TAS2560 [TI]

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器;
TAS2560
型号: TAS2560
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器

放大器
文件: 总82页 (文件大小:2002K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
TAS2560 具有 IV 感测功能的 5.6W D 类单声道音频放大器  
1 特性  
3 说明  
1
超低噪声单声道升压 D 类放大器  
TAS2560 是一款低功耗、高性能、数字输入升压 D 类  
音频放大器,可轻松实现单声道和立体声 (x2) 应用。  
该器件 具有 超低噪声音频 DAC D 类功率放大器,  
其中整合的扬声器电压和电流感测反馈用于扬声器保护  
算法。  
4Ω 负载和 4.2V 电源电压条件下,总谐波失  
+ 噪声 (THD+N) 1% 时的功率为  
5.6WTHD+N 10% 时的功率为 6.9W  
8Ω 负载和 4.2V 电源电压条件下,THD+N  
1% 时的功率为 3.7WTHD+N 10% 时的  
功率为 4.5W  
H 类升压转换器生成 D 类放大器电源轨。当音频信号  
只需要较低的 D 类输出功率时,可通过禁用升压并将  
VBAT 直连 D 类放大器电源来提升系统效率。当需要  
较高的音频输出功率时,多级升压功能会重新激活信号  
跟踪,从而为负载提供额外的电压。  
数模转换器 (DAC) + D 类放大器的输出噪声 (ICN)  
16.2µV  
1% THD+N/8Ω 条件下的 DAC + D 类放大器的信  
噪比 (SNR) 111dB  
1W/8Ω 条件下的 THD+N –89dB(具有平坦频  
率响应)  
可配置的片上电池保护系统可降低电池电压过低期间的  
音频输出功率,从而尽量防止电池电压下降到系统欠压  
条件以下。此外,欠压、过流和过热等故障可使用  
IRQ 引脚报告回主机处理器。通过读取寄存器可获得  
所有保护状态。  
后置滤波器反馈 (PFFB)  
当频率为 217Hz 时,200 mVpp 纹波电压的电源抑  
制比 (PSRR) 110dB  
输入采样速率范围为 8kHz 96kHz  
高效 H 类升压转换器  
器件信息(1)  
自动调节 D 类电源  
器件型号  
TAS2560  
封装  
WCSP (30)  
封装尺寸(标称值)  
多级跟踪,可提升效率  
2.85mm x 2.63mm  
内置扬声器感测  
(1) 如需了解所有可用封装,请参见产品说明书末尾的可订购产品  
附录。  
测量扬声器电流和电压  
测量 VBAT 电压和芯片温度  
简化原理图  
内置自动增益控制 (AGC)  
限制电池电流消耗  
L1  
VBAT  
2
可调节 D 类开关边缘速率控制  
SW  
C1  
电源  
VREG  
升压输入:2.9V 5.5V  
模拟/数字:1.65V 1.95V  
数字 I/O1.62V 3.6V  
VBOOST  
2
C2  
Ferrite bead  
MCLK  
(optional)  
热保护、短路保护和欠压保护  
SPK_P  
+
I2S  
TAS2560  
I2S,左侧对齐,右侧对齐,数字信号处理器  
(DSP),时分复用 (TDM) 和脉宽调制 (PDM)  
To Speaker  
SPK_N  
Ferrite bead  
(optional)  
-
4
I2C  
用于寄存器控制的 I2C 接口  
VSENSE_P  
VSENSE_N  
可使用两个 TAS2560 器件实现立体声配置  
2
/RESET  
2 应用  
手机  
平板电脑  
个人电子产品  
建筑/家庭自动化  
蓝牙扬声器及配件  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE86  
 
 
 
 
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 18  
9.4 Device Functional Modes........................................ 30  
9.5 Operational Modes.................................................. 41  
9.6 Programming........................................................... 45  
9.7 Register Map........................................................... 49  
10 Application and Implementation........................ 69  
10.1 Application Information.......................................... 69  
10.2 Typical Applications .............................................. 69  
10.3 Initialization Set Up ............................................... 71  
11 Power Supply Recommendations ..................... 72  
11.1 Power Supplies ..................................................... 72  
11.2 Power Supply Sequencing.................................... 72  
12 Layout................................................................... 73  
12.1 Layout Guidelines ................................................. 73  
12.2 Layout Example .................................................... 73  
13 器件和文档支持 ..................................................... 74  
13.1 文档支持 ............................................................... 74  
13.2 社区资源................................................................ 74  
13.3 ....................................................................... 74  
13.4 静电放电警告......................................................... 74  
13.5 Glossary................................................................ 74  
14 机械、封装和可订购信息....................................... 74  
14.1 封装尺寸................................................................ 74  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 I2C Timing Requirements.......................................... 8  
7.7 I2S/LJF/RJF Timing in Master Mode......................... 9  
7.8 I2S/LJF/RJF Timing in Slave Mode .......................... 9  
7.9 DSP Timing in Master Mode..................................... 9  
7.10 DSP Timing in Slave Mode................................... 10  
7.11 PDM Timing .......................................................... 10  
7.12 Typical Characteristics.......................................... 13  
Parameter Measurement Information ................ 16  
Detailed Description ............................................ 17  
9.1 Overview ................................................................. 17  
9.2 Functional Block Diagram ....................................... 17  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (November 2017) to Revision E  
Page  
Changed MAX Switching value in the Absolute Maximum Ratings table to 1.8 .................................................................... 5  
Changed Absolute Maximum Ratings table note ................................................................................................................... 5  
已更改 MIN value of C1 to 10 .............................................................................................................................................. 70  
已更改 Capacitance at 8.5 V derating specification of C2 to 3.3 ......................................................................................... 70  
已添加 missing text to end of Boost Converter Passive Devices section ............................................................................ 70  
Changes from Revision C (July 2017) to Revision D  
Page  
Changed the Boost Converter Passive Devices section...................................................................................................... 70  
Changes from Revision B (August 2016) to Revision C  
Page  
已更改 将封装尺寸从“2.80mm × 2.60mm”改为“2.85mm × 2.63mm...................................................................................... 1  
Changes from Revision A (June 2016) to Revision B  
Page  
已更改 封装图。.................................................................................................................................................................... 74  
Changes from Original (June 2016) to Revision A  
Page  
已更改 产品预览量产数据”............................................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
5 Device Comparison Table  
PART  
NUMBER  
CONTROL  
METHOD  
SmartAmp  
Digital Engine  
Boost Voltage  
SNR(1)  
ICN(1)  
THD+N  
Boost Control  
NO (External  
Processing  
Required)  
TAS2552  
I2C  
8.5 V  
94 dB  
130 µV  
-64 dB  
Class-G  
NO (External  
Processing  
Required)  
TAS2553  
TAS2555  
TAS2560  
I2C  
I2C or SPI  
I2C  
7.5 V  
8.5 V  
8.5 V  
94 dB  
111 dB  
111 dB  
130 µV  
15.9 µV  
16.2 µV  
-64 dB  
-90 dB  
-88 dB  
Class-G  
Class-H  
Class-H  
YES (Processing  
on Chip)  
NO (External  
Processing  
Required)  
(1) A weighted data.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
30-Ball WCSP  
YFF Package  
(Top View)  
F5  
F4  
F3  
F2  
F1  
PGND_B  
PGND_B  
VBAT  
SDA  
RESETZ  
E5  
E4  
E3  
E2  
E1  
SW  
SW  
SCL  
DOUT  
PDMCLK  
D5  
D4  
D3  
D2  
D1  
VBOOST VBOOST  
GND  
BCLK  
DIN  
C5  
C4  
C3  
C2  
C1  
SPK_P  
VREG  
GND  
NC1  
WCLK  
B5  
B4  
B3  
B2  
B1  
PGND  
VSENSE_N  
VDD  
NC2  
MCLK  
A5  
A4  
A3  
A2  
A1  
SPK_N VSENSE_P  
IRQ  
IOVDD  
ADDR  
Pin Functions  
PIN  
I/O/POWER  
DESCRIPTION  
NAME  
ADDR  
IOVDD  
IRQ  
BALL NO.  
A1  
I2C device ID setting  
I
P
O
I
A2  
1.8V or 3.3V Digital interface Power Supply for digital input and output levels  
Active-high interrupt output  
A3  
VSENSE_P  
SPK_N  
MCLK  
NC2  
A4  
Non-inverting voltage sense input  
Non-inverting Class D output  
A5  
O
I
B1  
Master clock input  
B2  
-
Float Connection - Do not route any signal or supply to or through this pin  
1.8V power supply  
VDD  
B3  
P
I
VSENSE_N  
PGND  
WCLK  
NC1  
B4  
Inverting voltage sense input  
B5  
P
I/O  
-
Power ground, connect to high current ground plane  
Audio serial interface word clock  
C1  
C2  
Float Connection - Do not route any signal or supply to or through this pin  
Power ground, connect to high current ground plane  
Voltage regulator output  
GND  
C3,D3  
C4  
P
P
O
I
VREG  
SPK_P  
DIN  
C5  
Inverting Class D output  
D1  
Audio serial interface data input  
BCLK  
D2  
I/O  
P
I/O  
O
I
Audio serial interface bit clock  
VBOOST  
PDMCLK  
DOUT  
SCL  
D4,D5  
E1  
Boost converter output  
PDM bit stream clock  
E2  
Audio serial interface data output  
I2C interface serial clock  
E3  
SW  
E4,E5  
F1  
P
I
Boost converter switch input  
RESETZ  
SDA  
Active-low hardware reset  
I2C interface serial data  
F2  
I/O  
P
P
VBAT  
F3  
Battery power supply, connect to 2.9 V to 5.5 V battery supply  
Power ground, connect to high current ground plane  
PGND_B  
F4,F5  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, TA = 25°C (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.7  
–0.3  
–0.3  
MAX  
UNIT  
V
Battery voltage  
Analog supply voltage  
I/O supply voltage  
Boost  
VBAT  
VDD  
6
2
V
IOVDD  
VBST  
SW  
3.9  
V
9.2  
V
Switching  
VBST + 1.8(1)  
VBST + 5  
IOVDD + 0.3  
V
Regulator voltage  
Digital input voltage  
VREG  
V
V
Output continuous total power dissipation  
Storage temperature, Tstg  
See Thermal Information  
–65 150  
°C  
(1) Cannot exceed 11 V for greater than 10 nS or 10 V continuously.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range, TA = 25°C (unless otherwise noted)  
MIN  
2.9(1)  
1.65  
1.62  
3
NOM  
3.6  
MAX UNIT  
Battery voltage  
VBAT  
VDD  
5.5  
1.95  
1.98  
3.6  
V
V
Analog supply voltage  
I/O supply voltage 1.8V  
I/O supply voltage 3.3V  
Operating free-air temperature  
Operating junction temperature  
1.8  
IOVDD  
IOVDD  
1.8  
V
3.3  
V
TA  
TJ  
–40  
–40  
85  
°C  
°C  
150  
(1) Device is functional down to 2.7 V. See Battery Guard AGC  
7.4 Thermal Information  
TAS2560  
THERMAL METRIC(1)  
UNIT  
30 PINS  
56.8  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
8.1  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
ψJB  
8.1  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
7.5 Electrical Characteristics  
VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, Gain = 16.4 dB, ERC = 14 ns, Boost Inductor = 2.2 µH, RL = 8 Ω +  
33 µH, 1-kHz input frequency, 48-kHz sample rate for digital input, Class-H Boost Enabled, TA= 25°C, ILIM = 3 A (unless  
otherwise noted)  
PARAMETER  
BOOST CONVERTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Boost output voltage  
Average voltage (w/o including ripple).  
8.5  
1.77  
3
V
MHz  
A
Boost converter switching frequency  
Boost converter current limit  
High Efficiency Mode: Max inductor in-  
rush and startup current after enable  
4
Boost converter max in-rush current  
A
Normal Efficiency Mode: Max inductor in-  
rush and startup current after enable  
1.5  
CLASS-D CHANNEL  
Output voltage for full-scale digital  
input  
6.67  
VRMS  
Load resistance (Load spec  
resistance)  
3.6  
8
Ω
Avg frequency in spread-spectrum mode  
Fixed Frequency  
384  
Class-D frequency  
kHz  
44.1 × 8 48 × 8  
POUT = 3.5 W (sinewave) ROM Mode 1  
POUT = 0.44 W (sinewave) ROM Mode 1  
81%  
87%  
Class-D + boost efficiency  
Class-D output current limit (Short  
circuit protection)  
VBOOST = 8.5 V, OUT– shorted to VBAT,  
VBOOST, GND  
4
A
Class-D output offset voltage in digital  
input mode  
–2.5  
±0.5  
146  
2.5  
mV  
dB  
dB  
Programmable channel gain accuracy  
Device in shutdown or device in normal  
operation and MUTED  
Mute attenuation  
VBAT Power Supply Rejection Ratio  
(PSRR)  
Ripple of 200 mVpp at 217 Hz  
Ripple of 200 mVpp at 217 Hz  
1 kHz, POUT = 0.1 W  
110  
98  
dB  
dB  
AVDD Power Supply Rejection Ratio  
(PSRR)  
0.0085  
%
0.0046  
%
1 kHz, Po = 0.5 W  
THD+N  
0.0035  
%
1 kHz, Po = 1 W  
0.0043  
%
1 kHz, Po = 3 W  
Output integrated noise (20 Hz to 20  
kHz) - 8 Ω  
A-wt Filter, DAC modulator switching  
16.2  
µV  
dB  
Referenced to 1% THD+N at output, a-  
weighted  
Signal-to-noise ratio  
110.6  
THD+N = 1%, 8-Ω Load  
THD+N = 1%, 6-Ω Load  
THD+N = 1%, 4-Ω Load  
Digital input, a-weighted output  
RESETZ = 0 V  
3.7  
4.5  
5
Max output power, 3-A current limit  
W
Startup pop  
5
mV  
Output impedance in shutdown  
10.4  
kΩ  
Time taken from end of configuring device  
to speaker output signal in I2C mode with  
48ksps input  
Startup time  
8
mS  
µS  
Measured from time when device is  
programmed in software shutdown mode  
Shutdown time  
100  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Electrical Characteristics (continued)  
VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, Gain = 16.4 dB, ERC = 14 ns, Boost Inductor = 2.2 µH, RL = 8 Ω +  
33 µH, 1-kHz input frequency, 48-kHz sample rate for digital input, Class-H Boost Enabled, TA= 25°C, ILIM = 3 A (unless  
otherwise noted)  
PARAMETER  
CURRENT SENSE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak current which will give full scale  
digital output 8-Ω load  
1.25  
4.022  
1.5  
Peak current which will give full scale  
digital output 8-Ω load PDM  
Current sense full scale  
Current sense accuracy  
APEAK  
Peak current which will give full scale  
digital output 6-Ω load  
Peak current which will give full scale  
digital output 4-Ω load  
1.75  
1.7%  
4%  
IOUT = 354 mARMS (1 W)  
Current sense gain drift over  
temperature  
–40°C to 85°C  
Current sense gain linearity  
Distortion + Noise  
SNR  
From 15 mW to 3.5 W for fin=1 kHz  
POUT = 3 W (Load = 8 Ω + 33 µH)  
POUT = 3 W (Load = 4 Ω + 33 µH)  
20 Hz to 20 kHz, A-wt  
1.5%  
0.196%  
0.132%  
–68  
THD+N  
db  
VOLTAGE SENSE  
Peak voltage which will give full scale  
digital output(1)  
9.353  
Voltage sense full scale  
VPEAK  
Peak voltage which will give full scale  
digital output in PDM  
16.65  
1%  
Voltage sense accuracy  
VOUT = 2.83 Vrms (1 W)  
Voltage sense gain drift over  
temperature  
–40°C to 85°C  
1.2%  
1%  
Voltage sense gain linearity  
From 15 mW to 3.5 W for fin = 1 kHz  
INTERFACE  
Voltage and current sense data rate  
Voltage and current sense ADC OSR TDM/I2S  
TDM/I2S  
48  
64  
kHz  
OSR  
MHz  
FMCLK  
MCLK frequency  
0.512  
49.15  
POWER CONSUMPTION  
Power consumption with digital input  
From VBAT, no signal  
From VDD, no signal  
3.2  
9.5  
mA  
mA  
and IV-sense disabled. Idle channel  
condition  
From VBAT, no signal  
From VDD, no signal  
From VBAT, RESETZ = 0  
From VDD, RESETZ = 0  
From VBAT  
3.2  
10.6  
0.1  
mA  
mA  
µA  
µA  
µA  
µA  
Power consumption with digital input  
and IV-sense enabled.  
Power consumption in hardware  
shutdown  
1.2  
0.1  
Power consumption in software  
shutdown. See Low Power Sleep  
From VDD  
9.8  
DIGITAL INPUT / OUTPUT  
0.65 ×  
IOVDD  
VIH  
VIL  
High-level digital input voltage  
Low-level digital input voltage  
V
V
All digital pins except SDA and SCL,  
IOVDD = 1.8-V operation  
0.35 ×  
IOVDD  
VIH  
VIL  
High-level digital input voltage  
Low-level digital input voltage  
2
V
V
All digital pins except SDA and SCL,  
IOVDD = 3.3-V operation  
0.45  
(1) Voltage Sense Fullscale = 1.176 Vrms × 10(DAC_GAIN/20)  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, Gain = 16.4 dB, ERC = 14 ns, Boost Inductor = 2.2 µH, RL = 8 Ω +  
33 µH, 1-kHz input frequency, 48-kHz sample rate for digital input, Class-H Boost Enabled, TA= 25°C, ILIM = 3 A (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IOVDD –  
0.45  
All digital pins except SDA and SCL,  
IOVDD = 1.8-V operation For IOL = 2 mA  
and IOH = –2 mA  
VOH  
High-level digital output voltage  
V
VOL  
VOH  
Low-level digital output voltage  
High-level digital output voltage  
0.45  
0.4  
V
V
All digital pins except SDA and SCL,  
IOVDD = 3.3-V operation For IOL = 2 mA  
and IOH = –2 mA  
2.4  
VOL  
Low-level digital output voltage  
V
IIH  
IIL  
High-level digital input leakage current Input = IOVDD  
Low-level digital input leakage current Input = Ground  
–5  
–5  
0.1  
0.1  
5
5
µA  
µA  
MISCELLANEOUS  
TTRIP  
Thermal Trip Point  
135  
°C  
7.6 I2C Timing Requirements  
For I2C interface signals over recommended operating conditions (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITION  
Standard-Mode  
Fast-Mode  
UNITS  
MIN  
0
TYP  
MAX  
MIN  
TYP  
MAX  
fSCL  
SCL clock frequency  
100  
0
400  
kHz  
tHD;STA Hold time (repeated) START  
condition. After this period, the first  
clock pulse is generated.  
4
0.6  
μs  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4
1.3  
0.6  
0.6  
μs  
μs  
μs  
tSU;STA Setup time for a repeated START  
condition  
4.7  
tHD;DAT Data hold time: For I2C bus  
devices  
0
3.45  
0
0.9  
μs  
tSU;DAT Data set-up time  
250  
100  
ns  
ns  
tr  
SDA and SCL Rise Time  
1000 20 + 0.1 ×  
Cb  
300  
300  
tf  
SDA and SCL Fall Time  
300 20 + 0.1 ×  
Cb  
ns  
tSU;STO Set-up time for STOP condition  
4
0.6  
1.3  
μs  
μs  
tBUF  
Bus free time between a STOP  
and START condition  
4.7  
Cb  
Capacitive load for each bus line  
400  
400  
pF  
(1) All timing specifications are specified by design but not tested at final test.  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
7.7 I2S/LJF/RJF Timing in Master Mode  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)  
IOVDD = 3.3  
IOVDD = 1.8 V  
V
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
MIN MAX  
MIN MAX  
td(WS)  
BCLK to WCLK delay  
50% of BCLK to 50% of WCLK  
50% of WCLK to 50% of DOUT  
35  
35  
25  
25  
ns  
ns  
td(DO-WS)  
WCLK to DOUT delay (For LJF Mode only)  
BCLK to DOUT delay  
td(DO-  
BCLK)  
50% of BCLK to 50% of DOUT  
35  
25  
ns  
ts(DI)  
DIN setup  
DIN hold  
Rise time  
Fall time  
8
8
8
8
8
8
4
4
ns  
ns  
ns  
ns  
th(DI)  
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
(1) All timing specifications are measured at characterization but not tested at final test.  
7.8 I2S/LJF/RJF Timing in Slave Mode  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)  
IOVDD = 1.8 V IOVDD = 3.3 V  
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
MIN MAX  
MIN  
30  
30  
8
MAX  
tH(BCLK)  
BCLK high period  
BCLK low period  
(WS)  
40  
40  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tL(BCLK)  
ts(WS)  
th(WS)  
WCLK hold  
8
8
td(DO-WS)  
WCLK to DOUT delay (For LJF Mode only)  
50% of WCLK to 50% of DOUT  
50% of BCLK to 50% of DOUT  
35  
35  
8
25  
25  
td(DO-BCLK) BCLK to DOUT delay  
ts(DI)  
DIN setup  
DIN hold  
Rise time  
Fall time  
8
8
th(DI)  
8
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
8
4
4
8
(1) All timing specifications are measured at characterization but not tested at final test.  
7.9 DSP Timing in Master Mode  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)  
IOVDD = 3.3  
IOVDD = 1.8 V  
V
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
MIN MAX  
MIN MAX  
td(WS)  
BCLK to WCLK delay  
BCLK to DOUT delay  
50% of BCLK to 50% of WCLK  
50% of BLCK to 50% of DOUT  
35  
25  
ns  
ns  
td(DO-  
BCLK)  
35  
25  
ts(DI)  
DIN setup  
DIN hold  
Rise time  
Fall time  
8
8
8
8
8
8
4
4
ns  
ns  
ns  
ns  
th(DI)  
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
(1) All timing specifications are measured at characterization but not tested at final test.  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
7.10 DSP Timing in Slave Mode  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)  
IOVDD=1.8V  
IOVDD=3.3V  
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
MIN MAX  
MIN  
30  
30  
8
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
BCLK high period  
BCLK low period  
WCLK seutp  
40  
40  
8
ns  
ns  
ns  
ns  
th(WS)  
WCLK hold  
8
8
td(DO-  
BCLK)  
BCLK to DOUT delay (For LJF Mode only)  
50% BCLK to 50% DOUT  
35  
25  
ns  
ts(DI)  
DIN setup  
DIN hold  
Rise time  
Fall time  
8
8
8
8
8
8
ns  
ns  
ns  
ns  
th(DI)  
tr  
tf  
10%-90% Rise Time  
90%-10% Fall Time  
4
4
(1) All timing specifications are measured at characterization but not tested at final test.  
7.11 PDM Timing  
All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet  
limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)  
IOVDD = 1.8 V IOVDD = 3.3 V  
PARAMETER  
CONDITIONS  
UNIT  
MIN MAX  
MIN  
20  
3
MAX  
ts  
th  
tr  
DIN setup  
DIN hold  
Rise time  
Fall time  
20  
3
ns  
ns  
ns  
ns  
10%-90% Rise Time  
90%-10% Fall Time  
8
4
4
tf  
8
(1) All timing specifications are measured at characterization but not tested at final test.  
SDA  
tBUF  
tLOW  
tr  
th(STA)  
SCL  
th(STA)  
STA  
th(DAT)  
tHIGH  
tsu(STA)  
tsu(STO)  
STO  
tf  
tsu(DAT)  
STA  
STO  
1. I2C Timing  
WCLK  
t
d(WS)  
BCLK  
DOUT  
DIN  
t
d(DO-BCLK)  
t
d(DO-WS)  
t
t
h(DI)  
S(DI)  
2. I2S/LJF/RJF Timing in Master Mode  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
WCLK  
th(WS)  
ts(WS)  
tL(BCLK)  
td(DO-WS)  
tH(BCLK)  
td(DO-BCLK)  
BCLK  
DOUT  
DIN  
th(DI)  
ts(DI)  
3. I2S/LJF/RJF Timing in Slave Mode  
WCLK  
t
d(WS)  
t
d(WS)  
BCLK  
DOUT  
DIN  
t
d(DO-BCLK)  
t
t
h(DI)  
s(DI)  
4. DSP Timing in Master Mode  
WCLK  
t
t
h(ws)  
t
h(ws)  
t
s(ws)  
h(ws)  
t
BCLK  
DOUT  
DIN  
L(BCLK)  
t
H(BCLK)  
t
d(DO-BCLK)  
t
t
h(DI)  
s(DI)  
5. DSP Timing in Slave Mode  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
tSU(PDM)  
tHLD(PDM)  
tSU(PDM)  
tHLD(PDM)  
PDM CLK  
tr  
tf  
PDM IN  
Falling Edge Captured  
Rising Edge Captured  
6. PDM Timing  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
7.12 Typical Characteristics  
VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, RL = 8 Ω + 33 µH, I2S digital input, Mode 2 (unless otherwise  
noted).  
10  
5
10  
5
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
1
2
3 45 7 10  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
1
2 3 45 7 10  
Pout(W)  
Pout(W)  
D001  
D002  
8 Ω + 33 µH  
Freq = 1 kHz  
4 Ω + 16 µH  
Freq = 1 kHz  
7. THD+N vs Output Power  
8. THD+N vs Output Power  
10  
10  
5
5
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20 30 50 100 200  
500 1000 2000  
Frequency(Hz)  
10000  
50000  
20 30 50 100 200  
500 1000 2000  
Frequency(Hz)  
10000  
50000  
D003  
D004  
}}  
4 Ω + 16 µH  
POUT = 1 W  
8 Ω + 33 µH  
POUT = 1 W  
10. THD+N vs Frequency  
9. THD+N vs Frequency  
10  
10  
5
5
Without ferrite bead  
Without ferrite bead  
Loop closed after ferrite bead(PFFB)  
Loop closed before ferrite bead  
Loop closed after ferrite bead(PFFB)  
Loop closed before ferrite bead  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
20 30 50 100 200  
500 1000 2000  
Frequency(Hz)  
10000  
50000  
D005  
D006  
8 Ω + 33 µH  
Freq = 1 kHz  
8 Ω + 33 µH  
POUT = 1 W  
11. THD+N vs Output Power  
12. THD+N vs Frequency  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, RL = 8 Ω + 33 µH, I2S digital input, Mode 2 (unless otherwise  
noted).  
130  
125  
120  
115  
110  
105  
100  
95  
120  
115  
110  
105  
100  
95  
90  
90  
VBAT=3.0V  
VBAT=3.6V  
VBAT=5.4V  
85  
AVDD=1.8V  
85  
80  
80  
75  
75  
10 20 30 50 100 200 500 1000  
Frequency(Hz)  
10000  
50000  
10 20 30 50 100 200 500 1000  
Frequency(Hz)  
10000  
50000  
D007  
D008  
13. VBAT Supply Ripple Rejection vs Frequency  
14. AVDD Supply Ripple Rejection vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
0.0005  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710  
0.0005  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710  
Pout(W)  
Pout(W)  
D009  
D010  
8 Ω + 33 µH  
SSM Mode  
4 Ω + 16 µH  
SSM Mode  
15. Efficiency vs Output Power Low Inrush  
16. Efficiency vs Output Power Low Inrush  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
0.0005  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710  
0.0005  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710  
Pout(W)  
Pout(W)  
D011  
D012  
8 Ω + 33 µH  
SSM Mode  
4 Ω + 16 µH  
SSM Mode  
17. Efficiency vs Output Power High Efficiency  
18. Efficiency vs Output Power High Efficiency  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Typical Characteristics (接下页)  
VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, RL = 8 Ω + 33 µH, I2S digital input, Mode 2 (unless otherwise  
noted).  
5
8
4.5  
7
4
6
3.5  
5
4
3
2
1
0
3
2.5  
2
1.5  
1
THD+N = 1%  
THD+N = 10%  
THD+N = 1%  
THD+N = 10%  
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VBAT Supply(V)  
VBAT Supply(V)  
D014  
D013  
4 Ω+ 16 µH  
8 Ω+ 33 µH  
20. Output Power for 1% and 10% THD+N vs VBAT  
19. Output Power for 1% and 10% THD+N vs VBAT  
2
2
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
1.6  
1.2  
0.8  
0.4  
0
1.6  
1.2  
0.8  
0.4  
0
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Pout(W)  
Pout(W)  
D015  
D016  
8 Ω + 33 µH  
4 Ω+ 16µH  
21. V/I Linearity vs Output Power  
22. V/I Linearity vs Output Power  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
8 Parameter Measurement Information  
23. TAS2560 Test Circuit  
All typical characteristics for the devices are measured using the bench EVM and an Audio Precision SYS-2722  
audio analyzer. A Programable Serial Interface Adaptor (PSIA) is used to allow the I2S interface to be driven  
directly into the SYS-2722. SPEAKER OUT terminal is connected to Audio Precision analyzer inputs as shown  
below. There is a differential to single ended (D2S) filter, with 1st order Passive pole at 120 kHz is added. This is  
to ensure high performance Class-D amplifier sees a fully differential matched loading at its outputs and no  
degradation in performance measured due to loading effects of AUX filter on Class-D outputs.  
24. Differential To Single Ended (D2S) Filter  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9 Detailed Description  
9.1 Overview  
The TAS2560 is a low-power, high-performance boosted Class-D Audio amplifier that can be used in numerous  
applications. The device features an ultra low-noise audio DAC and Class-D power amplifier which incorporates  
speaker voltage and current sensing feedback. The TAS2560, from a 4.2 V, supply drives up to 5.6 W into a 4-Ω  
speaker with 1% THDN or 3.7 W into an 8-Ω speaker with 1% THDN. The TAS2560 accepts input audio data  
rates from 8 kHz to 96 kHz to fully support both speaker-phone and music applications. The MCLK frequency  
range can be from 512 kHz to 49.15 Mhz. Also supported are crystal based MCLK frequencies of 6 Mhz, 12  
Mhz, 13 Mhz, and 19.2 Mhz. Left + Right Input Mixing is available when used in a mono only application.  
The multi-level Class-H boost converter generates the Class-D amplifier supply rail. When the audio signal  
requires a output power below VBAT, the boost improves system efficiency by deactivating and connecting  
VBAT directly to the Class-D amplifier supply. When higher audio output power is required, the boost quickly  
activates and provides a much louder and much clearer signal than can be achieved in any standard amplifier  
speaker system design approach. A boost inductor of 1uH can be used with a slight increase in boost ripple.  
On-chip Battery Guard AGC system can limit audio power levels or even shutdown the TAS2560 to avoid an  
undesired system reset as the supply voltage decays. The Class-D output switching frequency is synchronous  
with the digital input audio sample rate to avoid left and right PWM frequency differences from beating in stereo  
applications. PWM Edge rate control and Spread Spectrum features are available if further EMI reduction is  
desired in the user’s system.  
The interrupt request pin, IRQ, indicates a device error condition. The interrupt flag conditions are selectable via  
I2C and include: thermal overload, Class-D over-current, VBAT level low, brownout, and clock error. The IRQ  
signal is active-high for an interrupt request and high-Z during normal operation. This behavior can be changed  
by a register setting to tri-state the pin during normal operation to allow the IRQ pin to be tied in parallel with  
other active-low interrupt request pins on other devices in the system.  
Stereo configuration can be achieved with two TAS2560 devices by using the ADDR pin to set different I2C  
addresses in I2C mode. Refer to the General I2C Operation sections for more details.  
9.2 Functional Block Diagram  
1.8V/3.3V  
2.9-5.5V  
1.8V  
VREG  
Charge  
Pump  
Boost  
ADDR  
RESETZ  
IRQ  
SAR  
ADC  
Temp  
Sensor  
SDA  
System  
Interface  
+
Limiter  
+
Boost  
Control  
SCL  
optional  
OUT_P  
OUT_N  
fb  
Class-D  
DAC  
MCLK  
DIN  
Amplifier  
fb  
with  
IV-SNS  
ADCs  
DOUT  
BCLK  
IV-Sense VSNS_P  
VSNS_N  
WCLK  
PDMCLK  
Pop/Click  
Over Current  
Over Temp  
Protection  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 General I2C Operation  
The TAS2560 operates as an I2C slave over the IOVDD voltage range. It is adjustable to one of four I2C  
addresses. This allows multiple TAS2560 devices in a system to connect to the same I2C bus. The I2C pins are  
fail-safe. Therefore, if the part is not powered or is in shutdown the I2C pins will not have an impact the I2C bus  
allowing it to remain useable.  
The I2C address can then be set using the ADDR pin according to 1. The ADDR pin configures the two LSB  
bits of the following 7-bit binary address A6-A0 of 10011xx. This permits the I2C address of TAS2560 to be  
0x4C(7bit) through 0x4F(7-bit). For example, if the ADDR pin is shorted to ground the TAS2560 I2C address  
would be 0x4C(7bit). This is equivalent to 0x98 (8-bit) for writing and 0x99 (8-bit) for reading.  
1. I2C Address Selection  
ADDR Pin Conneciton  
I2C Device Address  
Short to GND  
0x4C  
0x4D  
Connection to GND using 22 kΩ  
Resistor  
Connection to IOVDD using 22 kΩ  
0x4E  
0x4F  
Resistor  
Short to IOVDD  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. The corresponding pins on the TAS2560 for the two signals are SDA and SCL. The bus transfers data  
serially, one bit at a time. The address and data 8-bit bytes are transferred most-significant bit (MSB) first. In  
addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit.  
Each transfer operation begins with the master device driving a start condition on the bus and ends with the  
master device driving a stop condition on the bus. The bus uses transitions on the data terminal (SDA) while the  
clock is at logic high to indicate start and stop conditions. A high-to-low transition on SDA indicates a start, and a  
low-to-high transition indicates a stop. Normal data-bit transitions must occur within the low time of the clock  
period. 25 shows a typical sequence.  
The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The device holds SDA low during the acknowledge clock  
period to indicate acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each  
device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same  
signals via a bi-directional bus using a wired-AND connection.  
Use external pull-up resistors for the SDA and SCL signals to set the logic-high level for the bus. Use pull-up  
resistors between 660 Ω and 4.7 kΩ. Do not allow the SDA and SCL voltages to exceed the device digital  
interface supply voltage, IOVDD.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
25. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. 25 shows a generic data transfer  
sequence.  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.3.2 Single-Byte and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for all registers.  
During multiple-byte read operations, the TAS2560 responds with data, a byte at a time, starting at the register  
assigned, as long as the master device continues to respond with acknowledges.  
The TAS2560 supports sequential I2C addressing. For write transactions, if a register is issued followed by data  
for that register and all the remaining registers that follow, a sequential I2C write transaction has taken place. For  
I2C sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines to how many registers are written.  
9.3.3 Single-Byte Write  
As shown in 26, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C device  
address and the read/write bit, the TAS2560 responds with an acknowledge bit. Next, the master transmits the  
register byte corresponding to the device internal memory address being accessed. After receiving the register  
byte, the device again responds with an acknowledge bit. Finally, the master device transmits a stop condition to  
complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
26. Single-Byte Write Transfer  
9.3.4 Multiple-Byte Write and Incremental Multiple-Byte Write  
A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes  
are transmitted by the master device to the TAS2560 as shown in 27. After receiving each data byte, the  
device responds with an acknowledge bit.  
Register  
27. Multiple-Byte Write Transfer  
9.3.5 Single-Byte Read  
As shown in 28, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. For the data-read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte of the internal memory address to be  
read. As a result, the read/write bit is set to a 0.  
After receiving the TAS2560 address and the read/write bit, the device responds with an acknowledge bit. The  
master then sends the internal memory address byte, after which the device issues an acknowledge bit. The  
master device transmits another start condition followed by the TAS2560 address and the read/write bit again.  
This time, the read/write bit is set to 1, indicating a read transfer. Next, the TAS2560 transmits the data byte from  
the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge  
followed by a stop condition to complete the single-byte data read transfer.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A0 ACK  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
28. Single-Byte Read Transfer  
9.3.6 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS2560 to the master device as shown in 29. With the exception of the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
29. Multiple-Byte Read Transfer  
9.3.7 PLL  
The TAS2560 on-chip PLL generates the necessary internal clock frequency for the audio DAC, I-V sensing  
ADCs, and DSP. The programmability of the PLL allows TAS2560 operation from a wide variety of clocks that  
may be available in the system application. The configurable PLL clock path is shown in 30.  
PLL_CLK_SRC  
PLL_CLKIN  
P =1,2,..,64  
ó P  
PLL_P_DIV  
PLL_INPUT_CLK  
J =1,2,..,63  
PLL_MULT_J  
×(J·D)  
D = 0000 to 9999  
PLL_MULT_D  
PLL_CLK  
30. PLL_CLK Source and Generation  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
The PLL input supports clocks varying from 512 kHz to 20 MHz and is register programmable to enable  
generation of required PLL_CLK from various clocks with fine resolution. The PLL output clock PLL_CLK is  
determined from PLL_CLKIN using the following formula:  
2.._%.-+0 Û ,. &  
2.._%.- =  
2
(1)  
The PLL multipliers and dividers are program using the register in 2. The table includes also the range of  
values support and the default values. The D-divider value is 14-bits wide and is controlled by 2 registers. For  
proper update of the D-divider value, PLL_DVAL_1 must be programmed first followed immediately by  
PLL_DVAL_2. Unless the write to PLL_DVAL_2 is completed, the new value of D will not take effect.  
2. PLL Scaling Registers  
PLL Divider  
Register Name  
Field  
Range  
Default  
J
PLL_JVAL[6:0]  
PLL_MULT_J  
PLL_MULT_D  
1, 2, 3, … 63  
0, 1, 2, ... 9999  
4
0
D
PLL_DVAL_1[5:0] &  
PLL_DVAL_2[7:0]  
P
PLL_CLKIN[5:0]  
PLL_P_DIV  
64,1,2,3, ... 63  
1
Field PLL_CLK_SRC in register PLL_CLKIN configures the PLL clock input, PLL_CLKIN.  
3. PLL Clock Input Source  
PLL_CLKIN[7:6] (PLL_CLK_SRC)  
PLL_CLKIN Source  
00  
01  
10  
11  
Input from BCLK  
Input from MCLK (default)  
Input from PDMLK  
Reserved  
The following conditions must be satisfied in the PLL configuration:  
If D = 0 (Integer Mode), the PLL clock input (PLL_CLKIN) must satisfy:  
2.._%.-+0  
512 G*V Q  
Q 20/*V  
22  
If D > 0(Fractional Mode), the PLL clock input (PLL_CLKIN) must satisfy:  
2.._%.-+0  
10 /*V Q  
Q 20/*V  
22  
The PLL output needs to be configured between 100 MHz and 200 MHz  
Finally, the PLL_LOWF field in register PLL_JVAL must be configured properly based on the PLL_INPUT_CLK  
intermediate clock frequency.  
4. PLL Clock Input Source  
PLL_JVAL[7] (PLL_LOWF)  
PLL_INPUT_CLK Condition  
>= 1MHz (default)  
< 1MHz  
0
1
9.3.8 Clock Distribution  
TAS2560 clocking tree is driven by the PLL output. In order for this block to properly function, the output of the  
PLL (PLL_CLK) should be exactly 1024 times the sampling rate(Fs) or PLL_CLK=1204*Fs. For example,  
PLL_CLK should be 49.152 MHz for 48 kHz sampling rate or 45.1584 MHz for 44.1 kHz sampling rate. The  
following clocks that can be used for the audio interface clocking, see section Audio Digital I/O Interface for more  
information.  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
 
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
5. Clocking Block Rates  
Internal Clocking Node  
Clocking Rate  
CLK_IN / 2  
NDIV_CLK  
DAC_MOD_CLK  
ADC_MOD_CLK  
CLK_IN / 16  
CLK_IN / 16  
9.3.9 Clock Error Detection  
TAS2560 has two clock error detection blocks that soft-mute the playback path when errors in the clocking  
signals occur. Clock error detection 1 block is used for monitoring the audio interfaces. The clock error detection  
2 block is used for monitoring the internal clocks for situations where the audio interface clocks are different from  
the PLL input clock.  
6. Clock Error 1 Source  
CLK_ERR_1[4] (CLK_E1_SRC)  
Input Source  
ASI_CLK (default)  
PDM_CLK  
0
1
7. Clock Error 2 Source  
CLK_ERR_1[3:2] (CLK_E2_SRC)  
Input Source  
DAC Modulator Clock (default)  
ADC Modulator Clock  
PLL Clock  
00  
01  
10  
11  
Reserved  
The clock error detection blocks may be disabled using field CLK_ERR1_EN and CLK_ERR2_EN. It is  
recommend to disable these blocks. Both clock error blocks must be enable or disabled together to ensure  
correct operation. When clock error blocks are enabled the idle channel detection used to reduce power  
consumption must be disabled. It is recommended to use PurePath™ Console 3 Software TAS2560 Application  
software to generate the device configuration files. The following code should be written to disable the idle  
channel detection block.  
#add in dsp memory write section after Device power up and a delay  
#assuming B0_P0  
w 98 00 32  
w 98 6c 00 00 00 00 # disabling idle channel detect  
w 98 00 00  
8. Clock Error 1 Enable  
CLK_ERR_1[1] (CLK_E1_EN)  
Clock Error Detection  
disabled  
0
1
enabled (default)  
9. Clock Error 2 Source  
CLK_ERR_1[0] (CLK_E2_EN)  
Clock Error Detection  
disabled  
0
1
enabled (default)  
The detection block will trigger when the clock input to the specified detection block is not present within the  
respective specified time of field CLK_ERR1_TIME or CLK_ERR2_TIME  
10. Clock Error 1 Timeout  
CLK_ERR_2[5:3] (CLK_E1_TIME)  
Timeout  
11 ms  
000  
001  
22 ms  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
10. Clock Error 1 Timeout (接下页)  
CLK_ERR_2[5:3] (CLK_E1_TIME)  
Timeout  
44 ms  
010  
011  
100  
101  
110  
111  
87 ms  
174 ms  
350 ms  
700 ms  
1.2 s (default)  
11. Clock Error 2 Timeout  
CLK_ERR_2[2:0] (CLK_E2_TIME)  
Timeout  
11 ms  
000  
001  
010  
011  
100  
101  
110  
111  
22 ms  
44 ms  
87 ms  
174 ms  
350 ms  
700 ms  
1.2 s (default)  
When a clocking error is detected the playback will be soft-mute at a rate set by field CLK_ERR_MR in register  
CLOCK_ERR_CFG_2. The error will be recorded in the sticky register INT_DET_1 and can be reported on the  
interrupt pin if mask in register INT_CFG_2  
12. Clock Error Soft-mute Ramp Rate  
CLK_ERR_CFG_2[7:6] (CLK_ERR_MR)  
Ramp-down Rate  
15 us per dB (default)  
30 us per dB  
00  
01  
10  
11  
60 us per dB  
120 us per dB  
When the clock is available the system will perform a pop-free un-mute and resume operation.  
9.3.10 Class-D Edge Rate Control  
The edge rate of the Class-D output is controllable via I2C field EDGE_RATE in register EDGE_ISNS_BOOST.  
This allows users the ability to adjust the switching edge rate of the Class-D amplifier, trading off some efficiency  
for lower EMI. 13 lists the typical edge rates. The default edge rate of 14 ns passes EMI testing. The default  
value is recommended but may be changed if required.  
13. Class-D Edge Rate Control  
EDGE_ISNS_BOOST[7:5] (EDGE_RATE)  
tR AND tF (TYPICAL)  
Reserved  
Reserved  
29 ns  
000  
001  
010  
011  
100  
101  
110  
111  
25 ns  
14 ns (default)  
13 ns  
12 ns  
11 ns  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
9.3.11 IV Sense  
The TAS2560 provides speaker voltage and current sense for real-time monitoring of loudspeaker behavior. The  
VSNS_P and VSNS_N pins should be connected after any ferrite bead filter (or directly to the OUT_P and  
OUT_N connections if no EMI filter is used). The V-Sense connections eliminate IR drop error due to packaging,  
PCB interconnect or ferrite bead filter resistance. The V-sense connections are also used for post filter Class-D  
feedback to correct for any IR-drop induced gain error or non-linearities due to the ferrite bead. It should be  
noted that any interconnect resistance after the V-Sense terminals will not be corrected for. Therefore, it is  
advised to connect the sense connections as close to the load as possible. Additionally, the v-sense pins are  
used the close the feedback loop on the Class-D amplifier externally. This Post-Filter Feedback (PFFB)  
minimized the THD introduced from the filter-beads used in the system.  
SPK_P  
fb  
SPK_N  
fb  
VSENSE_P  
VSENSE_N  
31. V-Sense Connections  
The I-Sense can be configured for three ranges and shown in 14. This should be set appropriately based on  
the DC resistance of the speaker. I-Sense and V-Sense can additionally be powered down as shown in 15  
and 16. When powered down, the device will return null samples for the powered down sense channels.  
14. I-Sense Current Range  
EDGE_ISNS_BOOST[4:3]  
(ISNS_SCALE)  
Full Scale Current  
Speaker Load Impedance  
00  
01  
10  
11  
1.25 A (default)  
1.5 A  
8 Ω  
6 Ω  
1.75 A  
4 Ω  
Reserved  
Reserved  
15. I-Sense Power Down  
PWR_CTRL_1[2] (MUTE_ISNS)  
Setting  
0
1
I-Sense is active (default)  
I-Sense is powered down  
16. V-Sense Power Down  
PWR_CTRL_1[1] (MUTE_VSNS)  
Setting  
0
1
V-Sense is active (default)  
V-Sense is powered down  
9.3.12 Boost Control  
The TAS2560 internal processing algorithm automatically enables the boost when need. A look-ahead algorithm  
monitors the battery voltage and the digital audio stream. When the speaker output approaches the battery  
voltage the boost is enabled in-time to supply the required speaker output voltage. When the boost is no longer  
required it is disable and bypassed to maximize efficiency. The boost can be configured in one of two modes.  
The first is low in-rush (Class-G) supporting only boost on-off and has the lowest in-rush current. The second is  
high-efficiency (Class-H) where the boost voltage level is adjusted to a value just above what is needed. This  
mode is more efficient but has a higher in-rush current to quickly transition the levels. This can be configured  
using 17.  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Class-G  
Class-H  
Time  
32. Boost Mode Signal Tracking Example  
17. Boost Mode  
SPK_CTRL[4] (BST_MODE)  
Boost Mode  
0
1
Class-H - High efficiency  
Class-G - Low in-rush (default)  
9.3.13 Thermal Fold-back  
The TAS2560 monitors the die temperature and prevents if from going over a set limit. When enabled a internal  
controller will automatically adjust the signal path gain to prevent the die temperature from exceeding this limit.  
This allows instantaneous peak power to be delivered to the speaker while limiting the continuous power to  
prevent thermal shutdown. The configuration parameters for the thermal fold-back are part of the DSP core and  
can be set using the PurePath™ Console 3 Software TAS2560 Application software for the TAS2560 part under  
the Device Control Tab.  
9.3.14 Battery Guard AGC  
The TAS2560 monitors battery voltage and the audio signal to automatically decrease gain when the battery  
voltage is low and audio output power is high. This provides louder audio while preventing early shutdown at  
end-of-charge battery voltage levels. The battery tracking AGC starts to attenuate the signal once the voltage at  
the Class-D output exceeds VLIM for a given battery voltage (VBAT). If the Class-D output voltage is below the  
VLIM value, no attenuation occurs. If the Class-D output exceeds the VLIM value the AGC starts to attack the  
signal and reduce the gain until the output is reduced to VLIM. Once the signal returns below VLIM plus some  
hysteresis the gain reduction decays. The VLIM is constant above the user configurable inflection point. Below the  
inflection point the VLIM is reduced by a user configurable slope in relation to the battery voltage. The attack time,  
decay time, hysteresis, inflection point and VLIM/VBAT slope below the inflection point are user configurable. The  
parameters for the Battery Tracking AGC are part of the DSP core and can be set using the PurePath™ Console  
3 Software TAS2560 Application software for the TAS2560 part under the Device Control Tab. Below a VBAT  
level of 2.9 V, the boost will turn on to ensure correct operation but results in increased current consumption. The  
device is functional until the set brownout level is reached and the device shuts down. The minimum brownout  
voltage is 2.7 V.  
{ꢂutdown  
.attery Duard  
{peaker Duard  
ë[Lꢀꢁeak  
.rownout  
Lnflection ꢁoint  
ë.!Ç  
33. VLIM versus Supply Voltage (VBAT)  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
When the VBAT voltage drops below the brownout threshold the TAS2560 will power-down to prevent damage.  
The brownout can be reported on the interrupt pin. See section IRQs and Flags on how to enable this feature.  
Once the device voltage returns again above the brownout limit the device will need to be externally re-powered,  
see Brownout.  
9.3.15 Configurable Boost Current Limit (ILIM)  
The TAS2560 has a configurable boost current limit (ILIM). The default current limit is 3A but this limit may be set  
lower based on selection of passive components connected to the boost. The TAS2560 supports 4 different  
boost limits and can be set using 18.  
18. Current Limit Settings  
EDGE_ISNS_BOOST[1:0] (BOOST_ILIM)  
BOOST CURRENT LIMIT (A)  
00  
01  
10  
11  
1.5  
2.0  
2.5  
3.0 (default)  
9.3.16 Fault Protection  
The TAS2560 has several protection blocks to prevent damage. Those blocks including how to resume from a  
fault are presented in this section.  
9.3.16.1 Speaker Over-Current  
The TAS2560 has an integrated over-current protection that is enabled once the Class-D is powered up. A fault  
on the Class-D output causing a large current in the range of 3 A to 5 A triggers the over-current fault. Once the  
fault is detected the TAS2560 disables the audio channel and powers down the Class-D amplifier. When an over-  
current event occurs, a status flag INT_OVRI is set. This register is sticky and the bit remains high for as long as  
it is not read, or the device is not reset. The over-current event can also be used to generate an interrupt if  
required. Refer to IRQs and Flags for more details. To re-enable the audio channel after a fault the Class-D the  
device must be powered back up using field PWR_DEV, see 53.  
9.3.16.2 Analog Under-Voltage  
The TAS2560 device has an integrated undervoltage protection on the analog power supply lines VDD and  
VBAT. The undervoltage limit fault is triggered when VDD is less than 1.5V or VBAT is less than 2.4 V. Once the  
fault is detected the TAS2560 device will disable the audio channel and power down the Class-D amplifier. When  
an under-voltage event occurs, a status flag INT_AUV is set. This register is sticky and the bit will remain high for  
as long as it is not read, or the device is not reset. The undervoltage event can also be used to generate an  
interrupt if required. Refer to IRQs and Flags for more details. To re-enable the audio channel after a fault the  
Class-D the device must be powered back up using field PWR_DEV, see 53.  
9.3.16.3 Die Over-Temperature  
The TAS2560 has an integrated over temperature protection that is enabled once the Class-D is powered up. If  
the device internal junction temperature exceeds the safe operating region it will trigger the over-temperature  
fault. Once the fault is detected the TAS2560 disables the audio channel and powers down the Class-D amplifier.  
By default the device is set to auto-retry and will attempt to power up the class-D every 100ms. If the over-  
termperature condition is still present it will shut-down again. The auto-retry can be disabled by setting the  
register field PROT_OT_AR high. When an over-temperature event occurs, a status flag at INT_ORVT is set.  
This register is sticky and the bit will remain high for as long as it is not read, or the device is not reset. The over  
temperature event can also be used to generate an interrupt if required. Refer to IRQs and Flags section for  
more details. To re-enable the audio channel after a fault the Class-D the device must be powered back up using  
field PWR_DEV, see 53.  
19. Die Over-Temperature Auto-Retry  
PROTECTION_CFG_1[2] (PROT_OT_AR)  
Over Temperature Protection Auto-Retry  
Enabled (default)  
0
1
Disabled  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.3.16.4 Clocking Faults  
The TAS2560 has two clock error detection blocks. The first is used to monitor the Audio Serial Interfaces (ASI).  
If a clock error is detected on the ASI interfaces audio artifacts can occur at the Class-D output. When enabled  
the ASI clock error detection can soft-mute the device, then shutdown the Class-D and DSP core. The second  
clock error detection block can monitor the internal DAC, ADC, and PLL clocks and used when the PLL clock  
may be from a different source than the ASI clocks. When a clock error is detected the output is soft-muted and  
the Class-D powered down. Information on configuring the error detection is in section Clock Error Detection  
When a clocking error occurs the following sequence should be performed to restart the device.  
Clear the clock error interrupts by reading the sticky flags at register INT_DET_1 fields INT_CLK1 and  
INT_CLK2  
Clear the power error field PWR_ERR in register PWR_CTRL_2  
9.3.16.5 Brownout  
The TAS2560 has an integrated brownout system to shutdown the device when the battery voltage drops to an  
insufficient level. This user configurable level can be set under Device Control in the PurePath™ Console 3  
Software TAS2560 Application. When brownout event occurs a status flag B0_P0_R38[3] is set. This register is  
sticky and the bit remains high for as long as it is not read, or the device is not reset. The brownout event can  
also be used to generate an interrupt if required. Refer to IRQs and Flags section for more details. Once the  
battery voltage drops below the defined threshold the following actions occur.  
The audio playback is muted in a graceful soft-stepping manner  
DSP, clock dividers, and analog blocks are powered down.  
The brownout is reported in field PWR_ERR.  
Once the device voltage returns again above the brownout limit the device will need to be externally re-powered  
by  
Clear the brownout error interrupts by reading the sticky flags at register INT_DET_1 fields INT_BRNO  
Clear the field PWR_ERR in register PWR_CTRL_2.  
20. Power Down Error  
PWR_CTRL_2[0] (PWR_ERR)  
Power Down  
0
1
No error, device normal operation  
Brownout detected, device powered down  
9.3.17 Spread Spectrum vs Synchronized  
The Class-D switching frequency can be selected to work in three different modes of operations selected by 表  
21. This configuration needs to be done before powering up the audio channel. The first is a synchronized mode  
where the Class-D frequency is synchronized to audio input sample rate. This is the default mode of operation  
and can be used in stereo applications to avoid inter-modulation beating of the Class-D frequency from multiple  
chips. The Class-D switching frequency in this mode can be configured as 384 kHz or 352.8 kHz. The 384 kHz  
frequency is the default mode of operation, and can be used for input signals running on clock rates of 48 kHz or  
its sub-multiples. For input signals running on clock rate of 44.1 kHz and its sub-multiples, the switching  
frequency can be selected as 352.8 kHz using field RAMP_FREQ.  
The second mode is fixed-frequency mode and the ramp is generated from the internal oscillator. The internal  
oscillators across chips will vary slightly and this can create an intermodulation beating in application where more  
than one TAS2560 is used.  
The last mode is spread-spectrum mode and used to reduce wideband spectral content. This can improve EMI  
emissions radiated by the speaker by spreading out the noise in the spectrum. In this mode, the Class-D  
switching frequency varies +-5% or +-10% base on the 23 around the 22 around a 384 kHz center  
frequency. These registers should be written before powering up the audio channel.  
21. Ramp Clock Mode  
RAMP_CTRL[7:6] (RAMP_MODE)  
Setting  
00  
Sync Mode - ramp generated from digital audio  
clock (default)  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
21. Ramp Clock Mode (接下页)  
RAMP_CTRL[7:6] (RAMP_MODE)  
Setting  
01  
10  
11  
Fixed Frequency Mode(FFM) - ramp generated  
from internal oscillator  
Spread Spectrum Mode(SSM) - ramp generated  
from internal oscillator with spread spectrum  
Reserved  
22. Ramp Clock Frequency  
RAMP_CTRL[5:4] (RAMP_FREQ)  
Setting  
384 kHz - Use for Fs multiples of 48 kHz (default)  
352.8 kHz - Use fpr Fs multiples of 44.1 kHz  
Reserved  
00  
01  
10  
11  
Reserved  
23. Ramp SSM Mode  
RAMP_CTRL[1:0] (RAMP_FREQMOD)  
Setting  
00  
01  
Reserved  
SSM mode enabled with ramp frequency modulated for ±5 %  
(default)  
10  
11  
SSM mode enabled with ramp frequency modulated for ±10 %  
Reserved  
9.3.18 IRQs and Flags  
Internal device flags such as over-current, under-voltage, etc can be routed to the interrupt. If more than one flag  
is asserted the interrupt output is the logical OR-ing of all flags. If multiple flags are asserted the host should then  
query the interrupts sticky register to determine which event triggered the interrupt. For example, to route the  
Brownout and Speaker Over Current flags to the IRQ pin the following register would be set INT_CFG_2=0x88.  
24. Interrupt Registers  
Flag Description  
Speaker Over Current  
Speaker Over Voltage  
Clock Error Detection 1  
Over Temperature  
Sticky Register Bit  
INT_DET1[7] (INT_OVRC)  
INT_DET1[6] (INT_OVRV)  
INT_DET1[5] (INT_CLK1)  
INT_DET1[4] (INT_OVRT)  
INT_DET1[3] (INT_BRNO)  
INT_DET1[2] (INT_CLK2)  
INT_DET2[7] (INT_WCHLT)  
INT_DET2[6] (INT_MCHLT)  
Register to Enable Interrupt Mask  
INT_CFG_2[7] (INTM_OVRC)  
INT_CFG_2[6] (INTM_ORV)  
INT_CFG_2[5] (INTM_CLK2)  
INT_CFG_2[4] (INTM_OVRT)  
INT_CFG_2[3] (INTM_BRNO)  
INT_CFG_2[2] (INTM_CLK1)  
INT_CFG_2[1] (INTM_WCHLT)  
INT_CFG_2[0] (INTM_MCHLT)  
Brownout  
Clock Error Detection 2  
Clock Halt Word Clock  
Clock Halt Modulator Clock  
The IRQ pin will be low during normal operation and indicate an interrupt with a high signal output. The output  
drive options of the IRQ pin are shown in 25 and the output can be configured to support various use cases  
such as external HiZ for or-ing multiple parts are directly driving the high-low output. When an IRQ event occurs  
the IRQ can be set to toggle or pulse, see 28. Additionally the IRQ pin can be disabled, used as a register  
controlled general purpose output, or a clock pin in PDM mode of operation. The various modes are shown in 表  
26. If using the IRQ pin as a general purpose output the value can be set per 27.  
25. IRQ Pin Drive  
IRQ_PIN_CFG[7:5] (IRQ_DRIVE)  
Output Drive IRQ Pin  
001  
010  
011  
Drive both high and low values  
Open Drain, low-actively driven, high-HiZ (default)  
Open Drain, low-actively driven, high-HiZ w/ pull-up  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
25. IRQ Pin Drive (接下页)  
IRQ_PIN_CFG[7:5] (IRQ_DRIVE)  
Output Drive IRQ Pin  
100  
Open Drain, low-HiZ w/ pull-down, high-actively driven  
Reserved  
101-111  
26. IRQ Pin Mode  
IRQ_PIN_CFG[2:0] (IRQ_PIN_MODE)  
IRQ Pin Mode  
Disabled and IO buffers powered down  
Interrupt controlled output (default)  
Reserved  
001  
010  
011  
100  
General purpose output  
PDM_IN_DIV output  
101  
110-111  
Reserved  
27. IRQ GPO Value  
IRQ_PIN_CFG[4] (IRQ_GPO_VAL)  
IRQ Pin GPO Value  
low (default)  
high  
0
1
28. IRQ Indicator Mode  
INT_CFG_1[7:6] (IRQ_IND_CFG  
IRQ Pin Indicator Mode  
00  
Interrupt will be only one pulse(active high) of duration 2 ms.  
(default)  
01  
Interrupt will be continuously pulsed with a duration 2ms and period  
4ms until interrupt sticky flags are cleared by reading INT_DET_1  
and INT_DET_2  
01  
11  
Interrupt will remain high after interrupt is generated until interrupt  
sticky flags are cleared by reading INT_DET_1 and INT_DET_2  
Reserved  
9.3.19 CRC checksum for I2C  
The TAS2560 contain logic to verify that all write operations to the device were correctly received. This can be  
used to detect a configuration error of the device in the event of a problem or collision on the I2C bus. On every  
register write other than to the book switch register(B0_P0_R127) or page switch register(B0_Px_R0) will update  
the 8-bit CRC checksum using the contents of the 8-bit register write data. Only register write operations will  
update the CRC, register read operations will not change the CRC value. The CRC checksum register  
CRC_CHECKSUM will return the current checksum from all previous write operations. The CRC checksum  
register can be write to initialize the starting value and is initially defaulted to 0x00 on a reset. The polynomial  
used for the CRC is 0x7 (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell delineation, (1+x^1+x^2+x^8))  
Since we are using CRC, order of writes will also affect CRC.  
global gChecksum # To keep track of the checksum in firmware  
# Function to init the local checksum as well as that inside device  
function initChecksum():  
gChecksum = 0  
i2c_write(regChecksum, 0) # regChecksum is the register number of the checksum R/W reg in device  
# Function to update the local checksum  
function addToChecksum(addr, data):  
if addr != regChecksum: # Checksum reg is ignored  
# Update gChecksum with data. Ignore book/page registers  
tempdata = gChecksum ^ inData  
for ( i = 0; i < 8; i++ ):  
if (( tempdata & 0x80 ) != 0 ):  
tempdata <<= 1  
tempdata ^= 0x07  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
else:  
tempdata <<= 1;  
gChecksum = tempdata  
# Function to compare checksums  
function checkChecksum():  
return (i2c_read(regChecksum) == gChecksum)  
# Existing I2C write that does multibyte write to device  
function i2c_write(addr, {data}):  
# Write the stuff to the device  
function i2c_read(addr):  
# Read the data at device addr  
return result  
# New function for verified writes  
function i2c_write_checksum(addr, {data}):  
initChecksum()  
i2c_write(addr, {data})  
for word in data:  
addToChecksum(addr, word)  
addr++  
return checkChecksum()  
9.3.20 PurePath™ Console 3 Software TAS2560 Application  
The TAS2560 advanced features and a significant portion of the device configuration is performed using  
PurePath Console 3 (PPC3). The base software PPC3 is downloaded and installed from the TI website. Once  
installed the TAS2560 application can be download from with-in PPC3. The datasheet refers to options that can  
be configured using the PPC3 software tool.  
9.4 Device Functional Modes  
9.4.1 Audio Digital I/O Interface  
Audio data is transferred between the host processor and the TAS2560 via the digital audio serial interface(ASI),  
or audio bus. The audio bus on this device is flexible, including left or right-justified data options, support for I2S  
or PCM protocols, programmable data length options, a TDM mode for multichannel operation, very flexible  
master/slave configurability for each bus clock line, and the ability to communicate with multiple devices within a  
system directly. The audio bus of the TAS2560, when using PCM formatted input and/or output, can be  
configured for left or right-justified, I2S, DSP, or TDM modes of operation, where communication with standard  
telephony PCM interfaces is supported within the TDM mode. These modes are all MSB-first, with data width  
programmable as 16, 20, 24, or 32 bits where the chip input can be left, right or L+R/2.  
29. ASI PCM Mode  
ASI_FORMAT[4:2] (ASI_MODE)  
ASI Function Mode  
I2S Mode (default)  
000  
001  
010  
011  
100  
101  
DSP Mode  
Right-Justified Mode (RJF)  
Left-Justified Mode (LJF)  
Mono PCM Mode  
DSP Time Slot Mode  
30. ASI PCM Input Word Length  
ASI_FORMAT[1:0] (ASI_LENGTH)  
Word Length  
16 bits  
00  
01  
10  
11  
20 bits  
24 bits (default)  
32 bits  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
31. ASI PCM Channel Mode  
ASI_CHANNEL[1:0] (ASI_CHAN_MODE)  
Input Stereo Channel  
Left (default)  
Right  
00  
01  
10  
11  
(Left + Right) / 2  
monoPCM  
In addition, the word clock and bit clock can be independently configured in either Master or Slave mode, for  
flexible connectivity to a wide variety of processors. The word clock is used to define the beginning of a frame,  
and may be programmed as either a pulse(DSP) or a 50% duty cycle signal(I2S). The frequency of this clock  
corresponds to the maximum of the selected ADC and DAC sampling frequencies. Clock sources for Master  
mode are described in section Clock Distribution. When the audio serial data bus is powered down while  
configured in master mode, the terminals associated with the interface are put into a Hi-Z output state.  
32. ASI WCLK Mode  
ASI_CFG_1[5] (ASI_WCLKM)  
WCLK Mode  
0
1
Input - Slave Mode (default)  
Output - Master Mode  
33. ASI WCLK Edge  
ASI_CFG_1[3] (ASI_WCLKE)  
WCLK Edge  
0
1
As per the timing spec (default)  
Inverted with respect to timing spec  
34. ASI Dividers Clock Source  
ASI_DIV_SRC[1:0] (ASI_DIV_CLK_SRC)  
Input Stereo Channel  
DAC_MOD_CLK (default)  
ADC_MOD_CLK  
NDIV_CLK  
00  
01  
10  
11  
Reserved  
35. ASI WCLK Divider Power  
ASI_WDIV[7] (ASI_WDIV_P)  
WCLK Divider Power  
Powered Down (default)  
Powered Up  
0
1
36. ASI WCLK Divider Ratio  
ASI_WDIV[6:0] (ASI_WDIV_RATIO)  
WCLK Divider Ratio  
0x00  
0x01-0x1F  
0x20  
...  
128  
Reserved  
32  
...  
64 (default)  
...  
0x40  
...  
0x7F  
127  
The bit clock is used to clock-in and clock-out the digital audio data across the serial bus. This signal can be  
programmed to generate variable clock pulses by controlling the bit-clock multiply-divide factor. The number of  
bit-clock pulses in a frame may need adjustment to accommodate various word-lengths as well as to support the  
case when multiple TAS2560 devices may share the same audio bus.  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
37. ASI BCLK Mode  
38. ASI BCLK Edge  
ASI_CFG_1[4] (ASI_BCLKM)  
BCLK Mode  
0
1
Input - Slave Mode (default)  
Output - Master Mode  
ASI_CFG_1[2] (ASI_BCLKE)  
BCLK Edge  
0
1
As per the timing spec (default)  
Inverted with respect to timing spec  
39. ASI BCLK Divider Power  
ASI_BDIV[7] (ASI_WDIV_P)  
BCLK Divider Power  
Powered Down (default)  
Powered Up  
0
1
40. ASI BCLK Divider Ratio  
ASI_BDIV[6:0] (ASI_WDIV_RATIO)  
BCLK Divider Ratio  
0x00  
0x01  
0x02  
...  
128  
1 (default)  
2
...  
0x7F  
127  
The TAS2560 also includes a feature to offset the position of start of data transfer with respect to the word-  
clock(WCLK). This offset is specified in number of bit-clocks. This can be used in cases where there is a non-  
zero bit-clock delay from WCLK edge or to support TDM modes of operation. The TAS2560 can place the DOUT  
line into a Hi-Z (tri-state) condition during all bit clocks when valid data is not being sent. TDM mode is useable  
with I2S, LJF, RJF, and DSP interface modes and is required for stereo applications when more than one  
TAS2560 part is used, see Stereo Application Example - TDM Mode. The TAS2560 also has a bus keeper circuit  
that can be enabled in tri-sate mode. The bus-keeper is a weak internal latch that will hold the data line state  
without the need for external pull-up or pull-down resistors while signal lines are in the Hi-Z or non-driven state.  
41. ASI OFFSET1  
ASI_OFFSET_1 (ASI_OFFSET1)  
BCLKs from WCLK edge for data channel  
0x00  
0x01  
0x02  
...  
0 (default)  
1
2
...  
0xFF  
255  
42. ASI Tri-state  
Tri-state DOUT for extra BCLK cycles  
after frame is complete  
ASI_CFG_1[1] (ASI_TRISTATE)  
0
1
disabled (default)  
enabled  
43. ASI Bus-keeper  
Tri-state DOUT for extra BCLK cycles  
after frame is complete  
ASI_CFG_1[0] (ASI_BUSKEEP)  
0
1
disabled (default)  
enabled  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.4.1.1 I2S Mode  
In I2S mode, the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge  
of the word clock. Similarly the MSB of the right channel is valid on the second rising edge of the bit clock after  
the rising edge of the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
34. Timing Diagram for I2S Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
DATA  
5
4
3
2
1
0
5
4
3
2
1
0
5
1
1
1
LD(n)  
LD(n) = n'th sample of left channel data  
RD(n)  
RD(n) = n'th sample of right channel data  
LD(n+1)  
35. Timing Diagram for I2S Mode with ASI_OFFSET1 = 2  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
36. Timing Diagram for I2S Mode with ASI_OFFSET1 = 0 and Inverted Bit Clock  
For I2S mode, the number of bit-clocks per channel should be greater than or equal to the programmed word-  
length of the data. Also the programmed offset value should be less than the number of bit-clocks per frame by  
at least the programmed word-length of the data.  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
9.4.1.2 DSP Mode  
In DSP mode, the rising edge of the word clock starts the data transfer with the left channel data first and  
immediately followed by the right channel data. Each data bit is valid on the falling edge of the bit clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
37. Timing Diagram for DSP Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
38. Timing Diagram for DSP Mode with ASI_OFFSET1=1  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
39. Timing Diagram for DSP Mode with ASI_OFFSET1=0 and Inverted Bit Clock  
For DSP mode, the number of bit-clocks per frame should be greater than twice the programmed word-length of  
the data. Also the programmed offset value should be less than the number of bit-clocks per frame by at least  
the programmed word-length of the data.  
9.4.1.3 DSP Time Slot Mode  
In addition the TAS2560 support DSP Time slot mode. The ASI_OFFSET_2 register allows us to place the right  
channel anywhere in the frame after the left channel. By utilizing Time Slot Mode, the individual left and right  
channels can be grouped together, as shown in 40. Assuming each channel contains N bits in this example to  
capture the left and right of channel 1 set a value off ASI_OFFSET_1=0 and ASI_OFFSET2=M*N.  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
LEFT  
CHANNEL  
1
LEFT  
CHANNEL  
2
RIGHT  
CHANNEL  
M
LEFT  
CHANNEL  
M
RIGHT  
CHANNEL  
1
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
DATA  
-
1
0
1
0
1
0
1
0
1
0
1
0
1
2
1
2
1
2
1
2
1
2
1
2
LD(n)  
CODEC-1  
LD(n)  
CODEC-2  
RD(n)  
CODEC-M  
LD(n)  
CODEC-M  
RD(n)  
CODEC-1  
LD(n+1)  
CODEC-1  
40. DSP Timing for Multiple Devices Interfaced Together, Grouped Left Channels and Right Channels  
44. ASI OFFSET1  
BCLKs from end of left channel data  
ASI_OFFSET_2 (ASI_OFFSET2)  
channel  
0x00  
0x01  
0x02  
...  
0 (default)  
1
2
...  
0xFF  
255  
9.4.1.4 Right-Justified Mode (RJF)  
In right-justified mode, the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling  
edge of the word clock. Similarly, the LSB of the right channel is valid on the rising edge of the bit clock  
preceding the rising edge of the word clock.  
1/fs  
WCLK  
BCLK  
Left Channel  
n-1 n-2 n-3  
MSB  
Right Channel  
n-1 n-2 n-3  
MSB  
DIN/  
DOUT  
0
2
1
0
2
1
0
LSB  
LSB  
41. Timing Diagram for Right-Justified Mode  
For right-justified mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data.  
版权 © 2016–2017, Texas Instruments Incorporated  
35  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
9.4.1.5 Left-Justified Mode (LJF)  
In left-justified mode, the MSB of the right channel is valid on the rising edge of the bit clock following the falling  
edge of the word clock. Similarly the MSB of the left channel is valid on the rising edge of the bit clock following  
the rising edge of the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
42. Timing Diagram for Left-Justified Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
43. Timing Diagram for Light-Left Mode with ASI_OFFSET1 = 1  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
44. Timing Diagram for Left-Justified Mode with ASI_OFFSET1 = 0 and Inverted Bit Clock  
For left-justified mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data. Also, the programmed offset value should be less than the number of bit-clocks per frame by  
at least the programmed word-length of the data.  
9.4.1.6 Mono PCM Mode  
In mono PCM mode, the rising edge of the word clock starts the data transfer of the single channel of data. Each  
data bit is valid on the falling edge of the bit clock.  
36  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n)  
D(n+1)  
D(n+2)  
45. Timing Diagram for Mono PCM Mode  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n+1)  
D(n)  
D(n+2)  
46. Timing Diagram for Mono PCM Mode with ASI_OFFSET1=2  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n+1)  
D(n)  
D(n+2)  
47. Timing Diagram for Mono PCM Mode with ASI_OFFSET1=2 and Bit Clock Inverted  
For mono PCM mode, the programmed offset value should be less than the number of bit-clocks per frame by at  
least the programmed word-length of the data.  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
9.4.1.7 Stereo Application Example - TDM Mode  
Time-division multiplexing (TDM) is required for two or more devices to share a common DIN connection and a  
common DOUT connection. Using TDM mode, all devices transmit their DOUT data in user-specified sub-frames  
within one WCLK period. When one device transmits its DOUT information, the other devices place their DOUT  
terminals in a high impedance tri-state mode. The host processor can operate in I2S mode while the TAS2560 is  
running in I2S TDM mode to support sharing of the same DOUT line.  
TDM mode is useable with I2S, LJF, RJF, and DSP interface modes. Refer to the respective sections for a  
description of how to set the TAS2560 into those modes.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
DATA  
5
4
3
2
1
0
5
4
3
2
1
0
5
1
1
1
LD(n)  
LD(n) = n'th sample of left channel data  
RD(n)  
RD(n) = n'th sample of right channel data  
LD(n+1)  
48. Timing Diagram for I2S in TDM Mode with ASI_OFFSET1=2  
For TDM mode, the number of bit-clocks per frame should be less than the programmed word-length of the data.  
Also the programmed offset value should be less than the number of bit-clocks per frame by at least the  
programmed word-length of the data.  
49 shows how to connect two TAS2560 for a stereo application.  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Host (Baseband /  
Apps Processor)  
TAS2560  
MCLK  
MCLK  
BCLK  
WCLK  
DIN  
SPK_P  
SPK_N  
BCLK  
WCLK  
DOUT  
SDA  
Speaker  
Output  
VSENSE_P  
VSENSE_N  
SDA  
SCL  
SCL  
DOUT ADDR  
7-Bit I2C Address:  
DIN  
0x4C  
IOVDD  
7-Bit I2C Address:  
0x4F  
DOUT ADDR  
SPK_P  
MCLK  
BCLK  
WCLK  
DIN  
SPK_N  
VSENSE_P  
VSENSE_N  
Speaker  
Output  
SDA  
SCL  
TAS2560  
49. Stereo Configuration with Two TAS2560 DOUT Muxed in TDM Mode  
9.4.2 PDM MODE  
When the TAS2560 is running in operating Mode 3 - PCM input playback + PDM IVsense output,Mode 4 - PDM  
input playback only, or Mode 5 - PDM input playback + PDM IVsense output the Pulse Density Modulation  
(PDM) interface is used and accepts Double-Date Rate (DDR) PDM stream. In PDM mode a modulated signal is  
applied to DIN pin. The TAS2560 PDM can be configured in a master or slave mode of operation. In master  
mode operation the BCLK pin will supply a clock generated from the internal clocking block at 8 times the  
sampling rate(see 5). In master mode another clock must be supplied to drive the TAS2560 internal PLL for  
generation of all internal clocks. In slave mode the input clock should be supplied. The PDM clock should be 8  
times the audio sampling rate (PDMCLK=8*Fs) for proper operation. When PDM input clock mode (46) is set  
to slave mode, PDM slave mode intput clock divider power (48) needs to be set to be powered up. Similarly,  
when PDM output clock mode (47) is set to slave mode, PDM slave mode output clock divider power (49)  
needs to be set to powered up.  
The Isense and Vsense data is returned on pin DOUT as a DDR PDM stream when operating in Mode 3 - PCM  
input playback + PDM IVsense output or Mode 5 - PDM input playback + PDM IVsense output. In these modes  
the Isense data is clocked out during the rising channel and the Vsense data during the falling channel of the  
PDM clock. Only mono PDM input data is accepted and PDM intput data edge (45) is used to select the clock  
edge or audio channel.  
版权 © 2016–2017, Texas Instruments Incorporated  
39  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
PDM CLK  
PDM DATA  
Rising  
Channel  
Falling  
Channel  
50. PDM DDR Waveform  
45. PDM Input Data Edge  
PDM_CFG[2] (PDM_CLK_E)  
PDM Data Channel  
Rising edge (default)  
Falling edge  
0
1
46. PDM Input Clock Mode  
PDM_CFG[1] (PDM_CI_M)  
PDM Input Clock  
Slave - input (default)  
Master - output  
0
1
47. PDM Output Clock Mode  
PDM_CFG[0] (PDM_CO_M)  
PDM Output Clock  
Slave - input (default)  
Master - output  
0
1
48. PDM Slave Mode Input Clock Divider Power  
PDM Slave Mode Input Clock Divider  
PDM_DIV[7] (PDM_DIV_P)  
Power  
0
1
Powered Down (default)  
Powered Up  
49. PDM Slave Mode Output Clock Divider Power  
PDM Slave Mode Output Clock Divider  
DSD_DIV[7] (PDM_DSD_P)  
Power  
0
1
Powered Down (default)  
Powered Up  
40  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.5 Operational Modes  
9.5.1 Hardware Shutdown  
The device enters hardware shutdown mode if the RESETZ pin is asserted low. In hardware shutdown mode, the  
device consumes the minimum quiescent current from VDD and VBAT supplies. All registers loose state in this  
mode and I2C communication is disabled.  
If RESETZ is asserted low while audio is playing, the device immediately stop operation and enter hardware  
shutdown mode. This may result in pops or clicks. It is recommend to first enter software shutdown before  
entering hardware shutdown.  
When RESETZ is released, the device will enter software shutdown. A power up sequence such as Device  
Power Up and Un-mute Sequence 8Ω load with the appropriate mode selected should be executed to exist  
shutdown in the desired mode of operation.  
9.5.2 Software Shutdown  
Software shutdown mode powers down all analog blocks required to playback audio, but does not cause the  
device to loose register state. Software shutdown is enabled by following Mute and Device Power Down  
Sequence sequence.  
9.5.3 Low Power Sleep  
The device has a low power sleep (50) mode option to reduce the power consumption on analog supply  
VBAT. In order to use this operating mode the VBAT supply should remain powered up when in this mode. This  
mode disables the Power-on Reset connected to the VBAT supply reducing current consumption.  
50. Low Power Sleep  
LOW_PWR_MODE[7] (VBAT_POR)  
Low Power Sleep Mode  
Disabled (default)  
0
1
Enabled - VBAT POR shutdown  
9.5.4 Software Reset  
The TAS2560 internal logic must be initialized to a known condition for proper device function by doing a  
software reset. Performing software reset after a hardware reset is mandatory for reliable device boot up. A  
software reset can be accomplished by asserting 51 bit, which is self clearing. This will restore all registers to  
their default values. After software reset is performed, no register read/write should be performed within 100us  
while initialization sequence occurs.  
51. Software Reset  
RESET[0] (RESET)  
Action  
0
1
Don't reset (default)  
Reset(Self clearing)  
9.5.5 Device Processing Modes  
The TAS2560 can be initialized into one of five modes after a. These modes have should be correctly selected  
based on audio input and output formats and the need for IV-sense at the speaker terminals. The advanced  
processing features such as Battery Guard, thermal fold-back, brownout, and boost mode can be configured  
using PurePath™ Console 3 Software TAS2560 Application.  
52. Device Power Mode  
BOOT_MODE[3:0] (DSP_MODE)  
Operating Mode  
0000  
0001  
0010  
0011  
Reserved  
Mode 1 - PCM input playback only(default)  
Mode 2 - PCM input playback + PCM IVsense output  
Mode 3 - PCM input playback + PDM IVsense output  
版权 © 2016–2017, Texas Instruments Incorporated  
41  
 
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
52. Device Power Mode (接下页)  
BOOT_MODE[3:0] (DSP_MODE)  
Operating Mode  
0100  
0101  
Mode 4 - PDM input playback only  
Mode 5 - PDM input playback + PDM IVsense output  
Once the mode is selected the system is powered up using field PWR_DEV. The mode should only be selected  
when the device is powered down PWR_DEV = 00b. Additionally, if a system fault occurs, see Fault Protection,  
and the system is configured to shutdown instead of auto-retry the device will enter power state powered down  
(PWR_DEV=00b).  
53. Device Power Mode  
PWR_CTRL_1[7:6] (PWR_DEV)  
Device Power State  
Powered down (default)  
Powered up with boost  
Powered up without boost  
Reserved  
00  
01  
10  
11  
9.5.5.1 Mode 1 - PCM input playback only  
Mode 1 configures the part as a digital input only amplifier and is the lowest power mode. This mode can be  
used to play a known power up audio sequence before the rest of the audio system software is loaded. The  
mode provides fault protection, brownout protection volume control, and Class-H controller. With minimal  
additional configuration the Battery Guard can be enabled. The I/V sense ADC are powered down to minimize  
power consumption.  
Boost  
On/Off  
Boost  
Level  
Die Temp  
Vbatt  
Vbatt  
DAC  
Thermal  
Foldback  
Brownout  
Class-H  
Battery  
Guard  
51. Mode 1 Processing Block Diagram  
A MCLK is needed in this mode if the BCLK is less than 1MHz. If BCLK and WCLK are configured for output  
then MCLK is taken as the input root clock.  
54. Pin Use Matrix Mode 1  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
PDMCLK  
IRQ  
BCLK  
WCLK  
DIN  
NA  
MCLK  
NA  
IRQ  
42  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.5.5.2 Mode 2 - PCM input playback + PCM IVsense output  
Mode 2 is similar to Mode 1 except the I/V sense ADCs are powered up and the data is routed back on the L/R  
return channels of the ASI port. This mode can be used to return the I/V data to the host to perform computations  
on the speaker I/V measurements such as speaker protection.  
Boost  
On/Off  
Boost  
Level  
Die Temp  
Vbatt  
Vbatt  
DAC  
Thermal  
Foldback  
Brownout  
Class-H  
Battery  
Guard  
ICN/IVsense Control  
!5/ ë  
!5/ L  
52. Mode 2 Processing Block Diagram  
A MCLK is needed in this mode if the BCLK is less than 1MHz. If BCLK and WCLK are configured for output  
then MCLK is also required for proper internal clocking.  
55. Pin Use Matrix Mode 2  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
PDMCLK  
IRQ  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
NA  
IRQ  
9.5.5.3 Mode 2 96k  
Mode 2 96k is similar to Mode 2 except battery guard, brownout, and class-H is not supported at this sampling  
rate.  
DAC  
ICN/IVsense Control  
!5/ ë  
!5/ L  
53. Mode 2 96k Processing Block Diagram  
A MCLK is needed in this mode if the BCLK is less than 1MHz. If BCLK and WCLK are configured for output  
then MCLK is also required for proper internal clocking.  
56. Pin Use Matrix Mode 2 96k  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
PDMCLK  
IRQ  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
NA  
IRQ  
版权 © 2016–2017, Texas Instruments Incorporated  
43  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
9.5.5.4 Mode 3 - PCM input playback + PDM IVsense output  
Mode 3 supports I2S/TDM in playback and returns IV sense on PDM output.  
Boost  
On/Off  
Boost  
Level  
Die Temp  
Vbatt  
Vbatt  
DAC  
Thermal  
Foldback  
Brownout  
Class-H  
Battery  
Guard  
ICN/IVsense Control  
PDMCLK  
!5/ ë  
!5/ L  
PDMDOUT  
54. Mode 3 Processing Block Diagram  
A MCLK is needed in this mode if the BCLK or PDMCLK operating in input mode is less than 1MHz. If BCLK and  
PDMCLK are configured for output then MCLK is also required for proper internal clocking.  
57. Pin Use Matrix Mode 3  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
PDMCLK  
IRQ  
BCLK  
WCLK  
DIN  
PDMDOUT  
MCLK  
PDMCLK  
IRQ  
9.5.5.5 Mode 4 - PDM input playback only  
Mode 4 supports PDM in playback only.  
Boost  
On/Off  
Boost  
Level  
Die Temp  
Vbatt  
PDMCLK  
Vbatt  
DAC  
Thermal  
Foldback  
Brownout  
Class-H  
PDMDIN  
Battery  
Guard  
55. Mode 4 Processing Block Diagram  
If PDMCLK is an output or and input at a clock frequency of less than 1MHz then a separate MCLK is required to  
provide proper internal clocking.  
58. Pin Use Matrix Mode 4  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
PDMCLK  
IRQ  
PDMCLK  
NA  
PDMDIN  
NA  
MCLK  
NA  
IRQ  
44  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.5.5.6 Mode 5 - PDM input playback + PDM IVsense output  
Mode 5 supports PDM playback with IV sense on PDM output.  
Boost  
On/Off  
Boost  
Level  
Die Temp  
Vbatt  
PDMCLKIN  
PDMDIN  
Vbatt  
DAC  
Thermal  
Foldback  
Brownout  
Class-H  
Battery  
Guard  
ICN/IVsense Control  
PDMCLKOUT  
DOUT  
!5/ ë  
!5/ L  
56. Mode 5 Processing Block Diagram  
If either PDMCLKIN or PDMCLKOUT is an input and greater than 1MHz MCLK is not require. If both are output  
or less that 1MHz clock rate then a separate MCLK needs to be provided for proper internal clocking.  
59. Pin Use Matrix Mode 5  
BCLK  
WCLK  
DIN  
DOUT  
MCLK  
PDMCLK  
IRQ  
PDMCLKIN  
NA  
PDMDIN  
PDMDOUT  
MCLK  
PDMCLKOU  
T
IRQ  
9.6 Programming  
While the below scripts are provided as configuration examples, it is recommended to use PurePath™ Console 3  
Software TAS2560 Application software to generate the device configuration files. This software contains  
configuration checks to ensure proper settings are used in the device for various cases and loaded the needed  
fixed-function DSP patches.  
9.6.1 Device Power Up and Un-mute Sequence 8Ω load  
The following code example provide the correct sequence including patch to power up the device, unmute and  
mute, and provide a clean power-down. The PurePath™ Console 3 Software TAS2560 Application software will  
create output files with the most updated patch commands. The following is a example of powering up the part in  
DSP Mode 2 with proper sequencing.  
Example script (Power up Mode 2 and Unmute):  
#############################################################################################  
i i2cstd  
#mclk expected is 12.288 MHz  
#configuring device registers for 8 ohm speaker load  
###########################  
w 98 00 00 #Page-0  
DEVICE INIT SEQ START##############################################  
w 98 7f 00 #Book-0  
w 98 01 01 #Software reset (PAGE0_REG1)  
d 1 #Required=50e-6 #wait time for OTP-  
One Time Programmable memory values to be transferred to device  
##### INIT SECTION START  
w 98 49 0c  
w 98 3c 33  
##### INIT SECTION END  
##### DSP PROG SETTING START  
w 98 02 02 # operate device in dev mode 2  
w 98 21 00 #disable clock error detection  
w 98 08 81 # SSM enabled  
##### DSP PROG SETTING END  
###########################  
DEVICE INIT SEQ END ###############################################  
版权 © 2016–2017, Texas Instruments Incorporated  
45  
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Programming (接下页)  
###################  
CHANNEL POWER UP  
####################################################  
w 98 07 41 #power up device mute class d  
############################################################################################  
##### DSP patch  
d 10  
w 98 00 32  
w 98 28 7F FB B5 00  
w 98 2c 80 04 4c 00  
w 98 30 7F F7 6A 00  
w 98 1c 7F Ff ff ff  
w 98 20 00 00 00 00  
w 98 24 00 00 00 00  
w 98 00 3  
w 98 18 04 cc cc cc  
w 98 00 00  
##### DSP patch update END  
w 98 07 40 #power up device unmute class d  
## optional(ending the script in B0_P0)  
w 98 00 00 # page 0  
w 98 7f 00 # book 0  
########################################  
46  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Programming (接下页)  
9.6.2 Device Power Up and Un-mute Sequence 4Ω or 6Ω load  
The following code examples provide the correct sequence including patch to power up the device, unmute and  
mute, and provide a clean power-down. The PurePath™ Console 3 Software TAS2560 Application software will  
create output files with the most updated patch commands. The following sequence is a example of powering up  
the part in DSP Mode 2 with proper sequencing.  
Example script (Power up Mode 2 and Unmute):  
#############################################################################################  
i i2cstd  
#mclk expected is 12.288 MHz  
#configuring device registers for 8 ohm speaker load  
###########################  
w 98 00 00 #Page-0  
DEVICE INIT SEQ START##############################################  
w 98 7f 00 #Book-0  
w 98 01 01 #Software reset (PAGE0_REG1)  
d 1 #Required=50e-6 #wait time for OTP-  
One Time Programmable memory values to be transferred to device  
##### INIT SECTION START  
w 98 49 0c  
w 98 3c 33  
w 98 09 93 # 4-ohm load setting  
#w 98 09 8B # 6-ohm load setting  
##### INIT SECTION END  
##### DSP PROG SETTING START  
w 98 02 02 # operate device in dev mode 2  
w 98 21 00 #disable clock error detection  
w 98 08 81 # SSM enabled  
##### DSP PROG SETTING END  
###########################  
DEVICE INIT SEQ END ###############################################  
###################  
CHANNEL POWER UP ####################################################  
w 98 07 41 #power up device mute class d  
############################################################################################  
##### DSP patch  
d 10  
w 98 00 32  
w 98 28 7F FB B5 00  
w 98 2c 80 04 4c 00  
w 98 30 7F F7 6A 00  
w 98 1c 7F Ff ff ff  
w 98 20 00 00 00 00  
w 98 24 00 00 00 00  
w 98 00 33  
w 98 10 6f 5c 28 f5  
w 98 14 67 ae 14 7a  
w 98 20 1c 00 00 00  
w 98 24 1f 0a 3d 70  
w 98 28 22 14 7a e1  
w 98 2c 25 1e b8 51  
w 98 30 28 28 f5 c2  
w 98 34 2b 33 33 33  
w 98 38 2e 3d 70 a3  
w 98 3c 31 47 ae 14  
w 98 00 33  
w 98 18 06 66 66 66  
w 98 00 34  
w 98 34 3a 46 74 00  
w 98 38 22 f3 07 00  
w 98 3c 80 77 61 00  
w 98 40 22 a7 cc 00  
w 98 44 3a 0c 93 00  
w 98 00 00  
##### DSP patch update END  
w 98 07 40 #power up device unmute class d  
版权 © 2016–2017, Texas Instruments Incorporated  
47  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Programming (接下页)  
## optional(ending the script in B0_P0)  
w 98 00 00 # page 0  
w 98 7f 00 # book 0  
########################################  
9.6.3 Mute and Device Power Down Sequence  
The following code example provide the correct sequence to power down the device into software shutdown. The  
PurePath™ Console 3 Software TAS2560 Application software will create output files with these commands.  
Example script (Mute / Software Shutdown):  
#############################################################################################  
i i2cstd  
###################  
w 98 00 00 #Page-0  
w 98 7f 00 #Book-0  
###################  
CHANNEL POWER DOWN ####################################################  
CHANNEL POWER UP  
####################################################  
w 98 07 41 #power up device mute class d  
############################################################################################  
w 98 01 01 # software reset  
48  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.7 Register Map  
See the General I2C Operation section for more details on addressing. Register settings should be set based on  
the files generated from the PPC3 GUI. Because the TAS2560 is a complex system including the internal  
software, changes made in the TAS2560 registers not known in the PPC3 generated configurations can result in  
the speaker protection not operating correctly. Changes should be made from within PurePath™ Console 3  
Software TAS2560 Application instead of manually changing registers when possible. New configuration files can  
be generated from PPC3 to prevent invalid configurations.  
9.7.1 Register Map Summary  
9.7.1.1 Register Summary Table  
Addr  
0x00  
0x01  
0x02  
0x04  
Register  
Description  
Section  
PAGE  
RESET  
MODE  
Page Select  
PAGE (book=0x00 page=0x00 address=0x00) [reset=0h]  
RESET (book=0x00 page=0x00 address=0x01) [reset=0h]  
MODE (book=0x00 page=0x00 address=0x02) [reset=1h]  
Software Reset  
Mode Control  
Speaker Control  
SPK_CTRL  
SPK_CTRL (book=0x00 page=0x00 address=0x04)  
[reset=5Fh]  
0x05  
0x07  
0x08  
0x09  
0x0F  
PWR_CTRL_2  
PWR_CTRL_1  
RAMP_CTRL  
EDGE_ISNS_BOOST  
PLL_CLKIN  
Power Up Control 2  
Power Up Control 1  
Class  
PWR_CTRL_2 (book=0x00 page=0x00 address=0x05)  
[reset=0h]  
PWR_CTRL_1 (book=0x00 page=0x00 address=0x07)  
[reset=0h]  
RAMP_CTRL (book=0x00 page=0x00 address=0x08)  
[reset=1h]  
Edge Rate, Isense Scale, Boost limit  
PLL Clock Input Control  
EDGE_ISNS_BOOST (book=0x00 page=0x00 address=0x09)  
[reset=83h]  
PLL_CLKIN (book=0x00 page=0x00 address=0x0F)  
[reset=41h]  
0x10  
0x11  
PLL_JVAL  
PLL J Multiplier Control  
PLL_JVAL (book=0x00 page=0x00 address=0x10) [reset=4h]  
PLL_DVAL_1  
PLL Fractional Multiplier D Val MSB  
PLL_DVAL_1 (book=0x00 page=0x00 address=0x11)  
[reset=0h]  
0x12  
0x14  
0x15  
0x16  
0x17  
PLL_DVAL_2  
PLL Fractional Multiplier D Val LSB  
ASI Mode Control  
PLL_DVAL_2 (book=0x00 page=0x00 address=0x12)  
[reset=0h]  
ASI_FORMAT  
ASI_CHANNEL  
ASI_OFFSET_1  
ASI_OFFSET_2  
ASI_FORMAT (book=0x00 page=0x00 address=0x14)  
[reset=2h]  
ASI Channel Control  
ASI Offset  
ASI_CHANNEL (book=0x00 page=0x00 address=0x15)  
[reset=0h]  
ASI_OFFSET_1 (book=0x00 page=0x00 address=0x16)  
[reset=0h]  
ASI Offset Second Slot  
ASI_OFFSET_2 (book=0x00 page=0x00 address=0x17)  
[reset=0h]  
0x18  
0x19  
ASI_CFG_1  
ASI Configuration  
ASI_CFG_1 (book=0x00 page=0x00 address=0x18) [reset=0h]  
ASI_DIV_SRC  
ASI BDIV Clock Input  
ASI_DIV_SRC (book=0x00 page=0x00 address=0x19)  
[reset=0h]  
0x1A  
0x1B  
ASI_BDIV  
ASI_WDIV  
ASI BDIV Configuration  
ASI WDIV Configuration  
ASI_BDIV (book=0x00 page=0x00 address=0x1A) [reset=1h]  
ASI_WDIV (book=0x00 page=0x00 address=0x1B)  
[reset=40h]  
0x1C  
0x1D  
0x1E  
0x21  
PDM_CFG  
PDM_DIV  
DSD_DIV  
PDM Configuration  
PDM_CFG (book=0x00 page=0x00 address=0x1C) [reset=0h]  
PDM_DIV (book=0x00 page=0x00 address=0x1D) [reset=8h]  
DSD_DIV (book=0x00 page=0x00 address=0x1E) [reset=8h]  
PDM Divider Configuration  
DSD Divider Configuration  
Clock Error and DSP memory Reload  
CLK_ERR_1  
CLK_ERR_1 (book=0x00 page=0x00 address=0x21)  
[reset=3h]  
0x22  
0x23  
CLK_ERR_2  
Clock Error Configuration  
Interrupt Pin Configuration  
CLK_ERR_2 (book=0x00 page=0x00 address=0x22)  
[reset=3Fh]  
IRQ_PIN_CFG  
IRQ_PIN_CFG (book=0x00 page=0x00 address=0x23)  
[reset=21h]  
0x24  
0x25  
0x26  
0x27  
INT_CFG_1  
INT_CFG_2  
INT_DET_1  
INT_DET_2  
Interrupt Configuration 1  
Interrupt Configuration 2  
Interrupt Detected 1  
INT_CFG_1 (book=0x00 page=0x00 address=0x24) [reset=0h]  
INT_CFG_2 (book=0x00 page=0x00 address=0x25) [reset=0h]  
INT_DET_1 (book=0x00 page=0x00 address=0x26) [reset=0h]  
INT_DET_2 (book=0x00 page=0x00 address=0x27) [reset=0h]  
Interrupt Detected 2  
Copyright © 2016–2017, Texas Instruments Incorporated  
49  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Register Map (continued)  
0x2A  
0x2D  
0x2E  
0x31  
0x35  
0x36  
0x4F  
0x50  
0x58  
0x7E  
0x7F  
STATUS_POWER  
SAR_VBAT_MSB  
SAR_VBAT_LSB  
DIE_TEMP_SENSOR  
LOW_PWR_MODE  
PCM_RATE  
Status Block Power  
SAR VBAT Measurement MSB  
SAR VBAT Measurement LSB  
Die Temperature Sensor  
Low Power Configuration  
PCM Sample Rate  
STATUS_POWER (book=0x00 page=0x00 address=0x2A)  
[reset=0h]  
SAR_VBAT_MSB (book=0x00 page=0x00 address=0x2D)  
[reset=C0h]  
SAR_VBAT_LSB (book=0x00 page=0x00 address=0x2E)  
[reset=0h]  
DIE_TEMP_SENSOR (book=0x00 page=0x00 address=0x31)  
[reset=0h]  
LOW_PWR_MODE (book=0x00 page=0x00 address=0x35)  
[reset=0h]  
PCM_RATE (book=0x00 page=0x00 address=0x36)  
[reset=32h]  
CLOCK_ERR_CFG_1  
CLOCK_ERR_CFG_2  
PROTECTION_CFG_1  
CRC_CHECKSUM  
BOOK  
Clock Error Configuration 1  
Clock Error Configuration 2  
Class  
CLOCK_ERR_CFG_1 (book=0x00 page=0x00 address=0x4F)  
[reset=0h]  
CLOCK_ERR_CFG_2 (book=0x00 page=0x00 address=0x50)  
[reset=11h]  
PROTECTION_CFG_1 (book=0x00 page=0x00  
address=0x58) [reset=3h]  
Checksum  
CRC_CHECKSUM (book=0x00 page=0x00 address=0x7E)  
[reset=0h]  
Book Selection  
BOOK (book=0x00 page=0x00 address=0x7F) [reset=0h]  
9.7.2 PAGE (book=0x00 page=0x00 address=0x00) [reset=0h]  
Selects the page for the next read or write.  
Figure 57. PAGE Register Address: 0x00  
7
6
5
4
3
2
1
0
PAGE[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 60. Page Select Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects the Register Page for the next read or write command  
7-0  
PAGE[7:0]  
RW  
0h  
9.7.3 RESET (book=0x00 page=0x00 address=0x01) [reset=0h]  
Controls the software reset  
Figure 58. RESET Register Address: 0x01  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
RESET  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 61. Software Reset Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
RESET  
Reserved  
RW  
0h  
0 = Don't care  
1 = Self clearing software reset  
9.7.4 MODE (book=0x00 page=0x00 address=0x02) [reset=1h]  
Controls the mode of the part  
50  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Figure 59. MODE Register Address: 0x02  
7
6
5
4
3
2
1
0
AUTOPAGE  
RW-0h  
Reserved  
RW-0h  
DSP_MODE[2:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 62. Mode Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AUTOPAGE  
RW  
0h  
0 Enable page auto increment for memory mapped registers  
1 Self clearing software reset  
6-3  
2-0  
Reserved  
RW  
RW  
0h  
1h  
Reserved  
DSP_MODE[2:0]  
0 = Reserved  
1 = PCM input playback only  
2 = PCM input playback + PCM IV out  
3 = PCM input playback + PDM IV out  
4 = PDM input playback only  
5 = PDM input playback + PDM IV out  
6 = Reserved  
9.7.5 SPK_CTRL (book=0x00 page=0x00 address=0x04) [reset=5Fh]  
Configure the boost mode and DAC gain  
Figure 60. SPK_CTRL Register Address: 0x04  
7
6
5
4
3
2
1
0
BST_OFFDLY[1:0]  
RW-1h  
BST_PRE  
RW-0h  
BST_MODE  
RW-1h  
DAC_GAIN[3:0]  
RW-Fh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 63. Speaker Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BST_OFFDLY[1:0]  
RW  
1h  
0 = Reserved  
1 = Reserved  
2 = Reserved  
5
4
BST_PRE  
RW  
RW  
0h  
1h  
0 = Reserved  
BST_MODE  
0 = Class H - multi-level boost mode. In this mode the boost  
voltage will track the signal. It will result in higher inrush current  
from VBATT.  
1 = Class -G boost mode. When the boost is needed it will turn  
on to the maximum boost voltage.  
3-0  
DAC_GAIN[3:0]  
RW  
Fh  
DAC gain is  
0 = 0db  
1 = 1db  
2 = 2db  
...  
14 = 14db  
15 = 15db  
9.7.6 PWR_CTRL_2 (book=0x00 page=0x00 address=0x05) [reset=0h]  
This register controls device power up  
Figure 61. PWR_CTRL_2 Register Address: 0x05  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
PWR_ERR  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2017, Texas Instruments Incorporated  
51  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 64. Power Up Control 2 Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PWR_ERR  
6
0h  
5
0h  
4
0h  
3
0h  
2-1  
0
0h  
0h  
Reserved  
0 = No error condition  
1 = Error condition detected  
9.7.7 PWR_CTRL_1 (book=0x00 page=0x00 address=0x07) [reset=0h]  
This register controls device power up  
Figure 62. PWR_CTRL_1 Register Address: 0x07  
7
6
5
4
3
2
1
0
PWR_DEV[1:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
MUTE_ISNS  
RW-0h  
MUTE_VSNS  
RW-0h  
MUTE_AUDIO  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 65. Power Up Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PWR_DEV[1:0]  
RW  
0h  
Controls the device power state. If a fault is detected that  
powers the device down the state will be reflected in this  
register.  
0 = Device is powered down  
1 = Power up device with boost  
2 = Power up device without boost  
3 = Reserved  
5
4
3
2
Reserved  
Reserved  
Reserved  
MUTE_ISNS  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Isense is  
0 = Unmuted  
1 = Muted  
1
0
MUTE_VSNS  
MUTE_AUDIO  
RW  
RW  
0h  
0h  
Vsense D is  
0 = Unmuted  
1 = Muted  
Audio playback (pop-free) is  
0 = Unmuted  
1 = Muted  
9.7.8 RAMP_CTRL (book=0x00 page=0x00 address=0x08) [reset=1h]  
D Ramp Control  
Figure 63. RAMP_CTRL Register Address: 0x08  
7
6
5
4
3
2
1
0
RAMP_MODE[1:0]  
RW-0h  
RAMP_FREQ[1:0]  
RW-0h  
Reserved  
RW-0h  
RAMP_FREQMOD[1:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
52  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Table 66. Class Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RAMP_MODE[1:0]  
RAMP_FREQ[1:0]  
RW  
0h  
The Class-D ramp clock mode  
0 = SYNC, generated from digital audio stream  
1 = FFM, generated from internal oscillator  
2 = SSM, generated from internal oscillator with spread-  
spectrum  
3 = Reserved  
5-4  
RW  
0h  
The ramp frequency is  
0 = 348kHz (Use for Fs=48ksps and multiples)  
1 = 352.8kHz (Use for Fs=44.1ksps and multiples)  
2 = Reserved  
3-2  
1-0  
Reserved  
RW  
RW  
0h  
0h  
Reserved  
RAMP_FREQMOD[1:0]  
Sets the ramp frequency modulation rate or to a fixed offset.  
0 = Reserved  
1 = Set the SSM to 5% frequency modulation  
2 = Set the SSM to 10% frequency modulation  
3 = Reserved  
9.7.9 EDGE_ISNS_BOOST (book=0x00 page=0x00 address=0x09) [reset=83h]  
Controls edge rate, sense, and boost limits  
Figure 64. EDGE_ISNS_BOOST Register Address: 0x09  
7
6
5
4
3
2
1
0
EDGE_RATE[2:0]  
RW-4h  
ISNS_SCALE[1:0]  
RW-0h  
Reserved  
RW-0h  
BOOST_ILIM[1:0]  
RW-3h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 67. Edge Rate, Isense Scale, Boost limit Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
EDGE_RATE[2:0]  
RW  
4h  
Set the Class-D output edge rate control to  
0 = Reserved  
1 = Reserved  
2 = 29ns  
3 = 25ns  
4 = 14ns  
5 = 13ns  
6 = 12ns  
7 = 11ns  
4-3  
ISNS_SCALE[1:0]  
RW  
0h  
Sets the full-scale value of Isense channel. Should be changed  
based on the speaker DC impedance R0.  
0 = 8ohm, Isense full-scale = 1.25A  
1 = 6ohm, Isense full-scale = 1.5A  
2 = 4ohm, Isense full-scale = 1.75A  
3 = Reserved  
2
Reserved  
RW  
RW  
0h  
3h  
Reserved  
1-0  
BOOST_ILIM[1:0]  
Sets the boost current limit to  
0 = 1.5A  
1 = 2A  
2 = 2.5A  
3 = 3A  
9.7.10 PLL_CLKIN (book=0x00 page=0x00 address=0x0F) [reset=41h]  
PLL Clock Input Control  
Copyright © 2016–2017, Texas Instruments Incorporated  
53  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Figure 65. PLL_CLKIN Register Address: 0x0F  
7
6
5
4
3
2
1
0
PLL_CLK_SRC[1:0]  
RW-1h  
PLL_P_DIV[5:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 68. PLL Clock Input Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PLL_CLK_SRC[1:0]  
RW  
1h  
PLL Clock Input Source. PLL CLKIN is from  
0 = BCLK  
1 = MCLK  
2 = PDMCLK  
5-0  
PLL_P_DIV[5:0]  
RW  
1h  
The PLL_CLKIN divider ration that generated the input clock for  
the PLL P-divider is  
0 = 64  
1 = 1  
2 = 2  
...  
62 = 62  
63 = 63  
9.7.11 PLL_JVAL (book=0x00 page=0x00 address=0x10) [reset=4h]  
PLL J Multiplier Control  
Figure 66. PLL_JVAL Register Address: 0x10  
7
6
5
4
3
2
1
0
PLL_LOWF  
RW-0h  
PLL_MULT_J[6:0]  
RW-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 69. PLL J Multiplier Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PLL_LOWF  
RW  
0h  
This value should be set based on the output frequency of the  
PLL CLK_DIV register. It should be set based on this frequency  
being equal to and greater than 1MHz or less than 1 MHz  
0 = If the PLL_CLKIN is equal to or greater than 1MHz  
1 = If the PLL_CLKIN is less than 1MHz  
6-0  
PLL_MULT_J[6:0]  
RW  
4h  
The PLL Multiplier J is  
0 = Reserved  
1 = 1  
2 = 2  
...  
62 = 62  
63 = 63  
9.7.12 PLL_DVAL_1 (book=0x00 page=0x00 address=0x11) [reset=0h]  
PLL Fractional Multiplier D Val MSB  
Figure 67. PLL_DVAL_1 Register Address: 0x11  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
PLL_MULT_D[13:8]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
54  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Table 70. PLL Fractional Multiplier D Val MSB Field Descriptions  
Bit  
7-6  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
5--8  
PLL_MULT_D[13:0]  
RW  
0h  
PLL Fractional Multiplier D[13:8] value bits  
9.7.13 PLL_DVAL_2 (book=0x00 page=0x00 address=0x12) [reset=0h]  
PLL Fractional Multiplier D Val LSB  
Figure 68. PLL_DVAL_2 Register Address: 0x12  
7
6
5
4
3
2
1
0
PLL_MULT_D[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 71. PLL Fractional Multiplier D Val LSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
PLL Fractional Multiplier D[7:0] value bits  
7-0  
PLL_MULT_D[7:0]  
RW  
0h  
9.7.14 ASI_FORMAT (book=0x00 page=0x00 address=0x14) [reset=2h]  
Configures the Audio Serial Interface mode and word length  
Figure 69. ASI_FORMAT Register Address: 0x14  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI_MODE[2:0]  
RW-0h  
ASI_LENGTH[1:0]  
RW-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 72. ASI Mode Control Field Descriptions  
Bit  
7-5  
4-2  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ASI_MODE[2:0]  
Reserved  
RW  
0h  
The ASI Input mode format is set to  
0 = I2S  
1 = DSP  
2 = RJF , For non-zero values of ASI_OFFSET1, LJF is  
preferred  
3 = LJF  
4 = MonoPCM  
5 = TDM (DSP timeslot)  
6-15 = Reserved  
1-0  
ASI_LENGTH[1:0]  
RW  
2h  
Sets the ASI input word-length to  
0 = 16bits  
1 = 20bits  
2 = 24bits  
3 = 32bits  
9.7.15 ASI_CHANNEL (book=0x00 page=0x00 address=0x15) [reset=0h]  
Configures the Audio Serial Interface channel modes  
Figure 70. ASI_CHANNEL Register Address: 0x15  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
ASI_CHAN_MODE[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2017, Texas Instruments Incorporated  
55  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 73. ASI Channel Control Field Descriptions  
Bit  
7-4  
3-2  
1-0  
Field  
Type  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
0h  
ASI_CHAN_MODE[1:0]  
0h  
Configures the ASI input stereo channel mode. Do no change  
this register for PDM input modes. ASI input playback is  
0 = Left Channel  
1 = Right Channel  
2 = (Left + Right) / 2  
3 = monoPCM  
9.7.16 ASI_OFFSET_1 (book=0x00 page=0x00 address=0x16) [reset=0h]  
Configures the ASI input offset. Offset is measured with respect to WCLK  
Figure 71. ASI_OFFSET_1 Register Address: 0x16  
7
6
5
4
3
2
1
1
1
0
0
0
ASI_OFFSET1[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 74. ASI Offset Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ASI_OFFSET1[7:0]  
RW  
0h  
ASI_OFFSET1[7:0]  
9.7.17 ASI_OFFSET_2 (book=0x00 page=0x00 address=0x17) [reset=0h]  
Configures the right channel offset from the left channel slot in DSP Timeslot mode  
Figure 72. ASI_OFFSET_2 Register Address: 0x17  
7
6
5
4
3
2
ASI_OFFSET2[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 75. ASI Offset Second Slot Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ASI_OFFSET2[7:0]  
RW  
0h  
ASI_OFFSET2[7:0]  
9.7.18 ASI_CFG_1 (book=0x00 page=0x00 address=0x18) [reset=0h]  
Configure various ASI options  
Figure 73. ASI_CFG_1 Register Address: 0x18  
7
6
5
4
3
2
Reserved  
RW-0h  
Reserved  
RW-0h  
ASI_WCLKM  
RW-0h  
ASI_BCLKM  
RW-0h  
ASI_WCLKE  
RW-0h  
ASI_BCLKE  
RW-0h  
ASI_TRISTATE ASI_BUSKEEP  
RW-0h RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 76. ASI Configuration Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
6
RW  
0h  
56  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Table 76. ASI Configuration Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
ASI_WCLKM  
ASI_BCLKM  
ASI_WCLKE  
ASI_BCLKE  
ASI_TRISTATE  
RW  
0h  
Configure the ASI WCLK direction  
0 = Input  
1 = Output  
4
3
2
1
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
Configure the ASI BCLK direction  
0 = Input  
1 = Output  
Configure the WCLK to be  
0 = As per the timing Protocol  
1 = Inverted with respect to the timing protocol  
Configure the BCLK to be  
0 = As per the timing Protocol  
1 = Inverted with respect to the timing protocol  
Tri-stating of DOUT for the extra ASI_BCLK cycles after Data  
Transfer is over for a frame is  
0 = Disabled  
1 = Enabled  
0
ASI_BUSKEEP  
RW  
0h  
DOUT Bus-keeper is  
0 = Disabled  
1 = Enabled  
9.7.19 ASI_DIV_SRC (book=0x00 page=0x00 address=0x19) [reset=0h]  
ASI BDIV Clock Input  
Figure 74. ASI_DIV_SRC Register Address: 0x19  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
ASI_DIV_CLK_SRC[1:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 77. ASI BDIV Clock Input Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
ASI_DIV_CLK_SRC[1:0]  
RW  
0h  
Selects the ASI_CLKIN source for BDIV and WDIV is  
0 = DAC_MOD_CLK  
1 = ADC_MOD_CLK  
2 = NDIV_CLK  
3 = Reserved  
9.7.20 ASI_BDIV (book=0x00 page=0x00 address=0x1A) [reset=1h]  
ASI BDIV Configuration  
Figure 75. ASI_BDIV Register Address: 0x1A  
7
6
5
4
3
2
1
0
ASI_BDIV_P  
RW-0h  
ASI_BDIV_RATIO[6:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 78. ASI BDIV Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI_BDIV_P  
RW  
0h  
ASI BDIV divider is  
0 = Powered down  
1 = Powered up  
Copyright © 2016–2017, Texas Instruments Incorporated  
57  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 78. ASI BDIV Configuration Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-0  
ASI_BDIV_RATIO[6:0]  
RW  
1h  
The ASI_BDIV ration is  
0 = 128  
1-31 = Reserved  
32 = 32  
33 = 33  
...  
126 = 126  
127 = 127  
9.7.21 ASI_WDIV (book=0x00 page=0x00 address=0x1B) [reset=40h]  
ASI WDIV Configuration  
Figure 76. ASI_WDIV Register Address: 0x1B  
7
6
5
4
3
2
1
0
ASI_WDIV_P  
RW-0h  
ASI_WDIV_RATIO[6:0]  
RW-40h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 79. ASI WDIV Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI_WDIV_P  
RW  
0h  
ASI WDIV divider is  
0 = Powered down  
1 = Powered up  
6-0  
ASI_WDIV_RATIO[6:0]  
RW  
40h  
The ASI_WDIV ration is  
0 = 128  
1-31 = Reserved  
32 = 32  
33 = 33  
...  
126 = 126  
127 = 127  
9.7.22 PDM_CFG (book=0x00 page=0x00 address=0x1C) [reset=0h]  
PDM Configuration  
Figure 77. PDM_CFG Register Address: 0x1C  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
PDM_CLK_E  
RW-0h  
PDM_CI_M  
RW-0h  
PDM_CIO_M  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 80. PDM Configuration Field Descriptions  
Bit  
7-5  
4-3  
2
Field  
Type  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
PDM_CLK_E  
0h  
0h  
Data is latch on the following edge of the PDM clock  
0 = Rising  
1 = Falling  
1
0
PDM_CI_M  
RW  
RW  
0h  
0h  
PDM_IN_CLK direction is  
0 = input  
1 = output  
PDM_CIO_M  
PDM_OUT_CLK direction is  
0 = input  
1 = output  
58  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
9.7.23 PDM_DIV (book=0x00 page=0x00 address=0x1D) [reset=8h]  
PDM Divider Configuration  
Figure 78. PDM_DIV Register Address: 0x1D  
7
6
5
4
3
2
1
0
PDM_DIV_P  
RW-0h  
Reserved  
RW-8h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 81. PDM Divider Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PDM_DIV_P  
RW  
0h  
PDM_IN_DIV divider is  
0 = Powered down  
1 = Powered up  
6-0  
Reserved  
RW  
8h  
Reserved  
9.7.24 DSD_DIV (book=0x00 page=0x00 address=0x1E) [reset=8h]  
DSD Divider Configuration  
Figure 79. DSD_DIV Register Address: 0x1E  
7
6
5
4
3
2
1
0
DSD_DIV_P  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-8h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 82. DSD Divider Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DSD_DIV_P  
RW  
0h  
DSD_DIV divider is  
0 = Powered down  
1 = Powered up  
6
Reserved  
Reserved  
RW  
RW  
0h  
8h  
Reserved  
Reserved  
5-0  
9.7.25 CLK_ERR_1 (book=0x00 page=0x00 address=0x21) [reset=3h]  
Clock Error and DSP memory Reload  
Figure 80. CLK_ERR_1 Register Address: 0x21  
7
6
5
4
3
2
1
0
DSP_MEMRST  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
CLK_E1_SRC  
RW-0h  
CLK_E2_SRC[1:0]  
RW-0h  
CLK_E1_EN  
RW-1h  
CLK_E2_EN  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 83. Clock Error and DSP memory Reload Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DSP_MEMRST  
RW  
0h  
Determine if the DSP memory locations will be reloaded for  
reasons other than user power down such as clock-halt,  
brownout, over current, over temp, and over voltage.  
0 = Do not reload on restart  
1 = Reload defaults on restart  
6
5
4
Reserved  
RW  
RW  
RW  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
CLK_E1_SRC  
Clock error detection 1 block input is from  
0 = ASI_CLK  
1 = PDM_CLK  
Copyright © 2016–2017, Texas Instruments Incorporated  
59  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 83. Clock Error and DSP memory Reload Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
CLK_E2_SRC[1:0]  
RW  
0h  
Clock error detection 2 block input is from  
0 = DAC Modulator Clock  
1 = ADC Modulator Clock  
2 = PLL Clock  
3 = Reserved  
1
0
CLK_E1_EN  
CLK_E2_EN  
RW  
RW  
0h  
0h  
Clock error detection block 1 is  
0 = Disabled  
1 = Enabled  
Clock error detection block 2 is  
0 = Disabled  
1 = Enabled  
9.7.26 CLK_ERR_2 (book=0x00 page=0x00 address=0x22) [reset=3Fh]  
Sets the clock error timeouts for detecting missing clocks  
Figure 81. CLK_ERR_2 Register Address: 0x22  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
CLK_E1_TIME[2:0]  
RW-7h  
CLK_E2_TIME[2:0]  
RW-7h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 84. Clock Error Configuration Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
6
Reserved  
0h  
5-3  
CLK_E1_TIME[2:0]  
0h  
The chip will shutdown with a clock error 1 is the clock input to  
the error 1 detection block is not present for the specified time.  
B0_P0_R5[0] will be set to high and must be cleared before  
repowering the device. The clock missing time is  
0 = 11ms  
1 = 22ms  
2 = 44ms  
3 = 87ms  
4 = 174ms  
5 = 350ms  
6 = 700ms  
7 = 1.2s  
2-0  
CLK_E2_TIME[2:0]  
RW  
7h  
The chip will shutdown with a clock error 1 is the clock input to  
the error 1 detection block is not present for the specified time.  
B0_P0_R5[0] will be set to high and must be cleared before  
repowering the device. The clock missing time is  
0 = 11ms  
1 = 22ms  
2 = 44ms  
3 = 87ms  
4 = 174ms  
5 = 350ms  
6 = 700ms  
7 = 1.2s  
9.7.27 IRQ_PIN_CFG (book=0x00 page=0x00 address=0x23) [reset=21h]  
Sets the interrupt pin mode of operation  
60  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Figure 82. IRQ_PIN_CFG Register Address: 0x23  
7
6
5
4
3
2
1
0
IRQ_DRIVE[2:0]  
RW-1h  
IRQ_GPO_VAL  
RW-0h  
Reserved  
RW-0h  
IRQ_PIN_MODE[2:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 85. Interrupt Pin Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
IRQ_DRIVE[2:0]  
RW  
1h  
Sets the output drive mode of the IRQ interrupt pin to  
0 = Drive both high and low values  
1 = Open Drain, low-actively driven, high-HiZ  
2 = Open Drain, low-HiZ, high-actively drive  
3 = Open Drain, low-actively driven, high-HiZ w/ pull-up  
4 = Open Drain, low-HiZ w/ pull-down, high-actively driven  
5 = Reserved  
Others = Reserved  
4
IRQ_GPO_VAL  
RW  
0h  
When B0_P0_R35[2:0]=b011 this is used set the value of the  
IRQ pin  
0 = low  
1 = high  
3
Reserved  
RW  
RW  
0h  
1h  
Reserved  
2-0  
IRQ_PIN_MODE[2:0]  
Configures the IRQ pin mode of operation. IRQ pin is  
0 = Disabled and IO buffers powered down  
1 = Interrupt controlled output  
2 = Reserved  
3 = General purpose output  
4 = PDM_IN_DIV output  
5 = Reserved  
Others = Reserved  
9.7.28 INT_CFG_1 (book=0x00 page=0x00 address=0x24) [reset=0h]  
Sets the interrupt pin toggle behavior and the interrupt mask flags  
Figure 83. INT_CFG_1 Register Address: 0x24  
7
6
5
4
3
2
1
0
IRQ_IND_CFG[1:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 86. Interrupt Configuration 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
IRQ_IND_CFG[1:0]  
RW  
0h  
Configures the interrupt indication mode and determines how the  
IRQ pin will indicate the interrupt.  
0 = Interrupt will be only one pulse(active high) of duration 2ms.  
1 = Interrupt will be multiple pulses(active high) of duration 2ms  
and period 4ms until interrupt sticky flags are cleared by reading  
INT_DET_1 and INT_DET_2  
2 = Interrupt will remain high after interrupt is generated until  
interrupt sticky flags are cleared by reading INT_DET_1 and  
INT_DET_2  
5-2  
1
Reserved  
Reserved  
Reserved  
RW  
RW  
RW  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
0
9.7.29 INT_CFG_2 (book=0x00 page=0x00 address=0x25) [reset=0h]  
Sets the interrupt mask flags.  
Copyright © 2016–2017, Texas Instruments Incorporated  
61  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Figure 84. INT_CFG_2 Register Address: 0x25  
7
6
5
4
3
2
1
0
INTM_OVRI  
RW-0h  
INTM_AUV  
RW-0h  
INTM_CLK2  
RW-0h  
INTM_OVRT  
RW-0h  
INTM_BRNO  
RW-0h  
INTM_CLK1  
RW-0h  
INTM_MCHLT  
RW-0h  
INT_WCHLT  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 87. Interrupt Configuration 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INTM_OVRI  
RW  
0h  
Sets the interrupt mask flag for the speaker over current  
detected to  
0 = Clear (not used)  
1 = Set (used)  
6
INTM_AUV  
RW  
0h  
Sets the interrupt mask flag for the analog under voltage  
detected to  
0 = Clear (not used)  
1 = Set (used)  
5
4
INTM_CLK2  
INTM_OVRT  
RW  
RW  
0h  
0h  
Sets the interrupt mask flag for the clock error 2 detected to  
0 = Clear (not used)  
1 = Set (used)  
Sets the interrupt mask flag for the die over-temperature  
detected to  
0 = Clear (not used)  
1 = Set (used)  
3
2
1
INTM_BRNO  
INTM_CLK1  
INTM_MCHLT  
RW  
RW  
RW  
0h  
0h  
0h  
Sets the interrupt mask flag for the brownout detected to  
0 = Clear (not used)  
1 = Set (used)  
Sets the interrupt mask flag for the clock error 1 detected to  
0 = Clear (not used)  
1 = Set (used)  
Sets the interrupt mask flag for the modulator clock halt detected  
to  
0 = Clear (not used)  
1 = Set (used)  
0
INT_WCHLT  
RW  
0h  
Sets the interrupt mask flag for the WCLK clock halt detected to  
0 = Clear (not used)  
1 = Set (used)  
9.7.30 INT_DET_1 (book=0x00 page=0x00 address=0x26) [reset=0h]  
Sticky register used to indicate the source of an interrupt trigger. Register is cleared once read.  
Figure 85. INT_DET_1 Register Address: 0x26  
7
6
5
4
3
2
1
0
INT_OVRI  
R-0h  
INT_AUV  
R-0h  
INT_CLK1  
R-0h  
INT_OVRT  
R-0h  
INT_BRNO  
R-0h  
INT_CLK2  
R-0h  
INT_SAR  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 88. Interrupt Detected 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_OVRI  
R
0h  
Sticky bit indicating that speaker over current condition  
0 = did not occurred since last read  
1 = occurred since last read  
6
5
INT_AUV  
R
R
0h  
0h  
Sticky bit indicating that analog under voltage condition  
0 = did not occurred since last read  
1 = occurred since last read  
INT_CLK1  
Sticky bit indicating that clock error 1 condition  
0 = did not occurred since last read  
1 = occurred since last read  
62  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Table 88. Interrupt Detected 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
INT_OVRT  
INT_BRNO  
INT_CLK2  
INT_SAR  
Reserved  
R
0h  
Sticky bit indicating that die over-temperature condition  
0 = did not occurred since last read  
1 = occurred since last read  
3
2
1
0
R
R
R
R
0h  
0h  
0h  
0h  
Sticky bit indicating that brownout condition  
0 = did not occurred since last read  
1 = occurred since last read  
Sticky bit indicating that the clock error 2 condition  
0 = did not occurred since last read  
1 = occurred since last read  
Sticky bit indicating that the SAR complete condition  
0 = did not occurred since last read  
1 = occurred since last read  
Reserved  
9.7.31 INT_DET_2 (book=0x00 page=0x00 address=0x27) [reset=0h]  
Sticky register used to indicate the source of an interrupt trigger  
Figure 86. INT_DET_2 Register Address: 0x27  
7
6
5
4
3
2
1
0
INT_WCHLT  
R-0h  
INT_MCHLT  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 89. Interrupt Detected 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_WCHLT  
R
0h  
Sticky bit indicating that WCLK clock halt condition  
0 = did not occurred since last read  
1 = occurred since last read  
6
INT_MCHLT  
R
0h  
Sticky bit indicating that the modulator clock halt condition  
0 = did not occurred since last read  
1 = occurred since last read  
5-2  
1
Reserved  
Reserved  
Reserved  
R
R
R
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
0
9.7.32 STATUS_POWER (book=0x00 page=0x00 address=0x2A) [reset=0h]  
This register indicated the operational status of various internal blocks  
Figure 87. STATUS_POWER Register Address: 0x2A  
7
6
5
4
3
2
1
0
SPWR_DAC  
R-0h  
SPWR_CD  
R-0h  
SPWR_BST  
R-0h  
SPWR_BSTPT  
R-0h  
SPWR_ISNS  
R-0h  
SPWR_VSNS  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 90. Status Block Power Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SPWR_DAC  
R
0h  
The DAC block is  
0 = powered down  
1 = powered up  
6
SPWR_CD  
R
0h  
The Class-D block is  
0 = powered down  
1 = powered up  
Copyright © 2016–2017, Texas Instruments Incorporated  
63  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 90. Status Block Power Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
SPWR_BST  
R
0h  
The boost block is  
0 = powered down  
1 = powered up  
4
3
SPWR_BSTPT  
SPWR_ISNS  
SPWR_VSNS  
Reserved  
R
R
R
R
0h  
0h  
0h  
0h  
The boost pass-thru is  
0 = disabled  
1 = enabled  
The i-sense block is  
0 = powered down  
1 = powered up  
2
The v-sense block is  
0 = powered down  
1 = powered up  
1-0  
Reserved  
9.7.33 SAR_VBAT_MSB (book=0x00 page=0x00 address=0x2D) [reset=C0h]  
SAR VBAT Measurement MSB  
Figure 88. SAR_VBAT_MSB Register Address: 0x2D  
7
6
5
4
3
2
1
0
SAR_VBAT[9:2]  
R-C0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 91. SAR VBAT Measurement MSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
The VBAT measurement from the SAR ADC when enabled  
7--2  
SAR_VBAT[9:0]  
R
C0h  
9.7.34 SAR_VBAT_LSB (book=0x00 page=0x00 address=0x2E) [reset=0h]  
SAR VBAT Measurement LSB  
Figure 89. SAR_VBAT_LSB Register Address: 0x2E  
7
6
5
4
3
2
1
0
SAR_VBAT[1:0]  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 92. SAR VBAT Measurement LSB Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
SAR_VBAT[1:0]  
Reserved  
The VBAT measurement from the SAR ADC when enabled  
Reserved  
R
0h  
9.7.35 DIE_TEMP_SENSOR (book=0x00 page=0x00 address=0x31) [reset=0h]  
Request a die temperature reading and register to read back the die temperature range.  
Figure 90. DIE_TEMP_SENSOR Register Address: 0x31  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
DTMP_INIT  
RW-0h  
DTMP_VALID  
R-0h  
DTMP_VAL[3:0]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
64  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Table 93. Die Temperature Sensor Field Descriptions  
Bit  
7-6  
5
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
DTMP_INIT  
RW  
0h  
Request a reading of the die temperature be performed. The die  
temp measurement acquisition is  
0 = idle  
1 = Initiated (self cleared when completed)  
4
DTMP_VALID  
R
R
0h  
0h  
Indicated the validity of the die temperature registers. This will  
be invalid when the acquisition is in progress. Die temperature  
reading is  
0 = invalid  
1 = valid  
3-0  
DTMP_VAL[3:0]  
The last die temperature measurement was  
0 = less than 30 C  
1 = in the range 30 C to 50 C  
2 = in the range 50 C to 65 C  
3 = in the range 65 C to 80 C  
4 = in the range 80 C to 85 C  
5 = in the range 85 C to 90 C  
6 = in the range 90 C to 95 C  
7 = in the range 95 C to 100 C  
8 = in the range 100 C to 105 C  
9 = in the range 105 C to 110 C  
10 = in the range 110 C to 115 C  
11 = in the range 115 C to 120 C  
12 = in the range 120 C to 125 C  
13 = in the range 125 C to 130 C  
14 = in the range 130 C to 140 C  
15 = is greater than 140 C  
9.7.36 LOW_PWR_MODE (book=0x00 page=0x00 address=0x35) [reset=0h]  
Sets the VBAT POR status to save idle current consumption in shutdown.  
Figure 91. LOW_PWR_MODE Register Address: 0x35  
7
6
5
4
3
2
1
0
VBAT_POR  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 94. Low Power Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VBAT_POR  
RW  
0h  
Set the VBAT POR block state. When the VBAT POR is  
disabled the lowest shutdown current can be obtained. The  
VBAT should remain powered up when the POR is disabled.  
The VBAT POR is  
0 = powered up  
1 = powered down  
6-0  
Reserved  
RW  
0h  
Reserved  
9.7.37 PCM_RATE (book=0x00 page=0x00 address=0x36) [reset=32h]  
Sets the PCM input sampling rate  
Figure 92. PCM_RATE Register Address: 0x36  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-3h  
Reserved  
RW-0h  
PCM_RATE[1:0]  
RW-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2017, Texas Instruments Incorporated  
65  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 95. PCM Sample Rate Field Descriptions  
Bit  
7-6  
5-4  
3-2  
1-0  
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PCM_RATE[1:0]  
3h  
3h  
0h  
Configure the ASI PCM rate used to  
0 = 8 kHz  
1 = 16 kHz  
2 = 48 kHz  
3 = 96 kHz  
9.7.38 CLOCK_ERR_CFG_1 (book=0x00 page=0x00 address=0x4F) [reset=0h]  
Sets if the device will try to auto  
Figure 93. CLOCK_ERR_CFG_1 Register Address: 0x4F  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
CLK_ERR2_AR CLK_ERR1_AR  
RW-0h RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 96. Clock Error Configuration 1 Field Descriptions  
Bit  
7-4  
3
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
CLK_ERR2_AR  
Reserved  
RW  
0h  
When an error occurs on clock error 2 block the device will  
0 = perform a recovery when condition clears  
1 = will shutdown and require user recovery  
2
CLK_ERR1_AR  
Reserved  
RW  
RW  
0h  
0h  
When an error occurs on clock error 1 block the device will  
0 = perform a recovery when condition clears  
1 = will shutdown and require user recovery  
1-0  
Reserved  
9.7.39 CLOCK_ERR_CFG_2 (book=0x00 page=0x00 address=0x50) [reset=11h]  
Sets if the device will try to auto  
Figure 94. CLOCK_ERR_CFG_2 Register Address: 0x50  
7
6
5
4
3
2
1
0
CLK_ERR_MR[1:0]  
RW-0h  
CLK_ERR1_TO[2:0]  
RW-2h  
CLK_ERR2_TO[2:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 97. Clock Error Configuration 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CLK_ERR_MR[1:0]  
RW  
0h  
On clock error detection the channel gain will ramp-down at the  
rate  
0 = 15us per dB  
1 = 30us per dB  
3 = 60us per dB  
4 = 120us per dB  
66  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
Table 97. Clock Error Configuration 2 Field Descriptions (continued)  
Bit  
Field  
CLK_ERR1_TO[2:0]  
Type  
Reset  
Description  
5-3  
RW  
2h  
Playback path is muted if clock input doesn't come to clock error  
detection1 block for  
0 = 10.6 us  
1 = 21.3 us  
2 = 42.6 us  
3 = 85.3 us  
4 = 0.34 ms  
5 = 0.68 ms  
6 = 1.36 ms  
7 = 2.73 ms  
2-0  
CLK_ERR2_TO[2:0]  
RW  
1h  
Playback path is muted if clock input doesn't come to clock error  
detection2 block for  
0 = 10.6 us  
1 = 21.3 us  
2 = 42.6 us  
3 = 85.3 us  
4 = 0.34 ms  
5 = 0.68 ms  
6 = 1.36 ms  
7 = 2.73 ms  
9.7.40 PROTECTION_CFG_1 (book=0x00 page=0x00 address=0x58) [reset=3h]  
D Proteciton Configuration 1  
Figure 95. PROTECTION_CFG_1 Register Address: 0x58  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Reserved  
RW-0h  
PROT_OT_AR  
RW-0h  
Reserved  
RW-1h  
Reserved  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 98. Class Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PROT_OT_AR  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
Die over temperature auto retry is  
0 = enabled  
1 = disabled  
1
0
Reserved  
Reserved  
RW  
RW  
0h  
0h  
Reserved  
Reserved  
9.7.41 CRC_CHECKSUM (book=0x00 page=0x00 address=0x7E) [reset=0h]  
Hold the running CRC8 checksum of I2C transactions  
Figure 96. CRC_CHECKSUM Register Address: 0x7E  
7
6
5
4
3
2
1
0
CRC_VAL[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016–2017, Texas Instruments Incorporated  
67  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 99. Checksum Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CRC_VAL[7:0]  
RW  
0h  
Current CRC value. Writing to this register will reset the  
checksum  
9.7.42 BOOK (book=0x00 page=0x00 address=0x7F) [reset=0h]  
Book Selection  
Figure 97. BOOK Register Address: 0x7F  
7
6
5
4
3
2
1
0
BOOK[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 100. Book Selection Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOOK[7:0]  
RW  
0h  
Set the device book  
0 = Book 0  
1 = Book 1  
...  
255 = Book 255  
68  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TAS2560 is a digital or analog input high efficiency Class-D audio power amplifier with advanced battery  
current management and an integrated Class-H boost converter. In auto passthrough mode, the Class-H boost  
converter generates the Class-D amplifier supply rail. During low Class-D output power, the boost improves  
efficiency by deactivating and connecting VBAT directly to the Class-D amplifier supply. When high power audio  
is required, the boost quickly activates to provide louder audio than a stand-alone amplifier connected directly to  
the battery. To enable load monitoring, the TAS2560 constantly measures the current and voltage across the  
load and provides a digital stream of this information back to a processor.  
10.2 Typical Applications  
1.65 VÀ  
2.9 V À  
1.95 V  
5.5 V  
L1  
1 mH  
C1  
10 mF  
0.1 mF  
1 mF  
0.1 mF  
2
VDD  
SW  
VBAT  
1.62 V À  
VREG  
IOVDD  
3.6 V  
10 nF  
0.1 mF  
1 mF  
VBOOST  
2
C2  
22 mF  
0.1 mF  
Enable  
/RESET  
ADDR  
L2 (opt.)  
+
-
SPK_P  
SPK_M  
To  
Speaker  
L3 (opt.)  
VSENSE_P  
VSENSE_M  
VSENSE  
I2C Interface  
I2S Interface  
I2C  
I2S  
2
C4  
C3  
5
1 nF  
(opt.)  
1 nF  
(opt.)  
AGND  
PGND  
IOGND  
3
98. Typical Application - Digital Audio Input  
版权 © 2016–2017, Texas Instruments Incorporated  
69  
 
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Applications (接下页)  
101. Recommended External Components  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
Inductance, 20% Tolerance  
Saturation Current  
Impedance at 100 MHz  
DC Resistance  
MIN  
TYP  
1
MAX  
UNIT  
µH  
A
1
L1  
Boost Converter Inductor(1)  
3.1  
120  
O
EMI Filter Inductors (optional). These are  
not recommended as it degrades THD+N  
performance. TAS2560 is a filter-less  
Class-D and does not require these bead  
inductors.  
0.095  
2
O
L2, L3  
C1  
DC Current  
A
Size  
0402  
EIA  
µF  
Boost Converter Input Capacitor(1)  
Capacitance, 20% Tolerance  
Type  
10  
X5R  
22  
Capacitance, 20% Tolerance  
Rated Voltage  
47  
µF  
V
C2  
Boost Converter Output Capacitor  
16  
Capacitance at 8.5 V derating  
3.3  
µF  
EMI Filter Capacitors (optional, must use  
L2, L3 if C3, C4 used)  
C3, C4  
Capacitance  
1
nF  
(1) See sectionBoost Converter Passive Devices for additional requirements on derating, stability, and inductor value trade-offs.  
10.2.1 Design Requirements  
For this design example, use the parameters shown in 102.  
102. Design Parameters  
DESIGN PARAMETER  
Audio Input  
EXAMPLE VALUE  
Digital Audio, I2S  
Digital Audio, I2S  
Mono  
Current and Voltage Data Stream  
Mono or Stereo Configuration  
Max Output Power at 1% THD+N  
3.8 W  
10.2.1.1 Detailed Design Procedure  
10.2.1.1.1 Mono/Stereo Configuration  
In this application, the device is assumed to be operating in mono mode. See General I2C Operation for  
information on changing the I2C address of the TAS2560 to support stereo operation. Mono or stereo  
configuration does not impact the device performance.  
10.2.1.1.2 Boost Converter Passive Devices  
The boost converter requires three passive devices that are labeled L1, C1 and C2 in 98 and whose  
specifications are provided in 101. These specifications are based on the design of the TAS2560 and are  
necessary to meet the performance targets of the device. In particular, L1 should not be allowed to enter in the  
current saturation region. The saturation current for L1 should be > ILIM to deliver Class-D peak power.  
Additionally, the ratio of L1/C2 (the derated value of C2 at 8.5 V should be used in this ratio) has to be lesser  
than 1/3 for boost stability. This 1/3 ratio should be maintained including the worst case variation of L1 and C2.  
To satisfy sufficient energy transfer, L1 needs to be 1 μH at the boost switching frequency (approximately 1.7  
MHz). Using a 1 μH will have more boost ripple than a 2.2 μH but the PSRR should minimize the effect from the  
additional ripple. Finally, the minimum C2 (derated value at 8.5 V) should be > 3.3 μF for Class-D power delivery  
specification.  
10.2.1.1.3 EMI Passive Devices  
The TAS2560 supports edge-rate control to minimize EMI, but the system designer may want to include passive  
devices on the Class-D output devices. These passive devices that are labeled L2, L3, C3 and C4 in 98 and  
their recommended specifications are provided in 101. If C3 and C4 are used, they must be placed after L2  
and L3 respectively to maintain the stability of the output stage.  
70  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
10.2.1.1.4 Miscellaneous Passive Devices  
VREG Capacitor: Needs to be 10 nF to meet boost and Class-D power delivery and efficiency specs.  
10.2.2 Application Performance Plots  
10  
5
VBAT=2.9V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
D001  
Freq = 1kHz VBAT = 3.6 V, AVDD = IOVDD = 1.8 V, RESETZ = IOVDD, RL = 8 Ω + 33 µH, I2S digital input,  
Mode 1  
99. THD+N vs Output Power (8 Ω) for Digital Input  
10.3 Initialization Set Up  
To configure the TAS2560, follow these steps.  
1. Bring-up the power supplies as in Power Supply Sequencing.  
2. Set the RESETZ terminal to HIGH.  
3. Follow the software sequence in the Programming section.  
版权 © 2016–2017, Texas Instruments Incorporated  
71  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supplies  
The TAS2560 requires four power supplies:  
Boost Input (terminal: VBAT)  
Voltage: 2.9 V to 5.5 V  
Max Current: 5 A for ILIM = 3.0 A (default)  
Analog Supply (terminal: VDD)  
Voltage: 1.65 V to 1.95 V  
Max Current: 30 mA  
Digital I/O Supply (terminal: IOVDD)  
Voltage: 1.62 V to 3.6 V  
Max Current: 5 mA  
The decoupling capacitors for the power supplies should be placed close to the device terminals. For VBAT,  
IOVDD, and VDD, a small decoupling capacitor of 0.1 µF should be placed as close as possible to the device  
terminals. Refer to 100 for the schematic.  
11.2 Power Supply Sequencing  
The following power sequence should be followed for power up and power down. If the recommended sequence  
is not followed there can be large current in device due to faults in level shifters and diodes becoming forward  
biased. The Tdelay between power supplies should be large enough for the power rails to settle.  
ë.!Ç  
Çdelay >= 0s  
Çdelay >= 0s  
Lhë55  
Çdelay >= 0s  
Çdelay >= 0s  
ë55  
100. Power Supply Sequence for Power-Up and Power-Down  
When the supplies have settled, the RESETZ terminal can be set HIGH to operate the device. Additionally the  
RESETZ pin can be tied to IOVDD and the internal DVDD POR will perform a reset of the device. After a  
hardware or software reset additional commands to the device should be delayed for 100uS to allow the OTP to  
load. The above sequence should be completed before any I2C operation.  
11.2.1 Boost Supply Details  
The boost supply (VBAT) and associated passives need to be able to support the current requirements of the  
device. By default, the peak current limit of the boost is set to 3 A. Refer to Configurable Boost Current Limit  
(ILIM) for information on changing the current limit. A minimum of a 10 µF capacitor is recommended on the  
boost supply to quickly support changes in required current. Refer to for the schematic.  
The current requirements can also be reduced by lowering the gain of the amplifier, or in response to decreasing  
battery through the use of the battery-tracking AGC feature of the TAS2560 described in Battery Guard AGC.  
72  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
12 Layout  
12.1 Layout Guidelines  
Place the boost inductor between VBAT and SW close to device terminals with no VIAS between the device  
terminals and the inductor.  
Place the capacitor between VBOOST close to device terminals with no VIAS between the device terminals  
and capacitor.  
Place the capacitor between VBOOST/VBAT and GND close to device terminals with no VIAS between the  
device terminals and capacitor.  
Do not use VIAS for traces that carry high current. These include the traces for VBOOST, SW, VBAT, PGND  
and the speaker SPK_P, SPK_M.  
Use epoxy filled vias for the interior pads.  
Connect VSENSE_P, VSENSE_N as close as possible to the speaker.  
VSENSE_P, VSENSE_N should be connected between the EMI ferrite and the speaker if EMI ferrites are  
used on SPK_P, SPK_M.  
EMI ferrites must be used if EMI capacitors are used on SPK_P, SPK_M.  
Use a ground plane with multiple vias for each terminal to create a low-impedance connection to GND for  
minimum ground noise.  
Use supply decoupling capacitors as shown in 98 and described in Power Supplies.  
Place EMI ferrites, if used, close to the device.  
12.2 Layout Example  
ë.!Ç 59/hÜt[LbD  
/!t!/LÇhw  
ë.!Ç  
5 D b  
C
.hh{Ç  
Lb5Ü/Çhw  
ë.!Ç  
Db5  
9
.hh{Ç  
/!t!/LÇhw  
5
/
.
!
C9wwLÇ9  
.9!5  
{tY_t  
C9wwLÇ9  
.9!5  
{tY_a  
4
3
2
1
Çíh LbÇ9wb![  
Db5 t[!b9{  
ëL!-Lb-t!5  
ëL! Çh Db5 t[!b9  
101. TAS2560 Board Layout  
版权 © 2016–2017, Texas Instruments Incorporated  
73  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.3 商标  
PurePath, E2E are trademarks of Texas Instruments.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
14.1 封装尺寸  
TAS2560 采用 30 焊球、间距为 0.4mm 的晶圆级芯片封装 (WCSP)。  
74  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
封装尺寸 (接下页)  
TAS2560YFF  
YFF0030-C01  
PACKAGE OUTLINE  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
2.655  
2.595  
B
A
BUMP A1  
CORNER  
2.885  
2.825  
C
0.625 MAX  
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
1.6 TYP  
0.765  
F
E
D
SYMM  
2
TYP  
C
B
A
0.4 TYP  
1
3
5
2
4
0.3  
0.2  
C A B  
30X  
PKG  
0.4  
0.015  
TYP  
4222979/B 08/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2016–2017, Texas Instruments Incorporated  
75  
TAS2560  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
www.ti.com.cn  
封装尺寸 (接下页)  
TAS2560YFF  
EXAMPLE BOARD LAYOUT  
YFF0030-C01  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.765)  
(0.4) TYP  
30X ( 0.23)  
3
5
1
2
4
A
(0.4) TYP  
B
C
SYMM  
D
E
F
PKG  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
( 0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222979/B 08/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
76  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS2560  
www.ti.com.cn  
ZHCSF47E JUNE 2016REVISED DECEMBER 2017  
封装尺寸 (接下页)  
TAS2560YFF  
EXAMPLE STENCIL DESIGN  
YFF0030-C01  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.765)  
(0.4) TYP  
30X ( 0.25)  
(R0.05) TYP  
1
3
2
4
5
A
B
(0.4) TYP  
METAL  
TYP  
C
D
E
F
SYMM  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222979/B 08/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
版权 © 2016–2017, Texas Instruments Incorporated  
77  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS2560YFFR  
TAS2560YFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
30  
30  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TAS2560  
TAS2560  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jan-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS2560YFFR  
TAS2560YFFR  
TAS2560YFFT  
TAS2560YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
30  
30  
30  
30  
3000  
3000  
250  
178.0  
180.0  
178.0  
180.0  
9.2  
8.4  
9.2  
8.4  
2.76  
2.76  
2.76  
2.76  
3.02  
3.02  
3.02  
3.02  
0.83  
0.83  
0.83  
0.83  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jan-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS2560YFFR  
TAS2560YFFR  
TAS2560YFFT  
TAS2560YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
30  
30  
30  
30  
3000  
3000  
250  
220.0  
182.0  
220.0  
182.0  
220.0  
182.0  
220.0  
182.0  
35.0  
20.0  
35.0  
20.0  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TAS2560YFFR

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器 | YFF | 30 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2560YFFT

具有 I/V 感应扬声器保护和集成 8.5V H 类升压的 5.6W 数字输入智能放大器 | YFF | 30 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2562

具有 I/V 感应扬声器保护和集成 11V H 类升压的 6.1W 数字输入智能放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2562YFPR

具有 I/V 感应扬声器保护和集成 11V H 类升压的 6.1W 数字输入智能放大器 | YFP | 36 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2562YFPT

具有 I/V 感应扬声器保护和集成 11V H 类升压的 6.1W 数字输入智能放大器 | YFP | 36 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2563

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2563RPPR

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2563RPPT

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2563YBGR

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2563YBGT

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2563_V01

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TAS2564

具有 I/V 感应扬声器保护和集成 13V H 类升压的 7W 数字输入智能放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI