  
1.65 VÀ  
1.95 V  
2.9 V À  
5.5 V  
L1  
2.2 mH  
C1  
10 mF  
1 mF  
0.1 mF  
0.1 mF  
1 mF  
0.1 mF  
2
AVDD  
SW  
VBAT  
DVDD  
IOVDD  
1.62 V À  
3.6 V  
VREG  
10 nF  
0.1 mF  
1 mF  
VBOOST  
2
C2  
22 mF  
Enable  
/RESET  
0.1 mF  
VSENSE_P  
VSENSE_M  
SPI_SELECT  
L2 (opt.)  
L3 (opt.)  
I2C Address Select  
I2C Interface  
ADR0/1  
I2C  
+
-
SPK_P  
SPK_M  
2
To  
Speaker  
2
5
I2S Interface  
I2S  
C4  
1 nF  
(opt.)  
C3  
1 nF  
(opt.)  
AGND  
IOGND  
PGND  
3
VSENSE  
148. Typical Application - Digital Audio Input  
96  
版权 © 2016–2019, Texas Instruments Incorporated  
 
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
Typical Application (接下页)  
128. Recommended External Components  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
Inductance, 20% Tolerance  
Saturation Current  
Impedance at 100MHz  
DC Resistance  
MIN  
TYP  
2.2  
MAX  
UNIT  
µH  
A
1
L1  
Boost Converter Inductor  
3.1  
120  
Ω
EMI Filter Inductors (optional). These are  
not recommended as it degrades THD+N  
performance. The TAS2557 device is a  
filter-less Class-D and does not require  
these bead inductors.  
0.095  
2
Ω
L2, L3  
C1  
DC Current  
A
Size  
0402  
EIA  
µF  
Boost Converter Input Capacitor  
Capacitance, 20% Tolerance  
Type  
10  
X5R  
22  
Capacitance, 20% Tolerance  
Rated Voltage  
47  
µF  
V
C2  
Boost Converter Output Capacitor  
16  
Capacitance at 8.5 V derating  
3.3  
µF  
EMI Filter Capacitors (optional, must use  
L2, L3 if C3, C4 used)  
C3, C4  
Capacitance  
1
nF  
10.2.1 Design Requirements  
For this design example, use the parameters shown in 129.  
129. Design Parameters  
DESIGN PARAMETER  
Audio Input  
EXAMPLE VALUE  
Digital Audio, I2S  
Digital Audio, I2S  
Mono  
Current and Voltage Data Stream  
Mono or Stereo Configuration  
Max Output Power at 1% THD+N  
3.8 W  
10.2.2 Detailed Design Procedure  
10.2.2.1 Mono/Stereo Configuration  
In this application, the device is assumed to be operating in mono mode. See General I2C Operation for  
information on changing the I2C address of the TAS2557 to support stereo operation. Mono or stereo  
configuration does not impact the device performance.  
10.2.2.2 Boost Converter Passive Devices  
The boost converter requires three passive devices that are labeled L1, C1 and C2 in 148 and whose  
specifications are provided in 128. These specifications are based on the design of the TAS2557 and are  
necessary to meet the performance targets of the device. In particular, L1 should not be allowed to enter in the  
current saturation region. The saturation current for L1 should be > ILIM to deliver Class-D peak power.  
Additionally, the ratio of L1/C2 (the derated value of C2 at 8.5 V should be used in this ratio) has to be lesser  
than 1/3 for boost stability. This 1/3 ratio should be maintained including the worst case variation of L1 and C2.  
To satisfy sufficient energy transfer, L1 needs to be >= 1µH at the boost switching frequency (~1.7 MHz). Using  
a 1µH will have more boost ripple than a 2.2µH but the PSRR should minimize the effect from the additional  
ripple. Finally, the minimum C2 (derated value at 8.5 V) should be > 3.3µF for Class-D power delivery  
specification.  
10.2.2.3 EMI Passive Devices  
The TAS2557 supports edge-rate control to minimize EMI, but the system designer may want to include passive  
devices on the Class-D output devices. These passive devices that are labeled L2, L3, C3 and C4 in 148 and  
their recommended specifications are provided in 128. If C3 and C4 are used, they must be placed after L2  
and L3 respectively to maintain the stability of the output stage.  
版权 © 2016–2019, Texas Instruments Incorporated  
97  
 
