TAS2563 [TI]

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense;
TAS2563
型号: TAS2563
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense

文件: 总127页 (文件大小:5492K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS2563  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense  
1 Features  
3 Description  
Key Features  
The TAS2563 is a digital input Class-D audio amplifier  
optimized for efficiently driving high peak power into  
small loudspeakers. The Class-D amplifier is capable  
of delivering 6.1 W of peak power into a 4 Ω load at  
battery voltage of 3.6 V using the integrated 11.5V  
Class-H boost, or 10W peak power into 4Ω load in  
boost bypass mode using external 12V supply.  
– 11.5V, 12-step Look-ahead Class-H boost  
– Integrated DSP for speaker protection and  
audio processing  
– Full Scale Ultrasonic Output to 40kHz  
– 2 PDM Microphone inputs  
Powerful Class-D audio amplifier :  
– 6.1-W 1% THD+N (4 Ω, 3.6 V)  
– 5-W 1% THD+N (8 Ω, 3.6 V)  
– 10-W 1% THD+N (4 Ω, 12 V)  
Advanced Audio Processing  
An on-chip, low-latency DSP supports Texas  
Instruments SmartAmp speaker protection algorithms.  
The integrated current and voltage sense provide for  
real-time monitoring of the loudspeakers, which  
permits pushing peak sound pressure levels (SPL)  
while keeping speakers from being damaged.  
– Dedicated Real-time DSP with:  
Real-time I/V-sense Speaker Protection  
Short and Open Load Protection  
Speaker Thermal and Over Current  
Protection  
3-band equalization  
Psychoacoustic bass  
The integrated look-ahead Class-H boost dynamically  
adjusts boost voltage during playback, increasing  
efficiency and saving battery life in battery-powered  
systems. For regulated wall-powered systems,  
TAS2563 also features a boost bypass mode,  
supporting supply voltages of up to 16V for even  
higher output power.  
Dynamic range compression  
Flexible Interfaces and Control :  
– I2S/TDM: 8 Channels of 32 bit up to 96 KSPS  
– I2C: Selectable Addresses with Fast Mode+  
Support  
– Inter-Chp Communication Bus (DSBGA  
package)  
Two PDM microphone inputs simplify audio signal  
chain for two-way audio systems, interfacing digital  
microphones with the host processor. A battery  
tracking peak voltage limiter with brown-out protection  
prevents systems shutdowns by optimizing amplifier  
headroom over the entire charge cycle.  
– 8 kHz to 96 kHz Sample Rates  
Power Efficiency and Flexibility :  
– 83.5% Efficiency at 1W  
– <1uA HW shutdown VBAT current  
– Boost-bypass mode  
Device Information (1)  
PART NUMBER  
TAS2563  
TAS2563  
PACKAGE  
DSBGA  
QFN  
BODY SIZE (NOM)  
2.5 mm × 3 mm  
4.5 mm x 4 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Power Supplies and Management  
– VBAT: 2.7 V to 5.5 V  
IOVDD VBAT  
IOVDD  
VBAT  
PVDD  
L1  
– PVDD: 2.7 V to 13 V (QFN package), 2.7 V to  
16 V (DSBGA package)  
C1  
C1  
VBAT SW  
VBAT SW  
GREG  
GREG  
IOVDD  
IOVDD  
– IOVDD: 1.65 V to 3.6 V  
VBST  
PVDD  
VBST  
PVDD  
C2  
C2  
– VBAT Tracking Peak Voltage Limiter  
– Advanced Brown Out Prevention  
– Thermal and Over Current Protection  
PDM  
I2S  
PDM  
2
4
2
4
TAS2563  
TAS2563  
I2S  
I2C  
VSNS_P  
VSNS_P  
Ferrite bead  
(optional)  
Ferrite bead  
(optional)  
I2C  
OUT_P  
OUT_N  
OUT_P  
OUT_N  
+
+
2
2
-
-
SDZ  
SDZ  
Ferrite bead  
(optional)  
Ferrite bead  
(optional)  
2 Applications  
IRQZ  
IRQZ  
VSNS_N  
VSNS_N  
Boost Bypass  
(external PVDD)  
Internal Boost Mode  
Smart phone, Tablets and Laptops  
Smart Speakers with Voice Assistance  
Bluetooth and Wireless Speakers  
Smart Home  
Simplified Schematic  
IP Camera  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information ...................................................7  
6.5 Electrical Characteristics ............................................7  
6.6 I2C Timing Requirements .........................................14  
6.7 SPI Timing Requirements ........................................ 15  
6.8 PDM Port Timing Requirements .............................. 15  
6.9 TDM Port Timing Requirements ...............................15  
6.10 Timing Diagrams.....................................................16  
6.11 Typical Characteristics............................................ 18  
7 Parameter Measurement Information..........................26  
8 Detailed Description......................................................27  
8.1 Overview...................................................................27  
8.2 Functional Block Diagram.........................................27  
8.3 Feature Description...................................................28  
8.4 Device Functional Modes..........................................39  
8.5 Register Maps...........................................................68  
9 Application and Implementation..................................99  
9.1 Application Information............................................. 99  
9.2 Typical Application.................................................... 99  
10 Power Supply Recommendations............................102  
10.1 Power Supplies.....................................................102  
10.2 Power Supply Sequencing....................................102  
11 Layout.........................................................................103  
11.1 Layout Guidelines................................................. 103  
11.2 Layout Example.................................................... 104  
12 Device and Documentation Support........................108  
12.1 Documentation Support........................................ 108  
12.2 Receiving Notification of Documentation Updates108  
12.3 Support Resources............................................... 108  
12.4 Trademarks...........................................................108  
12.5 Electrostatic Discharge Caution............................108  
12.6 Glossary................................................................108  
13 Mechanical, Packaging, and Orderable  
Information.................................................................. 109  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (August 2019) to Revision B (December 2020)  
Page  
Added RPP mechanical data .............................................................................................................................1  
Changed device status to Mixed Production...................................................................................................... 1  
Added QFN package as Advanced Information ................................................................................................ 1  
Changes from Revision * (April 2019) to Revision A (August 2019)  
Page  
Changed TAS2562 from Advance Information to Production Data ................................................................... 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
5 Pin Configuration and Functions  
1
2
3
4
5
6
A
B
C
D
E
F
PDMCK  
PDMD  
SDOUT2  
SDIN2  
SBCLK2  
IOVDD  
SDZ  
SDOUT1  
VBAT  
BGND  
SW  
SBCLK1  
SDIN1  
VBAT  
BGND  
SW  
FSYNC  
SCL_SELZ  
SDA_MOSI  
DREG  
SPII2CZ  
_MISO  
ADDR  
_SPICLK  
IRQZ  
VDD  
VSNS_N  
BGND  
SW  
GREG  
GND  
VSNS_P  
GPIO  
PGND  
PGND  
OUT_N  
GNDD  
PVDD  
OUT_P  
PVDD  
G
VBST  
VBST  
VBST  
PVDD  
Not to scale  
Figure 5-1. YBG Package 42-Ball DSBGA Top View  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
23  
21  
22  
19  
20  
18  
17  
24  
PDMD  
NC  
25  
26  
16  
PVDD  
VBST  
SW  
15  
14  
OUT_N  
GNDP 27  
GNDB  
GREG  
28  
29  
GNDD  
13  
12  
11  
VSNS_N  
SPII2CZ_MISO  
SDIN1  
VBAT 30  
31  
10  
9
VDD  
SDOUT1  
PDMCLK  
IOVDD 32  
NC  
NC  
2
4
8
3
6
5
7
1
Not to scale  
Figure 5-2. RPP Package 32-pin QFN Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
DSBGA  
NO.  
NAME  
QFN NO.  
ADDR_SPI  
CLK  
I2C Mode - Address selection pin See General I2C operation. SPI Mode - SPI  
clock  
C4  
B6  
19  
2
I
Digital core voltage regulator output. Bypass to GND with a cap. Do not connect  
to external load.  
DREG  
P
FSYNC  
GNDB  
GNDD  
GND  
B3  
E1, E2, E3  
F4  
5
14  
28  
N/A  
27  
22  
13  
32  
I
P
P
P
P
IO  
P
P
I2S word clock or TDM frame sync for ASI1 and ASI2 channels.  
Boost ground. Connect to PCB GND plane.  
Digital ground. Connect to PCB GND plane.  
E4  
Analog ground. Connect to PCB GND plane.  
GNDP  
GPIO  
E5,E6  
D6  
Power stage ground. Connect to PCB GND plane.  
General purpose input-ouput or MCLK base on register configuration.  
High-side gate CP regulator output. Do not connect to external load.  
3.3-V/1.8-V IOVDD Supply  
GREG  
IOVDD  
D4  
A6  
Open drain, active low interrupt pin. Pull up to IOVDD with resistor if optional  
internal pull up is not used.  
IRQZ  
C5  
18  
O
OUT_N  
OUT_P  
PDMCLK  
F6  
F5  
A1  
26  
21  
9
O
O
Class-D negative output for receiver channel.  
Class-D positive output for receiver channel.  
PDM clock.  
IO  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
NAME  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
PIN  
TYPE  
DESCRIPTION  
DSBGA  
NO.  
QFN NO.  
PDMD  
A2  
G4, G5, G6  
B2  
24  
25  
6
IO  
P
I
PDM data.  
PVDD  
Power stage supply.  
SBCLK1  
SBCLK2  
ASI1 channel I2S/TDM serial bit clock.  
ASI2 channel I2S/TDM serial bit clock.  
A5  
I
I2C Mode: I2C Data Pin. Pull up to IOVDD with a resistor. SPI Mode: Serial data  
input pin.  
SDA_MOSI  
B5  
3
IO  
SDIN1  
SDIN2  
SDOUT1  
SDOUT2  
SDZ  
C2  
A4  
C1  
A3  
B1  
11  
I
I
ASI1 channel I2S/TDM serial data input.  
ASI2 channel I2S/TDM serial data input.  
ASI1 channel I2S/TDM serial data output.  
ASI2 channel I2S/TDM serial data output.  
Active low hardware shutdown.  
10  
IO  
IO  
I
7
4
I2C Mode: I2C clock pin. Pull up to IOVDD with a resistor. SPI Mode: active low  
chip select.  
SCL_SELZ  
B4  
IO  
SPII2CZ_MI  
SO  
Pin is queried on power-up. Short to GND for I2C Mode. Pull to IOVDD with  
resistor for SPI mode. SPI serial data output pin.  
C3  
F1, F2, F3  
D1, D2  
12  
15  
30  
16  
31  
IO  
P
SW  
Boost converter switch input.  
Battery power supply input. Connect to 2.7 V to 5.5 V supply and decouple with  
a cap.  
VBAT  
VBST  
VDD  
P
G1, G2, G3  
C6  
P
Boost converter output. Do not connect to external load.  
Analog, digital, and IO power supply. Connect to 1.8 V supply and decouple to  
GND with cap.  
P
Voltage sense negative input. Connect to Class-D OUT_N output after Ferrite  
bead filter.  
VSNS_N  
D3  
D5  
29  
I
I
Voltage sense positive input. Connect to Class-D OUT_P output after Ferrite  
bead filter.  
VSNS_P  
NC  
20  
1, 8, 17  
No Connect.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
-0.3  
–0.3  
–0.3  
-0.3  
-0.3  
-0.7  
-0.3  
-0.3  
–0.3  
–40  
–40  
–65  
MAX  
3.9  
UNIT  
V
IO Supply IOVDD  
Analog Voltage  
IOVDD  
VDD  
2
V
Battery Supply Voltage VBAT  
6
V
Boost Pin  
VBST  
PVDD(3)  
SW  
18.5  
18.5  
16  
V
Power Supply Voltage  
Switching Pin  
V
V
High Side Regulator Pin GREG  
PVDD+6  
1.65  
VDD+0.3  
85  
V
Digital Regular Pin  
Input voltage(2)  
DREG  
V
Digital IOs referenced to VDD supply  
V
Operating free-air temperature, TA  
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
°C  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Procedures. Exposure to absolute-maximum-rated conditions for extended periods can affect device  
reliability.  
(2) All digital inputs and IOs are failsafe.  
(3) PVDD can handle 19V transients for less than 10ns  
6.2 ESD Ratings  
VALUE  
±3000  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 OUT_N /  
OUT_P / VSNS_N / VSNS_P Pins(1)  
V
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.62  
3
NOM  
1.8  
MAX  
1.98  
3.6  
UNIT  
IOVDD  
IOVDD  
VBAT  
VDD  
IO Supplly Voltage 1.8V  
IO Supply Voltage 3.3V  
Supply voltage  
V
V
V
V
3.3  
2.5  
3.6  
5.5  
Supply voltage  
1.62  
1.8  
1.95  
Supply voltage - external boost mode (DSBGA  
package)  
PVDDDSBGA (VBST)  
VBAT  
VBAT  
16  
13  
V
PVDDQFN (VBST)  
Supply voltage - external boost mode (QFN package)  
High-level digital input voltage  
V
V
VIH  
0.7 x IOVDD  
0
VIL  
Low-level digital input voltage  
V
RSPK  
LSPK  
Minimum speaker impedance  
3.2  
10  
Ω
Minimum speaker inductance  
µH  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
 
 
 