 
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
10.2.2.4 Miscellaneous Passive Devices  
VREG Capacitor: Needs to be 10 nF to meet boost and Class-D power delivery and efficiency specs.  
10.2.3 Application Curve  
10  
5
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
D001  
Freq = 1kHz VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, RESET = IOVDD, RL = 8 Ω + 33 µH, I2S digital input,  
ROM mode 1  
149. THD+N vs Output Power (8 Ω) for Digital Input  
10.3 Initialization Setup  
To configure the TAS2557 , follow these steps.  
1. Bring-up the power supplies as in Power Supply Sequencing.  
2. Set the /RESET terminal to HIGH.  
3. Follow the software sequence in section Device Power Up and Unmute Sequence  
98  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
11 Power Supply Recommendations  
11.1 Power Supplies  
The TAS2557 requires four power supplies:  
Boost Input (terminal: VBAT)  
Voltage: 2.9 V to 5.5 V  
Max Current: 5 A for ILIM = 3.0 A (default)  
Analog Supply (terminal: AVDD)  
Voltage: 1.65 V to 1.95 V  
Max Current: 30 mA  
Digital Supply (terminal: DVDD)  
Voltage: 1.65 V to 1.95 V  
Max Current: 50 mA  
Digital I/O Supply (terminal: IOVDD)  
Voltage: 1.62 V to 3.6 V  
Max Current: 5 mA  
The decoupling capacitors for the power supplies should be placed close to the device terminals. For VBAT,  
IOVDD, DVDD and AVDD, a small decoupling capacitor of 0.1 µF should be placed close to the device terminals.  
Refer to 148 for the schematic.  
11.2 Power Supply Sequencing  
The following power sequence should be followed for power up and power down. If the recommended sequence  
is not followed there can be large current in device due to faults in level shifters and diodes becoming forward  
biased. The Tdelay between power supplies should be large enough for the power rails to settle.  
VBAT  
Tdelay >= 0s  
Tdelay >= 0s  
IOVDD  
Tdelay >= 0s  
Tdelay >= 0s  
DVDD  
Tdelay >= 0s  
Tdelay >= 0s  
AVDD  
150. Power Supply Sequence for Power-Up and Power-Down  
When the supplies have settled, the /RESET terminal can be set HIGH to operate the device. Additionally the  
/RESET pin can be tied to IOVDD and the internal DVDD POR will perform a reset of the device. After a  
hardware or software reset additional commands to the device should be delayed for 100uS to allow the OTP to  
load. The above sequence should be completed before any I2C operation.  
版权 © 2016–2019, Texas Instruments Incorporated  
99  
 
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Place the boost inductor between VBAT and SW close to device terminals with no VIAS between the device  
terminals and the inductor.  
Place the capacitor between VREG and VBOOST close to device terminals with no VIAS between the device  
terminals and capacitor.  
Place the capacitor between VBOOST/VBAT and GND close to device terminals with no VIAS between the  
device terminals and capacitor.  
Do not use VIAS for traces that carry high current. These include the traces for VBOOST, SW, VBAT, PGND  
and the speaker SPK_P, SPK_M.  
Use epoxy filled vias for the interior pads.  
Connect VSENSE+, VSENSE- as close as possible to the speaker.  
VSENSE+, VSENSE- should be connected between the EMI ferrite filter and the speaker if EMI ferrites  
are used on SPK_P, SPK_M.  
Use a ground plane with multiple vias for each terminal to create a low-impedance connection to GND for  
minimum ground noise.  
Use supply decoupling capacitors as shown in  
148 and and described in Power Supply  
Recommendations.  
Place EMI ferrites, if used, close to the device.  
100  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
12.2 Layout Example  
GROUND PLANE  
6
5
4
3
2
1
G
F
FERRITE  
BEAD  
SPK_P  
GND  
E
FERRITE  
SPK_M  
BEAD  
D
C
B
A
BOOST  
CAPACITOR  
GND  
BOOST  
INDUCTOR  
VBAT  
GND  
VBAT DECOUPLING  
CAPACITOR  
TWO INTERNAL  
GND PLANES  
VBAT  
VIA-IN-PAD  
VIA TO GND PLANE  
151. TAS2557 Board Layout  
版权 © 2016–2019, Texas Instruments Incorporated  
101  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
PurePath, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
14.1 封装尺寸  
TAS2557 采用 42 焊球、间距为 0.5mm DSBGA 封装。  
102  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
封装尺寸 (接下页)  
TAS255xYZ, SN____255xYZ  
PACKAGE OUTLINE  
YZ0042-C01  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
0
0
0
DIE SIZE BALL GRID ARRAY  
3.259  
3.199  
B
A
BUMP A1  
CORNER  
3.505  
3.445  
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.35  
0.15  
2.5 TYP  
(0.3075)  
1.307  
(0.4215)  
G
F
E
D
SYMM  
3
TYP  
C
0.35  
42X  
0.25  
B
A
0.015  
C A B  
0.5 TYP  
1
2
3
5
4
6
PKG  
0.5 TYP  
4222036/B 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2016–2019, Texas Instruments Incorporated  
103  
TAS2557  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
www.ti.com.cn  
封装尺寸 (接下页)  
TAS255xYZ, SN____255xYZ  
EXAMPLE BOARD LAYOUT  
YZ0042-C01  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(1.307)  
(0.5) TYP  
42X ( 0.245)  
1
2
3
4
5
6
A
(0.5) TYP  
B
C
SYMM  
D
E
F
G
PKG  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MAX  
0.05 MIN  
(
0.245)  
METAL  
(
0.245)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222036/B 04/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
104  
版权 © 2016–2019, Texas Instruments Incorporated  
TAS2557  
www.ti.com.cn  
ZHCSFP7B NOVEMBER 2016REVISED FEBRUARY 2019  
封装尺寸 (接下页)  
TAS255xYZ, SN____255xYZ  
YZ0042-C01  
EXAMPLE STENCIL DESIGN  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(1.307)  
(0.5) TYP  
42X ( 0.25)  
(R0.05) TYP  
1
2
3
4
5
6
A
(0.5)  
TYP  
B
METAL  
TYP  
C
D
SYMM  
E
F
G
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222036/B 04/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
版权 © 2016–2019, Texas Instruments Incorporated  
105  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS2557YZR  
TAS2557YZT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YZ  
YZ  
42  
42  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
2557  
2557  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS2557YZR  
TAS2557YZR  
TAS2557YZT  
TAS2557YZT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZ  
YZ  
YZ  
YZ  
42  
42  
42  
42  
3000  
3000  
250  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
3.4  
3.4  
3.4  
3.4  
3.75  
3.75  
3.75  
3.75  
0.82  
0.82  
0.82  
0.82  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS2557YZR  
TAS2557YZR  
TAS2557YZT  
TAS2557YZT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZ  
YZ  
YZ  
YZ  
42  
42  
42  
42  
3000  
3000  
250  
367.0  
380.0  
380.0  
367.0  
367.0  
380.0  
380.0  
367.0  
35.0  
50.0  
50.0  
35.0  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS2557YZR

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2557YZT

具有集成扬声器保护、高级 EQ 和 8.5V H 类升压的 5.7W 数字输入智能音频放大器 | YZ | 42 | -40 to 85
TI

TAS2559

具有集成扬声器保护和立体声处理功能的 5.7W 数字输入智能放大器
TI

TAS2559YZR

具有集成扬声器保护和立体声处理功能的 5.7W 数字输入智能放大器 | YZ | 42 | -40 to 85
TI

TAS2559YZT

具有集成扬声器保护和立体声处理功能的 5.7W 数字输入智能放大器 | YZ | 42 | -40 to 85
TI

TAS2560

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器
TI

TAS2560YFFR

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器 | YFF | 30 | -40 to 85
TI

TAS2560YFFT

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器 | YFF | 30 | -40 to 85
TI

TAS2562

具有 I/V 感应扬声器保护和集成 11V H 类升压的 6.1W 数字输入智能放大器
TI

TAS2562YFPR

具有 I/V 感应扬声器保护和集成 11V H 类升压的 6.1W 数字输入智能放大器 | YFP | 36 | -40 to 85
TI

TAS2562YFPT

具有 I/V 感应扬声器保护和集成 11V H 类升压的 6.1W 数字输入智能放大器 | YFP | 36 | -40 to 85
TI

TAS2563

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense
TI