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
6.4 Thermal Information  
TAS2563  
THERMAL METRIC(1)  
RPP (QFN)  
32 PINS  
43.7  
YBG (WCSP)  
42 PINS  
55.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
20.3  
0.3  
10.5  
11.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
0.2  
ψJB  
10.5  
11.6  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with  
a 22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUT  
and OUTPUT  
High-level digital input logic voltage All digital pins except SDA_MOSI  
threshold (max current limit = 30 mA) and SCL_SELZ  
0.65 ×  
IOVDD  
VIH  
VIL  
V
V
Low-level digital input logic voltage  
All digital pins except SDA_MOSI  
0.35 ×  
IOVDD  
threshold (max current limit = 30 mA) and SCL_SELZ  
High-level digital input logic voltage  
threshold (max current limit = 30  
mA)  
0.7 ×  
IOVDD  
VIH(I2C)  
VIL(I2C)  
VOH  
SDA_MOSI and SCL_SELZ  
V
V
V
Low-level digital input logic voltage  
threshold (max current limit = 30 mA)  
0.3 ×  
IOVDD  
SDA_MOSI and SCL_SELZ  
All digital pins except  
SDA_MOSI ,SCL_SELZ and IRQZ;  
IOH = 2 mA.  
High-level digital output voltage (max  
current limit = 30 mA)  
IOVDD –  
0.45 V  
All digital pins except  
SDA_MOSI ,SCL_SELZ and IRQZ;  
IOL = –2 mA.  
Low-level digital output voltage (max  
current limit = 30 mA)  
VOL  
0.45  
V
V
Low-level digital output voltage (max  
current limit = 30 mA)  
0.2 ×  
IOVDD  
VOL(I2C)  
VOL(IRQZ)  
IIH  
SDA and SCL; IOL(I2C) = –2 mA.  
IRQZ; IOL(IRQZ) = –2 mA.  
Low-level digital output voltage for  
IRQZ open drain Output (max  
current limit = 30 mA)  
0.45  
V
Input logic-high leakage for digital  
inputs  
All digital pins; Input = VDD.  
–5  
–5  
0.1  
5
5
µA  
Input logic-low leakage for digital  
inputs  
IIL  
All digital pins; Input = GND.  
All digital pins  
0.1  
8
µA  
pF  
kΩ  
CIN  
RPD  
Input capacitance for digital inputs  
Pull down resistance for digital  
input/IO pins when asserted on  
SDOUT, SDIN, FSYNC, SBCLK  
50  
AMPLIFIER PERFORMANCE - Internal Boost  
Output Voltage for Full-scale digital  
Input  
Measured at -6 dB FS input  
6.32  
Vrms  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with  
a 22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RL = 32Ω + 33 µH, THD+N = 0.03 %,  
fin = 1 kHz  
1.25  
W
RL = 8 Ω + 33 µH, THD+N = 0.03 %,  
fin = 1 kHz  
POUT  
Maximum Continuous Output Power  
5
W
W
RL = 4 Ω + 33 µH, THD+N = 1 %, fin  
= 1 kHz  
6.1  
RL = 8 Ω + 33 µH, fin = 1 kHz  
RL = 4 Ω + 33 µH, fin = 1 kHz  
82  
%
%
78.5  
RL = 8 Ω + 33 µH, fin = 1 kHz, VBAT  
= 4.2 V  
System efficiency at POUT = 1 W  
82.5  
84.2  
%
%
RL = 4 Ω + 33 µH, fin = 1 kHz, VBAT  
= 4.2 V  
RL = 8 Ω + 33 µH, fin = 1 kHz  
RL = 4 Ω + 33 µH, fin = 1 kHz  
76.6  
81.1  
%
%
RL = 8 Ω + 33 µH, fin = 1 kHz, VBAT  
= 4.2 V  
System efficiency at POUT =0.5 W  
84.2  
81.6  
78.8  
80  
%
%
RL = 4 Ω + 33 µH, fin = 1 kHz, VBAT  
= 4.2 V  
RL = 32 Ω + 33 µH, POUT = TBD W,  
fin = 1 kHz,  
%
System efficiency at 0.1% THD+N  
power level  
RL = 8 Ω + 33 µH, POUT = TBD W, fin  
= 1 kHz,  
%
RL = 4 Ω + 33 µH, POUT = TBD W, fin  
= 1 kHz  
76.2  
0.01  
0.01  
0.01  
14.8  
384  
384  
%
POUT = 0.25 W, RL = 32Ω + 33 µH, fin  
= 1 kHz  
%
POUT = 1 W, RL = 8 Ω + 33 µH, fin  
1 kHz  
=
THD+N  
Total harmonic distortion + noise  
Idle channel noise  
%
POUT = 1 W, RL = 4 Ω + 33 µH, fin  
1 kHz  
=
%
A-Weighted, 20 Hz - 20 kHz, DAC  
Modulator Running  
VN  
µV  
kHz  
kHz  
Average frequency in Spread  
Spectrum Mode, CLASSD_SYNC=0  
Fixed Frequency Mode,  
CLASSD_SYNC=0  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 44.1, 88.2,  
174.6 kHz  
FPWM  
Class-D PWM switching frequency  
352.8  
384  
kHz  
kHz  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 48, 96, 192  
kHz  
VOS  
Output offset voltage  
Dynamic range  
-1  
1
mV  
dB  
DNR  
A-Weighted, -60 dBFS Method  
109  
A-Weighted, Referenced to 1 % THD  
+N Output Level  
SNR  
KCP  
Signal to noise ratio  
112.5  
dB  
Into and out of Mute, Shutdown,  
Power Up, Power Down and audio  
clocks starting and stopping.  
Measured with APx Plugin.  
Click and pop performance  
3.4  
mV  
Programmable output level range  
8
18  
dBV  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with  
a 22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Programmable output level step size  
Amplifier gain error  
0.5  
dB  
AVERROR  
POUT = 1 W  
±0.1  
dB  
Device in Shutdown or Muted in  
Normal Operation  
Mute attenuation  
110  
108  
90  
dB  
dB  
dB  
dB  
dB  
VBAT = 3.6 V + 200 mVpp, fripple  
217 Hz  
=
VBAT power-supply rejection ratio  
VBAT = 3.6 V + 200 mVpp, fripple = 20  
kHz  
VDD = 1.8 V + 200 mVpp, fripple  
217 Hz  
=
98  
AVDD power-supply rejection ratio  
VDD = 1.8 V + 200 mVpp, fripple = 20  
kHz  
93  
No Volume Ramping  
Volume Ramping  
1.8  
4.5  
ms  
ms  
ms  
ms  
Turn on time from release of SW  
shutdown  
No Volume Ramping  
Volume Ramping  
1.5  
Turn off time from assertion of SW  
shutdown to amp Hi-Z  
12.5  
AMPLIFIER PERFORMANCE - External PVDD  
Output Voltage for Full-scale digital  
Input  
Measured at -6 dB FS input  
7.94  
1.3  
Vrms  
W
RL = 32Ω + 33 µH, THD+N = 1 %, fin  
= 1 kHz  
RL = 8 Ω + 33 µH, THD+N = 1 %, fin  
= 1 kHz  
5.2  
W
RL = 4 Ω + 33 µH, THD+N = 1 %, fin  
= 1 kHz  
10.4  
1.6  
W
POUT  
Maximum Continuous Output Power  
RL = 32Ω + 33 µH, THD+N = 10 %,  
fin = 1 kHz  
W
RL = 8 Ω + 33 µH, THD+N = 10 %, fin  
= 1 kHz  
6.3  
W
RL = 4 Ω + 33 µH, THD+N = 10%, fin  
= 1 kHz  
12.6  
W
RL = 8 Ω + 33 µH, fin = 1 kHz  
RL = 4 Ω + 33 µH, fin = 1 kHz  
83.8  
80  
%
%
RL = 8 Ω + 33 µH, fin = 1 kHz,  
External PVDD = 8.4 V  
System efficiency at POUT = 1 W  
85.9  
81.8  
87.4  
90  
%
%
%
%
%
%
%
%
RL = 4 Ω + 33 µH, fin = 1 kHz,  
External PVDD = 8.4 V  
RL = 32 Ω + 33 µH, POUT = TBD W,  
fin = 1 kHz,  
RL = 8 Ω + 33 µH, POUT = TBD W, fin  
= 1 kHz,  
RL = 4 Ω + 33 µH, POUT = TBD W, fin  
= 1 kHz  
85.2  
81.9  
90  
System efficiency at 0.1% THD+N  
power level  
RL = 32 Ω + 33 µH, POUT = TBD W,  
fin = 1 kHz, External PVDD = 8.4 V  
RL = 8 Ω + 33 µH, POUT = TBD W, fin  
= 1 kHz, External PVDD = 8.4 V  
RL = 4 Ω + 33 µH, POUT = TBD W, fin  
= 1 kHz, External PVDD = 8.4 V  
86  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with  
a 22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POUT = 0.25 W, RL = 32Ω + 33 µH, fin  
= 1 kHz  
0.01  
%
POUT = 1 W, RL = 8 Ω + 33 µH, fin  
1 kHz  
=
THD+N  
Total harmonic distortion + noise  
0.01  
0.02  
21.3  
384  
%
%
POUT = 1 W, RL = 4 Ω + 33 µH, fin  
1 kHz  
=
A-Weighted, 20 Hz - 20 kHz, DAC  
Modulator Running  
VN  
Idle channel noise  
µV  
Average frequency in Spread  
Spectrum Mode, CLASSD_SYNC=0  
kHz  
kHz  
Fixed Frequency Mode,  
CLASSD_SYNC=0  
384  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 44.1, 88.2,  
174.6 kHz  
FPWM  
Class-D PWM switching frequency  
352.8  
384  
kHz  
kHz  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 48, 96, 192  
kHz  
VOS  
Output offset voltage  
Dynamic range  
-1  
1
mV  
dB  
DNR  
A-Weighted, -60 dBFS Method  
109  
A-Weighted, Referenced to 1 % THD  
+N Output Level  
SNR  
KCP  
Signal to noise ratio  
109.5  
dB  
Into and out of Mute, Shutdown,  
Power Up, Power Down and audio  
clocks starting and stopping.  
Measured with APx Plugin.  
Click and pop performance  
3
mV  
Programmable output level range  
Programmable output level step size  
Amplifier gain error  
8
18  
dBV  
dB  
0.5  
AVERROR  
POUT = 1 W  
±0.1  
dB  
Device in Shutdown or Muted in  
Normal Operation  
Mute attenuation  
110  
110  
90  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VBAT = 3.6 V + 200 mVpp, fripple  
217 Hz  
=
VBAT power-supply rejection ratio  
VBAT = 3.6 V + 200 mVpp, fripple = 20  
kHz  
PVDD = 12 V + 200 mVpp, fripple  
217 Hz  
=
105  
90  
PVDD power-supply rejection ratio  
AVDD power-supply rejection ratio  
PVDD = 12 V + 200 mVpp, fripple = 20  
kHz  
VDD = 1.8 V + 200 mVpp, fripple  
217 Hz  
=
86  
VDD = 1.8 V + 200 mVpp, fripple = 20  
kHz  
73  
No Volume Ramping  
Volume Ramping  
2
4.8  
ms  
ms  
ms  
ms  
Turn on time from release of SW  
shutdown  
No Volume Ramping  
Volume Ramping  
1.08  
12.58  
Turn off time from assertion of SW  
shutdown to amp Hi-Z  
BOOST  
CONVERTER  
Startup inrush current limit  
default setting  
default setting  
1.5  
A
Startup inrush limit time  
0.45  
ms  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with  
a 22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
4
MAX  
UNIT  
kHz  
MHz  
A
PFM mode  
Switching Frequency  
Current Control Mode  
default setting  
Inductor Peak Current Limit  
4
DIE TEMPERATURE  
SENSOR  
Resolution  
8
bits  
°C  
°C  
°C  
Die temperature measurement range  
Die temperature resolution  
Die temperature accuracy  
-40  
150  
0.75  
±5  
VOLTAGE  
MONITOR  
Resolution  
10  
bits  
V
VBAT measurement range  
VBAT resolution  
VBAT accuracy  
2
6
6
mV  
mV  
±25  
PDM INPUT PORT  
No signal, Input generated using a  
4th order PDM modulator  
118  
128  
SNR  
Signal to Noise Ratio  
dB  
No signal, Input generated using a  
5th order PDM modulator  
20Hz to 20kHz, -60dBFS input  
signal, A-weighted, Input generated  
using a 4th order PDM modulator  
117  
127  
DR  
Dynamic Range  
dB  
dB  
20Hz to 20kHz, -60dBFS input  
signal, A-weighted, Input generated  
using a 5th order PDM modulator  
FR  
Frequency Response  
Group Delay  
20Hz to 20kHz  
-0.1  
0
FSYNC  
Cycles  
GD  
Input signal fs/50  
TBD  
TDM SERIAL AUDIO  
PORT  
PCM Sample Rates & FSYNC Input  
Frequency  
8
96  
kHz  
SBCLK Input Frequency  
I2S/TDM Operation  
0.512  
24.57  
MHz  
RMS Jitter below 40 kHz that can be  
tolerated without performance  
degradation  
1
ns  
SBCLK Maximum Input Jitter  
RMS Jitter above 40 kHz that can be  
tolerated without performance  
degradation  
10  
ns  
SBCLK Cycles per FSYNC in I2S  
and TDM Modes  
Values: 64, 96, 128, 192, 256, 384  
and 512  
64  
512  
Cycles  
PCM PLAYBACK  
CHARACTERISTICS to fs ≤ 48 kHz  
fs  
Sample Rates  
8
48  
kHz  
fs  
Passband LPF Corner  
Passband Ripple  
0.454  
20 Hz to LPF cutoff  
≥ 0.55 fs  
-0.3  
0.3  
dB  
dB  
dB  
60  
65  
Stop Band Attenuation  
≥ 1 fs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with  
a 22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Group Delay (ROM MODE)  
Group Delay (RAM Mode)  
DC to 0.454 fs  
38  
1/fs  
DC to 0.454 fs  
TBD  
1/fs  
PCM PLAYBACK  
CHARACTERISTICS fs > 48 kHz  
fs  
Sample Rates  
88.2  
-0.5  
96  
0.5  
kHz  
fs  
fs = 96 kHz  
0.42  
0.21  
Passband LPF Corner  
Passband Ripple  
fs = 192 kHz  
DC to LPF cutoff  
≥ 0.55 fs  
fs  
dB  
dB  
dB  
1/fs  
60  
65  
Stop Band Attenuation  
Group Delay (RAM Mode)  
≥ 1 fs  
DC to 0.375 fs for 96 kHz  
TBD  
CURRENT  
SENSE  
DNR  
Dynamic range  
Un-Weighted, Relative to 0 dBFS  
69  
dB  
dB  
RL = 8 Ω + 33 µH, fin = 1 kHz, POUT  
= 1 W  
-56  
THD+N  
Total harmonic distortion + noise  
RL = 4 Ω + 33 µH, fin = 1 kHz, POUT  
= 1 W  
-57  
2.0  
±1  
dB  
A
Full-scale input current  
Current-sense accuracy  
RL = 8 Ω + 33 µH, IOUT = 354 mARMS  
(POUT = 1 W @ 1kHz)  
%
Current-sense gain error over  
temperature  
0°C to 70°C, 8 Ω, using a 60Hz  
-40dB pilot tone  
±1  
%
%
50mW to 0.1 % THD+N level, fin = 1  
kHz, 8 Ω, using a 60Hz -40dB pilot  
tone  
Current-sense gain error over output  
power  
±1.5  
fs = 8 kHz to 48 kHz  
fs = 88.2 kHz  
0.417  
0.208  
0.208  
fs  
fs  
LPF passband corner  
fs = 96 kHz  
fs  
LPF passband ripple  
-0.05  
0.05  
dB  
dB  
LPF stopband attenuation  
0.55 fs  
60  
VOLTAGE  
SENSE  
DNR  
Dynamic range  
Un-Weighted, Relative 0 dBFS  
69  
dB  
dB  
RL = 8 Ω + 33 µH, fin = 1 kHz, POUT  
= 1W  
-60  
THD+N  
Total harmonic distortion + noise  
RL = 4 Ω + 33 µH, fin = 1 kHz, POUT  
= 1W  
-60  
14  
dB  
Full-scale input voltage  
Voltage-sense accuracy  
VPK  
RL = 8 Ω + 33 µH, IOUT = 354 mARMS  
(POUT = 1 W)  
±0.5%  
Voltage-sense gain error over  
temperature  
0°C to 70°C, 8 Ω, using a 60Hz  
-40dB pilot tone  
±0.5%  
±0.5%  
Voltage-sense gain error over output 50mV to 0.1 % THD+N level, 8 Ω,  
power  
using a 60Hz -40dB pilot tone  
fs = 14.7 kHz to 48 kHz  
fs = 88.2 kHz  
0.417  
0.208  
0.208  
fs  
fs  
fs  
LPF passband corner  
fs = 96 kHz  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with  
a 22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LPF passband ripple  
LPF stopband attenuation  
-0.05  
0.05  
dB  
0.55 fs  
60  
dB  
VOLTAGE/CURRENT  
SENSE RATIO  
50mW to 0.1 % THD+N level, fin = 1  
kHz, 8Ω, using a 60Hz -40dB pilot  
tone  
Gain ratio error over output power  
±1%  
Gain ratio drift over temperature  
V/I phase error  
0°C to 70°C  
±1%  
300  
ns  
TYPICAL CURRENT  
CONSUMPTION  
SDZ = 0, VBAT  
1
1
µA  
µA  
µA  
µA  
mA  
Current consumption in hardware  
shutdown  
SDZ = 0, VDD  
All Clocks Stopped, VBAT  
All Clocks Stopped, VDD  
Clocking 0s PCM mode, VBAT  
Clocking 0s PCM mode, VDD,  
1
Current consumption in software  
shutdown  
10  
2.7  
10.9  
11.7  
mA  
mA  
Current consumption in idle channel DSBGA Package  
Clocking 0s PCM mode, VDD, QFN  
Package  
fs = 48 kHz, VBAT  
4.6  
10.9  
11.7  
4.6  
mA  
mA  
mA  
mA  
mA  
mA  
Current consumption during active  
operation with IV sense disabled  
fs = 48 kHz, VDD, DSBGA Package  
fs = 48 kHz, VDD, QFN Package  
fs = 48 kHz, VBAT  
Current consumption during active  
operation with IV sense enabled  
fs = 48 kHz, VDD, DSBGA Package  
fs = 48 kHz, VDD, QFN Package  
12.5  
13.3  
PROTECTION  
CIRCUITRY  
Thermal shutdown temperature  
Thermal shutdown retry  
140  
1.5  
°C  
s
UVLO is asserted  
UVLO is released  
2
V
VBAT undervoltage lockout threshold  
(UVLO)  
2.55  
V
Output to Output, Output to GND,  
Output to VBST or Output to VBAT  
Short  
Output short circuit limit  
3.75  
A
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
UNIT  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
6.6 I2C Timing Requirements  
TA = 25 °C, VDD = 1.8 V (unless otherwise noted)  
MIN  
NOM  
MAX  
Standard-Mode  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
μs  
Hold time (repeated) START condition. After this period, the first clock  
pulse is generated.  
tHD;STA  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
pF  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
250  
SDA and SCL rise time  
1000  
300  
tf  
SDA and SCL fall time  
tSU;STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
4
4.7  
Cb  
400  
400  
Fast-Mode  
fSCL  
SCL clock frequency  
0
kHz  
μs  
Hold time (repeated) START condition. After this period, the first clock  
pulse is generated.  
tHD;STA  
0.6  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
0.9  
100  
20 + 0.1 ×  
Cb  
tr  
tf  
SDA and SCL rise time  
SDA and SCL fall time  
300  
300  
ns  
ns  
20 + 0.1 ×  
Cb  
tSU;STO  
tBUF  
Set-up time for STOP condition  
0.6  
1.3  
μs  
μs  
pF  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
Cb  
400  
Fast-Mode  
Plus  
fSCL  
SCL clock frequency  
0
1000  
kHz  
μs  
Hold time (repeated) START condition. After this period, the first clock  
pulse is generated.  
tHD;STA  
0.26  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
pF  
50  
SDA and SCL Rise Time  
120  
120  
tf  
SDA and SCL Fall Time  
tSU;STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
0.5  
Cb  
TBD  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
6.7 SPI Timing Requirements  
For SPI interface signals over recommended operating conditions (unless otherwise noted). Note: All timing specifications  
are specified by design but not tested at final test.  
IOVDD = 1.8 IOVDD = 3.3  
V
V
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
MIN MAX MIN MAX  
tsck  
SCLK Period  
60  
30  
30  
60  
60  
60  
50  
25  
25  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
kΩ  
tsckh  
tsckl  
tlead  
ttrail  
SCLK Pulse width High  
SCLK Pulse width Low  
Enable Lead Time  
Enable Trail Time  
td;seqxfr  
ta  
Sequential Transfer Delay  
Slave DOUT access time  
Slave DOUT disable time  
DIN data setup time  
35  
35  
25  
25  
tdis  
tsu  
8
8
8
8
th;DIN  
tv;DOUT  
tr  
DIN data hold time  
DOUT data valid time  
SCLK Rise Time  
35  
4
25  
4
tf  
SCLK Fall Time  
4
4
Pd-spi  
External Pullup on SPII2CSELZ_MISO_PAD  
18  
18  
6.8 PDM Port Timing Requirements  
TA = 25 °C, AVDD = IOVDD = 1.8 V, 20 pF load on all outputs (unless otherwise noted)  
MIN  
20  
3
NOM  
MAX  
UNIT  
tSU(PDM) PDM IN setup time  
tHLD(PDM) PDM IN hold time  
ns  
ns  
ns  
ns  
tr(PDM)  
tf(PDM)  
PDM IN rise time  
PDM IN fall time  
10 % - 90 % Rise Time  
90 % - 10 % Fall Time  
4
4
6.9 TDM Port Timing Requirements  
TA = 25 °C, VDD = 1.8 V, 20 pF load on all outputs (unless otherwise noted)  
MIN  
20  
NOM  
MAX  
UNIT  
ns  
tH(SBCLK)  
tL(SBCLK)  
SBCLK high period  
SBCLK low period  
20  
ns  
tSU(FSYNC) FSYNC setup time  
tHLD(FSYNC) FSYNC hold time  
tSU(FSYNC) SDIN setup time  
6.5  
6.5  
6.5  
6.5  
ns  
ns  
ns  
tHLD(SDIN)  
SDIN hold time  
ns  
td(DO-  
SBCLK)  
SBCLK to SDOUT delay  
50% of SBCLK to 50% of SDOUT  
29  
ns  
tr(SBCLK)  
tf(SBCLK)  
SBCLK rise time  
SBCLK fall time  
10% - 90 % Rise Time  
90% - 10 % Fall Time  
8
8
ns  
ns  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
6.10 Timing Diagrams  
SDA  
tBUF  
tLOW  
tr  
th(STA)  
SCL  
th(STA)  
th(DAT)  
tHIGH  
tsu(STA)  
tsu(STO)  
STO  
STA  
tf  
tsu(DAT)  
STA  
STO  
Figure 6-1. I2C Timing Diagram  
FSYNC  
tSU(FSYNC)  
td(DO-FSYNC)  
tHLD(FSYNC)  
tL(SBCLK)  
SBCLK  
SDIN  
tH(SBCLK)  
tHLD(SDIN)  
tr(SBCLK)  
tf(SBCLK)  
tSU(SDIN)  
td(DO-SBCLK)  
SDOUT  
Figure 6-2. TDM Timing Diagram  
tSU(PDM)  
tHLD(PDM)  
tSU(PDM)  
tHLD(PDM)  
PDM CLK  
PDM IN  
tr  
tf  
Falling Edge Captured  
Rising Edge Captured  
Figure 6-3. PDM Timing Diagram  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
SS  
t
td  
tLag  
t
tLead  
sck  
tf  
tr  
SCLK  
MISO  
tsckl  
tsckh  
tv(DOUT)  
tdis  
MSB OUT  
th(DIN)  
BIT 6 . . . 1  
LSB OUT  
t
a
tsu  
MOSI  
MSB IN  
BIT 6 . . . 1  
LSB IN  
Figure 6-4. SPI Interface Timing Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
6.11 Typical Characteristics  
At TA = 25°C, fSPK_AMP = 384 kHz, input signal is 1 kHz Sine, unless otherwise noted. Filter used for Load  
Resistance is 30 µH, unless otherwise noted.  
100  
100  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT = 3.1 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
VBAT = 5.5 V  
10  
10  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
Pout (W)  
1
10  
0.001  
0.01  
0.1  
POUT (W)  
1
10  
D002  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-6. THD+N vs Output Power  
Figure 6-5. THD+N vs Output Power  
10  
10  
PVDD=2.5V  
PVDD=8.4V  
PVDD=12V  
PVDD=16V  
PVDD=2.5V  
PVDD=8.4V  
PVDD=12V  
PVDD=16V  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
Pout (W)  
1
10 20  
0.001  
0.01  
0.1  
Pout (W)  
1
10 20  
D003  
D004  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-7. THD+N vs Output Power  
Figure 6-8. THD+N vs Output Power  
100  
100  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
10  
1
10  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
Pout (W)  
1
10  
0.001  
0.01  
0.1  
Pout (W)  
1
10  
D005  
D006  
RL = 4 Ω + 30 µH  
FIN = 6.667 kHz  
RL = 8 Ω + 30 µH  
FIN = 6.667 kHz  
Figure 6-9. THD+N vs Output Power  
Figure 6-10. THD+N vs Output Power  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
10  
10  
1
PVDD=2.5V  
PVDD=8.4V  
PVDD=12V  
PVDD=16V  
PVDD=2.5V  
PVDD=8.4V  
PVDD=12V  
PVDD=16V  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
Pout (W)  
1
10 20  
0.001  
0.01  
0.1  
Pout (W)  
1
10 20  
D007  
D008  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-11. THD+N vs Output Power  
Figure 6-12. THD+N vs Output Power  
10  
10  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1000  
Frequency (Hz)  
1000020000  
20  
100  
1000  
Frequency (Hz)  
1000020000  
D009  
D010  
RL = 4 Ω + 30 µH  
P = 0.1 W  
RL = 8 Ω + 30 µH  
P = 0.1 W  
Figure 6-13. THD+N vs Frequency  
Figure 6-14. THD+N vs Frequency  
10  
1
10  
1
VBAT=3.1V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1000  
Frequency (Hz)  
1000020000  
20  
100  
1000  
Frequency (Hz)  
1000020000  
D012  
D011  
RL = 8 Ω + 30 µH  
P = 1 W  
RL = 4 Ω + 30 µH  
P = 1 W  
Figure 6-16. THD+N vs Frequency  
Figure 6-15. THD+N vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
20  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
ICN A weighted(mV)  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
2.7  
3.7  
4.7  
5.7  
2
3
4
5
6
7
8
9
PVDD Supply (V)  
10 11 12 13 14 15 16  
VBAT Supply (V)  
D015  
D016  
Figure 6-17. Idle Channel Noise (A-Weighted) vs  
VBAT  
Figure 6-18. Idle Channel Noise (A-Weighted) vs  
PVDD  
9.2  
13  
PVDD=8.4V  
PVDD=12.6V  
12  
9
11  
10  
9
8.8  
8.6  
8.4  
8.2  
8
8
7
6
20  
100  
1000  
Frequency (Hz)  
10000 30000  
0.1  
1
THD+N (%)  
10  
D017  
D018  
RL = 8 Ω + 30 µH  
FS = 48 kHz  
RL = 4 Ω + 30 µH  
Figure 6-19. Amplitude vs Frequency  
Figure 6-20. Max Output Power vs THD+N  
6.5  
6
100  
PVDD=8.4V  
PVDD=12.6V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
90  
80  
VBAT=5.5V  
70  
5.5  
5
60  
50  
40  
30  
20  
10  
0
4.5  
4
3.5  
0.0005  
0.01  
0.1  
Pout (W)  
1
10  
0.1  
1
THD+N (%)  
10  
D020  
D019  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
RL = 8 Ω + 30 µH  
Figure 6-22. Efficiency vs Output Power  
Figure 6-21. Max Output Power vs THD+N  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
PVDD=2.5V  
PVDD=8.4V  
PVDD=12V  
PVDD=16V  
0.0001  
0.001  
0.01  
0.1  
Pout (W)  
1
10 20  
0.0005  
0.01  
0.1  
Pout (W)  
1
10  
D022  
D021  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
Bypass Mode  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-24. Efficiency vs Output Power  
Figure 6-23. Efficiency vs Output Power  
100  
110  
90  
80  
70  
60  
50  
40  
30  
20  
10  
105  
100  
95  
90  
0
0.0001  
85  
20  
0.001  
0.01  
Pout (W)  
0.1  
1
10  
100  
1000  
Frequency (Hz)  
1000020000  
D023  
D024  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Bypass Mode  
RL = 8 Ω + 30 µH  
Idle Channel  
Figure 6-25. Efficiency vs Output Power  
Figure 6-26. AVDD PSRR vs Frequency  
140  
130  
PVDD=2.5V  
PVDD=8.4V  
PVDD=12V  
PVDD=16V  
126  
122  
118  
114  
110  
106  
102  
98  
120  
100  
80  
60  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.4V  
40  
94  
20  
90  
20  
100  
1000  
Frequency (Hz)  
1000020000  
10  
100  
1000  
Frequency (Hz)  
10000 30000  
D025  
D026  
RL = 8 Ω + 30 µH  
Idle Channel  
RL = 8 Ω + 30 µH  
Idle Channel  
Figure 6-27. VBAT PSRR vs Frequency  
Figure 6-28. PVDD PSRR vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
11  
10.98  
10.96  
10.94  
10.92  
10.9  
10  
9
8
7
6
5
4
3
2
1
Idle Channel Input  
10.88  
10.86  
10.84  
10.82  
10.8  
1.65  
1.7  
1.75  
1.8  
AVDD (V)  
1.85  
1.9  
1.95  
2.5  
3
3.5 4  
VBAT Voltage (V)  
4.5  
5
5.5  
D027  
D028  
Idle Channel  
Idle Channel  
Figure 6-29. AVDD Idle Current vs AVDD  
Figure 6-30. VBAT Idle Current vs VBAT  
100  
100  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
10  
1
10  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.01  
0.1  
Pout (W)  
1
10  
0.001  
0.01  
0.1  
Pout (W)  
1
10  
D030  
D031  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-31. I-sense THD+N vs Output Power  
Figure 6-32. I-sense THD+N vs Output Power  
5
4
3.2  
2.4  
1.6  
0.8  
0
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
4
3
VBAT=5.5V  
2
1
0
-0.8  
-1  
-2  
-3  
-4  
-5  
-1.6  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
-2.4  
-3.2  
-4  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Pout (W)  
Pout (W)  
D035  
D034  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-34. I-sense Linearity vs Output Power  
Figure 6-33. I-sense Linearity vs Output Power  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
10  
10  
1
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1000  
Frequency (Hz)  
1000020000  
20  
100  
1000  
Frequency (Hz)  
1000020000  
D038  
D039  
RL = 4 Ω + 30 µH  
P = 1 W  
RL = 8 Ω + 30 µH  
P = 1 W  
Figure 6-35. I-sense THD+N vs Frequency  
Figure 6-36. I-sense THD+N vs Frequency  
50  
10  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
10  
1
1
0.1  
0.1  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
0.01  
0.01  
0.001  
0.01  
0.1  
Pout (W)  
1
10  
0.001  
0.01  
0.1  
Pout (W)  
1
10  
D042  
D043  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-37. V-sense THD+N vs Output Power  
Figure 6-38. V-sense THD+N vs Output Power  
4
4
VBAT=3.1V  
VBAT=3.6V  
VBAT=3.1V  
VBAT=3.6V  
3.2  
3.2  
VBAT=4.2V  
VBAT=5.5V  
VBAT=4.2V  
VBAT=5.5V  
2.4  
1.6  
2.4  
1.6  
0.8  
0
0.8  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Pout (W)  
Pout (W)  
D046  
D047  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-39. V-sense Linearity vs Output Power  
Figure 6-40. V-sense Linearity vs Output Power  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
10  
10  
1
VBAT=3.1V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
1
0.1  
0.1  
0.01  
0.001  
0.01  
20  
100  
1000  
Frequency (Hz)  
1000020000  
20  
100  
1000  
Frequency (Hz)  
1000020000  
D051  
D050  
RL = 8 Ω + 30 µH  
P = 1 W  
RL = 4 Ω + 30 µH  
P = 1 W  
Figure 6-42. V-sense THD+N vs Frequency  
Figure 6-41. V-sense THD+N vs Frequency  
4
4
VBAT=3.1V  
VBAT=3.6V  
VBAT=3.1V  
VBAT=3.6V  
3.2  
3.2  
VBAT=4.2V  
VBAT=5.5V  
VBAT=4.2V  
VBAT=5.5V  
2.4  
1.6  
2.4  
1.6  
0.8  
0
0.8  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Pout (W)  
Pout (W)  
D054  
D055  
RL = 4 Ω + 30 µH  
FIN = 1 kHz  
RL = 8 Ω + 30 µH  
FIN = 1 kHz  
Figure 6-43. V/I-sense Linearity vs Output Power  
Figure 6-44. V/I-sense Linearity vs Output Power  
4
4
VBAT=3.1V  
VBAT=3.6V  
VBAT=3.1V  
VBAT=3.6V  
3.2  
3.2  
VBAT=4.2V  
VBAT=5.5V  
VBAT=4.2V  
VBAT=5.5V  
2.4  
1.6  
2.4  
1.6  
0.8  
0
0.8  
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-25  
0
25  
Temperature (èC)  
50  
75  
-25  
0
25  
Temperature (èC)  
50  
75  
D058  
D059  
RL = 8 Ω + 30 µH  
P = 1 W  
RL = 8 Ω + 30 µH  
P = 1 W  
Figure 6-45. I-sense Linearity vs Temperature  
Figure 6-46. V-sense Linearity vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
4
3.2  
2.4  
1.6  
0.8  
0
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-25  
0
25  
Temperature (èC)  
50  
75  
D060  
RL = 8 Ω + 30 µH  
P = 1 W  
Figure 6-47. V/I-sense Linearity vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
7 Parameter Measurement Information  
DF2SE  
R11  
OUT1+  
OUT1-  
VSENSE1+  
VSENSE1-  
0
R12  
0
1.8V  
VBAT  
VBAT1  
C22  
0.01uF  
C23  
4.7uF  
C19  
10µF  
25V  
C18  
10µF  
25V  
C17  
0.1µF  
R22  
0
C47  
1µF  
OUT1+  
OUT1-  
J12  
VDD1  
R23  
0
C48  
1µF  
J10  
VBAT1  
GND  
GND  
IOVDD  
GND  
GND  
GND  
SNUBBER  
GND  
C24  
0.01uF  
C25  
1µF  
U1  
L2  
OUT1+  
J14  
D1  
D2  
F5 OUT-1P  
D5 VSNS_P1  
R9  
0
0
VBAT  
OUT_P  
J13  
IOVDD1  
VBAT  
R18  
1uH  
VSNS_P  
OUT1+  
OUT1-  
GND  
GND  
F1  
F2  
F3  
C46  
1µF  
OUT1+  
OUT1-  
SW  
SW  
SW  
SW1  
D3 VSNS_N1  
F6 OUT-1N  
R19  
R10  
0
0
VSNS_N  
OUT_N  
OUT1  
OUT1-  
VDD1  
IOVDD1  
C6  
A6  
VDD  
IOVDD  
TP6  
PVDD1  
C20  
C21  
PVDD1  
G1  
G2  
G3  
VBST  
VBST  
VBST  
C26  
1µF  
16V  
C27  
10µF  
25V  
C28  
10µF  
25V  
C1 SDOUT1  
SDOUT1  
SDOUT2  
ASI1  
SBCLK1  
FSYNC  
SDIN1  
AUX Connector  
J11  
GND  
GND  
G4  
G5  
G6  
A3 SDOUT2-1  
PVDD  
PVDD  
PVDD  
OUT1+  
OUT1-  
GND  
GND  
GND  
SBCLK1  
FSYNC  
SDIN1  
B2  
B3  
C2  
C5 IRQ1  
SBCK1  
IRQ  
DREG  
GREG  
GPIO  
OUT1  
FSYNC  
SDIN1  
ASI2  
SDOUT2-2  
B6 DREG1  
D4 GREG1  
SBCLK1  
SDOUT2-2  
A5  
A4  
SBCLK2  
SDIN2  
J15  
D6  
GPIO1  
SDOUT1  
SDOUT2-1  
1
3
2
4
PCMCK1  
PDMD1  
A1  
A2  
PDMCK  
PDMD  
ASI1/ASI2  
CONTROL  
F4  
E6  
E5  
E4  
E3  
E2  
E1  
GNDD  
GNDP  
GNDP  
GNDD  
GNDB  
GNDB  
GNDB  
PDM1  
SCL_SEL1  
SDA_MOSI  
B4  
B5  
SCL_SEL  
SDA_MOSI  
GND  
IRQ1  
SD  
SPII2C_MISO  
B1  
C3  
SD  
SPII2C_MISO  
ADDR_SPICLK  
SD  
CONTROL  
ADDR_SPICLK1 C4  
C29  
1µF  
C44  
0.01uF  
I2C/SPI  
TAS2563YBG  
GND  
SCL_SEL1  
Address = 0x98  
GND  
GND  
SDA_MOSI  
SPII2C_MISO  
C30  
PVDD1  
0.1µF  
ADDR_SPICLK1  
Figure 7-1. TAS2563 Circuit  
All typical characteristics for the devices are measured using the Bench EVM and an Audio Precision SYS-2722  
Audio Analyzer. A PSIA interface is used to allow the I2S interface to be driven directly into the SYS-2722.  
Speaker output terminals are connected to the Audio-Precision analyzer analog inputs through a differential-to-  
single ended (D2S) filter as shown below. The D2S filter contains a 1st order Passive pole at 120 kHz. The D2S  
filter ensures the TAS2563 high performance class-D amplifier sees a fully differential matched loading at its  
outputs. This prevents measurement errors due to loading effects of AUX-0025 filter on the class-D outputs.  
1kΩ  
0.01%  
1kΩ  
0.01%  
-
1kΩ  
SPK_P  
+
-
AP  
680pF  
AUX-0025  
SYS-2772  
+
SPK_N  
1kΩ  
0.01%  
+
-
1kΩ  
1kΩ  
0.01%  
Figure 7-2. Differential To Single Ended (D2S) Filter  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
8 Detailed Description  
8.1 Overview  
The TAS2563 is a mono digital input Class-D amplifier optimized for mobile applications where efficient battery  
operation and small solution size are crucial. It integrates speaker voltage and current sensing and battery  
tracking limiting with brown out prevention.  
8.2 Functional Block Diagram  
1.8V / 3.3V  
1.8V  
2.7V œ 5.5V  
10uF  
1uF  
4.7uF  
1uF  
VBAT  
IOVDD  
VDD  
DREG  
1uH  
SDZ  
Power Management  
SW  
Boost  
BGND  
VBST  
OTP Trim  
PVDD  
SAR  
ADC  
Brown Out  
Protection  
IRQZ  
VBAT  
TEMP  
100nF  
10uF  
Gate  
Drive  
CP  
GREG  
MCLK  
SDIN  
SDOUT  
FSYNC  
SBCLK  
TDM  
Port  
Smart AMP  
DSP  
PVDD  
DAC  
Class-D +  
I-V Sense  
PDMCLK  
PDMD  
PDM  
Port  
I-V Sense  
ADCs  
SDIN2  
VSNS_P  
IC  
Link  
SDOUT2  
SBCLK2  
Clock  
Watchdog  
& Timers  
Reference &  
Temp  
Protection  
OUTP  
OUTN  
I2C / SPI Port  
VSNS_N  
ADDR / SPII2CZ / SDA /  
SCLK MISO MOSI  
SCL /  
SELZ  
PLL  
PGND  
GND  
Figure 8-1. Functional Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
1.8V / 3.3V  
1.8V  
2.7V œ 5.5V  
10uF  
1uF  
4.7uF  
1uF  
VBAT  
IOVDD  
VDD  
DREG  
1uH  
SDZ  
Power Management  
SW  
Boost  
BGND  
VBST  
OTP Trim  
PVDD  
SAR  
ADC  
Brown Out  
Protection  
IRQZ  
VBAT  
TEMP  
100nF  
10uF  
Gate  
Drive  
CP  
GREG  
MCLK  
SDIN  
SDOUT  
FSYNC  
SBCLK  
TDM  
Port  
Smart AMP  
DSP  
PVDD  
DAC  
Class-D +  
I-V Sense  
PDMCLK  
PDMD  
PDM  
Port  
I-V Sense  
ADCs  
VSNS_P  
Clock  
Watchdog  
& Timers  
Reference &  
Temp  
Protection  
OUTP  
OUTN  
I2C / SPI Port  
VSNS_N  
ADDR / SPII2CZ / SDA /  
SCLK MISO MOSI  
SCL /  
SELZ  
PLL  
PGND  
GND  
Figure 8-2. TAS2563 QFN Functional Block Diagram  
8.3 Feature Description  
8.3.1 PurePathConsole 3 Software  
The TAS2563 advanced features and device configuration should be performed using PurePath Console 3  
(PPC3) software. The base software PPC3 is downloaded and installed from the TI website. Once installed the  
TAS2563 application can be download from with-in PPC3. The PCC3 tool will calculate necessary register  
coefficients that are described in the following sections. It is the recommended method to configure the device.  
Once the TAS2563 application calculates and updates the device, the registers values can be read back using  
the PPC3 tool for final system integration.  
8.3.2 Device Mode and Address Selection  
The TAS2563 has a global 7-bit I2C address 0x48. When enabled the device will additionally respond to I2C  
commands at this address once it is put in I2C Mode. This is used to speed up device configuration when using  
multiple TAS2563 devices and programming similar settings across all devices. The I2C ACK / NACK cannot be  
used during the multi-device writes since multiple devices are responding to the I2C command. The I2C CRC  
function should be used to ensure each device properly received the I2C commands. At the completion of writing  
multiple devices using the global address, the CRC at I2C_CKSUM register should be checked on each device  
using the local address for a proper value. The global I2C address can be disabled using I2C_GBL_EN register.  
The I2C address is detected by sampling the address pins when SDZ pin is released. Additionally, the address  
may be re-detected by setting I2C_AD_DET high after power up and the pins will be resampled.  
Table 8-1. I2C Global Address Enable  
I2C_GBL_EN  
SETTING  
Disabled  
0
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-1. I2C Global Address Enable (continued)  
I2C_GBL_EN  
SETTING  
Enabled (default)  
1
Table 8-2. I2C Global Address Detection  
I2C_AD_DET  
SETTING  
normal (default)  
0
Re-detect  
1
8.3.3 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system using serial data transmission. The address and data 8-bit bytes are transferred most-significant bit  
(MSB) first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an  
acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and  
ends with the master device driving a stop condition on the bus. The bus uses transitions on the data terminal  
(SDA) while the clock is at logic high to indicate start and stop conditions. A high-to-low transition on SDA  
indicates a start, and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within the  
low time of the clock period. shows a typical sequence.  
To configure the TAS2563 for I2C operation set the SPII2CZ_MISO pin to ground. The I2C address can then be  
set using pins ADDR_SPICLK according to Table 8-3. The pin configures the two LSB bits of the following 7-bit  
binary address A6-A0 of 10011xx. This permits the I2C address of TAS2563 to be 0x4C(7-bit) through 0x4F(7-  
bit). For example, if ADDR_SPICLK is connected to ground the I2C address for the TAS2563 would be 0x4C(7-  
bit). This is equivalent to 0x98 (8-bit) for writing and 0x99 (8-bit) for reading. The ADDR_SPICLK should be only  
pulled high to the IOVDD pin voltage.  
Table 8-3. I2C Mode Address Selection  
I2C SLAVE ADDRESS  
ADDR_SPICLK PIN  
0x48 (global address)  
NA  
0x4C  
0x4D  
0x4E  
0x4F  
GND  
10k to GND  
10k to VDD  
VDD  
The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The device holds SDA low during the acknowledge clock  
period to indicate acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each  
device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the  
same signals via a bi-directional bus using a wired-AND connection.  
Use external pull-up resistors for the SDA and SCL signals to set the logic-high level for the bus. Pull Up  
Resistor can be calculated as per the table below. For Capacitive Loads different from mentioned below in table,  
use interpolated values.  
Do not allow the SDA and SCL voltages to exceed the device supply voltage, IOVDD. The I2C pins are fault  
tolerant and will not load the I2C bus when the device is powered down.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-4. I2C Pull Up Resistor Selection  
I2C Mode of Operation  
Capacitive Load  
Recommended Pull Up Resistor  
10pF  
500 Ω to 4.7 KΩ  
Standard/Fast  
400pF  
500 Ω to 1 KΩ  
10pF  
500 Ω to 4 KΩ  
Fast Mode Plus  
550pF  
350 Ω to 400 Ω  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
Figure 8-3. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. Figure 8-3 shows a generic data  
transfer sequence.  
8.3.4 General SPI Operation  
The TAS2563 operates as an SPI slave over the IOVDD voltage range. To enable SPI mode the SPII2CZ_MISO  
pin is pulled to IOVDD using a resistor. During the device power up the pin state is queried and if high will enter  
SPI mode.  
In the SPI control mode, the TAS2563 uses the terminals SCL_SELZ as SS, ADDR_SPICLK as SCLK,  
SPII2CZ_MISO as MISO, SDA_MOSI as MOSI; The SPI port allows full-duplex, synchronous, serial  
communication between a host processor (the master) and peripheral devices (slaves). The SPI master (in this  
case, the host processor) generates the synchronizing clock (driven onto SCLK) and initiates transmissions. The  
SPI slave device depends on a master to start and synchronize transmissions. A transmission begins when  
initiated by an SPI master. The byte from the SPI master begins shifting in on the slave MOSI terminal under the  
control of the master serial clock (driven onto SCLK). As the byte shifts in on the MOSI terminal, a byte shifts out  
on the MISO terminal to the master shift register.  
The TAS2563 interface is designed so that with a clock-phase bit setting of 1 (typical microprocessor SPI control  
bit CPHA = 1), the master begins driving its MOSI terminal and the slave begins driving its MISO terminal on the  
first serial clock edge. The SSZ terminal can remain low between transmissions; however, the TAS2563 only  
interprets the first 8 bits transmitted after the falling edge of SSZ as a command byte, and the next 8 bits as a  
data byte only if writing to a register. Reserved register bits should be written to their default values. The  
TAS2563 is entirely controlled by registers. Reading and writing these registers is accomplished by an 8-bit  
command sent to the MOSI terminal of the part prior to the data for that register. The command is structured as  
shown in Table 8-5 below. The first 7 bits specify the address of the register which is being written or read, from  
0 to 127 (decimal). The command word ends with an R/W bit, which specifies the direction of data flow on the  
serial bus. In the case of a register write, the R/W bit should be set to 0. A second byte of data is sent to the  
MOSI terminal and contains the data to be written to the register. Reading of registers is accomplished in a  
similar fashion. The 8-bit command word sends the 7-bit register address, followed by the R/W bit = 1 to signify a  
register read is occurring. The 8-bit register data is then clocked out of the part on the MISO terminal during the  
second 8 SCLK clocks in the frame.  
Table 8-5. Command Word  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADDR(6)  
ADDR(5)  
ADDR(4)  
ADDR(3)  
ADDR(2)  
ADDR(1)  
ADDR(0)  
R/WZ  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
D(7)  
D(6)  
D(0)  
7-bit Register Address  
Write  
8-bit Register Data  
Hi-Z  
Hi-Z  
MISO  
Figure 8-4. SPI Timing Diagram for Register Write  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
Don’t Care  
7-bit Register Address  
Read  
8-bit Register Data  
Hi-Z  
Hi-Z  
MISO  
D(7)  
D(6)  
D(0)  
Figure 8-5. SPI Timing Diagram for Register Read  
8.3.5 Single-Byte and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for all registers.  
During multiple-byte read operations, the TAS2563 responds with data, a byte at a time, starting at the register  
assigned, as long as the master device continues to respond with acknowledges.  
The TAS2563 supports sequential I2C addressing. For write transactions, if a register is issued followed by data  
for that register and all the remaining registers that follow, a sequential I2C write transaction has taken place. For  
I2C sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines to how many registers are written.  
8.3.6 Single-Byte Write  
As shown in Figure 8-6, a single-byte data-write transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C  
device address and the read/write bit, the TAS2563 responds with an acknowledge bit. Next, the master  
transmits the register byte corresponding to the device internal memory address being accessed. After receiving  
the register byte, the device again responds with an acknowledge bit. Finally, the master device transmits a stop  
condition to complete the single-byte data-write transfer.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
Figure 8-6. Single-Byte Write Transfer  
8.3.7 Multiple-Byte Write and Incremental Multiple-Byte Write  
A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes  
are transmitted by the master device to the TAS2563 as shown in Figure 8-7. After receiving each data byte, the  
device responds with an acknowledge bit.  
Register  
Figure 8-7. Multi-Byte Write Transfer  
8.3.8 Single-Byte Read  
As shown in Figure 8-8, a single-byte data-read transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. For the data-read transfer, both a write  
followed by a read are actually done. Initially, a write is done to transfer the address byte of the internal memory  
address to be read. As a result, the read/write bit is set to a 0.  
After receiving the TAS2563 address and the read/write bit, the device responds with an acknowledge bit. The  
master then sends the internal memory address byte, after which the device issues an acknowledge bit. The  
master device transmits another start condition followed by the TAS2563 address and the read/write bit again.  
This time, the read/write bit is set to 1, indicating a read transfer. Next, the TAS2563 transmits the data byte from  
the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge  
followed by a stop condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
Figure 8-8. Single-Byte Read Transfer  
8.3.9 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS2563 to the master device as shown in Figure 8-9. With the exception of the last data  
byte, the master device responds with an acknowledge bit after receiving each data byte.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
Figure 8-9. Multi-Byte Read Transfer  
8.3.10 Register Organization  
Device configuration and coefficients are stored using a page and book scheme. Each page contains 128 bytes  
and each book contains 256 pages. All device configuration registers are stored in book 0, page 0, which is the  
default setting at power up (and after a software reset). The book and page can be set by the BOOK[7:0] and  
PAGE[7:0] registers respectively.  
8.3.11 Operational Modes  
8.3.11.1 Hardware Shutdown  
The device enters Hardware Shutdown mode if the SDZ pin is asserted low. In Hardware Shutdown mode, the  
device consumes the minimum quiescent current from VDD and VBAT supplies. All registers loose state in this  
mode and I2C communication is disabled.  
In normal shutdown mode if SDZ is asserted low while audio is playing, the device will ramp down volume on the  
audio, stop the Class-D switching, power down analog and digital blocks and finally put the device into Hardware  
Shutdown mode. If configured in normal with timeout shutdown mode the device will force a hard shutdown after  
a timeout of the configurable shutdown timer. Finally the device can be configured for hard shutdown and will not  
attempt to gracefully stop the audio channel.  
Table 8-6. Shutdown Control  
SDZ_MODE[1:0]  
SETTING  
Normal Shutdown with Timer  
(default)  
00  
Immediate Shutdown  
Normal Shutdown  
Reserved  
01  
10  
11  
Table 8-7. Shutdown Control  
SDZ_TIMEOUT[1:0]  
SETTING  
2 ms  
00  
4 ms  
01  
10  
6 ms (default)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-7. Shutdown Control (continued)  
SDZ_TIMEOUT[1:0]  
SETTING  
23.8 ms  
11  
When SDZ is released, the device will sample the AD0 and AD1 pins and enter the software shutdown mode.  
8.3.11.2 Software Shutdown  
Software Shutdown mode powers down all analog blocks required to playback audio, but does not cause the  
device to loose register state. Software Shutdown is enabled by asserting the MODE[1:0] register bits to 2'b10. If  
audio is playing when Software Shutdown is asserted, the Class-D will volume ramp down before shutting down.  
When deasserted, the Class-D will begin switching and volume ramp back to the programmed digital volume  
setting.  
8.3.11.3 Mute  
The TAS2563 will volume ramp down the Class-D amplifier to a mute state by setting the MODE[1:0] register bits  
to 2'b01. During mute the Class-D still switches, but transmits no audio content. If mute is deasserted, the device  
will volume ramp back to the programmed digital volume setting.  
8.3.11.4 Active  
In Active Mode the Class-D switches and plays back audio. Speaker voltage and current sensing are operational  
if enabled. Set the MODE[1:0] register bits to 2'b00 to enter active mode.  
8.3.11.5 Perform Load Diagnostics  
In Load Diagnostics Mode, TAS2563 checks the speaker terminal for an open or short. This can be used to  
determine if a problem exists with the speaker or trace to the speaker. The entire operation is performed by the  
TAS2563 and results reported using the IRQZ pin or read over I2C bus on completion. Set the MODE[1:0]  
register bits to 2'b11 to enter load diagnostics mode.  
8.3.11.6 Mode Control and Software Reset  
The TAS2563 mode can be configured by writing the MODE[1:0] bits.  
Table 8-8. Mode Control  
MODE[1:0]  
SETTING  
Section 8.3.11.4  
00  
Section 8.3.11.3  
Section 8.3.11.2 (default)  
Section 8.3.11.5  
01  
10  
11  
A software reset can be accomplished by asserting the SW_RESET bit, which is self clearing. This will restore all  
registers to their default values.  
Table 8-9. Software Reset  
SW_RESET  
SETTING  
Don't reset (default)  
0
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-9. Software Reset (continued)  
SW_RESET  
SETTING  
Reset  
1
8.3.12 Faults and Status  
During the power-up sequence, the power-on-reset circuit (POR) monitoring the VDD and VBAT pins will hold  
the device in reset (including all configuration registers) until the supply is valid. The device will not exit hardware  
shutdown until VDD and VBAT are valid and the SDZ pin is released. Once SDZ is released, the digital core  
voltage regulator will power up, enabling detection of the operational mode. If VDD dips below the POR  
threshold, the device will immediately be forced into a reset state.  
The device also monitors the VBAT supply and holds the analog core in power down if the supply is below the  
UVLO threshold. If the TAS2563 is in active operation and a UVLO fault occurs, the analog supplies will  
immediately power down to protect the device. These faults are latching and require a transition through HW/SW  
shutdown to clear the fault. The live and latched registers will report UVLO faults.  
The device transitions into software shutdown mode if it detects any faults with the TDM clocks such as:  
• Invalid SBCLK to FSYNC ratio  
• Invalid FSYNC frequency  
• Halting of SBCLK or FSYNC clocks  
Upon detection of a TDM clock error, the device transitions into software shutdown mode as quickly as possible  
to limit the possibility of audio artifacts. Once all TDM clock errors are resolved, the device volume ramps back to  
its previous playback state. During a TDM clock error, the IRQZ pin will assert low if the clock error interrupt  
mask register bit is set low (INT_MASK[2]). The clock fault is also available for readback in the live or latched  
fault status registers (INT_LIVE[2] and INT_LTCH[2]). Reading the latched fault status register (INT_LTCH[7:0])  
clears the register.  
The TAS2563 also monitors die temperature and Class-D load current and will enter software shutdown mode if  
either of these exceed safe values. As with the TDM clock error, the IRQZ pin will assert low for these faults if  
the appropriate fault interrupt mask register bit is set low (INT_MASK[0] for over temp and INT_MASK[1] for over  
current). The fault status can also be monitored in the live and latched fault registers as with the TDM clock error.  
Die over temp and Class-D over current errors can either be latching (for example the device will enter software  
shutdown until a HW/SW shutdown sequence is applied) or they can be configured to automatically retry after a  
prescribed time. This behavior can be configured in the OTE_RETRY and OCE_RETRY register bits (for over  
temp and over current respectively). Even in latched mode, the Class-D will not attempt to retry after an over  
temp or over current error until the retry time period (1.5 s) has elapsed. This prevents applying repeated stress  
to the device in a rapid fashion that could lead to device damage. If the device has been cycled through SW/HW  
shutdown, the device will only begin to operate after the retry time period.  
The status registers (and IRQZ pin if enabled via the status mask register) also indicates limiter behavior  
including when the limiter is activity, when VBAT is below the inflection point, when maximum attenuation has  
been applied, when the limiter is in infinite hold and when the limiter has muted the audio.  
Interrupts can be queried using the INT_LIVE[9:0] and INT_LTCH[13:0] registers and correspond to the  
INT_MASK[10:0] Interrupts. The latched registers are cleared by writing the self clearing register  
INT_CLR_LTCH high.  
The IRQZ pin is an open drain output that asserts low during unmasked fault conditions and therefore must be  
pulled up with a resistor to IOVDD. An internal pull up resistor is provided in the TAS2563 and can be accessed  
by setting the IRQZ_PU register bit high. Figure 8-10 below highlights the IRQZ pin circuit.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
IOVDD  
IOVDD  
IRQZ_PU  
To  
System  
Master  
IRQZ  
Interrupt  
Figure 8-10. IRQZ Pin  
Table 8-10. Fault Interrupt Mask  
INT_MASK[10:0] BIT  
INTERRUPT  
DEFAULT (1 = Mask)  
0
Over Temp Error  
0
0
1
Over Current Error  
TDM Clock Error  
Limiter Active  
2
1
3
1
4
Limter Voltage < Inf  
Point  
1
5
Limiter Max Atten  
Limiter Inf Hold  
Limiter Mute  
1
6
1
7
1
8
Brown Out on VBAT  
Supply  
0
9
Brown Out Protection  
Active  
1
10  
11:12  
13  
Brown Out Power  
Down (Latched Only)  
1
Speaker Open Load  
(Latched Only)  
00  
1
Load Diagnostic  
Complete (Latched  
Only)  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-11. IRQ Clear Latched  
INT_CLR_LTCH  
STATE  
Don't Clear  
0
Clear (self clearing)  
1
Table 8-12. IRQZ Internal Pull Up Enable  
IRQZ_PU  
STATE  
Disabled (default)  
0
Enabled  
1
Table 8-13. IRQZ Polarity  
IRQZ_POL  
STATE  
Active High  
0
Active Low (default)  
1
Table 8-14. IRQZ Assert Interrupt Configuration  
IRQZ_PIN_CFG[1:0]  
VALUE  
On any unmasked live interrupts  
00  
On any unmasked latched  
interrupts (default)  
01  
10  
11  
For 2-4 ms one time on any  
unmasked live interrupt event  
For 2-4 ms every 4 ms on any  
unmasked latched interrupts  
Table 8-15. Retry after Over Current Event  
OCE_RETRY  
STATE  
Disabled (default)  
0
Enabled  
1
Table 8-16. Retry after Over Temperature Event  
OTE_RETRY  
VALUE  
Do not retry (default)  
0
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-16. Retry after Over Temperature Event  
(continued)  
OTE_RETRY  
VALUE  
Retry after 1.5s  
1
8.3.13 Power Sequencing Requirements  
There are no other power sequencing requirements for order of rate of ramping up or down.  
8.3.14 Digital Input Pull Downs  
Each digital input and IO has an optional weak pull down to prevent the pin from floating. Pull downs are not  
enabled during HW shutdown.  
Table 8-17. Digital Input Pull Down Enables  
REGISTER BIT  
DESCRIPTION  
BIT VALUE  
STATE  
0
Disabled (default)  
DIN_PD[0]  
Weak pull down for SBCLK.  
1
0
1
0
1
0
1
0
1
0
1
Enabled  
Disabled (default)  
Enabled  
DIN_PD[1]  
DIN_PD[2]  
DIN_PD[3]  
DIN_PD[4]  
DIN_PD[5]  
Weak pull down for FSYNC.  
Weak pull down for SDIN.  
Weak pull down for SDOUT.  
Weak pull down forAD0.  
Weak pull down for AD1.  
Disabled (default)  
Enabled  
Disabled (default)  
Enabled  
Disabled (default)  
Enabled  
Disabled(default)  
Enabled  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-17. Digital Input Pull Down Enables (continued)  
REGISTER BIT  
DESCRIPTION  
BIT VALUE  
STATE  
0
Disabled  
DIN_PD[7]  
Weak pull down for GPIO.  
1
Enabled (default)  
8.4 Device Functional Modes  
8.4.1 PDM Input  
The TAS2563 provides one PDM input. Figure 8-11 below illustrates the double data rate nature of the PDM  
input. It has two interleaved PDM channels, one sampled by the rising edge and the other by the falling edge of  
the clock.  
PDM CLK  
PDM DATA  
Rising  
Channel  
Falling  
Channel  
Figure 8-11. PDM Waveform  
The PDM inputs are sampled by the PDMCLK pin, which can be configured as either a PDM clock slave input or  
a PDM clock master output. The PDM_MIC_EDGE and PDM_MIC_SLV register bits select the sample clock  
edge and master/slave mode PDM inputs. In master mode the PDMCLK pin can disable the clocks (and drive a  
logic 0) by setting the PDM_GATE_PAD0 register bits low.  
When configured as a clock slave, the PDM clock input does not require a specific phase relationship to the  
system clock (SBCLK in TDM/I2S Mode), but must be from the same source as audio sample rate. This is  
equivalent to 64/32/16 (~3 MHz) or 128/64/32 (~6 MHz) times a single/double/quadruple speed sample rate. The  
PDM rate is set by the PDM_RATE_PAD0 .  
When PDMCLK pin is configured as a clock master, the TAS2563 will output a 50% duty cycle clock of frequency  
that is set by the PDM_RATE_PAD0 and register bit (64/32/16 or 128/64/32 times a single/double/quadruple  
speed sample rate).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-18. PDM Clock Slave  
PDM INPUT  
PIN  
REGISTER BIT  
VALUE  
MASTER/  
SLAVE  
0
Master  
PDMD  
PDM_MIC_SLV  
1
Slave (default)  
Table 8-19. PDM Master Mode Clock Gate  
PDM CLOCK REGISTER BIT  
PIN  
VALUE  
GATING  
Gated Off  
(default)  
1
PDM_GATE_PA  
PDMCLK  
D0  
0
Active  
Table 8-20. PDM Input Sample Rate  
PDM INPUT  
PIN  
REGISTER  
BITS  
VALUE  
SAMPLE RATE  
3.072 MHz  
(default)  
0
PDM_RATE_PA  
D0  
PDMD  
1
6.144 MHz  
Table 8-21. PDM MIC Enable  
PDM_MIC_EN  
MAPPING  
Disable MIC2  
Enable MIC2  
Disable MIC1  
Enable MIC1  
PDM_MIC2_EN= 0  
PDM_MIC2_EN= 1  
PDM_MIC1_EN= 0  
PDM_MIC1_EN= 1  
8.4.2 TDM Port  
The TAS2563 provides a flexible TDM serial audio port. The port can be configured to support a variety of  
formats including stereo I2S, Left Justified and TDM. Mono audio playback is available via the SDIN pin. The  
SDOUT pin is used to transmit sample streams including speaker voltage and current sense, VBAT voltage, die  
temperature and channel gain.  
The TDM serial audio port supports up to 16 32-bit time slots at 44.1/48 kHz, 8 32-bit time slots at a 88.2/96 kHz  
sample rate and 4 32-bit time slots at a 176.4/192 kHz sample rate. The device supports 2 time slots at 32 bits in  
width and 4 or 8 time slots at 16, 24 or 32 bits in width. Valid SBCLK to FSYNC ratios are 64, 96, 128, 192, 256,  
384 and 512. The device will automatically detect the number of time slots and this does not need to be  
programmed.  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
By default, the TAS2563 will automatically detect the PCM playback sample rate. This can be disabled by setting  
the AUTO_RATE register bit high and manually configuring the device.  
The SAMP_RATE[2:0] register bits set the PCM audio sample rate when AUTO_RATE is enabled. The TAS2563  
employs a robust clock fault detection engine that will automatically volume ramp down the playback path if  
FSYNC does not match the configured sample rate (AUTO_RATE enabled) or the ratio of SBCLK to FSYNC is  
not supported (minimizing any audible artifacts). Once the clocks are detected to be valid in both frequency and  
ratio, the device will automatically volume ramp the playback path back to the configured volume and resume  
playback.  
When using the auto rate detection the sampling rate and SBCLK to FSYNC ratio detected on the TDM bus is  
reported back on the read-only register FS_RATE and FS_RATIO respectively.  
While the sampling rate of 192 kHz is supported, it is internally down-sampled to 96 kHz. Therefore audio  
content greater than 40 kHz should not be applied to prevent aliasing. This additionally affects all processing  
blocks like BOP and limiter which should use 96 kHz fs when accepting 192 kHz audio. It is recommend to use  
Section 8.3.1 to configure the device.  
Table 8-22. PCM Auto Sample Rate Detection  
AUTO_RATE  
SETTING  
Enabled (default)  
0
Disabled  
1
Table 8-23. PCM Audio Sample Rates  
SAMP_RATE[2:0] FS_RATE(read only)  
SAMPLE RATE  
Reserved  
14.7 kHz / 16 kHz  
Reserved  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
29.4 kHz / 32 kHz  
44.1 kHz / 48 kHz  
(default)  
88.2 kHz / 96 kHz  
176.4 kHz / 192 kHz  
supported only by  
QFN device package.  
Reserved  
Table 8-24. PCM SBCLK to FSYNC Ratio  
FS_RATIO[3:0]  
SBCLK to FSYNC Ratio  
Reserved  
0x0-0x3  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-24. PCM SBCLK to FSYNC Ratio (continued)  
FS_RATIO[3:0]  
SBCLK to FSYNC Ratio  
64  
0x4  
0x5  
96  
128  
0x6  
192  
0x7  
256  
0x8  
384  
0x9  
512  
0xA  
Reserved  
Error Condition  
0xB-0xE  
0xF  
Figure 8-12 and Figure 8-13 below illustrates the receiver frame parameters required to configure the port for  
playback. A frame begins with the transition of FSYNC from either high to low or low to high (set by the  
FRAME_START register bit). FSYNC and SDIN are sampled by SBCLK using either the rising or falling edge  
(set by the RX_EDGE register bit). The RX_OFFSET[4:0] register bits define the number of SBCLK cycles from  
the transition of FSYNC until the beginning of time slot 0. This is typically set to a value of 0 for Left Justified  
format and 1 for an I2S format.  
SBCLK  
FSYNC  
MSB  
MSB-1  
LSB+1  
LSB  
SDIN  
RX_OFFSET  
RX_WLEN  
RX_SLEN  
Figure 8-12. TDM RX Time Slot with Left Justification  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
SBCLK  
FSYNC  
SDIN  
Slot 0  
Bit 31  
Slot0  
Bit 0  
Slot 1  
Bit 31  
Slot1  
Bit 0  
Slot2  
Bit 31  
RX_OFFSET  
Time Slot 0  
Time Slot 1  
Figure 8-13. TDM RX Time Slots  
Table 8-25. TDM Start of Frame Polarity  
FRAME_START  
POLARITY  
Low to High on FSYNC(1)  
0
High to Low on FSYNC (default)  
(2)  
1
(1) When Low to High is used RX_EDGE and TX_EDGE cannot  
both simultaneously be set to rising edge.  
(2) When High to Low is used RX_EDGE and TX_EDGE cannot  
both simultaneously be set to falling edge.  
Table 8-26. TDM RX Capture Polarity  
RX_EDGE  
FSYNC AND SDIN CAPTURE  
EDGE  
Rising edge of SBCLK (default)  
Falling edge of SBCLK  
0
1
Table 8-27. TDM RX Start of Frame to Time Slot 0  
Offset  
RX_OFFSET[4:0]  
SBCLK CYCLES  
0
0x00  
1 (default)  
0x01  
0x02  
...  
2
...  
30  
31  
0x1E  
0x1F  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
The RX_SLEN[1:0] register bits set the length of the RX time slot. The length of the audio sample word within  
the time slot is configured by the RX_WLEN[1:0] register bits. The RX port will left justify the audio sample within  
the time slot by default, but this can be changed to right justification via the RX_JUSTIFY register bit. The  
TAS2563 supports mono and stereo down mix playback ([L+R]/2) via the left time slot, right time slot and time  
slot configuration register bits (RX_SLOT_L[3:0], RX_SLOT_R[3:0] and RX_SCFG[1:0] respectively). By default  
the device will playback mono from the time slot equal to the I2C base address offset for playback. The  
RX_SCFG [1:0] register bits can be used to override the playback source to the left time slot, right time slot or  
stereo down mix set by the RX_SLOT_L[3:0] and RX_SLOT_R[3:0] register bits.  
If time slot selections places reception either partially or fully beyond the frame boundary, the receiver will return  
a null sample equivalent to a digitally muted sample.  
Table 8-28. TDM RX Time Slot Length  
RX_SLEN[1:0]  
TIME SLOT LENGTH  
16-bits  
00  
24-bits  
32-bits (default)  
reserved  
01  
10  
11  
Table 8-29. TDM RX Sample Word Length  
RX_WLEN[1:0]  
LENGTH  
16-bits  
00  
20-bits  
24-bits (default)  
32-bits  
01  
10  
11  
Table 8-30. TDM RX Sample Justification  
RX_JUSTIFY  
JUSTIFICATION  
Left (default)  
0
Right  
1
Table 8-31. TDM RX Time Slot Select Configuration  
RX_SCFG[1:0]  
CONFIG ORIGIN  
Mono with Time Slot equal to I2C  
Address Offset (default)  
00  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-31. TDM RX Time Slot Select Configuration  
(continued)  
RX_SCFG[1:0]  
CONFIG ORIGIN  
Mono Left Channel  
01  
Mono Right Channel  
10  
11  
Stereo Down Mix [L+R]/2  
Table 8-32. TDM RX Left Channel Time Slot  
RX_SLOT_L[3:0]  
TIME SLOT  
0 (default)  
0x0  
1
0x1  
...  
0xE  
0xF  
...  
14  
15  
Table 8-33. TDM RX Right Channel Time Slot  
RX_SLOT_R[3:0]  
TIME SLOT  
0
0x0  
1 (default)  
0x1  
...  
0xE  
0xF  
...  
14  
15  
The TDM port can transmit a number sample streams on the SDOUT pin including speaker voltage sense,  
speaker current sense, VBAT voltage, die temperature and channel gain. Figure 8-14 below illustrates the  
alignment of time slots to the beginning of a frame and how a given sample stream is mapped to time slots.  
Either the rising or falling edge of SBCLK can be used to transmit data on the SDOUT pin, which can be  
configured by setting the TX_EDGE register bit. The TX_OFFSET register defines the number SBCLK cycles  
between the start of a frame and the beginning of time slot 0. This would typically be programmed to 0 for Left  
Justified format and 1 for I2S format. The TDM TX can either transmit logic 0 or Hi-Z depending on the setting of  
the TX_FILL register bit setting. An optional bus keeper will weakly hold the state of SDOUT when all devices  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
driving are Hi-Z. Since only one bus keeper is required on SDOUT, this feature can be disabled via the  
TX_KEEPEN register bit. The bus-keeper can additionally be configured to be enabled for only 1LSB cycle or  
always using TX_KEEPLN and to drive the full or half cycle of the LSB using TX_KEEPCY.  
Each sample stream is composed of either one or two 8-bit time slots. , so they will always utilize two TX time  
slots. The VBAT voltage stream is 10-bit precision, and can either be transmitted left justified in a 16-bit word  
(using two time slots) or can be truncated to 8-bits (the top 8 MSBs) and be transmitted in a single time slot. This  
is configured by setting VBAT_SLEN register bit. The Die temperature and gain are both 8-bit precision and are  
transmitted in a single time slot.  
SBCLK  
FSYNC  
Slot 0  
Bit 7  
Slot0  
Bit 0  
Slot 1  
Bit 7  
Slot1  
Bit 0  
Slot2  
Bit 7  
SDOUT  
TX_OFFSET  
Time Slot 0  
Time Slot 1  
Ex: V_SENSE[15:0]  
Figure 8-14. TDM Port TX Diagram  
Table 8-34. TDM TX Transmit Polarity  
TX_EDGE  
SDOUT TRANSMIT EDGE  
Rising edge of SBCLK  
0
Falling edge of SBCLK (default)  
1
Table 8-35. TDM TX Start of Frame to Time Slot 0  
Offset  
TX_OFFSET[2:0]  
SBCLK CYCLES  
0
0x0  
1 (default)  
0x1  
0x2  
...  
0x6  
0x7  
2
...  
6
7
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-36. TDM TX Unused Bit Field Fill  
TX_FILL  
SDOUT UNUSED BIT FIELDS  
Transmit 0  
0
Transmit Hi-Z (default)  
1
Table 8-37. TDM TX SDOUT Bus Keeper Enable  
TX_KEEPEN  
SDOUT BUS KEEPER  
Disable bus keeper  
0
Enable bus keeper (default)  
1
Table 8-38. TDM TX SDOUT Bus Keeper Length  
TX_KEEPLN  
SDOUT BUS KEEPER  
ENABLED FOR  
1 LSB cycle (default)  
Always  
0
1
Table 8-39. TDM TX SDOUT Bus Keeper LSB Cycle  
TX_KEEPCY  
SDOUT BUS KEEPER DRIVEN  
full-cycle (default)  
0
half-cycle  
1
The time slot register for each sample stream defines where the MSB transmission begins. For instance, if  
VSNS_SLOT is set to 2, the upper 8 MSBs will be transmitted in time slot 2 and the lower 8 LSBs will be  
transmitted in time slot 3. Each sample stream can be individually enabled or disabled. This is useful to manage  
limited TDM bandwidth since it may not be necessary to transmit all streams for all devices on the bus.  
It is important to ensure that time slot assignments for actively transmitted sample streams do not conflict. For  
instance, if VSNS_SLOT is set to 2 and ISNS_SLOT is set to 3, the lower 8 LSBs of voltage sense will conflict  
with the upper 8 MSBs of current sense. This will produce unpredictable transmission results in the conflicting bit  
slots (for example the priority is not defined).  
The current and voltage values are transmitted at the full 16-bit measured values by default. The IVMON_LEN  
register can be used to transmit only the 8 MSB bits in one slot or 12 MSB bits values across multiple slots. The  
special 12-bit mode is used when only 24-bit I2S/TDM data can be processed by the host processor. The device  
should be configured with the voltage-sense slot and current-sense slot off by 1 slot and will consume 3  
consecutive 8-bit slots. In this mode the device will transmit the first 12 MSB bits followed by the second 12 MSB  
bits specified by the preceding slot.  
If time slot selections place transmission beyond the frame boundary, the transmitter will truncate transmission at  
the frame boundary.  
It is recommended to keep the following slot ordering:  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
ISNS_SLOT<VSNS_SLOT<VBAT_SLOT<TEMP_SLOT<GAIN_SLOT<BIL_ILIM_SLOT.  
Table 8-40. TDM Voltage/Current Length  
IVMON_LEN[1:0]  
LENGTH BITS  
16 bits (default)  
00  
12 bits  
8 bits  
01  
10  
11  
Reserved  
Table 8-41. TDM Voltage Sense Time Slot  
VSNS_SLOT[5:0]  
SLOT  
0
0x00  
1
0x01  
0x02  
...  
2 (default)  
...  
62  
63  
0x3E  
0x3F  
Table 8-42. TDM Voltage Sense Transmit Enable  
VSNS_TX  
STATE  
Disabled (default)  
0
Enabled  
1
Table 8-43. TDM Current Sense Time Slot  
ISNS_SLOT[5:0]  
SLOT  
0 (default)  
0x00  
1
0x01  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-43. TDM Current Sense Time Slot  
(continued)  
ISNS_SLOT[5:0]  
SLOT  
2
0x02  
...  
62  
63  
...  
0x3E  
0x3F  
Table 8-44. TDM Current Sense Transmit Enable  
ISNS_TX  
STATE  
Disabled (default)  
0
Enabled  
1
Table 8-45. TDM VBAT Time Slot  
VBAT_SLOT[5:0]  
SLOT  
0
0x00  
0x01  
...  
1
...  
4 (default)  
0x04  
...  
...  
62  
63  
0x3E  
0x3F  
Table 8-46. TDM VBAT Time Slot Length  
VBAT_SLEN  
SLOT LENGTH  
Truncate to 8-bits (default)  
0
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-46. TDM VBAT Time Slot Length (continued)  
VBAT_SLEN  
SLOT LENGTH  
Left justify to 16-bits  
1
Table 8-47. TDM VBAT Transmit Enable  
VBAT_TX  
STATE  
Disabled (default)  
0
Enabled  
1
Table 8-48. TDM Temp Sensor Time Slot  
TEMP_SLOT[5:0]  
SLOT  
0
0x00  
1
0x01  
...  
...  
5 (default)  
0x05  
...  
...  
62  
63  
0x3E  
0x3F  
Table 8-49. TDM Temp Sensor Transmit Enable  
TEMP_TX  
STATE  
Disabled (default)  
0
Enabled  
1
The following sample streams are part of the system. These data streams can be routed over the audio TDM  
bus .  
Table 8-50. TDM Limiter Gain Reduction Time Slot  
GAIN_SLOT[5:0]  
SLOT  
0
0x00  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-50. TDM Limiter Gain Reduction Time Slot  
(continued)  
GAIN_SLOT[5:0]  
SLOT  
1
0x01  
...  
...  
0x06  
...  
6 (default)  
...  
62  
63  
0x3E  
0x3F  
Table 8-51. TDM Limiter Gain Reduction Transmit  
Enable  
GAIN_TX  
STATE  
Disabled (default)  
0
Enabled  
1
Table 8-52. TDM Boost Sync Time Slot  
BST_SLOT[5:0]  
SLOT  
0
0x00  
1
0x01  
...  
...  
7 (default)  
0x07  
...  
...  
62  
63  
0x3E  
0x3F  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-53. TDM Boost Sync Enable  
BST_TX  
STATE  
Disabled (default)  
0
1
Enabled  
Note that the boost sync function is only operational with input sample rates higher than 16 kHz.  
8.4.3 Playback Signal Path  
8.4.3.1 Digital Signal Processor  
An on-chip, low-latency DSP supports Texas Instruments' Smart Amp speaker protection algorithms to maximize  
loudness while maintaining safe speaker conditions.  
8.4.3.2 High Pass Filter  
Excessive DC and low frequency content in audio playback signal can damage loudspeakers. The TAS2563  
employs a high-pass filter (HPF) to prevent this from occurring for the PCM playback path. The HPF can be  
disabled using register HPF_EN. The HPF Bi-Quad filter coefficients can be changed from the default 2 Hz using  
the HPFC_N0, HPFC_N1, HPFC_D1 registers using the equation [N, D] = butter(1, fc/(fs/2), 'high');  
round(N(0)*2^31);. These coefficients should be calculated and set using Section 8.3.1.  
Table 8-54. HPF Enable  
HPF_EN  
STATE  
Enabled (default)  
0
Disabled  
1
8.4.3.3 Digital Volume Control and Amplifier Output Level  
The gain from audio input to speaker terminals is controlled by setting the amplifier’s output level and digital  
volume control (DVC).  
Amplifier output level settings are presented in dBV (dB relative to 1 Vrms) with a full scale digital audio input (0  
dBFS) and the digital volume control set to 0 dB. It should be noted that these levels may not be achievable  
because of analog clipping in the amplifier, so they should be used to convey gain only. Table 8-55 below shows  
gain settings that can be programmed via the AMP_LEVEL register.  
Table 8-55. Amplifier Output Level Settings  
FULL SCALE OUTPUT  
AMP_LEVEL[4:0]  
dBV  
VPEAK (V)  
0x00  
0x01  
0x02  
...  
8
3.55  
8.5  
9
3.76  
3.99  
...  
...  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-55. Amplifier Output Level Settings  
(continued)  
FULL SCALE OUTPUT  
AMP_LEVEL[4:0]  
dBV  
VPEAK (V)  
0x10  
16  
8.92  
...  
0x13  
...  
17.5  
...  
10.60  
0x14  
18  
11.23  
0x15-0x1F  
Reserved  
Reserved  
Equation 1 calculates the amplifiers output voltage.  
= Input + A + A dBV  
V
AMP  
dvc  
AMP  
(1)  
where  
VAMP is the amplifier output voltage in dBV  
Input is the digital input amplitude in dB with respect to 0 dBFS  
Advc is the digital volume control setting, 0 dB to -100 dB in 0.5 dB steps  
AAMP is the amplifier output level setting in dBV  
Settings greater than 0xC8 are interpreted as mute. When a change in digital volume control occurs, the device  
ramps the volume to the new setting based on the DVC_RAMP register bits. If DVC_RAMP is set to 0x0000  
0000, volume ramping is disabled. This can be used to speed up startup, shutdown and digital volume changes  
when volume ramping is handled by the system master.  
The digital voltage control registers DVC_PCM represent the volume in a 2.X format. To calculate the value to  
write to these 4 registers apply the following formula to the desired dB DVC_PCM = round(10^(dB/20)*2^30).  
A volume ramp rate can be set using DVC_RAMP and represents a rate in 1.X format. To calculate the value to  
write to these 4 registers apply the following formula DVC_RAMP = round((1-exp(-1/(0.2*fs*time in  
seconds)))*2^31).  
Table 8-56. PCM Digital Volume Control  
DVC_PCM[31:0]  
VOLUME (dB)  
-110  
0x0000 0D43 (MIN)  
...  
0 (default)  
...  
...  
0x4000 0000  
...  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-56. PCM Digital Volume Control (continued)  
DVC_PCM[31:0]  
VOLUME (dB)  
2
0x5092 BEE4 (MAX)  
Table 8-57. Digital Volume Ramp Rate  
DVC_RAMP[31:0]  
RAMP RATE @ 48kHz (s)  
0
0x0000 0D43  
...  
1 s  
0x7FFC 963B  
where  
VPK(max,preclip) is the maximum peak unclipped output voltage in V  
VBAT is the power supply voltage  
RL is the speaker load in Ω  
Rinterconnect is the additional resistance in the PCB (such as cabling and filters) in Ω  
RFET(on) is the power stage total on resistance (HS FET+LS FET+Sense Resistor+bonding+packaging) in Ω  
8.4.3.4 Auto-mute During Idle Channel Mode  
Device will stop playing audio if the input audio level drops below the programmable threshold for a  
programmable timer window. If this behavior is not preferred, threshold level can be kept at very low levels.  
8.4.3.5 Auto-start/stop on Audio Clocks  
The TAS2563 can enter low power software shutdown when the TDM clocks are stopped instead of going into  
clock error. The device will resume operation when the clocks resume.  
8.4.3.6 Supply Tracking Limiters with Brown Out Prevention  
The TAS2563 monitors battery voltage (VBAT) and the class-D voltage (PVDD) along with the audio signal to  
automatically decrease gain when the audio signal peaks exceed a programmable threshold. This helps prevent  
clipping and extends playback time through end of charge battery conditions. The limiters threshold can be  
configured to track the monitored voltage below a programmable inflection point with a programmable slope. A  
minimum threshold sets the limit of threshold reduction from the voltage tracking. Configurable attack rate, hold  
time and release rate are provided to shape the dynamic response of each limiter. The total attenuation is the  
sum of both the VBAT and PVDD limiter. If the ICLA is enabled the actual attenuation is based on the ICLA  
configuration using the calculated attenuation value of all devices on the selected ICLA bus.  
A Brown Out Prevention (BOP) feature provides a priority input to provide a very fast response to transient dips  
in the battery supply (VBAT) which at end of charge conditions that can cause system level brown out. When the  
selected supply dips below the brown-out threshold the BOP will begin reducing gain with an first attack latency  
of less than 10 µs and a configurable attack rate. When the VBAT supply rises above the brownout threshold,  
the BOP will begin to release after the programmed hold time. During a BOP event the limiter updates will be  
paused. This is to prevent a limiter from releasing during a BOP event. The VBAT and PVDD limiters are  
enabled by setting the respective LIMB_EN and LIMP_EN bits high.  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-58. VBAT Tracking Limiter Enable  
LIMB_EN  
VALUE  
Disabled (default)  
0
Enabled  
1
Table 8-59. PVDD Tracking Limiter Enable  
LIMP_EN  
VALUE  
Disabled (default)  
0
Enabled  
1
The limiters have configurable attack rates, hold times and release rates, which are available via the  
LIMB_ATK_RT[2:0], LIMB_HLD_TM[2:0], LIMB_RLS_RT[2:0] register bits respectively for VBAT and  
LIMP_ATK_RT[2:0], LIMP_HLD_TM[2:0], LIMP_RLS_RT[2:0] register bits respectively for PVDD . The limiters  
attack and release step sizes can be set by configuring the LIMB_ATK_ST[1:0] and LIMB_RLS_ST[1:0] register  
bits respectively for VBAT and LIMP_ATK_ST[1:0] and LIMP_RLS_ST[1:0] register bits respectively for PVDD.  
For sampling rates less that 44.1kHz and greater than 8 kHz the minimum attack rate is 20µs and for sampling  
rates of 8kHz or less the minimum attack rate is 40µs.  
A maximum level of attenuation applied by the limiters and brown out prevention feature is configurable via the  
LIM_MAX_ATN register. This attenuation limit is shared between the features. For instance, if the maximum  
attenuation is set to 6 dB and the limiters have reduced gain by 4 dB, the brown out prevention feature will only  
be able to reduce the gain further by another 2 dB. If the limiter or brown out prevention feature is attacking and  
it reaches the maximum attenuation, gain will not be reduced any further.  
The limiter max attenuation LIM_MAX_ATN represent the limit in a 1.X format. To calculate the value to write to  
the 4 registers by apply the following formula to the desired dB using equation LIMB_MAX_ATN = round(10^(-  
dB/20)*2^31).  
Table 8-60. Limiter Max Attenuation  
LIM_MAX_ATN[31:0]  
ATTENUATION (dB)  
-1  
0x7214 82C0  
...  
-9 (default)  
...  
...  
0x2D6A 866F  
...  
-16.5  
0x1326 DD71  
The limiter begins reducing gain when the output signal level is greater than the limiter threshold. The limiter can  
be configured to track selected supply below a programmable inflection point with a minimum threshold value.  
Figure 8-15 below shows the limiter configured to limit to a constant level regardless of the selected supply level.  
To achieve this behavior, set the limiter maximum threshold to the desired level using LIM_TH_MAX. Set the  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
limiter inflection point using LIM_INF_PT below the minimum allowable supply setting. The limiter minimum  
threshold register LIM_TH_MIN does not impact limiter behavior in this use case.  
LIM_TH_MAX  
Brown  
Out  
BOP_TH  
VBAT (V)  
Figure 8-15. Limiter with Fixed Threshold  
The VBAT limiter threshold max LIMB_TH_MAX and min LIMB_TH_MIN registers represent the limit in a 5.X  
format. To calculate the value to write to the 4 registers by apply the following formula to the desired threshold  
voltage using the equation LIMB_TH_MAX or LIMB_TH_MIN = round(Volts*2^27).  
Table 8-61. VBAT Limiter Maximum Threshold  
LIMB_TH_MAX[31:0]  
THRESHOLD (V)  
2.5  
0x1400 0000  
...  
9 (default)  
...  
...  
0x4800 0000  
...  
15.5  
0x7C00 0000  
Table 8-62. VBAT Limiter Minimum Threshold  
LIMB_TH_MIN[31:0]  
THRESHOLD (V)  
2.5  
0x1400 0000  
...  
4 (default)  
...  
...  
0x2000 0000  
...  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-62. VBAT Limiter Minimum Threshold  
(continued)  
LIMB_TH_MIN[31:0]  
THRESHOLD (V)  
15.5  
0x7C00 0000  
The VBAT limiter inflection point LIMB_INF_PT represent the limit in a 5.X format. To calculate the value to write  
to the 4 registers by apply the following formula to the desired infection voltage using the equation LIMB_INF_PT  
= round(Volts*2^27).  
Table 8-63. VBAT Limiter Inflection Point  
LIMB_INF_PT[31:0]  
THRESHOLD (V)  
2
0x2000 0000  
...  
...  
3.3 (default)  
0x34CC CCCD  
...  
...  
6
0x3000 0000  
Figure 8-16 shows how to configure the limiter to track selected supply below a threshold without a minimum  
threshold. Set the LIM_TH_MAX register to the desired threshold and LIM_INF_PT register to the desired  
inflection point where the limiter will begin reducing the threshold with the selected supply. The default value of 1  
V/V will reduce the threshold 1 V for every 1 V of drop in the supply voltage. More aggressive tracking slopes  
can be programmed if desired. Program the LIM_TH_MIN below the minimum the selected supply to prevent the  
limiter from having a minimum threshold reduction when tracking the selected supply.  
The VBAT limiter tracking slope LIMB_SLOPE[31:0] represent the limit in a 5.X format. To calculate the value to  
write to the 4 registers by apply the following formula to the desired infection voltage using equation  
LIMB_SLOPE = round(slope(V/V)*2^27)  
Inflection  
Point  
LIM_TH_MAX  
slope  
Brown  
Out  
BOP_TH  
LIM_INF_PT  
VBAT (V)  
Figure 8-16. Limiter with Inflection Point  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
To achieve a limiter that tracks the selected supply below a threshold, configure the limiter as explained in the  
previous example, except program the LIM_TH_MIN register to the desired minimum threshold. This is shown in  
Figure 8-17 below.  
Inflection  
Point  
LIM_TH_MAX  
slope  
LIM_TH_MIN  
Brown  
Out  
BOP_TH  
LIM_INF_PT  
VBAT (V)  
Figure 8-17. Limiter with Inflection Point and Minimum Threshold  
The TAS2563 also employs a Brown Out Prevention (BOP) feature that serves as a low latency priority input to  
the limiter engine that begins attacking the VBAT supply dipping below the programmed BOP threshold. This  
feature can be enabled by setting the BOP_EN register bit high. It should be noted that the BOP feature is  
independent of the limiter and will function if enabled, even if the limiter is disabled. The BOP threshold is  
configured by setting the threshold with register bits BOP_TH.  
Table 8-64. Brown Out Prevention Enable  
BOP_EN  
VALUE  
Disabled  
0
Enabled (default)  
1
The Brownout prevention threshold BOP_TH represent a threshold in a 5.X format. To calculate the value to  
write to the 4 registers by apply the following formula to the desired brownout threshold using equation BOP_TH  
= round(Volts*2^27).  
Table 8-65. Brown Out Prevention Threshold  
BOP_TH[31:0]  
VBAT THRESHOLD (V)  
Reserved  
0x0000 000 - 0x1FFF  
FFFF  
2.5  
...  
0x2000 0000  
...  
2.9 (default)  
0x2E66 6666  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-65. Brown Out Prevention Threshold  
(continued)  
BOP_TH[31:0]  
VBAT THRESHOLD (V)  
...  
...  
4
0x2000 0000  
Reserved  
0x2000 0001 - 0xFFFF  
FFFF  
The BOP feature has a separate attack rate BOP_ATK_RT, attack step size BOP_ATK_ST and hold time  
BOP_HLD_TM from the battery tracking limiter. The BOP feature uses the LIMB_RLS_RT register setting to  
release after a brown out event. The rates are based on the number of audio samples and actual time values  
can be calculated by multiplying by 1/fs. For example the attack rate of 4 samples at 48 ksps would be  
approximately 83 µs.  
Table 8-66. Brown Out Prevention Attack Rate  
BOP_ATK_RT[2:0]  
ATTACK RATE  
(samples/step)  
ATTACK RATE @ 48  
ksps (~µs)  
1
2
20  
42  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
4
83  
8
167  
333  
666  
1300  
2700  
16  
32  
64  
128  
Table 8-67. Brown Out Prevention Attack Step Size  
BOP_ATK_ST[1:0]  
STEP SIZE (dB)  
0.5  
00  
1 (default)  
01  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-67. Brown Out Prevention Attack Step Size  
(continued)  
BOP_ATK_ST[1:0]  
STEP SIZE (dB)  
1.5  
10  
2
11  
Table 8-68. Brown Out Prevention Hold Time  
BOP_HLD_TM[2:0]  
HOLD TIME (ms)  
0
0x0  
10  
25  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
50  
100  
250  
500 (default)  
1000  
The TAS2563 can also shutdown the device when a brown out event occurs if the BOP_MUTE register bit is set  
high. For the device to continue playing audio again, the device must transition through a SW/HW shutdown  
state. Setting the BOP_INF_HLD high will cause the limiter to stay in the hold state (i.e. never release) after a  
cleared brown out event until either the device transitions through a mute or SW/HW shutdown state or the  
register bit BOP_HLD_CLR is written to a high value (which will cause the device to exit the hold state and begin  
releasing). This bit is self clearing and will always readback low. Figure 8-18 below illustrates the entering and  
exiting from a brown out event.  
VBAT  
BOP Thresh  
BOP Active  
BOP  
Attacking  
BOP  
Holding  
Limiter Releasing  
(BOP Inactive)  
BOP Inactive  
BOP Inactive  
BOP Mode  
Figure 8-18. Brown Out Prevention Event  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-69. Shutdown on Brown Out Event  
BOP_MUTE  
VALUE  
Don't Shutdown (default)  
0
Mute then shutdown  
1
Table 8-70. Infinite Hold on Brown Out Event  
BOP_INF_HLD  
VALUE  
Use BOP_HLD_TM after Brown  
0
Out event (default)  
Do not release until  
BOP_HLD_CLR is asserted high  
1
Table 8-71. BOP Infinite Hold Clear  
BOP_HLD_CLR  
VALUE  
Don't clear (default)  
0
Clear event (self clearing)  
1
A hard brownout level can be set to shutdown the TAS2563 if the BOP cannot mitigate the drop in battery  
voltage VBAT. This will shutdown the device and should not be used if the BOP_MUTE is enable. The brownout  
shutdown will only function if brownout engine is enabled using BOP_EN.  
Table 8-72. Brown Out Shutdown Enable  
BOSD_EN  
VALUE  
Disabled (default)  
0
Enabled  
1
The Brownout prevention shutdown threshold BOSD_TH represent a threshold in a 5.X format. To calculate the  
value to write to the 4 registers by apply the following formula to the desired brownout threshold using equation  
BOSD_TH = round(Volts*2^27).  
Table 8-73. Brown Out Shutdown Threshold  
BOSD_TH[31:0]  
VBAT THRESHOLD (V)  
2.5  
0x2000 0000  
...  
...  
2.7 (default)  
0x2B33 3333  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-73. Brown Out Shutdown Threshold  
(continued)  
BOSD_TH[31:0]  
VBAT THRESHOLD (V)  
...  
...  
3.99  
0x3FFF FFFF  
8.4.3.7 Class-D Settings  
The TAS2563 Class-D amplifier supports spread spectrum PWM modulation, which can be enabled by setting  
the AMP_SS register bit high. This can help reduce EMI in some systems.  
Table 8-74. Low EMI Spread Spectrum Mode  
AMP_SS  
SPREAD SPECTRUM  
Disabled  
0
Enabled (default)  
1
By default the Class-D amplifier's switching frequency is based on the device's trimmed internal oscillator. To  
synchronize switching to the audio sample rate, set the CLASSD_SYNC register bit high. When the Class-D is  
synchronized to the audio sample rate, the RATE_RAMP register bit must be set based whether the audio  
sample rate is based on a 44.1 kHz or 48 kHz frequency. For 44.1, 88.2 and 176.4 kHz, set this bit high. for 48,  
96 and 192 kHz, set this bit low. This ensures that the internal ramp generator has the appropriate slope.  
Table 8-75. Class-D Synchronization Mode  
CLASSD_SYNC  
SYNCHRONIZATION MODE  
Not synchronized to audio clocks  
(default)  
0
Synchronized to audio clocks  
1
Table 8-76. Sample Rate for Class-D Synchronized  
Mode  
RAMP_RATE  
PLAYBACK SAMPLE RATE  
multiples of 48 kHz(default)  
0
multiples of 44.1 kHz  
1
8.4.4 SAR ADC  
A 10-bit SAR ADC monitors VBAT voltage VBAT_CNV , PVDD voltage PVDD_CNV and die temperature  
TMP_CNV. VBAT voltage conversions are also used by the limiter and brown out prevention features.  
Actual VBAT voltage is calculated by dividing the VBAT_CNV register by 64. Actual die temperature is calculated  
by subtracting 93 from TMP_CNV register. The battery voltage VBAT can be filtered using VBAT_FLT register  
but will increase the latency. The VBAT_CNV registers should be read VBAT_MSB followed by VBAT_LSB.  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-77. ADC VBAT Voltage Conversion  
VBAT_CNV[9:0]  
VBAT VOLTAGE (V)  
0 V  
0.0156 V  
...  
0x000  
0x001  
...  
4.0 V  
...  
0x100  
...  
5.9844 V  
6.0 V  
0x17F  
0x180  
Table 8-78. ADC Die Temperature Conversion  
TMP_CNV[7:0]  
DIE TEMPERATURE (°C)  
-93 °C  
0x00  
-92 °C  
...  
0x01  
...  
25 °C  
...  
0x76  
...  
161 °C  
162 °C  
0xFE  
0xFF  
8.4.5 IV Sense  
The TAS2563 provides speaker voltage and current sense for real time monitoring of loudspeaker behavior. The  
VSNS_P and VSNS_N pins should be connected after any ferrite bead filter (or directly to the OUT_P and  
OUT_N connections if no EMI filter is used). The V-Sense connections eliminate IR drop error due to packaging,  
PCB interconnect or ferrite bead filter resistance. It should be noted that any interconnect resistance after the V-  
Sense terminals will not be corrected for, so it is advised to connect the sense connections as close to the load  
as possible.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
OUT_P  
fb  
fb  
OUT_N  
VSNS_P  
VSNS_N  
Figure 8-19. V-Sense Connections  
I-Sense and V-Sense can be powered down by asserting the ISNS_PD and VSNS_PD register bits respectively.  
When powered down, the device will return null samples for the powered down block. The IV-sense is High Pass  
Filtered and the Bi-Quad filter coefficients can be changed from the default 2 Hz using the IVHPFC_N0,  
IVHPFC_N1, IVHPFC_D1 registers using the equations [N, D] = butter(1, fc/(fs/2), 'high'); round(N(0)*2^31);.  
These coefficients can be calculated and set using Section 8.3.1.  
Table 8-79. I-Sense Power Down  
ISNS_PD  
SETTING  
I-Sense is active  
0
I-Sense is powered down  
(default)  
1
Table 8-80. V-Sense Power Down  
VSNS_PD  
SETTING  
V-Sense is active  
0
V-Sense is powered down  
(default)  
1
8.4.6 Load Diagnostics  
The TAS2563 can check the speaker terminal for an open or short. This can be used to determine if a problem  
exists with the speaker or trace to the speaker. The entire operation is performed by the TAS2563 and results  
reported using the IRQZ pin or read over I2C bus on completion. The load diagnostics can be performed using  
external audio clock or the internal oscillator.  
Open Load  
LDG_RES_UT  
LDG_RES_LT  
Short Load  
Figure 8-20. Load Diagnostics  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
The speaker open and short thresholds are configured using the respective LDG_RES_UT and LDG_RES_LT  
registers using equation round(Ω/7*2^22). The load diagnostic mode can be run in two ways. First if the device is  
in Section 8.3.11.2 the load diagnostic mode can be run by setting LDG_MODE high. The diagnostic will be run  
and the device will return to Section 8.3.11.2. The load diagnostics can also be run before transitioning to  
Section 8.3.11.4. This is done by setting the MODE register to Section 8.3.11.5. If the load is within the specified  
range the device will transition to Section 8.3.11.4 otherwise it will transition to Section 8.3.11.2. When the load  
diagnostics is run it will play a 22 kHz at -35 dBFS for 100 ms and measure the resistance of the speaker trace.  
The result is averaged over the time specified by the IVSNS_AVG register. The measured speaker impedance  
can be read from LDS_RES_VAL1 using the equations Impedance = 7*(LD_RES_VAL1)/2^22) Ω.  
Table 8-81. IV-sense Averaging  
IVSNS_AVG[1:0]  
SETTING  
5 ms (default)  
00  
10 ms  
50 ms  
01  
10  
11  
100 ms  
Table 8-82. Load Diagnostic Mode  
LDG_MODE  
SETTING  
Load Diagnostic Not Running  
(default)  
0
Run Load Diagnostic  
1
Table 8-83. Load Diagnostic Clock Source  
LDG_CLK  
SETTING  
External TDM  
0
Internal Oscillator (default)  
1
8.4.7 Clocks and PLL  
In TDM/I2S Mode, the device operates from SBCLK. Table 8-84 and Table 8-85 below shows the valid SBCLK  
frequencies for each sample rate and SBCLK to FSYNC ratio (for 44.1 kHz and 48 kHz family frequencies  
respectively.  
If the sample rate is properly configured via the SAMP_RATE[1:0] bits, no additional configuration is required as  
long as the SBCLK to FSYNC ratio is valid. The device will detect improper SBCLK frequencies and SBCLK to  
FSYNC ratios and volume ramp down the playback path to minimize audible artifacts. After the clock error is  
detected the device will enter a low power halt mode after CLK_HALT_TIMER if CLK_HALT_EN is enabled.  
Additionally the device can automatically power up and down on valid clock signals if CLK_ERR_PWR_EN is  
set. The device sampling rate should not be changed while this feature is enabled. Additionally, the  
CLK_HALT_EN should be set when CLK_ERR_PWR_EN is set for this feature to work properly.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-84. Supported SBCLK Frequencies (48 kHz based sample rates)  
SBCLK to FSYNC Ratio  
Sample Rate  
(kHz)  
64  
96  
128  
192  
256  
384  
512  
16 kHz  
32 kHz  
48 kHz  
96 kHz  
1.024 MHz  
2.048 MHz  
3.072 MHz  
6.144 MHz  
1.536 MHz  
3.072 MHz  
4.608 MHz  
9.216 MHz  
2.048 MHz  
3.072 MHz  
4.096 MHz  
8.192 MHz  
12.288 MHz  
24.576 MHz  
6.144 MHz  
12.288 MHz  
18.432 MHz  
-
8.192 MHz  
16.384 MHz  
24.576 MHz  
-
4.0960 MHz  
6.144 MHz  
12.288 MHz  
6.144 MHz  
9.216 MHz  
18.432 MHz  
Table 8-85. Supported SBCLK Frequencies (44.1 kHz based sample rates)  
SBCLK to FSYNC Ratio  
Sample Rate  
(kHz)  
64  
96  
128  
192  
256  
384  
512  
14.7 kHz  
29.4 kHz  
44.1 kHz  
88.2 kHz  
940.8 kHz  
1.8816 MHz  
2.8224 MHz  
5.6448 MHz  
1.4112 MHz  
2.8224 MHz  
4.2336 MHz  
8.4672 MHz  
1.8816 MHz  
3.7632 MHz  
5.6448 MHz  
11.2896 MHz  
2.8224 MHz  
5.6448 MHz  
8.4672 MHz  
16.9344 MHz  
3.7632 MHz  
7.5264 MHz  
11.2896 MHz  
22.5792 MHz  
5.6448 MHz  
11.2896 MHz  
16.9344 MHz  
-
7.5264 MHz  
15.0528 MHz  
22.5792 MHz  
-
Table 8-86. Clock Power Up/Down on Valid ASI  
Clocks  
CLK_ERR_PWR_EN  
Setting  
Disabled (default)  
0
Enabled  
1
Table 8-87. Clock Halt(Sleep) After Errors Longer  
Than Halt Timer  
CLK_HALT_EN  
Setting  
Enabled (default)  
0
Disabled  
1
Table 8-88. Clock Halt Timer  
CLK_HALT_TIMER[2:0]  
Setting  
1 ms  
000  
3.27 ms  
26.21 ms  
001  
010  
011  
100  
52.42 ms (default)  
104.85 ms  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-88. Clock Halt Timer (continued)  
CLK_HALT_TIMER[2:0]  
Setting  
209.71 ms  
419.43 ms  
838.86 ms  
101  
110  
111  
8.4.8 Thermal Foldback  
The TAS2563 monitors the die temperature and can automatically limit the audio signal when the die  
temperature reaches a set threshold. It is recommended to use Section 8.3.1 to configure the thermal foldback  
as the software will perform the necessary math for each register.  
Thermal foldback can be disabled using TF_EN. If the die temperature reaches TF_TEMP_TH this feature will  
begin to attenuate the audio signal to prevent the device from shutting down due to over-temperature. It will  
attenuate the audio signal by TF_LIMS db per degree of temperature over TF_TEMP_TH. The thermal foldback  
with attack at a fixed rate of 0.25 dB per sample. A maximum attenuation of TF_MAX_ATTN can be specified.  
However if the device continue to heat up eventually the device over-temperature will be triggered. The  
attenuation will be held for TF_HOLD_CNT samples before the attenuation will begin releasing.  
Table 8-89. Thermal Foldback Enable  
TF_EN  
SETTING  
Disabled  
0
Enabled (default)  
1
Table 8-90. Thermal Foldback Registers  
REGISTER  
DESCRIPTION  
CALCULATION  
Thermal foldback  
limiter slope (in  
db/°C)  
round(10^(-slope /  
20)*2^31)  
TF_LIMS  
Thermal foldback hold  
count (samples)  
round(seconds *  
1000)  
TF_HOLD_CNT  
TF_REL_RATE  
TF_TEMP_TH  
TF_MAX_ATTN  
Thermal foldback  
limiter release rate  
(db/samples)  
round(10^(dB per  
sample / 20)*2^30)  
Thermal foldback  
limiter temperature  
threshold (°C)  
round(°C * 2^23)  
Thermal foldback max round(10^(max attn  
gain reduction (dB)  
dB/20)*2^31)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
8.5 Register Maps  
8.5.1 Register Summary Table Page=0x00  
Addr  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
Register  
Description  
Section  
PAGE  
Device Page  
Section 8.5.2  
Section 8.5.3  
Section 8.5.4  
Section 8.5.5  
Section 8.5.6  
Section 8.5.7  
Section 8.5.8  
Section 8.5.9  
Section 8.5.10  
Section 8.5.11  
Section 8.5.12  
Section 8.5.13  
Section 8.5.14  
Section 8.5.15  
Section 8.5.16  
Section 8.5.17  
Section 8.5.18  
Section 8.5.19  
Section 8.5.20  
Section 8.5.21  
Section 8.5.22  
SW_RESET  
PWR_CTL  
Software Reset  
Power Control  
PB_CFG1  
Playback Configuration 1  
Misc Configuration 1  
Misc Configuration 2  
TDM Configuration 0  
TDM Configuration 1  
TDM Configuration 2  
TDM Configuration 3  
TDM Configuration 4  
TDM Configuration 5  
TDM Configuration 6  
TDM Configuration 7  
TDM Configuration 8  
TDM Configuration 9  
TDM Configuration 10  
TDM Clock detection monitor  
Limiter Configuration 0  
Limiter Configuration 1  
Brown Out Prevention 0  
MISC_CFG1  
MISC_CFG2  
TDM_CFG0  
TDM_CFG1  
TDM_CFG2  
TDM_CFG3  
TDM_CFG4  
TDM_CFG5  
TDM_CFG6  
TDM_CFG7  
TDM_CFG8  
TDM_CFG9  
TDM_CFG10  
DSP Mode & TDM_DET  
LIM_CFG0  
LIM_CFG1  
DSP FREQUENCY &  
BOP_CFG0  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1F  
0x20  
0x21  
0x22  
0x24  
0x25  
0x26  
0x27  
0x2A  
0x2B  
0x2C  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
BOP_CFG0  
BIL_and_ICLA_CFG0  
BIL_ICLA_CFG1  
GAIN_ICLA_CFG0  
ICLA_CFG1  
INT_MASK0  
INT_MASK1  
INT_MASK2  
INT_MASK3  
INT_LIVE0  
Brown Out Prevention 2  
Boost Current limiter and ICLA  
Inter Chip Limiter Alignment 0  
Inter Chip Limiter Alignment 0  
Inter Chip Limiter Alignment 1  
Interrupt Mask 0  
Section 8.5.23  
Section 8.5.24  
Section 8.5.25  
Section 8.5.26  
Section 8.5.27  
Section 8.5.28  
Section 8.5.29  
Section 8.5.30  
Section 8.5.31  
Section 8.5.32  
Section 8.5.33  
Section 8.5.34  
Section 8.5.35  
Section 8.5.36  
Section 8.5.37  
Section 8.5.38  
Section 8.5.39  
Section 8.5.40  
Section 8.5.41  
Section 8.5.42  
Section 8.5.43  
Section 8.5.44  
Section 8.5.45  
Section 8.5.46  
Section 8.5.47  
Section 8.5.48  
Interrupt Mask 1  
Interrupt Mask 2  
Interrupt Mask 3  
Live Interrupt Readback 0  
Live Interrupt Readback 1  
Live Interrupt Readback 2  
Live Interrupt Readback 3  
Latched Interrupt Readback 0  
Latched Interrupt Readback 1  
Latched Interrupt Readback 2  
Latched Interrupt Readback 3  
SAR ADC Conversion 0  
SAR ADC Conversion 1  
SAR ADC Conversion 2  
INT_LIVE1  
INT_LIVE3  
INT_LIVE4  
INT_LTCH0  
INT_LTCH1  
INT_LTCH3  
INT_LTCH4  
VBAT_MSB  
VBAT_LSB  
TEMP  
INT & CLK CFG  
DIN_PD  
Digital Input Pin Pull Down  
Misc Configuration  
Boost Configure 1  
MISC  
BOOST_CFG1  
BOOST_CFG2  
BOOST_CFG3  
Boost Configure 2  
Boost Configure 3  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
0x3B  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x49  
0x4A  
0x7D  
0x7E  
0x7F  
MISC  
Section 8.5.49  
Section 8.5.50  
Section 8.5.51  
Section 8.5.52  
Section 8.5.53  
Section 8.5.54  
Section 8.5.55  
Section 8.5.56  
Section 8.5.57  
Section 8.5.58  
Section 8.5.59  
Section 8.5.60  
Section 8.5.61  
Section 8.5.62  
TG_CFG0  
Tone Generator  
BST_ILIM_CFG0  
PDM_CONFIG0  
DIN_PD & PDM_CONFIG3  
ASI2_CONFIG0  
ASI2_CONFIG1  
ASI2_CONFIG2  
ASI2_CONFIG3  
PVDD_MSB_DSP  
PVDD_LSB_DSP  
REV_ID  
Boost ILIM configuration-0  
SAR ADC Conversion 0  
SAR ADC Conversion 1  
Revision and PG ID  
I2C Checksum  
I2C_CKSUM  
BOOK  
Device Book  
8.5.2 PAGE (page=0x00 address=0x00) [reset=0h]  
The device's memory map is divided into pages and books. This register sets the page.  
Figure 8-21. PAGE Register Address: 0x00  
7
6
5
4
3
2
1
0
PAGE[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-91. Device Page Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
RW  
0h  
Sets the device page.  
00h = Page 0  
01h = Page 1  
...  
FFh = Page 255  
8.5.3 SW_RESET (page=0x00 address=0x01) [reset=0h]  
Asserting Software Reset will place all register values in their default POR (Power on Reset) state.  
Figure 8-22. SW_RESET Register Address: 0x01  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
SW_RESET  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-92. Software Reset Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
Description  
Reserved  
SW_RESET  
R
0h  
Reserved  
RW  
0h  
Software reset. Bit is self clearing.  
0b = Don't reset  
1b = Reset  
8.5.4 PWR_CTL (page=0x00 address=0x02) [reset=Eh]  
Sets device's mode of operation and power down of IV sense blocks.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 8-23. PWR_CTL Register Address: 0x02  
7
6
5
4
3
2
1
0
PDM_I2S_MOD LDG_MODE_O  
Reserved  
Reserved  
ISNS_PD  
VSNS_PD  
MODE[1:0]  
RW-2h  
E
NLY  
RW-0h  
RW-0h  
RW-0h  
RW-0h  
RW-1h  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-93. Power Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PDM_I2S_MODE  
RW  
0h  
PDM I2S mode  
0b = PDM_I2S mode disabled  
1b = PDM_I2S mode enabled  
6
LDG_MODE_ONLY  
RW  
0h  
Only Load Diagnostics mode, self clearing bit  
0b = Only Load diagnostics mode disabled  
1b = Only Load diagnostics mode enabled  
5
4
3
Reserved  
Reserved  
ISNS_PD  
RW  
RW  
RW  
0h  
0h  
1h  
Reserved  
Reserved  
Current sense power down.  
0b = Current sense active  
1b = Current sense is powered down  
2
VSNS_PD  
MODE[1:0]  
RW  
RW  
1h  
2h  
Voltage sense power down.  
0b = voltage sense is active  
1b = Voltage sense is powered down  
1-0  
Device operational mode.  
00b = Active  
01b = Mute  
10b = Software Shutdown  
11b = Load Diagnostics followed by device ACTIVE  
8.5.5 PB_CFG1 (page=0x00 address=0x03) [reset=20h]  
Sets playback high pass filter corner (PCM playback only).  
Figure 8-24. PB_CFG1 Register Address: 0x03  
7
6
5
4
3
2
1
0
Reserved  
DIS_DC_BLOC  
KER  
AMP_LEVEL[4:0]  
RW-10h  
Reserved  
R-0h  
RW-0h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-94. Playback Configuration 1 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
R
0h  
Reserved  
6
DIS_DC_BLOCKER  
RW  
0h  
Disable DC Blocker  
0b = DC Blocker Enabled  
1b = DC Blocker Disabled  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-94. Playback Configuration 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-1  
AMP_LEVEL[4:0]  
RW  
10h  
1Dh-1Fh - Reserved  
01h = 8.5 dBV(3.76Vpk)  
02h = 9.0 dBV(3.99Vpk)  
03h = 9.5 dBV(4.22Vpk)  
04h = 10.0 dBV(4.47Vpk)  
05h = 10.5 dBV(4.74Vpk)  
06h = 11.0 dBV (5.02 Vpk)  
07h = 11.5 dBV (5.32 Vpk)  
08h = 12.0 dBV (5.63 Vpk)  
09h = 12.5 dBV (5.96 Vpk)  
0Ah = 13.0 dBV (6.32 Vpk)  
0Bh = 13.5 dBV (6.69 Vpk)  
0Ch = 14.0 dBV (7.09 Vpk)  
0Dh = 14.5 dBV (7.51 Vpk)  
0Eh = 15.0 dBV (7.95 Vpk)  
0Fh = 15.5 dBV (8.42 Vpk)  
10h = 16.0 dBV (8.92 Vpk)  
11h = 16.5 dBV (9.45 Vpk)  
12h = 17.0 dBV (10.01 Vpk)  
13h = 17.5 dBV (10.61 Vpk)  
14h = 18.0 dBV (11.23 Vpk)  
15h = 18.5dBV(11.90 Vpk)  
16h = 19dBV(12.60Vpk)  
17h = 19.5dBV(13.35Vpk)  
18h = 20.0dBV(14.14Vpk)  
19h = 20.5dBV(14.98Vpk)  
1Ah = 21dBV(15.87Vpk)  
1Bh = 21.5dBV(16.81Vpk)  
1Ch = 22dBV(17.8Vpk)  
1Dh-1Fh - Reserved  
0
Reserved  
RW  
0h  
Reserved  
8.5.6 MISC_CFG1 (page=0x00 address=0x04) [reset=C6h]  
Sets DVC Ramp Rate, OTE/OCE retry, IRQZ pull up, amp spread spectrum and I-Sense current range.  
Figure 8-25. MISC_CFG1 Register Address: 0x04  
7
6
5
4
3
2
1
0
CP_PG_RETR VBAT_POR_RE OCE_RETRY  
OTE_RETRY  
IRQZ_PU  
AMP_SS  
Reserved  
RW-2h  
Y
TRY  
RW-1h  
RW-1h  
RW-0h  
RW-0h  
RW-0h  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-95. Misc Configuration 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CP_PG_RETRY  
RW  
1h  
Retry after vbat por event.  
0b = Do not retry  
1b = Retry after 1.5 s  
6
5
4
VBAT_POR_RETRY  
OCE_RETRY  
RW  
RW  
RW  
1h  
0h  
0h  
Retry after vbat por event.  
0b = Do not retry  
1b = Retry after 1.5 s  
Retry after over current event.  
0b = Do not retry  
1b = Retry after 1.5 s  
OTE_RETRY  
Retry after over temperature event.  
0b = Do not retry  
1b = Retry after 1.5 s  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-95. Misc Configuration 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
IRQZ_PU  
RW  
0h  
IRQZ internal pull up enable.  
0b = Disabled  
1b = Enabled  
2
AMP_SS  
Reserved  
RW  
RW  
1h  
2h  
Low EMI spread spectrum enable.  
0b = Disabled  
1b = Enabled  
1-0  
Reserved  
8.5.7 MISC_CFG2 (page=0x00 address=0x05) [reset=22h]  
Figure 8-26. MISC_CFG2 Register Address: 0x05  
7
6
5
4
3
2
1
0
SDZ_MODE[1:0]  
RW-0h  
SDZ_TIMEOUT[1:0]  
RW-2h  
Reserved  
DIS_VBAT_FLT I2C_GBL_EN DIS_PVDD_FL  
T
RW-0h  
RW-0h  
RW-1h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-96. Misc Configuration 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SDZ_MODE[1:0]  
RW  
0h  
SDZ Mode configuration.  
00b = initiates normal shutdown; force shutdown after timeout  
01b = immediate force shutdown  
10b = normal shutdown only  
11b = reserved  
5-4  
SDZ_TIMEOUT[1:0]  
RW  
2h  
SDZ Timeout value  
00b = 2 ms  
01b = 4 ms  
10b = 6 ms  
11b = 23.8 ms  
3
2
Reserved  
RW  
RW  
0h  
0h  
Reserved  
DIS_VBAT_FLT  
VBAT filter into SAR ADC  
0b = VBAT filter with 100kHz cut off  
1b = Bypass VBAT FLT  
1
0
I2C_GBL_EN  
RW  
RW  
1h  
0h  
I2C global address is  
0b = disabled  
1b = enabled  
DIS_PVDD_FLT  
PVDD filter into SAR ADC  
0b = PVDD filter with 100kHz cut off  
1b = Bypass PVDD FLT  
8.5.8 TDM_CFG0 (page=0x00 address=0x06) [reset=9h]  
Sets the TDM frame start, TDM sample rate, TDM auto rate detection and whether rate is based on 44.1 kHz or  
48 kHz frequency.  
Figure 8-27. TDM_CFG0 Register Address: 0x06  
7
6
5
4
3
2
1
0
Reserved  
CLASSD_SYN RAMP_RATE  
C
AUTO_RATE  
SAMP_RATE[2:0]  
FRAME_START  
R-0h  
RW-0h  
RW-0h  
RW-0h  
RW-4h  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-97. TDM Configuration 0 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
CLASSD_SYNC  
R
0h  
Reserved  
6
RW  
0h  
Class-D synchronization mode.  
0b = Not synchronized to audio clocks  
1b = Synchronized to audio clocks  
5
RAMP_RATE  
RW  
0h  
Sample rate based on 44.1kHz or 48kHz when  
CLASSD_SYNC=1.  
0b = 48kHz  
1b = 44.1kHz  
4
AUTO_RATE  
RW  
RW  
0h  
4h  
Auto detection of TDM sample rate.  
0b = Enabled  
1b = Disabled  
3-1  
SAMP_RATE[2:0]  
Sample rate of the TDM bus.  
000b = 7.35/8 kHz  
001b = 14.7/16 kHz  
010b = 22.05/24 kHz  
011b = 29.4/32 kHz  
100b = 44.1/48 kHz  
101b = 88.2/96 kHz  
110b = 176.4/192 kHz  
111b = Reserved  
0
FRAME_START  
RW  
1h  
TDM frame start polarity.  
0b = Low to High on FSYNC  
1b = High to Low on FSYNC  
8.5.9 TDM_CFG1 (page=0x00 address=0x07) [reset=2h]  
Sets TDM RX justification, offset and capture edge.  
Figure 8-28. TDM_CFG1 Register Address: 0x07  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
RX_JUSTIFY  
RW-0h  
RX_OFFSET[4:0]  
RW-1h  
RX_EDGE  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-98. TDM Configuration 1 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
RX_JUSTIFY  
R
0h  
Reserved  
6
RW  
0h  
TDM RX sample justification within the time slot.  
0b = Left  
1b = Right  
5-1  
0
RX_OFFSET[4:0]  
RX_EDGE  
RW  
RW  
1h  
0h  
TDM RX start of frame to time slot 0 offset (SBCLK cycles).  
TDM RX capture clock polarity.  
0b = Rising edge of SBCLK  
1b = Falling edge of SBCLK  
8.5.10 TDM_CFG2 (page=0x00 address=0x08) [reset=4Ah]  
Sets TDM RX time slot select, word length and time slot length.  
Figure 8-29. TDM_CFG2 Register Address: 0x08  
7
6
5
4
3
2
1
0
IVMON_LEN[1:0]  
RW-1h  
RX_SCFG[1:0]  
RW-0h  
RX_WLEN[1:0]  
RW-2h  
RX_SLEN[1:0]  
RW-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-99. TDM Configuration 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
IVMON_LEN[1:0]  
RW  
1h  
Sets the current and voltage data to length of  
00b = 8 bits  
01b = 16 bits  
10b = 24 bits  
11b = 32 bits  
5-4  
3-2  
1-0  
RX_SCFG[1:0]  
RX_WLEN[1:0]  
RX_SLEN[1:0]  
RW  
RW  
RW  
0h  
2h  
2h  
TDM RX time slot select config.  
00b = Mono with time slot equal to I2C address offset  
01b = Mono left channel  
10b = Mono right channel  
11b = Stereo downmix (L+R)/2  
TDM RX word length.  
00b = 16-bits  
01b = 20-bits  
10b = 24-bits  
11b = 32-bits  
TDM RX time slot length.  
00b = 16-bits  
01b = 24-bits  
10b = 32-bits  
11b = Reserved  
8.5.11 TDM_CFG3 (page=0x00 address=0x09) [reset=10h]  
Sets TDM RX left and right time slots.  
Figure 8-30. TDM_CFG3 Register Address: 0x09  
7
6
5
4
3
2
1
0
RX_SLOT_R[3:0]  
RW-1h  
RX_SLOT_L[3:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-100. TDM Configuration 3 Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RX_SLOT_R[3:0]  
RX_SLOT_L[3:0]  
RW  
1h  
TDM RX Right Channel Time Slot.  
TDM RX Left Channel Time Slot.  
RW  
0h  
8.5.12 TDM_CFG4 (page=0x00 address=0x0A) [reset=13h]  
Sets TDM TX bus keeper, fill, offset and transmit edge.  
Figure 8-31. TDM_CFG4 Register Address: 0x0A  
7
6
5
4
3
2
1
0
TX_KEEPCY  
RW-0h  
TX_KEEPLN  
RW-0h  
TX_KEEPEN  
RW-0h  
TX_FILL  
RW-1h  
TX_OFFSET[2:0]  
RW-1h  
TX_EDGE  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-101. TDM Configuration 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TX_KEEPCY  
RW  
0h  
TDM TX SDOUT LSB data will be driven for  
0b = full-cycle  
1b = half-cycle  
6
TX_KEEPLN  
RW  
0h  
TDM TX SDOUT will hold the bus for the following when  
TX_KEEPEN is enabled  
0b = 1 LSB cycle  
1b = always  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-101. TDM Configuration 4 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
TX_KEEPEN  
RW  
0h  
TDM TX SDOUT bus keeper enable.  
0b = Disable bus keeper  
1b = Enable bus keeper  
4
TX_FILL  
RW  
1h  
TDM TX SDOUT unused bitfield fill.  
0b = Transmit 0  
1b = Transmit Hi-Z  
3-1  
0
TX_OFFSET[2:0]  
TX_EDGE  
RW  
RW  
1h  
1h  
TDM TX start of frame to time slot 0 offset.  
TDM TX launch clock polarity.  
0b = Rising edge of SBCLK  
1b = Falling edge of SBCLK  
8.5.13 TDM_CFG5 (page=0x00 address=0x0B) [reset=2h]  
Sets TDM TX V-Sense time slot and enable.  
Figure 8-32. TDM_CFG5 Register Address: 0x0B  
7
6
5
4
3
2
1
0
0
0
Reserved  
R-0h  
VSNS_TX  
RW-0h  
VSNS_SLOT[5:0]  
RW-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-102. TDM Configuration 5 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
VSNS_TX  
R
0h  
Reserved  
6
RW  
0h  
TDM TX voltage sense transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
VSNS_SLOT[5:0]  
RW  
2h  
TDM TX voltage sense time slot.  
8.5.14 TDM_CFG6 (page=0x00 address=0x0C) [reset=0h]  
Sets TDM TX I-Sense time slot and enable.  
Figure 8-33. TDM_CFG6 Register Address: 0x0C  
7
6
5
4
3
2
1
Reserved  
R-0h  
ISNS_TX  
RW-0h  
ISNS_SLOT[5:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-103. TDM Configuration 6 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
ISNS_TX  
R
0h  
Reserved  
6
RW  
0h  
TDM TX current sense transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
ISNS_SLOT[5:0]  
RW  
0h  
TDM TX current sense time slot.  
8.5.15 TDM_CFG7 (page=0x00 address=0x0D) [reset=4h]  
Sets TDM TX VBAT time slot and enable.  
Figure 8-34. TDM_CFG7 Register Address: 0x0D  
7
6
5
4
3
2
1
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 8-34. TDM_CFG7 Register Address: 0x0D (continued)  
VBAT_SLEN  
RW-0h  
VBAT_TX  
VBAT_SLOT[5:0]  
RW-0h  
RW-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-104. TDM Configuration 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VBAT_SLEN  
RW  
0h  
TDM TX VBAT time slot length.  
0b = Truncate to 8-bits  
1b = Left justify to 16-bits  
6
VBAT_TX  
RW  
RW  
0h  
4h  
TDM TX VBAT transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
VBAT_SLOT[5:0]  
TDM TX VBAT time slot.  
8.5.16 TDM_CFG8 (page=0x00 address=0x0E) [reset=5h]  
Sets TDM TX temp time slot and enable.  
Figure 8-35. TDM_CFG8 Register Address: 0x0E  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
TEMP_TX  
RW-0h  
TEMP_SLOT[5:0]  
RW-5h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-105. TDM Configuration 8 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
TEMP_TX  
R
0h  
Reserved  
6
RW  
0h  
TDM TX temp sensor transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
TEMP_SLOT[5:0]  
RW  
5h  
TDM TX temp sensor time slot.  
8.5.17 TDM_CFG9 (page=0x00 address=0x0F) [reset=6h]  
Sets ICLA bus, TDM TX limiter gain reduction time slot and enable.  
Figure 8-36. TDM_CFG9 Register Address: 0x0F  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
GAIN_TX  
RW-0h  
GAIN_SLOT[5:0]  
RW-6h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-106. TDM Configuration 9 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
GAIN_TX  
R
0h  
Reserved  
6
RW  
0h  
TDM TX limiter gain reduction transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
GAIN_SLOT[5:0]  
RW  
6h  
TDM TX limiter gain reduction time slot.  
8.5.18 TDM_CFG10 (page=0x00 address=0x10) [reset=7h]  
Sets boost current limiter slot and enable  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 8-37. TDM_CFG10 Register Address: 0x10  
7
6
5
4
3
2
1
0
BST_TX  
RW-0h  
BST_SYNC_TX  
RW-0h  
BST_SLOT[5:0]  
RW-7h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-107. TDM Configuration 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BST_TX  
RW  
0h  
TDM TX boost current limiter enable.  
0b = Disabled  
1b = Enabled  
6
BST_SYNC_TX  
BST_SLOT[5:0]  
RW  
RW  
0h  
7h  
TDM TX boost clock sync enable.  
0b = Disabled  
1b = Enabled  
5-0  
TDM TX boost sync and current limit time slot.  
8.5.19 DSP Mode & TDM_DET (page=0x00 address=0x11) [reset=7Fh]  
Readback of internal auto-rate detection.  
Figure 8-38. DSP Mode & TDM_DET Register Address: 0x11  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
FS_RATIO[3:0]  
R-Fh  
FS_RATE[2:0]  
R-7h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-108. TDM Clock detection monitor Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
FS_RATIO[3:0]  
R
0h  
Reserved  
6-3  
R
Fh  
Detected SBCLK to FSYNC ratio.  
00h = 16  
01h = 24  
02h = 32  
03h = 48  
04h = 64  
05h = 96  
06h = 128  
07h = 192  
08h = 256  
09h = 384  
0Ah = 512  
0Bh-0Eh = Reserved  
0F = Invalid ratio  
2-0  
FS_RATE[2:0]  
R
7h  
Detected sample rate of TDM bus.  
000b = 7.35/8 KHz  
001b = 14.7/16 KHz  
010b = 22.05/24 KHz  
011b = 29.4/32 KHz  
100b = 44.1/48 KHz  
101b = 88.2/96 kHz  
110b = 176.4/192 kHz  
111b = Error condition  
8.5.20 LIM_CFG0 (page=0x00 address=0x12) [reset=12h]  
Sets Limiter attack step size, attack rate and enable.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 8-39. LIM_CFG0 Register Address: 0x12  
7
6
5
4
3
2
1
0
Reserved  
VBAT_LIM_TH_  
SELECTION  
LIMB_ATK_ST[1:0]  
RW-1h  
LIMB_ATK_RT[2:0]  
LIMB_EN  
R-0h  
RW-0h  
RW-1h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-109. Limiter Configuration 0 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
R
0h  
Reserved  
6
VBAT_LIM_TH_SELECTION  
RW  
0h  
Select source of threshold for VBAT based limiting  
0b = User configured Thresholds  
1b = PVDD based thresholds  
5-4  
3-1  
LIMB_ATK_ST[1:0]  
LIMB_ATK_RT[2:0]  
RW  
RW  
1h  
1h  
VBAT Limiter attack step size.  
00b = 0.25 dB  
01b = 0.5 dB  
10b = 1 dB  
11b = 2 dB  
VBAT Limiter attack rate.  
000b = 1 step in 1 sample  
001b = 1 step in 2 samples  
010b = 1 step in 4 samples  
011b = 1 step in 8 samples  
100b = 1 step in 16 samples  
101b = 1 step in 32 samples  
110b = 1 step in 64 samples  
111b = 1 step in 128 samples  
0
LIMB_EN  
RW  
0h  
Limiter enable.  
0b = Disabled  
1b = Enabled  
8.5.21 LIM_CFG1 (page=0x00 address=0x13) [reset=76h]  
Sets VBAT limiter release step size, release rate and hold time.  
Figure 8-40. LIM_CFG1 Register Address: 0x13  
7
6
5
4
3
2
1
0
LIMB_RLS_ST[1:0]  
RW-1h  
LIMB_RLS_RT[2:0]  
RW-6h  
LIMB_HLD_TM[2:0]  
RW-6h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-110. Limiter Configuration 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LIMB_RLS_ST[1:0]  
RW  
1h  
VBAT Limiter/BOP/ICLA release step size.  
00b = 0.25 dB  
01b = 0.5 dB  
10b = 1 dB  
11b = 2 dB  
5-3  
LIMB_RLS_RT[2:0]  
RW  
6h  
VBAT Limiter/BOP/ICLA release rate.  
000b = 1 step in 10 ms  
001b = 1 step in 20 ms  
010b = 1 step in 40 ms  
011b = 1 step in 80 ms  
100b = 1 step in 160 ms  
101b = 1 step in 320 ms  
110b = 1 step in 640 ms  
111b = 1 step in 1280 ms  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-110. Limiter Configuration 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
LIMB_HLD_TM[2:0]  
RW  
6h  
VBAT Limiter hold time.  
000b = 0 ms  
001b = 10 ms  
010b = 25 ms  
011b = 50 ms  
100b = 100 ms  
101b = 250 ms  
110b = 500 ms  
111b = 1000 ms  
8.5.22 DSP FREQUENCY & BOP_CFG0 (page=0x00 address=0x14) [reset=1h]  
Sets BOP infinite hold clear, infinite hold enable, mute on brown out and enable.  
Figure 8-41. DSP FREQUENCY & BOP_CFG0 Register Address: 0x14  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
BOSD_EN  
RW-0h  
BOP_HLD_CLR BOP_INF_HLD  
RW-0h RW-0h  
BOP_MUTE  
RW-0h  
BOP_EN  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-111. Brown Out Prevention 0 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
Reserved  
BOSD_EN  
R
0h  
Reserved  
RW  
0h  
Brown out prevention enable.  
0b = Disabled  
1b = Enabled  
3
2
1
0
BOP_HLD_CLR  
BOP_INF_HLD  
BOP_MUTE  
BOP_EN  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
1h  
BOP infinite hold clear (self clearing).  
0b = Don't clear  
1b = Clear  
Infinite hold on brown out event.  
0b = Use BOP_HLD_TM after brown out event  
1b = Don't release until BOP_HLD_CLR is asserted high  
Mute on brown out event.  
0b = Don't mute  
1b = Mute followed by device shutdown  
Brown out prevention enable.  
0b = Disabled  
1b = Enabled  
8.5.23 BOP_CFG0 (page=0x00 address=0x15) [reset=2Eh]  
BOP attack rate, attack step size and hold time.  
Figure 8-42. BOP_CFG0 Register Address: 0x15  
7
6
5
4
3
2
1
0
BOP_ATK_RT[2:0]  
RW-1h  
BOP_ATK_ST[1:0]  
RW-1h  
BOP_HLD_TM[2:0]  
RW-6h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-112. Brown Out Prevention 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_ATK_RT[2:0]  
RW  
1h  
Brown out prevention attack rate.  
000b = 1 step in 1 sample  
001b = 1 step in 2 samples  
010b = 1 step in 4 samples  
011b = 1 step in 8 samples  
100b = 1 step in 16 samples  
101b = 1 step in 32 samples  
110b = 1 step in 64 samples  
111b = 1 step in 128 samples  
4-3  
2-0  
BOP_ATK_ST[1:0]  
BOP_HLD_TM[2:0]  
RW  
RW  
1h  
6h  
Brown out prevention attack step size.  
00b = 0.5 dB  
01b = 1 dB  
10b = 1.5 dB  
11b = 2 dB  
Brown out prevention hold time.  
000b = 0 ms  
001b = 10 ms  
010b = 25 ms  
011b = 50 ms  
100b = 100 ms  
101b = 250 ms  
110b = 500 ms  
111b = 1000 ms  
8.5.24 BIL_and_ICLA_CFG0 (page=0x00 address=0x16) [reset=60h]  
Boost Current limiter and ICLA  
Figure 8-43. BIL_and_ICLA_CFG0 Register Address: 0x16  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
BIL_HLD_TM[2:0]  
RW-6h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-113. Boost Current limiter and ICLA Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
R
0h  
Reserved  
6-4  
BIL_HLD_TM[2:0]  
RW  
6h  
VBAT current limiter hold time  
000b = 0 ms  
001b = 10 ms  
010b = 25 ms  
011b = 50 ms  
100b = 100 ms  
101b = 250 ms  
110b = 500 ms  
111b = 1000 ms  
3-0  
Reserved  
R
0h  
Reserved  
8.5.25 BIL_ICLA_CFG1 (page=0x00 address=0x17) [reset=0h]  
ICLA starting time slot and enable.  
Figure 8-44. BIL_ICLA_CFG1 Register Address: 0x17  
7
6
5
4
3
2
1
0
Reserved  
RW-0h  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-114. Inter Chip Limiter Alignment 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
RW  
0h  
Reserved  
8.5.26 GAIN_ICLA_CFG0 (page=0x00 address=0x18) [reset=0h]  
ICLA starting time slot and enable.  
Figure 8-45. GAIN_ICLA_CFG0 Register Address: 0x18  
7
6
5
4
3
2
1
1
1
0
0
0
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-115. Inter Chip Limiter Alignment 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R
0h  
Reserved  
8.5.27 ICLA_CFG1 (page=0x00 address=0x19) [reset=0h]  
ICLA time slot enables.  
Figure 8-46. ICLA_CFG1 Register Address: 0x19  
7
6
5
4
3
2
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-116. Inter Chip Limiter Alignment 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
RW  
0h  
Reserved  
8.5.28 INT_MASK0 (page=0x00 address=0x1A) [reset=FCh]  
Interrupt masks.  
Figure 8-47. INT_MASK0 Register Address: 0x1A  
7
6
5
4
3
2
INT_MASK0[7] INT_MASK0[6] INT_MASK0[5] INT_MASK0[4] INT_MASK0[3] INT_MASK0[2] INT_MASK0[1] INT_MASK0[0]  
RW-1h RW-1h RW-1h RW-1h RW-1h RW-1h RW-0h RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-117. Interrupt Mask 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_MASK0[7]  
RW  
1h  
Limiter mute mask.  
0b = Don't Mask  
1b = Mask  
6
INT_MASK0[6]  
RW  
1h  
Limiter infinite hold mask.  
0b = Don't Mask  
1b = Mask  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-117. Interrupt Mask 0 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
INT_MASK0[5]  
RW  
1h  
Limiter max attenuation mask.  
0b = Don't Mask  
1b = Mask  
4
3
2
1
0
INT_MASK0[4]  
INT_MASK0[3]  
INT_MASK0[2]  
INT_MASK0[1]  
INT_MASK0[0]  
RW  
RW  
RW  
RW  
RW  
1h  
1h  
1h  
0h  
0h  
VBAT below limiter inflection point mask.  
0b = Don't Mask  
1b = Mask  
Limiter active mask.  
0b = Don't Mask  
1b = Mask  
TDM clock error mask.  
0b = Don't Mask  
1b = Mask  
Over current error mask.  
0b = Don't Mask  
1b = Mask  
Over temp error mask.  
0b = Don't Mask  
1b = Mask  
8.5.29 INT_MASK1 (page=0x00 address=0x1B) [reset=A6h]  
Interrupt masks.  
Figure 8-48. INT_MASK1 Register Address: 0x1B  
7
6
5
4
3
2
1
0
Reserved  
RW-1h  
Reserved  
RW-0h  
INT_MASK1[5]  
RW-1h  
INT_MASK1[4:3][1:0]  
RW-0h  
INT_MASK1[2] INT_MASK1[1] INT_MASK1[0]  
RW-1h  
RW-1h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-118. Interrupt Mask 1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
INT_MASK1[5]  
1h  
6
0h  
5
1h  
Load Diagnostic Completion Mask  
0b = Don't Mask  
1b = Masked  
4-3  
INT_MASK1[4:3]  
RW  
0h  
Speaker open load mask  
00b = Don't Mask  
01b = Mask open Load detection  
10b = Mask Short Load detection  
11b = Mask both Open,Short Load detection  
2
1
0
INT_MASK1[2]  
INT_MASK1[1]  
INT_MASK1[0]  
RW  
RW  
RW  
1h  
1h  
0h  
Brownout device power down start mask  
0b = Don't Mask  
1b = Mask  
Brownout Protection Active mask  
0b = Don't Mask  
1b = Mask  
VBAT Brown out detected mask  
0b = Don't Mask  
1b = Mask  
8.5.30 INT_MASK2 (page=0x00 address=0x1C) [reset=DFh]  
Interrupt masks.  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 8-49. INT_MASK2 Register Address: 0x1C  
7
6
5
4
3
2
1
0
INT_MASK2[7] INT_MASK2[6] INT_MASK2[5] INT_MASK2[4] INT_MASK2[3] INT_MASK2[2] INT_MASK2[1] INT_MASK2[0]  
RW-1h  
RW-1h  
RW-0h  
RW-1h  
RW-1h  
RW-1h  
RW-1h  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-119. Interrupt Mask 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_MASK2[7]  
RW  
1h  
DAC MOD clock error mask  
0b = Don't Mask  
1b = Mask  
6
5
4
3
2
1
0
INT_MASK2[6]  
INT_MASK2[5]  
INT_MASK2[4]  
INT_MASK2[3]  
INT_MASK2[2]  
INT_MASK2[1]  
INT_MASK2[0]  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1h  
0h  
1h  
1h  
1h  
1h  
1h  
Boost Clock Error mask  
0b = Don't Mask  
1b = Mask  
VBAT POR mask  
0b = Don't Mask  
1b = Mask  
PLL Lock interrupt mask  
0b = Don't Mask  
1b = Mask  
DC DETECT mask  
0b = Don't Mask  
1b = Mask  
BOOST OV Clamp interrupt mask  
0b = Don't Mask  
1b = Mask  
CP PG mask  
0b = Don't Mask  
1b = Mask  
Device power up intp mask  
0b = Don't Mask  
1b = Mask  
8.5.31 INT_MASK3 (page=0x00 address=0x1D) [reset=FFh]  
Interrupt masks.  
Figure 8-50. INT_MASK3 Register Address: 0x1D  
7
6
5
4
3
2
1
0
INT_MASK3[7]  
RW-1h  
Reserved  
RW-1h  
Reserved  
RW-1h  
INT_MASK3[4] INT_MASK3[3]  
RW-1h RW-1h  
Reserved  
RW-1h  
Reserved  
RW-1h  
Reserved  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-120. Interrupt Mask 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_MASK3[7]  
RW  
1h  
Device power down intp mask  
0b = Don't Mask  
1b = Mask  
6
5
4
Reserved  
RW  
RW  
RW  
1h  
1h  
1h  
Reserved  
Reserved  
Reserved  
INT_MASK3[4]  
PDM mic clock error intp mask  
0b = Don't Mask  
1b = Mask  
3
INT_MASK3[3]  
RW  
1h  
ASI2 clock error intp mask  
0b = Don't Mask  
1b = Mask  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-120. Interrupt Mask 3 Field Descriptions (continued)  
Bit  
2
Field  
Type  
RW  
RW  
RW  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1h  
1
1h  
0
1h  
8.5.32 INT_LIVE0 (page=0x00 address=0x1F) [reset=0h]  
Live interrupt readback.  
Figure 8-51. INT_LIVE0 Register Address: 0x1F  
7
6
5
4
3
2
1
0
INT_LIVE0[7]  
R-0h  
INT_LIVE0[6]  
R-0h  
INT_LIVE0[5]  
R-0h  
INT_LIVE0[4]  
R-0h  
INT_LIVE0[3]  
R-0h  
INT_LIVE0[2]  
R-0h  
INT_LIVE0[1]  
R-0h  
INT_LIVE0[0]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-121. Live Interrupt Readback 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LIVE0[7]  
R
0h  
Interrupt due to limiter mute.  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
INT_LIVE0[6]  
INT_LIVE0[5]  
INT_LIVE0[4]  
INT_LIVE0[3]  
INT_LIVE0[2]  
INT_LIVE0[1]  
INT_LIVE0[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Interrupt due to limiter infinite hold.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter max attenuation.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to VBAT below limiter inflection point.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter active.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to TDM clock error.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to over current error.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to over temp error.  
0b = No interrupt  
1b = Interrupt  
8.5.33 INT_LIVE1 (page=0x00 address=0x20) [reset=0h]  
Live interrupt readback.  
Figure 8-52. INT_LIVE1 Register Address: 0x20  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
INT_LIVE1[5]  
R-0h  
INT_LIVE1[4]  
R-0h  
INT_LIVE1[3]  
INT_LIVE1[2]  
R-0h  
INT_LIVE1[1]  
R-0h  
INT_LIVE1[0]  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-122. Live Interrupt Readback 1 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
R
0h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Reserved  
R
0h  
5
INT_LIVE1[5]  
INT_LIVE1[4]  
INT_LIVE1[3]  
INT_LIVE1[2]  
INT_LIVE1[1]  
R
0h  
4
R
0h  
3
R
0h  
2
R
0h  
1
R
0h  
Brownout Protection Active flag  
0b = No interrupt  
1b = Interrupt  
0
INT_LIVE1[0]  
R
0h  
Interrupt due to VBAT brown out detected flag.  
0b = No interrupt  
1b = Interrupt  
8.5.34 INT_LIVE3 (page=0x00 address=0x21) [reset=0h]  
Live interrupt readback.  
Figure 8-53. INT_LIVE3 Register Address: 0x21  
7
6
5
4
3
2
1
0
INT_LIVE2[7]  
R-0h  
INT_LIVE2[6]  
R-0h  
INT_LIVE2[5]  
R-0h  
INT_LIVE2[4]  
R-0h  
INT_LIVE2[3]  
R-0h  
INT_LIVE2[2]  
R-0h  
INT_LIVE2[1]  
R-0h  
INT_LIVE2[0]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-123. Live Interrupt Readback 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LIVE2[7]  
R
0h  
DAC MOD clock error flag  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
INT_LIVE2[6]  
INT_LIVE2[5]  
INT_LIVE2[4]  
INT_LIVE2[3]  
INT_LIVE2[2]  
INT_LIVE2[1]  
INT_LIVE2[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Boost Clock error flag  
0b = No interrupt  
1b = Interrupt  
VBAT_POR flag  
0b = No interrupt  
1b = Interrupt  
PLL LOCK flag  
0b = No interrupt  
1b = Interrupt  
DC DETECT flag  
0b = No interrupt  
1b = Interrupt  
BOOST OV Clamp flag  
0b = No interrupt  
1b = Interrupt  
CP PG flag  
0b = No interrupt  
1b = Interrupt  
Device powe up flag  
0b = No interrupt  
1b = Interrupt  
8.5.35 INT_LIVE4 (page=0x00 address=0x22) [reset=0h]  
Live interrupt readback.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 8-54. INT_LIVE4 Register Address: 0x22  
7
6
5
4
3
2
1
0
INT_LIVE3[7]  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
INT_LIVE3[4]  
R-0h  
INT_LIVE3[3]  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-124. Live Interrupt Readback 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LIVE3[7]  
R
0h  
Device powe down flag  
0b = No interrupt  
1b = Interrupt  
6
5
4
Reserved  
R
R
R
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
INT_LIVE3[4]  
PDM mic clock error flag  
0b = No interrupt  
1b = Interrupt  
3
INT_LIVE3[3]  
R
0h  
ASI2 clock error flag  
0b = No interrupt  
1b = Interrupt  
2
1
0
Reserved  
Reserved  
Reserved  
R
R
R
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
8.5.36 INT_LTCH0 (page=0x00 address=0x24) [reset=0h]  
Latched interrupt readback.  
Figure 8-55. INT_LTCH0 Register Address: 0x24  
7
6
5
4
3
2
1
0
INT_LTCH0[7] INT_LTCH0[6] INT_LTCH0[5] INT_LTCH0[4] INT_LTCH0[3] INT_LTCH0[2] INT_LTCH0[1] INT_LTCH0[0]  
R-0h R-0h R-0h R-0h R-0h R-0h R-0h R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-125. Latched Interrupt Readback 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH0[7]  
R
0h  
Interrupt due to limiter mute (cleared using CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
INT_LTCH0[6]  
INT_LTCH0[5]  
INT_LTCH0[4]  
INT_LTCH0[3]  
R
R
R
R
0h  
0h  
0h  
0h  
Interrupt due to limiter infinite hold (cleared using  
CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter max attenuation (cleared using  
CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
Interrupt due to VBAT below limiter inflection point (cleared  
using CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter active (cleared using CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-125. Latched Interrupt Readback 0 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
INT_LTCH0[2]  
R
0h  
Interrupt due to TDM clock error (cleared using  
CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
1
0
INT_LTCH0[1]  
INT_LTCH0[0]  
R
R
0h  
0h  
Interrupt due to over current error (cleared using  
CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
Interrupt due to over temp error (cleared using  
CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
8.5.37 INT_LTCH1 (page=0x00 address=0x25) [reset=0h]  
Latched interrupt readback.  
Figure 8-56. INT_LTCH1 Register Address: 0x25  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
INT_LTCH1[5]  
R-0h  
INT_LTCH1[4:3][1:0]  
R-0h  
INT_LTCH1[2] INT_LTCH1[1] INT_LTCH1[0]  
R-0h R-0h R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-126. Latched Interrupt Readback 1 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
INT_LTCH1[5]  
R
0h  
6
R
0h  
5
R
0h  
Interrupt due to Load Diagnostic Mode Completion(cleared  
using CLR_INTP_LTCH).  
0b = Load Diagnostic Mode Not completed  
1b = Load Diagnostic Mode Completed  
4-3  
INT_LTCH1[4:3]  
R
0h  
Interrupt due to Load Diagnostic Mode Fault Status(cleared  
using CLR_INTP_LTCH).  
00b = Normal Load  
01b = Open Load Detected  
10b = Short Load Detected  
11b = Reserved  
2
1
0
INT_LTCH1[2]  
INT_LTCH1[1]  
INT_LTCH1[0]  
R
R
R
0h  
0h  
0h  
Interrupt due to Brownout Protection Triggered shutdown  
(cleared using CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
Interrupt due to Brownout Protection Active flag (cleared using  
CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
Interrupt due to VBAT brown out detected flag (cleared using  
CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
8.5.38 INT_LTCH3 (page=0x00 address=0x26) [reset=0h]  
Latched interrupt readback.  
Figure 8-57. INT_LTCH3 Register Address: 0x26  
7
6
5
4
3
2
1
0
INT_LTCH2[7] INT_LTCH2[6] INT_LTCH2[5] INT_LTCH2[4] INT_LTCH2[3] INT_LTCH2[2] INT_LTCH2[1] INT_LTCH2[0]  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 8-57. INT_LTCH3 Register Address: 0x26 (continued)  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-127. Latched Interrupt Readback 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH2[7]  
R
0h  
Interrupt due to DAC MOD clock error (cleared using  
CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
6
INT_LTCH2[6]  
R
0h  
Interrupt due to Boost Clock error (cleared using  
CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
5
4
3
2
INT_LTCH2[5]  
INT_LTCH2[4]  
INT_LTCH2[3]  
INT_LTCH2[2]  
R
R
R
R
0h  
0h  
0h  
0h  
Interrupt due to VBAT_POR (cleared using CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
Interrupt due to PLL LOCK (cleared using CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
Interrupt due to DC DETECT (cleared using CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
Interrupt due to BOOST OV Clamp (cleared using  
CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
1
0
INT_LTCH2[1]  
INT_LTCH2[0]  
R
R
0h  
0h  
Interrupt due to CP PG(cleared using CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
Interrupt due to DEVICE POWER UP(cleared using  
CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
8.5.39 INT_LTCH4 (page=0x00 address=0x27) [reset=0h]  
Latched interrupt readback.  
Figure 8-58. INT_LTCH4 Register Address: 0x27  
7
6
5
4
3
2
1
0
INT_LTCH3[7]  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
INT_LTCH3[4] INT_LTCH3[3]  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-128. Latched Interrupt Readback 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH3[7]  
R
0h  
Interrupt due to DEVICE POWER DOWN(cleared using  
CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
6
5
4
Reserved  
R
R
R
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
INT_LTCH3[4]  
Interrupt due to PDM mic clock error(cleared using  
CLR_INTP_LTCH)  
0b = No interrupt  
1b = Interrupt  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-128. Latched Interrupt Readback 3 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
INT_LTCH3[3]  
R
0h  
Interrupt due to ASI2 clock error (cleared using  
CLR_INTP_LTCH).  
0b = No interrupt  
1b = Interrupt  
2
1
0
Reserved  
Reserved  
Reserved  
R
R
R
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
8.5.40 VBAT_MSB (page=0x00 address=0x2A) [reset=0h]  
MSBs of SAR ADC VBAT conversion.  
Figure 8-59. VBAT_MSB Register Address: 0x2A  
7
6
5
4
3
2
1
0
VBAT_CNV[9:2]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-129. SAR ADC Conversion 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
VBAT_CNV[9:2]  
R
0h  
Returns SAR ADC VBAT conversion MSBs.  
8.5.41 VBAT_LSB (page=0x00 address=0x2B) [reset=0h]  
LSBs of SAR ADC VBAT conversion.  
Figure 8-60. VBAT_LSB Register Address: 0x2B  
7
6
5
4
3
2
1
0
VBAT_CNV[1:0]  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-130. SAR ADC Conversion 1 Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
VBAT_CNV[1:0]  
Reserved  
R
0h  
Returns SAR ADC VBAT conversion LSBs.  
Reserved  
R
0h  
8.5.42 TEMP (page=0x00 address=0x2C) [reset=0h]  
SARD ADC Temp conversion.  
Figure 8-61. TEMP Register Address: 0x2C  
7
6
5
4
3
2
1
0
TMP_CNV[7:0]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-131. SAR ADC Conversion 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TMP_CNV[7:0]  
R
0h  
Returns SAR ADC temp sensor conversion.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
8.5.43 INT & CLK CFG (page=0x00 address=0x30) [reset=19h]  
Figure 8-62. INT & CLK CFG Register Address: 0x30  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
CLR_INTP_LTC  
H
IRQZ_PIN_CFG[1:0]  
RW-0h  
RW-0h  
RW-3h  
RW-0h  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-132. Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CLR_INTP_LTCH  
0h  
6
0h  
5-3  
2
3h  
0h  
Clear INT_LTCH registers to clear interrupts (self clearing bit)  
0b = Don't clear  
1b = Clear INT_LTCH registers  
1-0  
IRQZ_PIN_CFG[1:0]  
RW  
1h  
IRQZ interrupt configuration.  
00b = IRQZ will assert on any unmasked live interrupts  
01b = IRQZ will assert on any unmasked latched interrupts  
10b = IRQZ will assert for 2-4ms one time on any unmasked live  
interrupt event  
11b = IRQZ will assert for 2-4ms every 4ms on any unmasked  
latched interrupts  
8.5.44 DIN_PD (page=0x00 address=0x31) [reset=40h]  
Sets enables of input pin weak pull down.  
Figure 8-63. DIN_PD Register Address: 0x31  
7
6
5
4
3
2
1
0
DIN_PD[7]  
RW-0h  
Reserved  
RW-1h  
DIN_PD[5]  
RW-0h  
DIN_PD[4]  
RW-0h  
DIN_PD[3]  
RW-0h  
DIN_PD[2]  
RW-0h  
DIN_PD[1]  
RW-0h  
DIN_PD[0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-133. Digital Input Pin Pull Down Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIN_PD[7]  
RW  
0h  
Weak pull down for SBCLK2  
0b = Disabled  
1b = Enabled  
6
5
Reserved  
RW  
RW  
1h  
0h  
Reserved  
DIN_PD[5]  
Weak pull down for SPII2CZ_MISO  
0b = Disabled  
1b = Enabled  
4
3
2
1
DIN_PD[4]  
DIN_PD[3]  
DIN_PD[2]  
DIN_PD[1]  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
Weak pull down for ADDR_SPICLK  
0b = Disabled  
1b = Enabled  
Weak pull down for SDOUT  
0b = Disabled  
1b = Enabled  
Weak pull down for SDIN.  
0b = Disabled  
1b = Enabled  
Weak pull down for FSYNC.  
0b = Disabled  
1b = Enabled  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-133. Digital Input Pin Pull Down Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
DIN_PD[0]  
RW  
0h  
Weak pull down for SBCLK.  
0b = Disabled  
1b = Enabled  
8.5.45 MISC (page=0x00 address=0x32) [reset=80h]  
Set IRQZ pin active state  
Figure 8-64. MISC Register Address: 0x32  
7
6
5
4
3
2
1
0
IRQZ_POL  
RW-1h  
Reserved  
RW-0h  
Reserved  
R-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-134. Misc Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IRQZ_POL  
RW  
1h  
IRQZ pin polarity for interrupt.  
0b = Active high (IRQ)  
1b = Active low (IRQZ)  
6-4  
3-2  
1
Reserved  
Reserved  
Reserved  
Reserved  
RW  
R
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
R
0
8.5.46 BOOST_CFG1 (page=0x00 address=0x33) [reset=34h]  
Boost Configure 1  
Figure 8-65. BOOST_CFG1 Register Address: 0x33  
7
6
5
4
3
2
1
0
BST_MODE  
BST_MODE  
BST_EN  
Reserved  
RW-2h  
BST_PFML[1:0]  
RW-2h  
BST_DYNAMIC  
_ILIM_EN  
RW-0h  
RW-0h  
RW-1h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-135. Boost Configure 1 Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
BST_MODE  
BST_MODE  
RW  
0h  
Boost Mode  
6
RW  
0h  
Boost Mode  
00b = Class-H  
01b = Class-G  
10b = Boost always ON  
11b = Boost always OFF(Passthrough)  
5
BST_EN  
RW  
1h  
Boost enable  
0b = Disabled  
1b = Enabled  
4-3  
2-1  
Reserved  
RW  
RW  
2h  
2h  
Reserved  
BST_PFML[1:0]  
Boost active mode PFM lower limit  
00b = No lower limit  
01b = 25 kHz  
10b = 50 kHz  
11b = 100 kHz  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-135. Boost Configure 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
BST_DYNAMIC_ILIM_EN  
RW  
0h  
Dynamic Current Limiter based on VBAT  
0b = Disabled  
1b = Enabled  
8.5.47 BOOST_CFG2 (page=0x00 address=0x34) [reset=4Bh]  
Boost Configure 2  
Figure 8-66. BOOST_CFG2 Register Address: 0x34  
7
6
5
4
3
2
1
0
BST_IR[1:0]  
RW-1h  
BST_SYNC  
RW-0h  
BST_PA  
RW-0h  
BST_VREG[3:0]  
RW-Bh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-136. Boost Configure 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BST_IR[1:0]  
RW  
1h  
Boost inductor range  
00b = less than 0.6 uH  
01b = 0.6 uH to 1.3 uH  
10b = 1.3 uH to 2.5 uH  
11b = Reserved  
5
4
BST_SYNC  
BST_PA  
RW  
RW  
RW  
0h  
0h  
Bh  
Boost sync to clock  
0b = Not synced  
1b = Synced  
Boost sync phase  
0b = 0 deg  
1b = 180 deg  
3-0  
BST_VREG[3:0]  
Boost Maximum Voltage(Default 11 V)  
0000b = Reserved  
0001b = 6 V  
0010b = 6.5 V  
....  
1110b = 12.5 V  
1111b = Reserved  
8.5.48 BOOST_CFG3 (page=0x00 address=0x35) [reset=74h]  
Boost Configure 3  
Figure 8-67. BOOST_CFG3 Register Address: 0x35  
7
6
5
4
3
2
1
0
BST_CLASSH_STEP_TIME[3:0]  
RW-7h  
BST_LR[1:0]  
RW-1h  
Reserved  
RW-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-137. Boost Configure 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
BST_CLASSH_STEP_TIME[3:0]  
RW  
7h  
Step Time for Boost if in Class-H mode  
0000b = 9us  
0001b = 18us  
0010b = 36us  
0011b = 54us  
0100b = 72us  
0101b = 90us  
0110b = 108us  
0111b = 135us  
1000b = 162us  
1001b = 198us  
1010b = 252us  
1011b = 342us  
1100b = 477us  
1101b = 612us  
1110b = 792us  
1111b = 990us  
3-2  
BST_LR[1:0]  
RW  
1h  
Slope of boost load regulation.  
00b = Reserved  
01b = 3A/V; load regulation = 1V (default)  
10b = 2A/V; load regulation = 1.5V  
11b = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.5.49 MISC (page=0x00 address=0x3B) [reset=58h]  
Figure 8-68. MISC Register Address: 0x3B  
7
6
5
4
3
2
1
0
HAPTIC_EN  
RW-0h  
Reserved  
RW-2h  
Reserved  
RW-3h  
Reserved  
RW-0h  
Reserved  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-138. Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HAPTIC_EN  
RW  
0h  
Haptics mode is  
0b = Disabled  
1b = Enabled  
6-5  
4-3  
2
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
2h  
3h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
1-0  
8.5.50 TG_CFG0 (page=0x00 address=0x3F) [reset=0h]  
Tone Generator  
Figure 8-69. TG_CFG0 Register Address: 0x3F  
7
6
5
4
3
2
1
0
TG1_EN[1:0]  
RW-0h  
TG1_PINEN[1:0]  
RW-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-139. Tone Generator Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
TG1_EN[1:0]  
RW  
0h  
Tone Generator 1 is  
00b = Disabled or pin triggered  
01b = Enabled - play tone  
10b = audio level enabled  
11b = reserved  
5-4  
3-0  
TG1_PINEN[1:0]  
Reserved  
RW  
R
0h  
0h  
Tone pin trigger  
00b = Disabled  
01b = SDIN  
10b = GPIO  
11b = AD1  
Reserved  
8.5.51 BST_ILIM_CFG0 (page=0x00 address=0x40) [reset=36h]  
Boost ILIM configuration-0  
Figure 8-70. BST_ILIM_CFG0 Register Address: 0x40  
7
6
5
4
3
2
1
0
BST_SSL[7:6]  
RW-0h  
BST_ILIM[5:0]  
RW-36h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-140. Boost ILIM configuration-0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BST_SSL[7:0]  
RW  
0h  
Boost peak current limit  
00h = 0.99 A  
01h = 1.045 A  
02h = 1.1 A  
...  
36h = 3.96 A  
37h = 4 A  
38h-3Fh = Reserved  
8.5.52 PDM_CONFIG0 (page=0x00 address=0x41) [reset=1h]  
Figure 8-71. PDM_CONFIG0 Register Address: 0x41  
7
6
5
4
3
2
1
0
Reserved  
PDM_GATE_PA PDM_RATE_PA DIS_PDM_MIC PDM_PAD0_C PDM_MIC2_E PDM_MIC1_E PDM_MIC_SLV  
D0[6:6]  
RW-1h  
D0[5:5]  
RW-0h  
_CLK_ERR_PA AP_EDGE[3:3]  
D0[4:4]  
N[2:2]  
N[1:1]  
R-0h  
RW-0h  
RW-0h  
RW-0h  
RW-0h  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-141. Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
R
0h  
Reserved  
6
PDM_GATE_PAD0  
RW  
1h  
Clock gating for master mode PAD0  
0b=Disabled  
1b=Enabled  
5
4
PDM_RATE_PAD0  
RW  
RW  
0h  
0h  
PDM data rate of PAD0  
0b=3.072 MHz  
1b=6.144 MHz  
DIS_PDM_MIC_CLK_ERR_PAD0  
Disable PDM Mic. clock error on PAD0 detection  
0b=Clock error detection is enabled  
1b=Clock error detection is disabled  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 8-141. Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PDM_PAD0_CAP_EDGE  
RW  
0h  
Capture edge of PDM mic data for PAD0  
0b=MIC1 captured on positive edge. MIC2 captured on negative  
edge  
1b=MIC1 captured on negative edge. MIC2 captured on positive  
edge  
2
1
0
PDM_MIC2_EN  
PDM_MIC1_EN  
PDM_MIC_SLV  
RW  
RW  
RW  
0h  
0h  
1h  
Control for PDM MIC2 path  
0b=MIC2 path is disabled  
1b=MIC2 path is enabled  
Control for PDM MIC1 path  
0b=MIC1 path is disabled  
1b=MIC1 path is enabled  
Device in PDM MIC SLAVE or MASTER  
0b=Device is in PDM MIC master mode  
1b=Device is in PDM Slave mode  
8.5.53 DIN_PD & PDM_CONFIG3 (page=0x00 address=0x42) [reset=F8h]  
Figure 8-72. DIN_PD & PDM_CONFIG3 Register Address: 0x42  
7
6
5
4
3
2
1
0
DIN_PD[14]  
DIN_PD[13]  
Reserved  
wk_pulldown_p wk_pulldown_p  
Reserved  
dmd_pad0  
dmck_pad0  
RW-0h  
RW-0h  
R-0h  
RW-0h  
RW-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-142. Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIN_PD[14]  
RW  
0h  
Weak pull down for SDIN2  
0b=Disabled  
1b=Enabled  
6
DIN_PD[13]  
RW  
0h  
Weak pull down for SDIN1  
0b=Disabled  
1b=Enabled  
5
4
Reserved  
R
0h  
0h  
Reserved  
wk_pulldown_pdmd_pad0  
RW  
Control for pull down of PDMD PAD0  
0b=Disable the pull down control  
1b=Enable the pull down control  
3
wk_pulldown_pdmck_pad0  
Reserved  
RW  
R
0h  
0h  
Control for pull down of PDMD PAD0  
0b=Disable the pull down control  
1b=Enable the pull down control  
2-0  
Reserved  
8.5.54 ASI2_CONFIG0 (page=0x00 address=0x43) [reset=8h]  
Figure 8-73. ASI2_CONFIG0 Register Address: 0x43  
7
6
5
4
3
2
1
0
tx_fill_asi2[7:7]  
RW-0h  
asi2_sbclk_fs_ratio[6:3]  
RW-1h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-143. Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
tx_fill_asi2[7:0]  
RW  
0h  
Reserved  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
8.5.55 ASI2_CONFIG1 (page=0x00 address=0x44) [reset=0h]  
Figure 8-74. ASI2_CONFIG1 Register Address: 0x44  
7
6
5
4
3
2
1
0
asi2_auto_rate[ asi2_tx_lsb_half rx_edge_asi2[5: tx_edge_asi2[4:  
Reserved  
asi2_sbclk_mas  
ter  
7:7]  
_cycle_reg[6:6]  
5]  
4]  
RW-0h  
RW-0h  
RW-0h  
RW-0h  
R-0h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-144. Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
asi2_auto_rate[7:0]  
RW  
0h  
ASI2 SBCLK master mode enable  
0b = SBCLK2 in slave mode  
1b = SBCLK2 in master mode  
8.5.56 ASI2_CONFIG2 (page=0x00 address=0x45) [reset=1h]  
Figure 8-75. ASI2_CONFIG2 Register Address: 0x45  
7
6
5
4
3
2
1
0
tx_offset_asi2[7:5]  
RW-0h  
rx_offset_asi2[4:0]  
RW-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-145. Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
tx_offset_asi2[7:0]  
RW  
0h  
TDM2 RX start of frame to time slot 0 offset (ASI2_SBCLK  
cycles)  
8.5.57 ASI2_CONFIG3 (page=0x00 address=0x46) [reset=FCh]  
Figure 8-76. ASI2_CONFIG3 Register Address: 0x46  
7
6
5
4
3
2
1
0
Reserved  
asi2_tx_keeper[ asi2_sdout_bus num_slots[4:4]  
num_devices[3:2]  
my_device_num[1:0]  
6:6]  
keeper_always_  
en[5:5]  
R-1h  
RW-1h  
RW-1h  
RW-1h  
RW-3h  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-146. Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R
1h  
My device number on the common BUS  
00b = 1st  
01b = 2nd  
10b = 3rd  
11b = 4th  
8.5.58 PVDD_MSB_DSP (page=0x00 address=0x49) [reset=0h]  
MSBs of SAR ADC PVDD conversion.  
Figure 8-77. PVDD_MSB_DSP Register Address: 0x49  
7
6
5
4
3
2
1
0
PVDD_CNV_DSP[9:2]  
R-0h  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-147. SAR ADC Conversion 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PVDD_CNV_DSP[9:2]  
R
0h  
Returns SAR ADC PVDD conversion MSBs.  
8.5.59 PVDD_LSB_DSP (page=0x00 address=0x4A) [reset=0h]  
LSBs of SAR ADC PVDD conversion.  
Figure 8-78. PVDD_LSB_DSP Register Address: 0x4A  
7
6
5
4
3
2
1
0
0
0
PVDD_CNV_DSP[1:0]  
R-0h  
Reserved  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-148. SAR ADC Conversion 1 Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
PVDD_CNV_DSP[1:0]  
Reserved  
R
0h  
Returns SAR ADC PVDD conversion LSBs.  
Reserved  
R
0h  
8.5.60 REV_ID (page=0x00 address=0x7D) [reset=0h]  
Returns REV and PG ID.  
Figure 8-79. REV_ID Register Address: 0x7D  
5
7
6
4
3
2
1
REV_ID[3:0]  
R-0h  
PG_ID[3:0]  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-149. Revision and PG ID Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
REV_ID[3:0]  
PG_ID[3:0]  
R
0h  
Returns the revision ID.  
Returns the PG ID.  
R
0h  
8.5.61 I2C_CKSUM (page=0x00 address=0x7E) [reset=0h]  
Returns I2C checksum.  
Figure 8-80. I2C_CKSUM Register Address: 0x7E  
7
6
5
4
3
2
1
I2C_CKSUM[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-150. I2C Checksum Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
I2C_CKSUM[7:0]  
RW  
0h  
Returns I2C checksum. Writing to this register will reset the  
checksum to the written value. This register is updated on writes  
to other registers on all books and pages.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
8.5.62 BOOK (page=0x00 address=0x7F) [reset=0h]  
Device's memory map is divided into pages and books. This register sets the book.  
Figure 8-81. BOOK Register Address: 0x7F  
7
6
5
4
3
2
1
0
BOOK[7:0]  
RW-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-151. Device Book Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOOK[7:0]  
RW  
0h  
Sets the device book.  
00h = Book 0  
01h = Book 1  
...  
FFh = Book 255  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TAS2563 is a digital input high efficiency Class-D audio power amplifier with advanced battery current  
management and an integrated Class-H boost converter. In auto passthrough mode, the Class-H boost  
converter generates the Class-D amplifier supply rail. During low Class-D output power, the boost improves  
efficiency by deactivating and connecting VBAT directly to the Class-D amplifier supply. When high power audio  
is required, the boost quickly activates to provide louder audio than a stand-alone amplifier connected directly to  
the battery. To enable load monitoring, the TAS2563 constantly measures the current and voltage across the  
load and provides a digital stream of this information back to a processor. It is recommended to configure the  
TAS2563 using Section 8.3.1.  
9.2 Typical Application  
1.8V  
2.5 V œ 5.5 V  
4.5 V œ 9 V  
L1  
1 mH  
C1  
10 mF  
C5  
4.7 mF  
C8  
1 mF  
VDD  
SW  
VBAT2S  
VBAT  
GREG  
C7  
100 nF  
DREG  
VBST  
PVDD  
C6  
1mF  
C2  
10 mF  
Enable  
SDZ  
L2 (opt.)  
+
-
OUT_P  
OUT_M  
To  
Speaker  
AD1  
AD0  
L3 (opt.)  
I2C Interface  
I2S Interface  
I2C  
I2S  
2
4
C4  
1 nF  
(opt.)  
C3  
1 nF  
(opt.)  
GND  
BGND  
PGND  
Figure 9-1. Typical Application - Digital Audio Input  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Table 9-1. Recommended External Components  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
Inductance, 20% Tolerance  
Saturation Current  
Impedance at 100 MHz  
DC Resistance  
MIN  
TYP  
MAX  
UNIT  
µH  
A
0.47  
1
L1  
Boost Converter Inductor(1)  
4.5  
120  
Ω
EMI Filter Inductors (optional). These are  
not recommended as it degrades THD+N  
performance. TAS2563 is a filter-less  
Class-D and does not require these bead  
inductors.  
0.095  
Ω
L2, L3  
C1  
DC Current  
2
A
Size  
0402  
EIA  
µF  
Boost Converter Input Capacitor(1)  
Capacitance, 20% Tolerance  
Type  
10  
X5R  
10  
Capacitance, 20% Tolerance  
Rated Voltage  
47  
µF  
V
C2  
Boost Converter Output Capacitor  
16  
Capacitance at 11.5 V derating  
3.3  
µF  
EMI Filter Capacitors (optional, must use  
L2, L3 if C3, C4 used)  
C3, C4  
Capacitance  
1
nF  
C5  
C6  
C7  
VDD Decoupling Capacitor  
DREG Decoupling Capacitor  
GREG Fly Capacitor  
Capacitance  
Capacitance  
Capacitance  
4.7  
1
µF  
µF  
nF  
100  
(1) See section Section 9.2.2.2 for additional requirements on derating, stability, and inductor value trade-offs.  
9.2.1 Design Requirements  
For this design example, use the parameters shown in Table 9-2.  
Table 9-2. Design Parameters  
DESIGN PARAMETER  
Audio Input  
EXAMPLE VALUE  
Digital Audio, I2S  
Digital Audio, I2S  
Mono  
Current and Voltage Data Stream  
Mono or Stereo Configuration  
Max Output Power at 1% THD+N  
5.0 W  
9.2.2 Detailed Design Procedure  
9.2.2.1 Mono/Stereo Configuration  
In this application, the device is assumed to be operating in mono mode. See Section 8.3.2 for information on  
changing the I2C address of the TAS2563 to support stereo operation. Mono or stereo configuration does not  
impact the device performance.  
9.2.2.2 Boost Converter Passive Devices  
The boost converter requires three passive devices that are labeled L1, C1 and C2 in Section 9.2 and whose  
specifications are provided in Table 9-1. These specifications are based on the design of the TAS2563 and are  
necessary to meet the performance targets of the device. In particular, L1 should not be allowed to enter in the  
current saturation region. The saturation current for L1 should be > ILIM to deliver Class-D peak power.  
Additionally, the ratio of L1/C2 (the derated value of C2 at 11.5 V should be used in this ratio) has to be lesser  
than 1/3 for boost stability. This 1/3 ratio should be maintained including the worst case variation of L1 and C2.  
To satisfy sufficient energy transfer, L1 needs to be ≥ 0.47 μH at the boost switching frequency (100 kHz to 4  
MHz). Using a 0.47 μH will have more boost ripple than a 1.0 μH or 2.2 μH but the high PSRR should minimize  
the effect from the additional ripple. Finally, the minimum C2 (derated value at programmed boost voltage)  
should be > 3.3 μF for Class-D power delivery specification.  
9.2.2.3 EMI Passive Devices  
The TAS2563 supports edge-rate control to minimize EMI, but the system designer may want to include passive  
devices on the Class-D output devices. These passive devices that are labeled L2, L3, C3 and C4 in Section 9.2  
and their recommended specifications are provided in Table 9-1. If C3 and C4 are used, L2 and L3 must also be  
Copyright © 2020 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
installed, and C3 and C4 must be placed after L2 and L3 respectively to maintain the stability of the output  
stage.  
9.2.2.4 Miscellaneous Passive Devices  
The GREG Capacitor requires 100 nF to meet boost and Class-D power delivery and efficiency specs. For best  
device performance, the GREG capacitor should be placed very close to the device and be routed with wide  
traces to minimize the impact of PCB parasitic effects.  
9.2.3 Application Curves  
10  
5
10  
5
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2
3 45 7 10  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
D002  
D006  
RL = 4 Ω  
FIN = 1 kHz  
FIN = 20 Hz – 20 kHz  
POUT = 0.1 W  
RL = 8 Ω  
Figure 9-2. THD+N vs Output Power  
Figure 9-3. THD+N vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
10 Power Supply Recommendations  
10.1 Power Supplies  
The TAS2563 requires four power supplies:  
Boost Input (terminal: VBAT)  
– Voltage: 2.9 V to 5.5 V  
– Max Current: 5 A for ILIM = 4.0 A (default)  
Analog Supply (terminal: VDD)  
– Voltage: 1.65 V to 1.95 V  
– Max Current: 30 mA  
IO Supply (terminal: IOVDD)  
– Voltage: 1.65 V to 3.6 V  
– Max Current: 30 mA  
The decoupling capacitors for the power supplies should be placed close to the device terminals.  
10.2 Power Supply Sequencing  
The power rail may be brought up and down in any order. There is no requirement on sequencing. However if  
VDD is present without VBAT an additional rise in VDD current will be observed until VBAT is present.  
When the supplies have settled, the SDZ terminal can be set HIGH to operate the device. Additionally the SDZ  
pin can be tied to VDD and the internal POR will perform a reset of the device. After a hardware or software  
reset additional commands to the device should be delayed for 100 uS to allow the OTP to load. The above  
sequence should be completed before any I2C operation.  
10.2.1 Boost Supply Details  
The boost supply (VBAT) and associated passives need to be able to support the current requirements of the  
device. By default, the peak current limit of the boost is set to 4 A. Refer to Section 8.5.51 for information on  
changing the current limit. A minimum of a 10 µF capacitor is recommended on the boost supply to quickly  
support changes in required current. Refer to Section 9.2 for the schematic.  
The current requirements can also be reduced by lowering the gain of the amplifier, or in response to decreasing  
battery through the use of the battery-tracking feature of the TAS2563 described in Section 8.4.3.6.  
10.2.2 External Boost Mode (Boost Bypass Mode)  
Its is very important that during external boost mode, VBAT and SW should be open on board.  
Copyright © 2020 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
11 Layout  
11.1 Layout Guidelines  
Place the boost inductor between VBAT and SW close to device terminals with no VIAS between the device  
terminals and the inductor.  
Place the capacitor between VBST close to device terminals with no VIAS between the device terminals and  
capacitor.  
Place the capacitor between VBST/VBAT and GND close to device terminals with no VIAS between the  
device terminals and capacitor.  
Do not use VIAS for traces that carry high current. These include the traces for VBST, SW, VBAT, PGND and  
the speaker OUT_P, OUT_M.  
Use epoxy filled vias for the interior pads.  
Connect VSNS_P, VSNS_N as close as possible to the speaker.  
– VSNS_P, VSNS_N should be connected between the EMI ferrite and the speaker if EMI ferrites are used  
on OUT_P, OUT_M.  
– EMI ferrites must be used if EMI capacitors are used on OUT_P, OUT_M.  
Use a ground plane with multiple vias for each terminal to create a low-impedance connection to GND for  
minimum ground noise.  
Use supply decoupling capacitors as shown in Section 9.2 and described in Section 10.1.  
Place EMI ferrites, if used, close to the device.  
Table 11-1. Pin Layout Guidelines  
PIN  
MAX PARASITIC INDUCTANCE  
LAYOUT RECOMMENDATIONS  
BGND, GND, PGND, GNDD  
150 pH  
Short BGND, GND, GNDD, PGDN below the package and  
connect them to PCB ground plane strongly through  
multiple vias. Minimize inductance as much as possible  
DREG  
500 pH  
Bypass to GND with capacitor recommended in Table 9-1.  
Do not connect to external load. Both ends of decoupling  
cap should see as low inductance as possible between this  
pin and gnd pins.  
GREG  
PVDD  
SW  
200 pH  
100 pH  
Connect it to PVDD with a star connection and not to boost  
plane with recommended in Table 9-1. Do not connect to  
external load.  
Short it to VBST(boost) plane through strong conneciton.  
Connect it to GREG with a star connection and not to  
boost plane.  
Connect to VBAT with boost inductor recommended in  
Table 9-1. Reduce parasitic capacitor and resistance for  
efficiency. Boost inductor should be as close as possible to  
the SW pin. Inductor should be connected to SW through  
thick plane. Traces should support currents up to device  
over-current limit.  
VBAT  
VBST  
500 pH  
100 pH  
Bypass to GND with capacitor recommended in Table 9-1.  
Should be connected to inductor through thick plane. Both  
ends of decoupling capacitor should see as low inductance  
as possible between VBAT pin and PGND pin.  
Do not connect to external load. Bypass to GND with  
capacitor recommended in Table 9-1. Connect to PVDD  
through thick plane. Both ends of decoupling capacitor  
should see as low inductance as possible between VBST  
pin and BGND pin. Traces should support currents up to  
device over-current limit.  
VDD  
200 pH  
Bypass to GND with capacitor recommended in Table 9-1.  
Both the end of decoupling cap should see as low  
inductance as possible between this pin and GND pin  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TAS2563  
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
11.2 Layout Example  
Figure 11-1. WCSP Package PCB Solution  
Figure 11-2. WCSP package Top Layer  
Copyright © 2020 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 11-3. WCSP Package Mid-Layer 1  
Figure 11-4. WCSP Package Mid-Layer2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 11-5. WCSP Package Bottom Layer  
Figure 11-6. QFN Package PCB Solution  
Copyright © 2020 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
Figure 11-7. QFN Package Top Layer  
Figure 11-8. QFN Package Bottom Layer  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following: TAS2563YBGEVM-DC Evaluation module user's guide  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
PurePathare trademarks of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TAS2563  
 
 
 
 
 
 
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TAS2563  
 
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
PACKAGE OUTLINE  
TAS2563YBG  
YBG0042-C01  
DSBGA - 0.5 mm max height  
SCALE 5.000  
DIE SIZE BALL GRID ARRAY  
2.558  
2.518  
A
B
BALL A1  
CORNER  
3.017  
2.977  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.20  
0.14  
2
TYP  
(0.2111)  
PKG  
(0.3269)  
G
(0.2409)  
F
E
2.4  
0.0576  
TYP  
BALL ARRAY  
PKG  
D
C
B
0.4 TYP  
A
(0.3561)  
0.27  
0.23  
2
1
4
5
6
3
42X  
0.015  
0.0579  
C A B  
BALL ARRAY  
0.4 TYP  
4224770/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
EXAMPLE BOARD LAYOUT  
TAS2563YBG  
YBG0042-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
42X ( 0.23)  
(0.0579)  
2
3
1
4
5
6
A
(0.4) TYP  
B
C
PKG  
SYMM  
BALL ARRAY  
D
E
(0.0576)  
F
G
PKG  
SYMM  
BALL ARRAY  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224770/A 01/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
EXAMPLE STENCIL DESIGN  
TAS2563YBG  
YBG0042-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(0.0579)  
42X ( 0.25)  
(R0.05) TYP  
2
3
1
4
5
6
A
(0.4) TYP  
B
METAL  
TYP  
C
PKG  
SYMM  
BALL ARRAY  
D
(0.0576)  
E
F
G
SYMM  
BALL ARRAY  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 30X  
4224770/A 01/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
PACKAGE OUTLINE  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032B  
4.6  
4.4  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
1.0  
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08  
C
0.533  
PKG  
0.5  
0.3  
(0.367)  
8X  
1.0  
0.8  
0.017  
(0.167)  
24X 0.4  
TYP (0.1)  
(0.226)  
(0.3)  
(0.626)  
16  
9
(0.25)  
(0.65)  
17  
8
1.3  
1.1  
3X  
0.7  
0.5  
3X  
4X 0.55  
PKG  
2X 0.475  
0.2  
0.3  
0.2  
0.1  
0.05  
C A B  
0.224  
C
0.95  
0.75  
0.513  
1.4  
1.2  
2X  
1
0.75  
0.55  
(0.674)  
24  
(0.5)  
32  
25  
0.55  
0.35  
(0.35)  
(0.15)  
5X  
(0.175)  
(0.3)  
0.25  
0.15  
27X  
(0.274)  
0.6  
0.4  
2X (0.7)  
4X  
0.1  
C
C
A B  
0.05  
4226018/A 07/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032B  
(1.1)  
2X (0.9)  
(0.325)  
(0.7)  
(0.55)  
PKG  
(0.874)  
(1.05)  
2X (0.2)  
(0.85)  
25  
32  
(1.875)  
(1.775)  
(1.675)  
24  
(1.6626)  
1
(1.526)  
(1.45)  
2X  
(1.5)  
(0.513)  
5X (0.4)  
4X (0.55)  
(0.25)  
PKG  
24X (0.4)  
(0.2)  
(0.224)  
(R0.05)  
(0.826)  
3X (0.8)  
5X (0.65)  
(1.5)  
(1.574)  
(1.8)  
17  
8
3X  
(1.5499)  
(1.4)  
(0.85)  
(1.875)  
9
16  
(1.9)  
4X (0.7)  
(0.017)  
(0.567)  
8X (0.6)  
27X (0.2)  
(0.5334)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 16X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
DEFINED  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226018/A 07/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TAS2563  
TAS2563  
www.ti.com  
SLASET3B – FEBRUARY 2020 – REVISED DECEMBER 2020  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032B  
(1.1)  
2X (0.875)  
(0.325)  
(0.7)  
(0.55)  
PKG  
(0.849)  
2X (0.2)  
(1.05)  
(0.85)  
25  
32  
(1.875)  
(1.775)  
(1.675)  
24  
(1.6626)  
1
(1.526)  
(1.45)  
2X  
(1.5)  
(0.513)  
5X (0.35)  
(0.25)  
PKG  
4X (0.55)  
24X (0.4)  
(0.224)  
(R0.05)  
(0.2)  
(0.801)  
3X (0.8)  
5X (0.65)  
(1.5)  
(1.574)  
(1.8)  
17  
8
3X  
(1.5499)  
(1.4)  
(0.825)  
(1.875)  
9
16  
(1.9)  
4X (0.7)  
(0.017)  
(0.567)  
8X (0.6)  
27X (0.2)  
(0.5334)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PAD 1: 93% , PAD 8: 92%, PAD 17: 87%, PAD 24: 94%  
SCALE: 16X  
4226018/A 07/2020  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TAS2563  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTAS2563RPPT  
TAS2563RPPR  
TAS2563RPPT  
ACTIVE  
VQFN-HR  
RPP  
32  
32  
32  
250  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
TAS2563  
P
PREVIEW VQFN-HR  
PREVIEW VQFN-HR  
RPP  
3000 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
RPP  
250  
RoHS (In work)  
& Non-Green  
Call TI  
TAS2563YBGR  
TAS2563YBGT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YBG  
YBG  
42  
42  
3000 RoHS & Green  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TAS2-DSA  
TAS2-DSA  
250 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS2563YBGR  
TAS2563YBGT  
DSBGA  
DSBGA  
YBG  
YBG  
42  
42  
3000  
250  
330.0  
330.0  
12.4  
12.4  
2.71  
2.71  
3.17  
3.17  
0.6  
0.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS2563YBGR  
TAS2563YBGT  
DSBGA  
DSBGA  
YBG  
YBG  
42  
42  
3000  
250  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YBG0042  
DSBGA - 0.5 mm max height  
SCALE 6.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.20  
0.14  
BALL TYP  
2 TYP  
SYMM  
G
F
E
D
2.4  
TYP  
SYMM  
D: Max = 2.987 mm, Min =2.927 mm  
E: Max = 2.529 mm, Min =2.468 mm  
C
B
A
0.4 TYP  
0.27  
2
1
4
5
6
3
42X  
0.23  
0.015  
C A B  
0.4 TYP  
4224566/A 09/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBG0042  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
42X ( 0.23)  
2
1
4
5
6
A
(0.4) TYP  
B
C
SYMM  
D
E
F
G
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224566/A 09/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBG0042  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
42X ( 0.25)  
(0.4) TYP  
(R0.05) TYP  
6
2
1
4
5
A
B
C
SYMM  
METAL  
TYP  
D
E
F
G
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 30X  
4224566/A 09/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
GENERIC PACKAGE VIEW  
RPP 32  
4.5 x 4, 0.4 mm pitch  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226439/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032B  
4.6  
4.4  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
1.0  
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08  
C
0.533  
PKG  
0.5  
0.3  
8X  
1.0  
0.8  
(0.367)  
0.017  
(0.167)  
24X 0.4  
TYP (0.1)  
(0.226)  
(0.3)  
(0.626)  
16  
9
(0.25)  
(0.65)  
17  
8
1.3  
1.1  
3X  
0.7  
0.5  
3X  
4X 0.55  
PKG  
2X 0.475  
0.2  
0.3  
0.2  
0.1  
0.05  
C A B  
0.224  
C
0.95  
0.75  
0.513  
1.4  
1.2  
2X  
1
0.75  
0.55  
(0.674)  
24  
(0.5)  
32  
25  
0.55  
0.35  
(0.274)  
(0.35)  
(0.15)  
5X  
(0.175)  
(0.3)  
0.25  
27X  
0.15  
0.6  
0.4  
2X (0.7)  
4X  
0.1  
C
C
A B  
0.05  
4226018/A 07/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032B  
(1.1)  
2X (0.9)  
(0.325)  
(0.7)  
(0.55)  
2X (0.2)  
PKG  
(0.874)  
(1.05)  
(0.85)  
25  
32  
(1.875)  
(1.775)  
(1.675)  
24  
(1.6626)  
1
(1.526)  
(1.45)  
2X  
(1.5)  
(0.513)  
5X (0.4)  
4X (0.55)  
(0.25)  
PKG  
24X (0.4)  
(0.2)  
(0.224)  
(R0.05)  
(0.826)  
3X (0.8)  
5X (0.65)  
(1.5)  
(1.574)  
(1.8)  
17  
8
3X  
(1.5499)  
(1.4)  
(0.85)  
(1.875)  
9
16  
(1.9)  
4X (0.7)  
(0.017)  
(0.567)  
8X (0.6)  
27X (0.2)  
(0.5334)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 16X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226018/A 07/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032B  
(1.1)  
2X (0.875)  
(0.325)  
(0.7)  
(0.55)  
2X (0.2)  
PKG  
(0.849)  
(1.05)  
(0.85)  
25  
32  
(1.875)  
(1.775)  
(1.675)  
24  
(1.6626)  
1
(1.526)  
(1.45)  
2X  
(1.5)  
(0.513)  
5X (0.35)  
(0.25)  
PKG  
4X (0.55)  
24X (0.4)  
(0.224)  
(R0.05)  
(0.2)  
(0.801)  
3X (0.8)  
5X (0.65)  
(1.5)  
(1.574)  
(1.8)  
17  
8
3X  
(1.5499)  
(1.4)  
(0.825)  
(1.875)  
9
16  
(1.9)  
4X (0.7)  
(0.017)  
(0.567)  
8X (0.6)  
27X (0.2)  
(0.5334)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PAD 1: 93% , PAD 8: 92%, PAD 17: 87%, PAD 24: 94%  
SCALE: 16X  
4226018/A 07/2020  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TAS2563RPPR

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense
TI

TAS2563RPPT

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense
TI

TAS2563YBGR

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense
TI

TAS2563YBGT

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense
TI

TAS2563_V01

TAS2563 6.1-W Boosted Class-D Audio Amplifier With Integrated DSP And IV Sense
TI

TAS2564

具有 I/V 感应扬声器保护和集成 13V H 类升压的 7W 数字输入智能放大器
TI

TAS2564YBGR

具有 I/V 感应扬声器保护和集成 13V H 类升压的 7W 数字输入智能放大器 | YBG | 36 | -40 to 85
TI

TAS2564YBGT

具有 I/V 感应扬声器保护和集成 13V H 类升压的 7W 数字输入智能放大器 | YBG | 36 | -40 to 85
TI

TAS273K035P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS273K050P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS273K075P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS273K100P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE