TAS2764 [TI]

具有 I/V 感应功能、用于扬声器保护和多级电源的 13W 数字输入 2.3V 至 16V 智能放大器;
TAS2764
型号: TAS2764
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I/V 感应功能、用于扬声器保护和多级电源的 13W 数字输入 2.3V 至 16V 智能放大器

放大器
文件: 总103页 (文件大小:2772K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS2764  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
TAS2764 具有扬声IV 检测功能的数字输入单声D 类音频放大器  
1 特性  
3 说明  
• 关键特性  
Y 桥电源架构  
– 边沿和扩频控制  
– 高40kHz 的满量程超声波输出  
• 输出功(1 % THD+N)  
TAS2764 是一款单声道数字输入 D 类音频放大器专  
为将高峰值功率有效驱动到小型扬声器进行了优化。该  
D 类放大器在 12V 电源电压下可向 4Ω 负载提供 13W  
的连续功率同时保THD+N 1 %。  
Y 桥架构改善了低输出功率电平和闲置模式下的整体效  
率。  
13W4Ω12V)  
8W8Ω12V)  
• 功耗1 % THD+N4Ω12V)  
1W 下效率81%  
13W 下效率85%  
– 噪声门模式下3mA  
– 硬件关断模式下低1uA  
• 电源和管理  
集成式扬声器电压和电流检测实时监控扬声器行为。电  
源跟踪峰值电压限制器优化了放大器余量。具有多个阈  
值的欠压预防方案能够在电源出现压降时减少信号路径  
中的增益。  
TAS2764 支持超声波输出能够用于运动和接近检  
测、姿势检测等高级超声波应用。  
最多八TAS2764 器件可通I2S/TDM I2C 接口共  
用一根公共总线。  
PVDD2.3 V 16 V  
VBAT1S2.3V 5.5V  
AVDD1.8V  
IOVDD1.2V/1.8V  
– 欠压保护  
该器件采用 30 0.4mm CSP 封装可实现紧  
PCB 尺寸。  
PVDD 跟踪峰值电压限制器  
• 接口和控制  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
SDOUT I2S 反馈实现回声消除  
I2S/TDM8 个通道32 ),每个通道高达  
96kHz  
I2C具有快速模式增强版支持8 个地址  
44.1 kHz 96kHz 采样速率  
– 芯片间通信总线  
TAS2764  
DSBGA  
2.128 mm x 2.542 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 集成扬声器管理和保护功能  
– 扬声器电压和电流检测  
– 短路和开路保护  
– 热保护和过流保护  
– 过功率保护  
2 应用  
• 笔记本电脑  
• 平板电脑  
• 无线扬声器  
• 智能扬声器  
• 消费类音频器件  
原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOS998  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Table of Contents  
9.1 Application Information............................................. 87  
9.2 Typical Application.................................................... 87  
9.3 Design Requirements............................................... 88  
9.4 Detailed Design Procedure.......................................88  
9.5 Application Curves....................................................89  
10 Initialization Set Up..................................................... 90  
10.1 Recommended Configuration at Power Up............ 90  
10.2 Initial Device Configuration - 4 Channel Power  
Up (Default Mode - PWR_MODE1).............................90  
10.3 Initial Device Configuration - 44.1 kHz....................91  
10.4 Sample Rate Change - 48 kHz to 44.1kHz.............91  
10.5 Idle Channel Hysterisis........................................... 91  
10.6 DSP Loopback........................................................91  
11 Power Supply and I2C Recommendations................ 92  
11.1 Power Supply Modes.............................................. 92  
12 Layout...........................................................................94  
12.1 Layout Guidelines................................................... 94  
12.2 Layout Example...................................................... 94  
13 Device and Documentation Support..........................96  
13.1 接收文档更新通知................................................... 96  
13.2 支持资源..................................................................96  
13.3 Trademarks.............................................................96  
13.4 Electrostatic Discharge Caution..............................96  
13.5 术语表..................................................................... 96  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 I2C Timing Requirements.......................................... 11  
6.7 TDM Port Timing Requirements................................12  
6.8 Typical Characteristics..............................................13  
7 Parameter Measurement Information..........................23  
8 Detailed Description......................................................24  
8.1 Overview...................................................................24  
8.2 Functional Block Diagram.........................................24  
8.3 Feature Description...................................................24  
8.4 Device Functional Modes..........................................26  
8.5 Operational Modes....................................................37  
8.6 Faults and Status......................................................38  
8.7 Power Sequencing Requirements............................ 40  
8.8 Digital Input Pull Downs............................................40  
8.9 Register Map.............................................................41  
8.10 SDOUT Equations.................................................. 86  
9 Application and Implementation..................................87  
Information.................................................................... 97  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2020) to Revision A (September 2021)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
5 Pin Configuration and Functions  
1
2
3
4
5
VSNS_N  
A
BST_N  
OUT_P  
PGND  
OUT_N  
VSNS_P  
BST_P  
DREG  
FSYNC  
SDIN  
OUT_P  
PVDD_SNS  
BYP_EN  
IRQZ  
PGND  
PVDD  
ADDR  
GND  
OUT_N  
PVDD  
B
C
D
E
GND  
SDOUT  
SBCLK  
SDA  
VBAT1S  
AVDD  
F
SCL  
IOVDD  
SDZ  
ICC  
Not to scale  
5-1. YBH Package 30-Ball DSBGA Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Address detect pin. Resistor value at this pin selects the I2C address. See 8.3.1. Minimize  
capacitive loading on this pin and do not connect to any other load.  
ADDR  
D4  
I
AVDD  
E5  
A2  
B2  
P
P
P
Analog power input. Connect to 1.8V supply and decouple to GND with a capacitor.  
Class-D negative bootstrap. Connect a capacitor between BST_N and OUT_N.  
Class-D positive bootstrap. Connect a capacitor between BST_P and OUT_P.  
BST_N  
BST_P  
Digital core voltage regulator output. Bypass to GND with a capacitor. Do not connect to  
external load.  
DREG  
C2  
P
I
FSYNC  
GND  
D2  
E4  
C1  
F5  
F3  
TDM Frame Sync.  
P
Analog ground. Connect to PCB ground plane.  
ICC  
IO  
P
Interchip communication pin used to transmit gain alignment.  
IOVDD  
Digital IO Supply. Connect to 1.2V or 1.8 V supply and decouple with a capacitor to GND.  
Open drain, active low interrupt pin. Pull up to IOVDD with resistor if optional internal pull up  
is not used.  
IRQZ  
E3  
D3  
O
O
Low voltage signaling pin with open drain output. It can be used to enable/disable an  
external converter.  
BYP_EN  
OUT_N  
B5  
A5  
O
Class-D negative output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
5-1. Pin Functions (continued)  
PIN  
I/O  
O
DESCRIPTION  
NAME  
NO.  
B3  
A3  
B4  
A4  
E1  
F2  
F1  
E2  
D1  
F4  
C4  
C5  
C3  
D5  
A1  
B1  
OUT_P  
Class-D positive output.  
PGND  
P
Class-D ground. Connect to PCB ground plane.  
SBCLK  
SCL  
I
I
TDM Serial Bit Clock.  
I2C Clock Pin. Pull up to IOVDD with a resistor.  
I2C Data Pin. Pull up to IOVDD with a resistor.  
TDM Serial Data Input.  
SDA  
IO  
I
SDIN  
SDOUT  
SDZ  
IO  
I
TDM Serial Data Output.  
Active low hardware shutdown.  
PVDD  
P
Class-D power supply input. Decouple with a capacitor.  
PVDD_SNS  
VBAT1S  
I
P
I
PVDD remote sense pin.  
Single-cell battery supply input. Decouple with a capacitor.  
Voltage Sense negative input. Connect to one speaker input.  
Voltage Sense positive input. Connect to the other speaker input.  
VSNS_N  
VSNS_P  
I
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
-0.3  
MAX  
2
UNIT  
AVDD  
V
V
V
V
V
IOVDD  
2
Supply Voltage  
PVDD  
18.5  
6
VBAT1S  
PVDD-VBAT1S  
18  
Internal Supply  
Voltage  
DREG  
-0.3  
0.3  
40  
1.5  
2.3  
85  
V
V
Input voltage(2)  
Digital IOs referenced to IOVDD supply  
Operating free-air temperature, TA ; Device is functional and reliable, some performance characteristics may be  
degraded.  
°C  
Performance free-air temperature, TP ; All performance characteristics are met.  
Operating junction temperature, TJ  
70  
125  
150  
°C  
°C  
°C  
20  
40  
65  
Storage temperature, Tstg  
(1) Stresses beyond those listed under 6.1 can cause permanent damage to the device. These are stress ratings only, which do not  
imply functional operation of the device at these or any other conditions beyond those indicated under 6.3 . Exposure to absolute  
maximum rated conditions for extended periods can affect device reliability.  
(2) All digital inputs and IOs are failsafe.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
1.1  
NOM  
1.8  
MAX  
1.95  
1.3  
UNIT  
AVDD  
Supply voltage  
Supply voltage  
V
1.2  
IOVDD  
V
V
V
1.65  
2.3(2)  
3.0  
1.8  
1.95  
16  
Supply voltage (functional)(1)  
Supply voltage (performance)  
Supply voltage (functional)(1)  
Supply voltage (performance)  
High-level digital input voltage  
Low-level digital input voltage  
Speaker impedance  
PVDD  
16  
2.3  
5.5  
VBAT1S  
3.0  
5.5  
VIH  
IOVDD  
0
V
V
VIL  
RSPK  
LSPK  
3.2  
5
Ω
Speaker inductance  
µH  
(1) Device will remain functional but performance will degrade.  
(2) PVDD>VBAT1S-0.7V.  
6.4 Thermal Information  
TAS2764  
THERMAL METRIC(1)  
YBH (DSBGA)  
30 PINS  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
59.9  
°C/W  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
UNIT  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
TAS2764  
YBH (DSBGA)  
30 PINS  
0.2  
THERMAL METRIC(1)  
RθJC(top)  
RθJB  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
14.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.1  
14.9  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TA = 25 °C, PVDD = 12 V, VBAT1S = 3.8 V, AVDD = 1.8V IOVDD =1.2 V, RL = 4Ω+ 16µH, fin = 1 kHz, fs = 48 kHz, Gain = 21  
dBV, SDZ = 1, EDGE_RATE[1:0]=00, NG_EN=0, EN_LLSR=1, PWR_MODE1, Measured filter free as in Section 7 (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUT and OUTPUT  
High-level digital input logic voltage  
threshold  
VIH  
All digital pins except SDA and SCL  
All digital pins except SDA and SCL  
SDA and SCL  
0.7×IOVDD  
V
V
V
V
Low-level digital input logic voltage  
threshold  
0.3 ×  
IOVDD  
VIL  
High-level digital input logic voltage  
threshold  
VIH(I2C)  
VIL(I2C)  
0.7xIOVDD  
Low-level digital input logic voltage  
threshold  
0.3 x  
IOVDD  
SDA and SCL  
VOH  
VOL  
High-level digital output voltage  
Low-level digital output voltage  
All digital pins except SDA, SCL and IRQZ; IOH = 100 µA.  
V
V
IOVDD0.2V  
0.2  
All digital pins except SDA, SCL and IRQZ; IOL = 100 µA.  
0.2 x  
IOVDD  
VOL(I2C)  
VOL(IRQZ)  
IIH  
Low-level digital output voltage  
SDA and SCL; IOL(I2C) = -1 mA.  
IRQZ; IOL(IRQZ) = -1 mA.  
-
V
V
Low-level digital output voltage for  
IRQZ open drain Output  
0.2  
1
Input logic-high leakage for digital  
inputs  
All digital pins; Input = IOVDD.  
All digital pins; Input = GND.  
µA  
µA  
1  
1  
Input logic-low leakage for digital  
inputs  
IIL  
1
ROS  
CIN  
OUT to VSNS Resistors  
Load disconnected  
All digital pins  
10  
5
kΩ  
Input capacitance for digital inputs  
pF  
Pull down resistance for IO pins  
when asserted on  
RPD  
SDOUT, SDIN, FSYNC, SBCLK  
18  
kΩ  
Drive Mode 0 - Measured at (IOVDD-0.4V) and 0.4V  
Drive Mode 1 - Measured at (IOVDD-0.4V) and 0.4V  
Drive Mode 2 - Measured at (IOVDD-0.4V) and 0.4V  
Drive Mode 3 - Measured at (IOVDD-0.4V) and 0.4V  
8
6
4
2
IO  
Output Current Strength  
mA  
AMPLIFIER PERFORMANCE  
13  
8
RL = 4Ω+ 16µH, THD+N = 1 %  
RL = 8 Ω+ 16 µH, THD+N = 1 %  
RL = 4Ω+ 16µH, THD+N = 10 %  
RL = 8 Ω+ 16 µH, THD+N = 10 %  
RL = 4Ω+ 16µH, POUT = 1 W  
POUT  
Maximum Output Power  
W
15.8  
9.7  
80.5  
84  
RL = 8 Ω+ 16 µH, POUT = 1 W  
76.5  
82.5  
85  
RL = 8 Ω+ 5µH, POUT = 1 W PWR_MODE2  
RL = 8 Ω+ 16µH, POUT = 1 W PWR_MODE2  
RL = 4Ω+ 16µH, POUT = 10 W  
System Efficiency  
%
90  
RL = 8 Ω+ 16 µH, POUT = 5 W  
90  
RL = 8 Ω+ 5 µH, POUT = 8 W, PWR_MODE2  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
TA = 25 °C, PVDD = 12 V, VBAT1S = 3.8 V, AVDD = 1.8V IOVDD =1.2 V, RL = 4Ω+ 16µH, fin = 1 kHz, fs = 48 kHz, Gain = 21  
dBV, SDZ = 1, EDGE_RATE[1:0]=00, NG_EN=0, EN_LLSR=1, PWR_MODE1, Measured filter free as in Section 7 (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
POUT = 1 W, RL = 4Ω+ 16µH, fin = 1 kHz  
POUT = 1 W, RL = 4Ω+ 16µH, fin = 6.67 kHz  
MIN  
TYP  
MAX  
UNIT  
-83  
-83  
THD+N  
Total Harmonic Distortion and Noise  
dB  
POUT = 1 W, RL = 8 Ω+ 5µH, fin = 20 Hz - 20 kHz,  
PWR_MODE2  
-83  
IMD  
VN  
Intermodulation Distortion  
Idle Channel Noise  
ITU-R, 19kHz/20kHz, 1:1:6.5W  
-80  
27  
dB  
µV  
A-Weighted, 20 Hz - 20 kHz, DAC in Mute, PWR_MODE1  
A-Weghted, 20 Hz - 20k Hz, DAC in Mute, PWR_MODE2  
A-Weighted, 20 Hz - 20 kHz, DAC in Mute, PWR_MODE4  
27  
32.7  
Average frequency in Spread Spectrum Mode,  
CLASSD_SYNC=0  
384  
384  
Fixed Frequency Mode, CLASSD_SYNC=0  
365  
-1  
404  
FPWM  
Class-D PWM Switching Frequency  
kHz  
Fixed Frequency Mode, CLASSD_SYNC=1, fs = 44.1, 88.2  
kHz  
352.8  
384  
Fixed Frequency Mode, CLASSD_SYNC=1, fs = 48, 96 kHz  
Idle Mode  
VOS  
Output Offset Voltage  
Dynamic Range  
1
mV  
dB  
A-Weighted, -60 dBFS  
109  
109  
109  
DNR  
A-Weighted, -60 dBFS, PWR_MODE2  
A-Weighted, Referenced to 1 % THD+N Output Level  
SNR  
KCP  
Signal to Noise Ratio  
dB  
A-Weighted, Referenced to 1 % THD+N Output Level  
PWR_MODE2  
109  
Click and Pop Performance  
Full Scale Output Voltage  
Into and out of Shutdown, A-weighted  
fs <= 48kHz  
1
2.7  
mV  
dBV  
dBV  
dBV  
21  
11  
21  
Minimum Programmable Gain  
Maximum Programmable Gain  
fs <= 48kHz  
fs <= 48kHz  
Programmable Output Level Step  
Size  
0.5  
dB  
Mute attenuation  
Device in Software Shutdown or Muted in Normal Operation  
110  
dB  
µs  
dB  
Chip to Chip Group Delay  
EMI Margin to EN55022B  
-1  
1
6" cable, Pout = 1W  
-6  
100  
112  
96  
PVDD = 12 V + 200 mVpp, fripple = 217 Hz  
PVDD Power Supply Rejection Ratio PVDD = 12 V + 200 mVpp, fripple = 1 kHz  
PVDD = 12 V + 200 mVpp, fripple = 20 kHz  
dB  
dB  
dB  
VBAT1S = 3.8 V + 200 mVpp, fripple = 217 Hz  
100  
112  
88  
VBAT1S Power Supply Rejection  
VBAT1S = 3.8 V + 200 mVpp, fripple = 1 kHz  
Ratio  
VBAT1S = 3.8 V + 200 mVpp, fripple = 20 kHz  
AVDD = 1.8 V + 200 mVpp, fripple = 217 Hz  
96  
AVDD Power Supply Rejection Ratio AVDD = 1.8 V + 200 mVpp, fripple = 1 kHz  
AVDD = 1.8 V + 200 mVpp, fripple = 20 kHz  
90  
96  
PVDD 217 Hz, 100-mVpp, Input f=1kHz @ 400mW  
-70  
-118  
-82  
-70  
1.2  
5.3  
0.5  
5.9  
VBAT1S 217 Hz, 100-mVpp, Input f=1kHz @ 400mW  
Power Supply Intermodulation  
dB  
AVDD, 217 Hz, 100-mVpp, Input f=1kHz @ 400mW  
IOVDD 217 Hz, 100-mVpp, Input f=1kHz @ 400mW  
No Volume Ramping  
Turn ON Time from Release of SW  
Shutdown  
ms  
ms  
Volume Ramping  
No Volume Ramping  
Turn OFF Time From Assertion of  
SW Shutdown to Amp Hi-Z  
Volume Ramping  
Release of SW Shutdown to new  
assertion of SW Shutdown  
1.5  
1
ms  
ms  
Out of HW Shutdown to first I2C  
command  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
TA = 25 °C, PVDD = 12 V, VBAT1S = 3.8 V, AVDD = 1.8V IOVDD =1.2 V, RL = 4Ω+ 16µH, fin = 1 kHz, fs = 48 kHz, Gain = 21  
dBV, SDZ = 1, EDGE_RATE[1:0]=00, NG_EN=0, EN_LLSR=1, PWR_MODE1, Measured filter free as in Section 7 (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
100  
1.5  
TYP  
MAX  
UNIT  
Noise Gate recovery to Shutdown  
latency  
μs  
Power up to BOP_SHDN latency  
ms  
DIAGNOSTIC GENERATOR  
THD+N  
ferr  
Total Harmonic Distortion and Noise Pout=1W, DVC_LVL[7:0]=17h  
-80  
dB  
%
Frequency Error  
Using internal oscillator  
5
DIE TEMPERATURE  
SENSOR  
Resolution  
8
bits  
°C  
Minimum Die Temperature  
Measurement  
-40  
Maximum Die Temperature  
Measurement  
150  
1
°C  
Die Temperature Resolution  
Die Temperature Accuracy  
°C  
°C  
-5  
5
VOLTAGE  
MONITOR  
Resolution  
12  
2
bits  
V
Minimum PVDD Measurement  
Maximum PVDD Measurements  
PVDD Resolution  
16  
20  
V
mV  
mV  
V
PVDD Accuracy  
-100  
-45  
100  
45  
Minimum VBAT1S Measurement  
Maximum VBAT1S Measurement  
VBAT1S Resolution  
2
6
V
20  
mV  
mV  
VBAT1S Accuracy  
TDM SERIAL AUDIO PORT  
PCM Sample Rates and FSYNC  
Typical values  
44.1  
96  
24.576  
0.5  
kHz  
Input Frequency  
SBCLK Input Frequency  
I2S/TDM Operation  
0.7056  
MHz  
RMS Jitter below 40 kHz that can be tolerated without  
performance degradation  
SBCLK Maximum Input Jitter  
ns  
RMS Jitter above 40 kHz that can be tolerated without  
performance degradation  
1
SBCLK Cycles per FSYNC in I2S and Other values: 24, 32, 48, 64, 96, 125, 128, 192, 250, 256,  
TDM Modes 384, 500  
16  
512  
Cycles  
PCM PLAYBACK CHARACTERISTICS fs 48 kHz  
fs  
Sample Rates  
44.1  
-0.3  
48  
kHz  
fs  
Passband Frequency Meeting Ripple  
Passband Ripple  
0.454  
20Hz to LPF cutoff frequency  
+0.3  
dB  
60  
65  
0.55 fs  
Stop Band Attenuation  
Group Delay @ 1kHz  
Group Delay  
dB  
1/fs  
1/fs  
1 fs  
Noise Gate Enabled  
17.7  
9
Noise Gate Disabled  
DC to 0.454 fs , Noise Gate enabled, DC blocker disabled  
DC to 0.454 fs , Noise Gate disabled, DC blocker disabled  
16  
7
19  
10  
fs > 48 kHz  
fs  
Sample Rates  
88.2  
-0.5  
96  
kHz  
fs  
Passband Frequency Meeting Ripple fs = 96 kHz  
0.375  
0.409  
Passband 3db Frequency  
Passband Ripple  
fs = 96 kHz  
fs  
DC to LPF cutoff frequency  
0.5  
dB  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
TA = 25 °C, PVDD = 12 V, VBAT1S = 3.8 V, AVDD = 1.8V IOVDD =1.2 V, RL = 4Ω+ 16µH, fin = 1 kHz, fs = 48 kHz, Gain = 21  
dBV, SDZ = 1, EDGE_RATE[1:0]=00, NG_EN=0, EN_LLSR=1, PWR_MODE1, Measured filter free as in Section 7 (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
60  
0.55 fs  
Stop Band Attenuation  
dB  
65  
1 fs  
Noise Gate Enabled  
Noise Gate Disabled  
33.2  
17.4  
Group Delay @ 1kHz  
Group Delay  
1/fs  
1/fs  
DC to 0.375 fs for 96 kHz, Noise Gate Enabled, DC blocker  
disabled  
33  
17  
39  
23  
DC to 0.375 fs for 96 kHz, Noise Gate Disabled, DC blocker  
disabled  
SPEAKER CURRENT SENSE  
Resolution  
16  
66  
bits  
dB  
dB  
A
DNR  
Dynamic Range  
Un-Weighted, Relative to 0 dBFS  
THD+N  
Total Harmonic Distortion and Noise fin = 1 kHz, Pout = 7. 5W  
-58  
3.75  
Full Scale Input Current  
Differential Mode Gain  
-6dBFS Input Signal Level  
Pout = 1W, using a 40Hz, -40dBFS pilot tone  
0.98  
-1.4  
1.02  
1.4  
Pout = 100mW to 0.1% THD+N, using a 40Hz, -40dBFS pilot  
tone, Calibrated at 100 mW  
Differential Mode Gain Variability  
%
Gain Error Over Temperature  
Offset  
-200C to 700C, Pout=1W, Calibrated at 250C  
HPF_FREQ_REC[2:0]=0h  
20Hz-20kHz  
-1.35  
-2  
1.35  
2
%
mA  
dB  
Frequency Response  
Group Delay  
-0.1  
0.1  
8
1/fs  
SPEAKER VOLTAGE SENSE  
Resolution  
16  
69  
bits  
dB  
DNR  
Dynamic Range  
Un-Weighted, Relative 0 dBFS  
THD+N  
Total Harmonic Distortion and Noise fin = 1 kHz, Pout = 7.5W  
Full Scale Input Voltage  
-60  
14  
dB  
VPK  
Differential Mode Gain  
Pout = 1W, using a 40Hz - 40dBFS pilot tone  
0.99  
1.01  
Pout = 100mW to 0.1% THD+N, using a 40Hz, -40dBFS pilot  
tone  
Differential Mode Gain Variability  
-0.45  
+0.45  
%
Gain error over temperature  
Offset  
-20C to 70C, Pout=1W  
HPF_FREQ_REC[2:0]=0h  
20Hz - 20kHz  
-0.75  
-10  
+0.75  
+10  
%
mV  
dB  
Frequency Response  
Group Delay  
-0.1  
0.1  
8
1/fs  
SPEAKER VOLTAGE to CURRENT SENSE PHASE  
Phase Error between V and I  
300  
ns  
µs  
PROTECTION CIRCUITRY  
Brownout Prevention Latency to First  
Attack  
PWR_MODE2, Measured at BOP_TH0 of 8.25V  
15  
Thermal Shutdown Temperature -  
Typical values  
135  
145  
5.9  
2.5  
155  
°C  
A
Output Over Current Limit on PVDD Output to Output, Output to GND, Output to PVDD  
Output Overt Current Limit on  
Output to Output, Output to GND  
VBAT1S  
A
UVLO is asserted  
2
VBAT1S Undervoltage Lockout  
Threshold  
V
V
UVLO is de-asserted  
2.3  
1.6  
1.1  
UVLO is asserted  
1.4  
0.7  
AVDD Undervoltage Lockout  
Threshold  
UVLO is de-asserted  
UVLO is asserted  
IOVDD Undervoltage Lockout  
Threshold  
V
V
UVLO is de-asserted  
VBAT1S Internal LDO Undervoltage  
UVLO is asserted  
4
Lockout Threshold  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
TA = 25 °C, PVDD = 12 V, VBAT1S = 3.8 V, AVDD = 1.8V IOVDD =1.2 V, RL = 4Ω+ 16µH, fin = 1 kHz, fs = 48 kHz, Gain = 21  
dBV, SDZ = 1, EDGE_RATE[1:0]=00, NG_EN=0, EN_LLSR=1, PWR_MODE1, Measured filter free as in Section 7 (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBAT1S Internal LDO Overvoltage  
Lockout Threshold  
OVLO is asserted  
5.5  
V
TYPICAL CURRENT CONSUMPTION  
SDZ = 0, PVDD  
SDZ = 0, VBAT1S  
SDZ = 0, AVDD  
SDZ = 0, IOVDD  
0.1  
0.1  
1
Hardware Shutdown  
µA  
µA  
0.1  
0.1  
1
All Clocks Stopped, PVDD  
All Clocks Stopped, VBAT1S  
All Clocks Stopped, AVDD  
All Clocks Stopped, IOVDD  
fs = 48 kHz, PVDD  
Software Shutdown  
Noise Gate Mode  
10  
1
0.05  
0.14  
3.2  
0.1  
0.02  
3
fs = 48 kHz, VBAT1S  
fs = 48 kHz, AVDD  
mA  
fs = 48 kHz, IOVDD  
fs = 48 kHz, PVDD  
fs = 48 kHz, VBAT1S  
fs = 48 kHz, AVDD  
Idle Mode - PWR_MODE1,  
PWR_MODE3  
mA  
mA  
8.9  
0.1  
3.2  
9.3  
0.1  
4.1  
9.3  
0.1  
fs = 48 kHz, IOVDD  
fs = 48 kHz, PVDD  
Idle Mode - PWR_MODE2  
Idle Mode - PWR_MODE4  
fs = 48 kHz, AVDD  
fs = 48 kHz, IOVDD  
fs = 48 kHz, PVDD  
fs = 48 kHz, AVDD  
mA  
fs = 48 kHz, IOVDD  
Idle Mode - PWR_MODE1,  
PWR_MODE3  
fs = 48 kHz, AVDD, IV Sense Disabled  
6.3  
* For definition of power modes see 11.1.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
6.6 I2C Timing Requirements  
TA = 25 °C, AVDD = IOVDD = 1.8 V (unless otherwisenoted)  
MIN  
NOM  
MAX  
UNIT  
Standard-Mode  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
μs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
250  
SDA and SCL rise time  
1000  
300  
ns  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
4
μs  
μs  
pF  
4.7  
Cb  
400  
400  
Fast-Mode  
fSCL  
SCL clock frequency  
0
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.6  
μs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
0.9  
100  
20 + 0.1 ×  
Cb[pF]  
tr  
tf  
SDA and SCL rise time  
SDA and SCL fall time  
300  
300  
ns  
ns  
20 + 0.1 ×  
Cb[pF]  
tSU;STO  
Set-up time for STOP condition  
0.6  
1.3  
μs  
μs  
pF  
tBUF  
Bus free time between a STOP and START condition  
Capacitive load for each bus line (10pF to 400pF)  
Cb  
400  
Fast-Mode Plus  
fSCL  
SCL clock frequency  
0
1000  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.26  
μs  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
50  
SDA and SCL Rise Time  
120  
120  
ns  
tf  
SDA and SCL Fall Time  
ns  
tSU;STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
μs  
μs  
pF  
0.5  
Cb  
550  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
6.7 TDM Port Timing Requirements  
TA = 25 °C, AVDD = IOVDD = 1.8 V, 20 pF load on all outputs(unless otherwise noted)  
MIN  
20  
20  
8
NOM  
MAX  
UNIT  
ns  
tH(SBCLK)  
SBCLK high period  
SBCLK low period  
FSYNC setup time  
FSYNC hold time  
SDIN/ICC setup time  
SDIN/ICC hold time  
tL(SBCLK)  
ns  
tSU(FSYNC)  
tHLD(FSYNC)  
tSU(SDIN/ICC)  
tHLD(SDIN/ICC)  
ns  
8
ns  
8
ns  
8
ns  
50% of SBCLK to 50% of SDOUT/ICC,  
IOVDD=1.8V  
2.8  
3.6  
13  
17  
SBCLK to SDOUT/ICC  
delay  
td(SBCLK_SDOUT/ICC)  
ns  
50% of SBCLK to 50% of SDOUT/ICC,  
IOVDD=1.2V  
tr(SBCLK)  
tf(SBCLK)  
SBCLK rise time  
SBCLK fall time  
10 % - 90 % Rise Time  
90 % - 10 % Fall Time  
8
8
ns  
ns  
SDA  
SCL  
tBUF  
tLOW  
th(STA)  
tr  
th(STA)  
STA  
th(DAT)  
tHIGH  
tsu(STA)  
tsu(STO)  
STO  
tf  
tsu(DAT)  
STA  
STO  
6-1. I2C Timing Diagram  
6-2. TDM and ICC Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
6.8 Typical Characteristics  
TA = 25 0C, PWR_MODE1, fSPK_AMP = 384 kHz, input signal fIN = 1kHz - Sine, filter for load resistance 15 μH, unless otherwise noted.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
0.001  
0.01  
0.1  
POUT (W)  
1
10 25  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
PWR_MODE1  
PWR_MODE1  
RL= 4 Ω  
RL= 8 Ω  
6-3. THDN vs Output Power  
6-4. THDN vs Output Power  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
0.001  
0.01  
0.1  
POUT (W)  
1
10  
30  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
PWR_MODE2  
PWR_MODE2  
RL= 4 Ω  
RL= 8 Ω  
6-5. THDN vs Output Power  
6-6. THDN vs Output Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
0.001  
0.01  
0.1  
POUT (W)  
1
10  
30  
0.001  
0.01  
0.1  
POUT (W)  
1
10  
30  
fIN = 6.667 kHz  
PWR_MODE1  
fIN = 6.667 kHz  
PWR_MODE1  
RL= 4 Ω  
RL= 8 Ω  
6-7. THDN vs Output Power  
6-8. THDN vs Output Power  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
0.001  
0.01  
0.1  
POUT (W)  
1
10  
30  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
fIN = 6.667 kHz  
PWR_MODE2  
fIN = 6.667 kHz  
PWR_MODE2  
RL= 4 Ω  
RL= 8 Ω  
6-9. THDN vs Output Power  
6-10. THDN vs Output Power  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
-75  
-76  
-77  
-78  
-79  
-80  
-81  
-82  
-83  
-84  
-85  
-75  
-77  
-79  
-81  
-83  
-85  
-87  
-89  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
200  
1000  
Frequency (Hz)  
10K 20K  
POUT = 0.1 W  
POUT = 0.1 W  
RL= 4 Ω  
RL= 8 Ω  
6-11. THDN vs Frequency  
6-12. THDN vs Frequency  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
POUT = 1 W  
POUT = 1 W  
RL= 4 Ω  
RL= 8 Ω  
6-13. THDN vs Frequency  
6-14. Class D THDN vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
40  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
DAC Mute ICN (A - weighted) (mV)  
DAC Unmute ICN (A - weighted) (mV)  
DAC Mute ICN (A - weighted) (mV)  
DAC Unmute ICN (A - weighted) (mV)  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
VBAT (V)  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
PVDD (V)  
PWR_MODE1  
PWR_MODE2  
6-15. ICN (A Weighted) vs VBAT  
6-16. ICN (A-Weighted) vs PVDD  
6.3  
6.25  
6.2  
6.3  
6.25  
6.2  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 12 V  
6.15  
6.1  
6.15  
6.1  
6.05  
6
6.05  
6
5.95  
5.9  
5.95  
5.9  
5.85  
5.8  
5.85  
5.8  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
fS = 48 kSPS  
fS = 96 kSPS  
RL= 4 Ω  
RL= 4 Ω  
6-17. Class D Frequency Response  
6-18. Class D Frequency Response  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
0.0001  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
0.0001  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
fIN = 1 kHz  
fIN = 1 kHz  
RL= 4 Ω  
RL= 8 Ω  
6-19. Efficiency vs Output Power  
6-20. Efficiency vs Output Power  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
0.0001  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
0.0001  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
fIN = 1 kHz  
PWR_MODE2  
fIN = 1 kHz  
PWR_MODE2  
RL= 4 Ω  
RL= 8 Ω  
6-21. Efficiency vs Output Power  
6-22. Efficiency vs Output Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
140  
140  
120  
100  
80  
AVDD = 1.8 V, PVDD = 12 V  
120  
100  
80  
60  
40  
20  
0
60  
40  
VBAT = 3.05 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
20  
0
10  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
RL= 4 Ω  
RL= 4 Ω  
6-23. AVDD PSRR vs Frequency  
6-24. VBAT PSRR vs Frequency  
140  
120  
100  
80  
10  
9.5  
9
AVDD Current (mA)  
8.5  
8
60  
40  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
7.5  
7
20  
0
20  
100  
1000  
Frequency (Hz)  
10K 20K  
1.5  
1.6  
1.7  
1.8  
AVDD (V)  
1.9  
2
2.1  
IV Sense Enabled  
RL= 4 Ω  
6-26. AVDD Idle Current vs AVDD  
6-25. PVDD PSRR vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
4.5  
4
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
VBAT Current (mA)  
PVDD Current (mA)  
3.5  
3
2.5  
2
0.008  
0.006  
0.004  
0.002  
0
1.5  
1
0.5  
0
2.5  
3
3.5  
4 4.5  
VBAT (V)  
5
5.5  
6
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
PVDD (V)  
IV Sense Enabled  
IV Sense Enabled  
6-27. VBAT Idle Current vs VBAT  
6-28. PVDD Idle Current vs PVDD  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
0.001  
0.01  
0.1  
POUT (W)  
1
10 25  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
fIN = 1 kHz  
Chop Enabled  
fIN = 1 kHz  
RL= 4 Ω  
RL= 8 Ω  
6-29. I Sense THDN vs Output Power  
6-30. I Sense THDN vs Output Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
-10  
VBAT = 3.8 V, PVDD = 16 V  
-20  
-30  
-40  
-50  
-60  
-70  
0.001  
0.01  
0.1  
POUT (W)  
1
10 25  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
fIN = 1 kHz  
PWR_MODE2  
fIN = 1 kHz  
PWR_MODE2  
RL= 4 Ω  
RL= 8 Ω  
6-31. I Sense THDN vs Output Power  
6-32. I Sense THDN vs Output Power  
-20  
-20  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
POUT = 1 W  
POUT = 1 W  
Chop Enabled  
RL= 4 Ω  
RL= 4 Ω  
6-33. I Sense THDN vs Frequency  
6-34. I Sense THDN vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
10  
0
10  
0
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
POUT = 1 W  
PWR_MODE2  
POUT = 1 W  
PWR_MODE2  
RL= 4 Ω  
RL= 8 Ω  
6-35. I Sense THDN vs Frequency  
6-36. I Sense THD vs. Frequency  
0
0
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0.001  
0.01  
0.1  
POUT (W)  
1
10 25  
0.001  
0.01  
0.1  
POUT (W)  
1
10 20  
Chop Enabled  
fIN = 1 kHz  
fIN = 1 kHz  
RL= 4 Ω  
RL= 8 Ω  
6-37. V Sense THDN vs Pout  
6-38. V Sense THDN vs Pout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
Chop Enabled  
POUT = 1 W  
POUT = 1 W  
RL= 4 Ω  
RL= 8 Ω  
6-39. V Sense THDN vs Frequency  
6-40. V Sense THDN vs Frequency  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
POUT = 1 W  
PWR_MODE2  
POUT = 1 W  
PWR_MODE2  
RL= 4 Ω  
RL= 8 Ω  
6-41. V Sense THDN vs Frequency  
6-42. V Sense THDN vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
7 Parameter Measurement Information  
All typical characteristics for the devices are measured using the Bench Evaluation Module (EVM) and an Audio  
Precision SYS-2722 Audio Analyzer. A PSIA interface is used to allow the I2S interface to be driven directly into  
the SYS-2722. Speaker output terminals are connected to the Audio Precision Analyzer analog inputs through a  
differential-to-single ended (D2S) filter as shown below. The D2S filter contains a first order passive pole at 120  
kHz. The D2S filter ensures the TAS2764 high performance class-D amplifier sees a fully differential matched  
loading at its outputs and the output signal is single ended.  
1kΩ  
0.01%  
1kΩ  
0.01%  
-
1kΩ  
SPK_P  
+
-
AP  
680pF  
AUX-0025  
SYS-2772  
+
SPK_N  
1kΩ  
0.01%  
+
-
1kΩ  
1kΩ  
0.01%  
7-1. Differential To Single Ended (D2S) Filter  
Alternatively, the AUX-0025 filter can be connected directly to the class-D outputs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8 Detailed Description  
8.1 Overview  
The TAS2764 is a mono digital input Class-D amplifier optimized for portable applications where efficient battery  
operation and small solution size are critical. It integrates speaker IV (current/voltage) sensing and battery  
tracking limiting with brown out prevention. The device operates using a TDM/I2S and I2C interfaces.  
8-1. Full Scales  
Input/Output Signal  
Full Scale Value  
Class-D Output  
21 dBV  
Voltage Monitor  
PVDD: 16 V  
VBAT1S: 6V  
3.75 Apk  
Current Sense  
Voltage Sense  
14 Vpk  
8.2 Functional Block Diagram  
VBAT1S  
PVDD  
PVDD_SNS  
POWER MANAGEMENT  
POR  
AVDD  
REFERENCE  
1.5V LDO  
POR  
POR  
SDZ  
5V LDO  
DREG  
0.9V Reference  
+ Bias Currents  
BST_P  
DIGITAL  
VSNS_P  
OUT_P  
IOVDD  
Audio Engine +  
Filters  
Class-D  
INTERFACE  
ESD  
DAC  
Loop  
Filter  
Serial Interfaces  
Comparator  
OTP  
Brownout +  
Voltage Limiter  
OUT_N  
16V LDMOS Output  
stage  
BYP_EN  
ADDR  
û-  
ADC  
ADDR  
DETECT  
VSNS_N  
Analog Controller  
I2C  
I2S  
I-SENSE  
BST_N  
Noise Gate +  
Diagnostic  
Generator  
DIGITAL IO  
û-ꢀ  
ADC  
V-Sense Amp + PGA  
Temp Sensor  
10b SAR  
ADC  
Thermal  
OSC  
PLL  
BOP VBAT1S Tracker  
Protection  
BOP PVDD Tracker  
(PVDD_SNS)  
COMMON IP  
PGND  
GND  
8.3 Feature Description  
8.3.1 Device Address Selection  
The TAS2764 operates using a TDM/I2S interface. Audio input and output are provided via the FSYNC, SBCLK,  
SDIN and SDOUT pins using formats including I2S, Left Justified and TDM. Configuration and status are  
provided via the SDA and SCL pins using the I2C protocol.  
The table below illustrates how to configure the device for I2C address . The slave addresses are shown left  
shifted by one bit with the R/W bit set to 0 (i.e. {ADDR[6:0],1b0}). Resistors with tolerance better than 5% must  
be used for setting the address configuration.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8-2. I2C Address Selection  
I2C SLAVE ADDRESS  
ADDR PIN  
0x70  
0x72  
0x74  
0x76  
0x78  
0x7A  
0x7C  
0x7E  
Short to  
GND  
Short to AVDD  
470 Ωto  
470 Ωto  
2.2k Ωto  
2.2k Ωto  
10 kΩto  
10 kΩto  
GND  
AVDD  
GND  
AVDD  
GND  
AVDD  
The TAS2764 has a global 7-bit I2C address 0x80. When enabled, the device will additionally respond to I2C  
commands at this address regardless of the ADDR pin settings. This is used to speed up device configuration  
when using multiple TAS2764 devices and programming similar settings across all devices. The I2C ACK /  
NACK cannot be used during the multi-device writes since multiple devices are responding to the I2C command.  
The I2C CRC function should be used to ensure each device properly received the I2C commands. At the  
completion of writing multiple devices using the global address, the CRC at I2C_CKSUM register should be  
checked on each device using the local address for a proper value. The global I2C address can be disabled  
using I2C_GBL_EN register bit. The I2C address is detected by sampling the ADDR pin when SDZ pin is  
released. Additionally, the address may be re-detected by setting I2C_AD_DET register bit high after power up  
and the ADDR pin will be re-sampled.  
8.3.2 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system using serial data transmission. The address and 8 bit data are transferred starting with the most-  
significant bit (MSB). In addition, each byte transferred on the bus is acknowledged by the receiving device with  
an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus  
and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data  
terminal (SDA) while the clock is at logic high to indicate start and stop conditions. A high-to-low transition on  
SDA indicates a start, and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within  
the low time of the clock period.  
The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The device holds SDA low during the acknowledge clock  
period to indicate acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each  
device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the  
same signals via a bi-directional bus using a wired-AND connection.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
8-1. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. 8-1 shows a generic data transfer  
sequence.  
For information about pull-up resistors and single-byte/multiple-byte transfers see .  
8.3.3 Register Organization  
Device configuration and coefficients are stored using a page and book scheme. Each page contains 128 bytes  
and each book contains 256 pages. All device configuration registers are stored in book 0, page 0, which is the  
default setting at power up (and after a software reset). The book and page can be set by the BOOK and PAGE  
registers respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Note  
Programming register bits from Book_0 and Page_4 needs to be done in groups of four registers (32  
bit format), each byte corresponding to a register and with less significant byte programmed to 00h.  
For instance, when programing DC level for diagnostic generator, registers 08 (MSB),09,0A will be  
programmed to the desired value and register 0B will be programmed to 00h.  
8.4 Device Functional Modes  
8.4.1 TDM Port  
The TAS2764 provides a flexible TDM serial audio port. The port can be configured to support a variety of  
formats including stereo I2S, Left Justified and TDM. Mono audio playback is available via the SDIN pin. The  
SDOUT pin is used to transmit sample streams including speaker voltage and current sense, PVDD voltage, die  
temperature and channel gain.  
The TDM serial audio port supports up to 16 of 32-bit time slots at 44.1/48 kHz or 8 of 32-bit time slots at a  
88.2/96 kHz sample rate. Valid SBCLK to FSYNC ratios are 16, 24, 32, 48, 64, 96, 128, 192, 256, and 512. The  
device will automatically detect the number of time slots and it does not need to be programmed.  
By default, the TAS2764 will automatically detect the PCM playback sample rate. This can be disabled and  
manually configured by setting the AUTO_RATE register bit high.  
The SAMP_RATE[2:0] and SAMP_RATIO[3:0] register bits are used to configure the PCM audio sample rate  
when AUTO_RATE register bit is high (auto detection of TDM sample rate is disabled). The TAS2764 employs a  
robust clock fault detection engine that will automatically volume ramp down the playback path if FSYNC does  
not match the configured sample rate (if AUTO_RATE = 1) or the ratio of SBCLK to FSYNC is not supported  
(minimizing any audible artifacts). Once the clocks are detected to be valid in both frequency and ratio, the  
device will automatically volume ramp the playback path back to the configured volume and resume playback.  
When using the auto rate detection the sampling rate and SBCLK to FSYNC ration detected on the TDM bus is  
reported back on the read-only register bits FS_RATE[2:0] and FS_RATIO[3:0] respectively.  
The TAS2764 supports a 12 MHz SBCLK operation. The system will detect or should be manually configured for  
a ratio of 125 or 250. In this specific ratio the last 32-bit slot should not be used to transmit data over the TDM  
port (8.4.1) or ICC pin ( 8.4.2.9.1) as data will be truncated.  
8-2 and 8-3 below illustrate the receiver frame parameters required to configure the port for playback. A  
frame begins with the transition of FSYNC from either high to low or low to high (set by the FRAME_START  
register bit). FSYNC and SDIN are sampled by SBCLK using either the rising or falling edge (set by the  
RX_EDGE register bit). The RX_OFFSET[4:0] register bits define the number of SBCLK cycles from the  
transition of FSYNC until the beginning of time slot 0. This is typically set to a value of 0 for Left Justified format  
and 1 for an I2S format.  
SBCLK  
FSYNC  
SDIN  
SBCLK  
FSYNC  
SDIN  
Slot 0  
Bit 31  
Slot0  
Bit 0  
Slot 1  
Bit 31  
Slot1  
Bit 0  
Slot2  
Bit 31  
MSB  
MSB-1  
LSB+1  
LSB  
RX_OFFSET  
RX_WLEN  
RX_OFFSET  
Time Slot 0  
Time Slot 1  
RX_SLEN  
8-3. TDM RX Time Slots  
8-2. TDM RX Time Slot with Left Justification  
The RX_SLEN[1:0] register bits set the length of the RX time slot to 16, 24 or 32 (default) bits. The length of the  
audio sample word within the time slot is configured by the RX_WLEN[1:0] register bits to 16, 20, 24 (default) or  
32 bits. The RX port will left justify the audio sample within the time slot by default, but this can be changed to  
right justification via the RX_JUSTIFY register bit. The TAS2764 supports mono and stereo down mix playback  
([L+R]/2). By default the device will playback mono from the time slot equal to the I2C base address offset (set by  
the ADDR pin) for playback. The RX_SCFG[1:0] register bits can be used to override the playback source to the  
left time slot, right time slot or stereo down mix set by the RX_SLOT_L[3:0] and RX_SLOT_R[3:0] register bits.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
If time slot selection places reception either partially or fully beyond the frame boundary, the receiver will return a  
null sample equivalent to a digitally muted sample.  
The TDM port can transmit a number of sample streams on the SDOUT pin including speaker voltage sense,  
speaker current sense, interrupts and status, PVDD voltage, die temperature and channel gain. 8-4 below  
illustrates the alignment of time slots to the beginning of a frame and how a given sample stream is mapped to  
time slots.  
SBCLK  
FSYNC  
Slot 0  
Bit 7  
Slot0  
Bit 0  
Slot 1  
Bit 7  
Slot1  
Bit 0  
Slot2  
Bit 7  
SDOUT  
TX_OFFSET  
Time Slot 0  
Time Slot 1  
Ex: V_SENSE[15:0]  
8-4. TDM Port TX Diagram  
Either the rising or falling edge of SBCLK can be used to transmit data on the SDOUT pin. This can be  
configured by setting the TX_EDGE register bit. The TX_OFFSET[2:0] register bits define the number SBCLK  
cycles between the start of a frame and the beginning of time slot 0. This would typically be programmed to 0 for  
Left Justified format and 1 for I2S format. The TDM and ICC TX can either transmit logic 0 or Hi-Z depending on  
the setting of the TX_FILL register bit. An optional bus keeper will weakly hold the state of SDOUT and ICC pins  
when all devices driving are Hi-Z. Since only one bus keeper is required on SDOUT, this feature can be disabled  
via the TX_KEEPEN register bit. The bus keeper can be configured to hold only 1LSB or Always using  
TX_KEEPLN register bit. Additionally, the keeper LSB can be driven for a full cycle or half of cycle using  
TX_KEEPCY register bit.  
TX_FILL is used in mono system where there is only one amplifier on I2S bus. All the slots unused by the  
amplifier will be filled with zeros when TX_FILL is set to low.  
The SDOUT_HIZ registers from page 0x01 are useful when multiple devices are on the same I2S bus. Each  
device does not know configuration of slots in the other devices on the bus. It is required at the system level to  
program the SDOUT_HIZ registers appropriately, in such way that the settings are done correctly and do not  
create any contention both internally and externally.  
Each sample stream is composed of either one or two 8-bit time slots. Speaker voltage sense and speaker  
current sense sample streams are 16-bit precision, so they will always utilize two TX time slots. The PVDD  
voltage stream is 12 bit precision, and can either be transmitted left justified in a 16-bit word (using two time  
slots) or can be truncated to 8-bits (the top 8 MSBs) and be transmitted in a single time slot. This is configured  
by setting PVDD_SLEN register bit. The Die temperature and gain are both 8-bit precision and are transmitted in  
a single time slot.  
The time slot register for each sample stream defines where the MSB transmission begins. For instance, if  
VSNS_SLOT[5:0] register bits are set to 2 (decimal), the upper 8 MSBs will be transmitted in time slot 2 and the  
lower 8 LSBs will be transmitted in time slot 3. Each sample stream can be individually enabled or disabled by  
using VSNS_TX and ISNS_TX register bits. This is useful to manage limited TDM bandwidth since it may not be  
necessary to transmit all streams for all devices on the bus.  
It is important to ensure that time slot assignments for actively transmitted sample streams do not conflict. For  
instance, if VSNS_SLOT[5:0] bits are set to 2 (decimal) and ISNS_SLOT[5:0] bits are set to 3 (decimal), the  
lower 8 LSBs of voltage sense will conflict with the upper 8 MSBs of current sense. This will produce  
unpredictable transmission results in the conflicting bit slots (i.e. the priority is not defined).  
When two or more devices are connected to the same SDOUT pin the slot assignment of the various devices  
must be kept exclusive to avoid any contention. This constraint is applicable to both Software Shutdown and  
Active Mode. Devices should not be programmed to transmit on the same slot.  
The current and voltage values are transmitted at the full 16-bit measured values by default. The  
IVMON_LEN[1:0] register bits can be used to transmit only the 8 MSB bits in one slot or 12 MSB bits values  
across multiple slots. The special 12-bit mode is used when only 24-bit I2S/TDM data can be processed by the  
host processor. The device should be configured with the voltage-sense slot and current-sense slot off by 1 slot  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
and will consume 3 consecutive 8-bit slots. In this mode the device will transmit the first 12 MSB bits followed by  
the second 12 MSB bits specified by the preceding slot.  
If time slot selections place transmission beyond the frame boundary, the transmitter will truncate transmission at  
the frame boundary.  
The time slots for VBAT1S, PVDD and TEMP measurements are set using VBAT1S_SLOT[5:0],  
PVDD_SLOT[5:0] and TEMP_SLOT[5:0] register bits. To enable sample stream register bits VBAT1S_TX,  
PVDD_TX and TEMP_TX must be set high. The slot length is selected by VBAT1S_SLEN, PVDD_SLEN and  
TEMP_SLEN register bits.  
To set TDM final processed audio slot, enable and length register bits the following register bits need to be  
programmed: AUDIO_SLOT[5:0], AUDIO_TX and AUDIO_SLEN .  
Information about status of slots can be find in STATUS_SLOT[5:0] register bits. STATUS_TX register bit set  
high enables the status transmit.  
The slot configuration for the TX limiter gain reduction can be set between 0 (default) and 63 by setting  
GAIN_SLOT[5:0] register bits. It is used for the Inter Chip Gain Aligment ( 8.4.2.9 ) and can be either over the  
TDM Bus or ICC pin (8.4.2.9.1). To use this feature, the register bit GAIN_TX needs to be set high (Enable).  
8.4.2 Playback Signal Path  
8.4.2.1 High Pass Filter  
Excessive DC and low frequency content in audio playback signal can damage loudspeakers. The TAS2764  
employs a high-pass filter (HPF) to prevent this from occurring for the PCM playback path. The  
HPF_FREQ_PB[2:0] register bits set the corner frequencies of HPF. The filter can be bypassed by setting the  
register bits to 3'b000.  
8.4.2.2 Amplifier Inversion  
The device will output a non-inverted signal to the OUT_P and OUT_N pins. The output can be inverted with  
respect to the digital input value by setting the AMP_INV register bit to high.  
8.4.2.3 Digital Volume Control and Amplifier Output Level  
The gain from audio input to speaker terminals is controlled by setting the amplifiers output level and digital  
volume control (DVC).  
Amplifier output level settings are programmed using AMP_LEVEL[4:0] register bits. The levels are presented in  
the Register Map in dBV (dB relative to 1 Vrms), with a full scale digital audio input (0 dBFS) and the DVC set by  
default to 0 dB. It should be noted that these levels may not be achievable because of analog clipping in the  
amplifier, so they should be used to convey gain only.  
Equation 1 below calculates amplifier output voltage:  
VAMP= INPUT+ADVC+AAMP  
(1)  
where  
VAMP is the amplifier output voltage in dBV  
INPUT is the digital input amplitude as a number of dB with respect to 0 dBFS  
ADVC is the digital volume control setting as a number of dB  
AAMP is the amplifier output level setting as a number of dBV  
The digital volume control (DVC) is configurable from 0 dB to -100 dB in 0.5 dB steps by setting the  
DVC_LVL[7:0] register bits. Settings greater than C8h are interpreted as mute. When a change in digital volume  
control occurs, the device ramps the volume to the new setting based on the DVC_RAMP_RATE[1:0] register  
bits status. If DVC_RAMP_RATE[1:0] bits are set to 2'b11 the volume ramping is disabled. This setting can be  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
used to speed up startup, shutdown and digital volume changes when volume ramping is handled by the system  
master.  
The Class-D amplifier uses a closed-loop architecture, so the gain does not depend on power supply. The  
approximate threshold for the onset of analog clipping is calculated in Equation 2.  
(2)  
where  
VPK is the maximum peak un-clipped output voltage in V  
VSUP is the power supply of class-D output stage  
RL is the speaker load in Ω  
RP is the parasitic resistance on PCB (routing, filters) in Ω  
RFET is the power stage total resistance (HS FET, LS FET, Sense Resistor, bonding, packaging) in Ω  
When VBAT1S supplies class-D output stage typical RFET value is 1 Ω. For PVDD supply RFET typical value is  
0.5 Ω.  
8.4.2.3.1 Safe Mode  
The safe mode is a single bit that will enable 18 dB attenuation in the forward path. It is similar to setting the  
DVC_LVL[7:0] register bits to a setting of 24h (-18dB). When the SMODE_EN bit is set to high, the  
DVC_LVL[7:0] register bits will be ignored and volume ramping disabled.  
8.4.2.4 VBAT1S Supply  
The TAS2764 can operate with or without a VBAT1S supply. When configured without a VBAT1S supply, the  
PVDD voltage will be used with an internal LDO to generate this supply voltage. A decoupling capacitor should  
still be populated as recommended in 9-1. In this case, VBAT1S_MODE bit should be set to high before  
transitioning from software shutdown. More details about VBAT1S supply modes of operation can be found in 节  
11.1.  
8.4.2.5 Low Voltage Signaling (LVS)  
The TAS2764 monitors the absolute value of the audio stream.  
When the input was initially above the programmed threshold set by LVS_FTH[4:0] register bits the Class D was  
supplied by PVDD rail. If the signal level drops below this threshold for longer than the hysteresis time defined by  
LVS_HYS[3:0] bits the Class-D supply will switch to VBAT1S.  
The BYP_EN pin will be asserted (open drain released). All values of LVS_HYS[3:0] bit settings will ensure the  
remaining samples will be output before BYP_EN is asserted. When multiple devices have BYP_EN pin  
connected together, any device requiring a supply voltage higher than the threshold will pull the open drain  
output low.  
When the signal level crosses above the programmed threshold set by LVS_FTH[4:0] bits the Class-D supply  
will switch to PVDD.  
The open-drain BYP_EN pin will be de-asserted (actively pulling the output low) after a delay programmed by  
the LVS_DLY[1:0] register bits . The Y Bridge will switch from VBAT1S to PVDD after a delay programmed by  
the CDS_DLY[1:0] register bits.  
LVS threshold is set based on the output signal level and is measured in dBFS.  
The LVS threshold can alternately be configured to be a value relative to the VBAT1S voltage. To use the  
alternate configuration set the LVS_TMODE bit to high and use the LVS_RTH[3:0] register bits for setting the  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Below equations show the maximum level of the input signal in order to keep LVS below threshold (Class D  
switching on VBAT).  
For absolute threshold: Input (dBFS) < LVS_FTH + (21 dBV - ChannelGain [dBV]).  
For relative threshold: Input (dBFS) < 20log10 (VBAT1S*CD_EFF - LVS_RTH) + (21 dBV - ChannelGain [dBV]) -  
1.5dB.  
Where:  
* ChannelGain = AMP_LEVEL + DVC_LVL + SAFE_MODE (if enabled, it is -18dB).  
* CD_EFF is set by registers 48h-4Bh from page 0x04 and LVH_RTH is set by bits [3:0] of register 6Ah from  
page 0x00.  
* 1.5dB is an inflection factor, already included for absolute threshold.  
BOP, Limiter, Thermal Foldback and Thermal Gradient Gain Attenuation should not be taken into account for  
calculating LV_EN threshold.  
8-5. Low Voltage Signaling (Input=0dB, Gain=0dB)  
The group delay numbers are optimized based on whether the Noise Gate feature is enabled or disabled. The  
delay on CDS_DLY path and LVS_DLY path varies depending on sampling rate and whether Noise Gate mode  
is enabled or not (see 8.9.91).  
The LVS fixed thresholds, when CDS_MODE[1:0]=11 (PWR_MODE2 from 11.1), can be set using register  
bits LVS_FTH_LOW[1:0]. When CDS_MODE[1:0]=00 (PWR_MODE1 and PWR_MODE3 from 11.1) the  
thresholds should be set with register bits LVS_FTH[4:0].  
8.4.2.6 Y-Bridge  
The TAS2764 Class-D output uses a Y-Bridge configuration to improve efficiency during playback. The LVS (节  
8.4.2.5) is internally used to select between the PVDD and VBAT1S supplies. This feature is enabled by setting  
CDS_MODE[1:0] bits to 2'b00 when both PVDD and VBAT1S are supplied to the device. If not configured to Y-  
bridge mode the device will use only the selected supply for class-D output even if clipping would otherwise  
occur. The device can operate using only PVDD to supply class-D output. In this configuration the VBAT1S can  
be provided from external supply (register bit VBAT1S=0) or generated by an internal LDO (register bit  
VBAT1S=1). In this case CDS_MODE[1:0] bits should be set to 2'b10. The TAS2764 Y-Bridge with Low Power  
on VBAT1S can be used to switch to the VBAT1S rail only at very low power when close to idle. This will reduce  
the class-D output swing when near idle and limit the current requirements of the VBAT1S supply. Set the  
CDS_MODE[1:0] register to 2'b11 for this mode.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
See 11.1 for details on programming the power modes.  
The change to the class-D supply determined by the LVS (8.4.2.5) can have a delay programed by  
CDS_DLY[1:0] register bits.  
When in Y-Bridge mode, if the PVDD falls below (VBAT1S+2.5V) level the Y-bridge will stop switching between  
supplies and will remain on the PVDD supply.  
8.4.2.7 Noise Gate  
The TAS2764 has a noise-gate feature that monitors the input signal and powers down the class-D when the  
signal goes below the threshold set by NG_LVL[1:0] bits for longer than the time set by NG_HYST[1:0] register  
bits. When the signal goes above the threshold the class-D will re-power in 7 samples before the samples  
applied to the audio input interface reach the class-D bridge. This feature is enabled by setting NG_EN bit to  
high. Once enabled it is able to power up and down the channel within the device processing delay requiring no  
additional external control. Volume ramping can be also used during noise gate operations by setting  
NG_DVR_EN bit to low.  
The noise gate can be configured with finer resolution at the expense of additional I2C writes. Use NGFR_EN bit  
to enable this mode and register bits NGFR_LVL[31:0] to set the fine resolution. The fine resolution hysteresis is  
set using NGFR_HYST[18:3] register bits.  
When noise gate is enabled, once the signal is applied, the TAS2764 will be recovering from noise gate. In this  
case, a shutdown command, if needed, can be programmed in two ways:  
- after muting (zero-ing) the incoming data (recommended);  
- 100 us after TAS2764 is exiting noise gate (incoming signal is not zero-ed).  
8.4.2.8 Supply Tracking Limiter with Brown Out Prevention  
The TAS2764 contains a supply tracking limiter to control distortion and brownout prevention to mitigate  
brownout events. The gain reduction that occurs due to this block can be aligned across multiple devices using  
the Inter Chip Gain Alignment feature ( 8.4.2.9) . The maximum device attenuation set by  
DEV_MAX_ATTN[6:0] register bits can be used to limit the combination of the limiter and brownout attenuation  
or the Inter Chip Gain Alignment.  
The Supply Tracking Limiter (8.4.2.8.1) and the BOP (8.4.2.8.2) are configured independently. The Inter  
Chip Gain Alignment, if enabled, keeps multiple device gains in sync if the Supply Tracking Limiter and BOP  
need to reduce the gain. However, the BOP will take priority in the device. In order to prevent the Supply  
Tracking Limiter and BOP from both making simultaneous adjustments to the system, the Supply Tracking  
Limiter and Inter Chip Gain Alignment will be paused once the BOP engages until it is fully released .  
By default, the limiter will attack the audio independent of BOP (bit LIM_PDB=0). If it is needed to pause the  
limiter attenuation when BOP is engaged, the bit LIM_PDB should be set to high.  
The attenuation applied to the device can be selected to be either the sum of the limiter attenuation (ICLA) and  
Brownout attenuation (ICBA) or the maximum of the two of them by setting the ICG_MODE register bit.  
8.4.2.8.1 Supply Tracking Limiter  
The TAS2764 monitors the PVDD supply voltage and the audio signal to automatically decrease gain when the  
audio signal peaks exceed a programmable threshold. This helps prevent clipping and extends playback time  
through end of charge battery conditions. The limiter threshold can be configured to track PVDD below a  
programmable inflection point with a programmable slope. A minimum threshold sets the limit of threshold  
reduction from PVDD tracking.  
The limiter is enabled by setting the LIM_EN bit register to high.  
Configurable attack rate, hold time and release rate are provided to shape the dynamic response of the limiter  
(LIM_ATK_RT[3:0], LIM_HLD_TM[2:0] and LIM_RLS_RT [3:0] register bits).  
A maximum level of attenuation applied by the limiter is configurable via the LIM_MAX_ATTN[3:0] register bits. If  
the limiter mode is attacking and if it reaches the maximum attenuation, gain will not be reduced any further.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
The limiter begins reducing gain when the output signal level is greater than the limiter threshold. The limiter can  
be configured to track PVDD below a programmable inflection point with a minimum threshold value. 8-6  
below shows the limiter configured to limit to a constant level regardless of PVDD level. To achieve this behavior,  
set the limiter maximum threshold to the desired level via the LIM_TH_MAX[31:0] register bits. Set the limiter  
inflection point (register bits LIM_INF_PT[31:0]) below the minimum allowable PVDD setting. The limiter  
minimum threshold, set by register bits LIM_TH_MIN[31:0], does not impact limiter behavior in this use case.  
Inflection  
Point  
LIM_TH_MAX  
LIM_TH_MAX  
slope  
Brown  
Out  
Brown  
Out  
BOP_TH  
BOP_TH LIM_INF_PT  
PVDD (V)  
PVDD (V)  
8-6. Limiter with Fixed Threshold  
8-7. Limiter with Inflection Point  
Inflection  
Point  
1:1  
LIM_TH_MAX  
LIM_TH_MAX  
slope  
- x%  
Headroom  
LIM_TH_MIN  
Brown  
+ x%  
Out  
Brown  
Out  
Headroom  
BOP_TH  
BOP_TH LIM_INF_PT  
PVDD (V)  
PVDD (V)  
8-8. Limiter with Dynamic Threshold  
8-9. Limiter with Inflection Point and Minimum  
Threshold  
8-7 shows how to configure the limiter to track PVDD below a threshold without a minimum threshold. Set the  
LIM_TH_MAX[31:0] register bits to the desired threshold and LIM_INF_PT[31:0] register bits to the desired  
inflection point where the limiter will begin reducing the threshold with PVDD. The LIM_SLOPE[31:0] register bits  
can be used to change the slope of the limiter tracking with PVDD. The default value of 1 V/V will reduce the  
threshold 1 V for every 1 V of drop in PVDD. More aggressive tracking slopes can be programmed if desired.  
Program the LIM_TH_MIN[31:0] bits below the minimum PVDD to prevent the limiter from having a minimum  
threshold reduction when tracking PVDD.  
The limiter with a supply tracking slope can be configured in an alternate way. By setting LIM_HR_EN register bit  
to 1'b1 , a headroom can be specified as a percentage of the supply voltage using a 1V/V slope by setting  
LIM_DHR[4:0] register bits. For example if a headroom of -10% is specified, the peak output voltage will be set  
to be 10% higher than PVDD. In this use case presented in 8-8 the limiting begins for signals above the  
supply voltage and will result in a fixed clipping. If a positive headroom of +10% is specified the peak output  
voltage will be dynamically set 10% below the current PVDD. In this use case the limiting will begin at signal  
levels lower than the supply voltage and prevent clipping from occurring.  
To achieve a limiter that tracks PVDD only up to a minimum threshold, configure the limiter LIM_TH_MAX [31:0]  
and LIM_SLOPE[31:0] register bits as in the previous examples. Then additionally set the LIM_TH_MIN[31:0]  
register bits to the desired minimum threshold. Supply voltage below this minimum threshold will not continue to  
decrease the signal output voltage. This is shown in 8-9.  
By setting register bit LIM_DHYS_EN to low the limiter mechanism depends on settings for maximum/minimum  
thresholds, inflection point and slope. Once this bit is set high the limiter dynamic headroom is enabled.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
When a BOP (8.4.2.8.2) event occurs the limiter updates can be paused (LIM_PDB register bit set to 1'b1)  
until the BOP fully releases. This can be used to prevent undesired interactions between both protection  
systems.  
8.4.2.8.2 Brownout Prevention (BOP)  
Brownout Prevention (BOP) feature provides a priority input to the limiter to generate a fast response to transient  
dips in supply voltage at end of charge conditions that can cause system level brownout. When supply voltage  
dips below the BOP threshold, the limiter begins reducing gain at a configurable attack rate. When supply  
voltage rises above the BOP threshold, the limiter will begin to release after the programmed hold time. The  
BOP feature can be enabled by setting the BOP_EN register bit high. The brownout supply source can be set  
using BOP_SRC register bit to either PVDD (BOP_SRC =1) or VBAT1S (BOP_SRC =0) depending on  
application need. It should be noted that the BOP feature is independent of the limiter and will function, if  
enabled, even if the Supply Tracking Limiter is disabled.  
The BOP can be configured to attack the gain through four levels as the supply voltage continues to drop. The  
BOP threshold Level 3 is set using the BOP_TH3[7:0] register bits followed by threshold Level 2 using  
BOP_TH2[7:0] register bits, Level 1 threshold set by BOP_TH1[7:0] bits and finally crossing Level 0 set by  
BOP_TH0[7:0] register bits.  
The BOP levels that are not used can be disabled individually using register bits BOP_DIS0, BOP_DIS1 ,  
BOP_DIS2, BOP_DIS_3 and providing flexibility from one to four levels. Levels should be disabled in the order 3  
to 1 for proper operation.  
Each level has a separate Attack Rate (register bits BOP_ATK_RT0[2:0] to BOP_ATK_RT3[2:0]), Attack Step  
Size (register bits BOP_ATK_ST0[2:0] to BOP_ATK_ST3[2:0]), Release Rate (register bits BOP_RLS_RT0[2:0]  
to BOP_RLS_RT3[2:0]), Release Step Size (register bits BOP_RLS_ST0[3:0] to BOP_RLS_ST3[3:0]), Dwell  
Time (register bits BOP_DT0[2:0] to BOP_DT3[2:0]), Hold Time (register bits BOP_HT0[2:0] to BOP_HT3[2:0]),  
Maximum Attenuation and Shutdown.  
When BOP supply source is set to PVDD input the SAR convertor will not digitize the VBAT1S voltage to reduce  
latency in the first attack of the BOP engine.  
For proper device operation the following conditions must be met:  
BOP_MAX_ATTN0 > BOP_MAX_ATTN1 > BOP_MAX_ATTN2 > BOP_MAX_ATTN3  
BOP_TH Level 3 > BOP_TH Level 2 > BOP_TH Level 1 > BOP_TH Level 0.  
Use bits BOP_MAX_ATTN of registers BOP_CFG4, BOP_CFG9, BOP_CFG14, BOP_CFG20 from Register  
Map to set attenuation levels. Registers BOP_CFG5, BOP_CFG10, BOP_CFG15, BOP_CFG21 will be used for  
setting the BOP threshold levels.  
The TAS2764 can also immediately mute and then shutdown the device when a BOP event occurs by reaching  
Level 0 if the BOP_SHDN register bit is set high. For the device to continue playing audio again it must transition  
through a SW/HW shutdown state. If the hold time set by BOP_HT3[2:0] , BOP_HT2[2:0], BOP_HT1[2:0],  
BOP_HT0[2:0] register bits is at 7h (Infinite) the device needs to transition through a mute or SW/HW shutdown  
state or the register bit BOP_HLD_CLR can be set to high (which will cause the device to exit the hold state and  
begin releasing). This bit is self clearing and will always read-back low.  
VBAT  
BOP Thresh  
BOP Active  
BOP  
Attacking  
BOP  
Holding  
Limiter Releasing  
(BOP Inactive)  
BOP Inactive  
BOP Inactive  
BOP Mode  
8-10. Brownout Prevention Event  
The TAS2764 BOP engine will keep track of the current level state, the lowest BOP level that has been engaged  
and the lowest sensed BOP supply voltage. This information is continually updated until requested. When this  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
information is polled the register BOP_STAT_HLD is set high. This will pause the updates of the current state  
(BOP_STAT_STATE[3:0]) and lowest BOP level (BOP_STAT_LLVL[2:0]) registers bits allowing them to be read  
back. Once the read is complete the register bit BOP_STAT_HLD should be set low again clearing the current  
BOP status registers and re-enabling the updates based on current BOP state.  
The lowest PVDD measurement since the last read is also available in register bits BOP_STAT_PVDD[9:0] if  
BOP_STAT_HLD register bit is set high before reading.  
BOP Level 0 cannot be disabled and BOP Level 0 thresholds will be fixed by values programmed in registers  
0x2E to 0x32 of page 0x00.  
8.4.2.9 Inter Chip Gain Alignment  
The TAS2764 supports alignment of limiter and brownout prevention dynamics across devices using the  
dedicated ICC pin (8.4.2.9.1) or across the TDM output bus. This ensures consistent gain between channels  
during limiting or brownout events since these dynamics are dependent on audio content, which can vary across  
channels. Each device can be configured to align to a specified number of other devices, which allows creation  
of groupings of devices that align only to each other.  
Limiter and brownout activity is optionally transmitted by each device on SDOUT or ICC pin in an 24-bit time slot.  
When both limiter and brownout are enabled the 24-bit slot is comprised of 11-bit limiter and 13-bit brownout  
data. If only the limiter is enabled the data will be only the 12-bit limiter data. Gain reduction should be  
transmitted in adjacent time slots for all devices that are to be aligned beginning with the first slot that is specified  
by the ICGA_SLOT[5:0] register bits. The order of the devices is not important as long as they are adjacent. The  
time slot for limiter gain reduction is configured by the GAIN_SLOT[5:0] register bits and enabled by the  
GAIN_TX register bit being set high. The ICGA_SEN[7:0] register bits specify which time slots should be listened  
to for gain alignment. This allows any number of devices between two and eight to be grouped together. At least  
two of these devices should be enabled for alignment to take place.  
To enable the inter-chip limiter alignment the ICLA_EN register bit should be set to high. To enable the inter chip  
BOP alignment the ICBA_EN register bit should be set to high. All devices should be configured with identical  
limiter and brownout prevention settings.  
8.4.2.9.1 Inter-Chip Communication (ICC) Pin  
The TAS2764 has a dedicated ICC bus pin that can be used for the Inter Chip Gain Alignment (8.4.2.9). This  
data pin enables gain alignment without consuming slots on the TDM Port (8.4.1). The ICC pin is connected  
to all TAS2764 devices in the system and slots are configured using register bits GAIN_SLOT[5:0]. This bus  
uses the TDM Port BCLK and FSYNC and requires all devices to be configured using the same sampling clock.  
The ICC pin supports separate bus keeper configuration from the SDOUT pin on the TDM bus. If the ICC pin is  
disabled or used for GPIO functionality the gain alignment (8.4.2.9) will occur on the TDM bus instead of the  
ICC pin. Register bits ICC_MODE[2:0] are used to set the ICC pin functionality.  
8.4.2.10 Class-D Settings  
8.4.2.10.1 Synchronization and EMI  
The TAS2764 Class-D amplifier supports spread spectrum PWM modulation, which can be enabled by setting  
the AMP_SS register bit high. This can help reduce EMI in the system.  
By default the Class-D amplifier switching frequency is based on the device trimmed internal oscillator. To  
synchronize switching to the audio sample rate, set the CLASSD_SYNC register bit high. When the Class-D is  
synchronized to the audio sample rate, the RAMP_RATE register bit must be set depending on the audio sample  
rate based on either 44.1 kHz or 48 kHz frequency. For 44.1, 88.2 and 176.4 kHz, set RAMP_RATE bit high and  
for 48, 96 and 192 kHz, set this bit low. This ensures that the internal ramp generator has the appropriate slope.  
The TAS2764 supports closed loop edge-rate control on the class-D switching. This feature is enabled by  
ERC_EN register bit. With a PVDD of less that 8 V the edge rate can slow down up to two times. A slower edge-  
rate will reduce EMI and degrade efficiency. A faster edge-rate will improve efficiency but result in increased  
EMI. The edge-rate of the class-D output can be set using EDGE_RATE[1:0] register bits.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.4.3 SAR ADC  
An ADC monitors PVDD voltage, VBAT1S voltage and die temperature. The results of these conversions are  
available via register readback (PVDD_CNV, VBAT1S_CNV and TMP_CNV registers). PVDD and VBAT1S  
voltage conversions are also used by the limiter and brown out prevention blocks.  
When BOP_SRC=1, VBAT1S conversion is not enabled and the ADC monitors only PVDD and temperature.  
In order to prevent false triggering of BOP, limiter, thermal foldback, the initial values of SAR at power up are  
VBAT1S = 6 V, PVDD = 16 V, TEMP = 2.6 0C.  
The ADC runs at a rate of 192 kHz with a conversion time of 5.2 μs.  
Sampling rate for temperature is 10K samples/sec.  
Actual PVDD and VBAT1S voltages are calculated by dividing the PVDD_CNV[11:0] and VBAT1S_CNV[11:0]  
decimal values of register bits by 128. The die temperature is calculated by subtracting 93 from the decimal  
value of TMP_CNV[7:0] register bits. The supply voltages PVDD and VBAT1S can be filtered using the proper  
setting of the SAR_FLT[1:0] register bits but will increase measurement latency. The register bits content should  
always be read from MSB to LSB.  
8.4.4 Current and Voltage (IV) Sense  
The TAS2764 provides speaker voltage and current sense measurements for real time monitoring of  
loudspeaker behavior. The VSNS_P and VSNS_N pins should be connected after any ferrite bead filter (or  
directly to the OUT_P and OUT_N connections if no EMI filter is used). The V-Sense connections eliminate  
voltage drop error due to packaging, PCB interconnect or ferrite bead filter resistance. The V-sense connections  
are also used for Post Filter Feed-Back (8.4.5) to correct for any voltage drop induced gain error or non-  
linearity due to the ferrite bead. It should be noted that any interconnect resistance after the VSNS terminals will  
not be corrected for, so it is advised to connect the sense connections as close to the load as possible.  
The voltage and current sense ADCs have a DC blocking filter. This filter can be disabled using the  
HPF_FREQ_REC[2:0] register bits.  
I-Sense and V-Sense blocks can be powered down by asserting the ISNS_PD and VSNS_PD register bits  
respectively. When powered down, the device will return null samples for the powered down block.  
8.4.5 Post Filter Feed-Back (PFFB)  
The device support post-filter feedback by closing the amplifier feedback loop after an external filter. The  
feedback is applied using the VSNS_N and VSNS_P terminals of the device. This feature can be disabled using  
the PFFB_EN register bit (if an external filter that violates the amplifier loop stability is implemented). When  
PFFB is disabled, the feedback will be internally routed from the OUT_N and OUT_P pins of the device.  
In the PFFB mode of operation the following conditions have to be met: f0>10MHz and f0/Q>2.5MHz (f0 and Q  
are the cutoff frequency and the quality factor of the external filter).  
When using PFFB with external LC filtering overshoot might occur at the speaker terminals. It is recommended  
to connect resistors (see 9.2) between speaker terninals and VSNS pins to protect internal diodes.  
8.4.6 Load Diagnostics  
The TAS2764 can check the speaker terminal for an open or short. This can be used to verify the continuity of  
the speaker or the traces to the speaker. The entire operation is performed by the TAS2764 and result is  
reported using the IRQZ pin or by reading over I2C bus on completion. The load diagnostics can be performed  
using external audio clock (register bit LDG_CLK=0) or the internal oscillator (LDG_CLK=1).  
The speaker open (UT) and short (LT) thresholds are configured using the LDG_RES_UT[31:0] and  
LDG_RES_LT[31:0] register bits. The diagnostic is run by selecting one of the load diagnostic modes set by  
MODE[2:0] register bits. The load diagnostic can be run before transitioning to active mode or stand-alone  
returning to software shutdown when complete. When the load diagnostics is run it will play a 22kHz at -35dBFS  
for 100ms and measure the resistance of the speaker trace. The result is averaged over the time specified by  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
the LDG_AVG[1:0] register bits. The measured speaker impedance can be read from LDS_RES_VAL[31:0]  
register bits.  
8.4.7 Thermal Foldback  
The TAS2764 monitors the die temperature and can automatically limit the audio signal when the die  
temperature reaches a set threshold. It is recommended to use the thermal fold-back registers to configure this  
protection mechanism as the internal DSP will perform the necessary calculation for each register.  
Thermal fold-back can be disabled using TFB_EN register bit. If the die temperature reaches the value set by  
TF_TEMP_TH[31:0] register bits this feature will begin to attenuate the audio signal to prevent the device from  
shutting down due to over-temperature. It will attenuate the audio signal by a value set in TF_LIMS[31:0] register  
bits over a range of temperature set by TF_TEMP_TH[31:0] register bits. The thermal fold-back attack is at a  
fixed rate of 0.25dB per sample. A maximum attenuation can be specified using register bits  
TF_MAX_ATTN[31:0]. However, if the device continues to heat up, eventually the device over-temperature will  
be triggered. The attenuation will be held for a number of samples set by register bits TF_HOLD_CNT[31:0],  
before the attenuation will begin releasing.  
8.4.8 Over Power Protection  
The TAS2764 monitors the temperature of the internal power FETs. If the maximum continue power is high and  
power FETs temperature goes above a threshold, an in-built protection circuit will trigger a thermal foldback and,  
if temperature still increases, shutdown the device.  
The protection mechanism is based on two thresholds TH1 and TH2. The TH1 threshold is set at a temperature  
1160C higher than the temperature measured by the internal bandgap but not less than 2500C. The TH1  
threshold triggers a thermal foldback.  
The TH2 threshold is 400 C above TH1 and triggers thermal shutdown.  
The two detection mechanisms can be disabled by setting bits TH_DET_TH2_EN and TH_DET_TH1_EN of  
register 0x47, page 0x01 to low.  
8.4.9 Clocks and PLL  
The device clocking is derived from the SBCLK input clock. The tables below show the valid SBCLK clock  
frequencies for each sample rate and SBCLK to FSYNC ratio (for 44.1 kHz and 48 kHz family frequencies).  
If the sample rate is properly configured via the SAMP_RATE[2:0] register bits, no additional configuration is  
required as long as the SBCLK to FSYNC ratio is valid. The device will detect improper SBCLK frequencies and  
SBCLK to FSYNC ratios and volume ramp down the playback path to minimize audible artifacts. After the clock  
error is detected, the device will enter a low power halt mode after a time set by CLK_HALT_TIMER[2:0] register  
bits if CLK_HALT_EN bit is high. Additionally, the device can automatically power up and down on valid clock  
signals if CLK_ERR_PWR_EN register bit is set to high. The device sampling rate should not be changed while  
this feature is enabled. In this mode the CLK_HALT_EN bit register should be set high in order for this feature to  
work properly.  
8-3. Supported SBCLK Frequencies (48 kHz based sample rates)  
SBCLK to FSYNC Ratio  
Sample Rate  
(kHz)  
16  
24  
32  
48  
2.304 MHz  
64  
96  
125  
48 kHz  
96 kHz  
768 kHz  
1.536 MHz  
1.152 MHz  
2.304 MHz  
1.536 MHz  
3.072 MHz  
3.072 MHz  
6.144 MHz  
4.608 MHz  
9.216 MHz  
6 MHz  
12 MHz  
4.608 MHz  
SBCLK to FSYNC Ratio  
256  
Sample Rate  
(kHz)  
128  
192  
250  
384  
500  
24 MHz  
-
512  
48 kHz  
96 kHz  
6.144 MHz  
12.288 MHz  
9.216 MHz  
18.432 MHz  
12 MHz  
24 MHz  
12.288 MHz  
24.576 MHz  
18.432 MHz  
-
24.576 MHz  
-
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8-4. Supported SBCLK Frequencies (44.1 kHz based sample rates)  
SBCLK to FSYNC Ratio  
Sample Rate  
(kHz)  
16  
24  
32  
48  
64  
96  
125  
44.1 kHz  
88.2 kHz  
705.6 kHz  
1.4112 MHz  
1.0584 MHz  
2.1168 MHz  
1.4112 MHz  
2.8224 MHz  
2.1168 MHz  
4.2336 MHz  
2.8224 MHz  
5.6448 MHz  
4.2336 MHz  
8.4672 MHz  
5.5125 MHz  
11.025 MHz  
SBCLK to FSYNC Ratio  
256  
Sample Rate  
(kHz)  
128  
192  
250  
384  
500  
512  
44.1 kHz  
88.2 kHz  
5.6448 MHz  
11.2896 MHz  
8.4672 MHz  
16.9344 MHz  
11.025 MHz  
22.05 MHz  
11.2896 MHz  
22.5792 MHz  
16.9344 MHz  
-
22.05 MHz  
-
22.5792 MHz  
-
8.4.10 Echo Reference  
The TAS2764 has a dedicated mode to loop back the DSP output.  
This feature allows user to do noise cancellation or echo correction algorithms.  
A block diagram is presented in the figure below.  
8-11. Echo Reference Loopback  
The echo reference can be enabled by configuring AUDIO_TX bit in TDM_CFG12 register. The slot length and  
the time slot can be selected using AUDIO_SLEN and AUDIO_SLOT bits in TDM_CFG12 register.  
8.5 Operational Modes  
8.5.1 Hardware Shutdown  
The device enters Hardware Shutdown mode if the SDZ pin is asserted low. In Hardware Shutdown mode, the  
device consumes the minimum quiescent current from AVDD, VBAT1S and PVDD supplies. All registers loose  
state in this mode and I2C communication is disabled.  
In normal shutdown mode if SDZ is asserted low while audio is playing, the device will ramp down volume on the  
audio, stop the Class-D switching, power down analog and digital blocks and finally put the device into Hardware  
Shutdown mode. If configured in normal shutdown mode with timeout the device will force a hard shutdown after  
a timeout set by the configurable shutdown timer (register bits SDZ_TIMEOUT[1:0]). The device can also be  
configured for forced hard shutdown and in this case it will not attempt to gracefully disable the audio channel.  
The shutdown mode can be controlled using SDZ_MODE[1:0] register bits.  
When SDZ is released, the device will sample the ADDR pin and enter the software shutdown mode.  
8.5.2 Mode Control and Software Reset  
The TAS2764 mode can be configured by writing the MODE[2:0] register bits.  
A software reset can be accomplished by setting high the SW_RESET register bit. This bit is self clearing. Once  
enabled it will restore all registers to their default values.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.5.3 Software Shutdown  
Software Shutdown mode powers down all analog blocks required to playback audio, but does not cause the  
device to loose register state.  
The registers are available through I2C interface.  
Software Shutdown is enabled by asserting the MODE[2:0] register bits to 3'b010. If audio is playing when  
Software Shutdown is asserted, the Class-D will volume ramp down before shutting down. When de-asserted,  
the Class-D will begin switching and volume ramp back to the programmed digital volume setting.  
8.5.4 Mute  
The TAS2764 will ramp down volume of the Class-D amplifier to a mute state by setting the MODE[2:0] register  
bits to 3'b001. During mute the Class-D still switches but transmits no audio content. If mute is de-asserted, the  
device will ramp back the volume to the programmed digital setting.  
8.5.5 Active  
In Active Mode the Class-D switches and plays back audio. Speaker voltage and current sensing are operational  
if enabled. PDM inputs are also active if enabled. Set the MODE[2:0] register bits to 3'b000 to enter active mode.  
8.5.6 Diagnostic  
The TAS2764 has a diagnostic generator that can be used without any clocking applied to the device. If  
DG_CLK register bit is set low, an internal oscillator is used to generate the test patterns selected by  
DG_SIG[4:0] register bits. For sine-wave generation the sampling frequency fs should be first set using the  
SAMP_RATE[2:0] register bits.  
The programable DC level for diagnostic mode can be set using the DG_DC[31:0] register bits.  
To play a DC diagnostic tone set the bits HPF_FREQ_PB[2:0] in register 0x04 to 0h (disabled DC blocker).  
8.5.7 Noise Gate  
In this mode of operation (see section 8.4.2.7 ) the TAS2764 monitors the signal and powers down the class-  
D when signal goes below a threshold.  
8.6 Faults and Status  
During the power-up sequence, the circuit monitoring the AVDD pin (UVLO) will hold the device in reset  
(including all configuration registers) until the supply is valid. The device will not exit hardware shutdown until  
AVDD is valid and the SDZ pin is released. Once SDZ is released, the digital core voltage regulator will power  
up, enabling detection of the operational mode. If AVDD dips below the UVLO threshold, the device will  
immediately be forced into a reset state.  
The device also monitors the PVDD supply and holds the analog core in power down if the supply is below the  
UVLO threshold (set by register bits PVDD_UVLO_TH[5:0]). If the TAS2764 is in active operation and an UVLO  
fault occurs, the analog blocks will immediately be powered down to protect the device. These faults are latched  
and require a transition through HW/SW shutdown to clear the fault. The latched registers will report UVLO  
faults.  
The device transitions into software shutdown mode if it detects any faults with the TDM clocks such as:  
Invalid SBCLK to FSYNC ratio  
Invalid FSYNC frequency  
Halting of SBCLK or FSYNC clocks  
Upon detection of a TDM clock error, the device transitions into software shutdown mode as quickly as possible  
to limit the possibility of audio artifacts. Once all TDM clock errors are resolved, the device volume ramps back to  
its previous playback state. During a TDM clock error, the IRQZ pin will assert low if the clock error interrupt  
mask register bit IM_TDMCE is set low. The clock fault is also available for read-back in the latched fault status  
registers (bits IL_TDMCE and IR_TDMCE]). Reading the latched fault status register clears the register.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
The TAS2764 also monitors die temperature and Class-D load current and will enter software shutdown mode if  
either of these exceed safe values. As with the TDM clock error, the IRQZ pin will assert low for these faults if  
the appropriate fault interrupt mask register bit is set low for over temperature and for over current. The fault  
status can also be monitored in the latched fault registers as with the TDM clock error.  
Over temperature warnings and flags are not raised if the device is in Idle or Noise Gate mode.  
The status registers (and IRQZ pin if enabled via the status mask register) also indicate limiter behavior including  
when the limiter is activated, when PVDD is below the inflection point, when maximum attenuation has been  
applied, when the limiter is in infinite hold and when the limiter has muted the audio.  
In the situations when the device operates in PWR_MODE2 or PWR_MODE4, the VBAT1S pin is supplied by an  
internal LDO. Protection circuits monitor this block and generate faults in case of under voltage, over voltage or if  
the LDO is over loaded. There is no re-try if one of these faults triggers; the device goes into shut down and the  
IRQZ pin will go low.  
The IRQZ pin is an open drain output that asserts low during unmasked fault conditions and therefore must be  
pulled up with a resistor to IOVDD. An internal pull up resistor is provided in the TAS2764 and can be accessed  
by setting the IRQZ_PU register bit high. 8-12 below highlights the IRQZ pin circuit.  
IOVDD  
IOVDD  
IRQZ_PU  
To  
System  
Master  
IRQZ  
Interrupt  
8-12. IRQZ Pin  
The IRQZ interrupt configuration can be set using IRQZ_PIN_CFG[1:0] register bits. The IRQZ_POL register bit  
sets the interrupt polarity and IRQZ_CLR register bit allows to clear the interrupt latch register bits.  
Live flag registers are active only when the device is in active mode of operation. If the device is put in shutdown  
by I2C command or due to any fault condition described below, the live flags will be reset. Latched flags will not  
be reset in this condition and available for user to read their status.  
8-5. Fault Interrupt Mask  
Interrupt  
Live Register  
Latch Register  
IR_TO105  
IR_TO115  
IR_TO125  
IR_TO135  
IR_OT  
Mask Register  
IM_TO105  
IM_TO115  
IM_TO125  
IM_TO135  
IM_OT  
Default (1 = Mask)  
Temp Over 105C  
Temp Over 115C  
Temp Over 125C  
Temp Over 135C  
Over Temp Error  
Over Current Error  
TDM Clock Error  
IL_TO105  
1
1
1
1
0
0
1
IL_TO115  
IL_TO125  
IL_TO135  
Device in shutdown  
Device in shutdown  
IL_TDMCE  
IR_OC  
IM_OC  
IR_TDMCE  
IR_TDMCEIR  
IM_TDMCE  
TDM Clock Error: Invalid SBCLK ratio or FS  
rate  
TDM Clock Error: FS changed on the fly  
IR_TDNCEFC  
IR_TDMCERC  
TDM Clock Error: SBCLK FS ratio changed on  
the fly  
BOP Active  
IL_BOPA  
IL_BOPL0A  
IL_BOPL1A  
IL_BOPL2A  
IR_BOPA  
IR_BOPL0A  
IR_BOPL1A  
IR_BOPL2A  
IM_BOPA  
IM_BOPL0A  
IM_BOPL1A  
IM_BOPL2A  
0
0
0
0
BOP Level 0 Active  
BOP Level 1 Active  
BOP Level 2 Active  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8-5. Fault Interrupt Mask (continued)  
Interrupt  
BOP Level 3 Active  
Live Register  
Latch Register  
IR_BOPL3A  
IR_BOPIH  
Mask Register  
IM_BOPL3A  
IM_BOPIH  
Default (1 = Mask)  
IL_BOPL3A  
0
0
0
0
0
0
0
0
BOP Infinite Hold  
IL_BOPIH  
BOP Mute  
IL_BOPM  
IR_BOPM  
IM_BOPM  
PVDD Below LImiter Inflection  
Limiter Active  
IL_PBIP  
IR_PBIP  
IM_PBIP  
IL_LIMA  
IR_LIMA  
IM_LIMA  
Limiter Max Atten  
IL_LIMMA  
IR_LIMMA  
IM_LIMMA  
PVDD UVLO  
Device in shutdown  
Device in shutdown  
Device in shutdown  
IR_PUVLO  
IR_VBAT1S_UVLO  
IR_OTPCRC  
IM_PUVLO  
IM_VBAT1S_UVLO  
VBAT1S UVLO  
OTP CRC Error  
Load Diagnostic Complete  
Load Diagnostic Open/Short Load  
Brownout Device Power Down  
Internal PLL Clock Error  
Noise Gate Active  
IM_LDC  
IM_SOL[1:0]  
IM_BOPD  
1
[11]  
1
Device in shutdown  
IL_NGA  
IR_PLL_CLK  
IM_PLL_CLK  
1
PVDD-VBAT1S Below Threshold  
Internal VBAT1S LDO Over Voltage  
Internal VBAT1S LDO Under Voltage  
Internal VBAT1S LDO Over Load  
Thermal Detector Threshold 2  
Thermal Detector Threshold 1  
IL_PVBT  
IR_PVBT  
IR_LDO_OV  
IR_LDO_UV  
IR_LDO_OL  
IR_TDTH2  
IR_TDTH1  
IM_PVBT  
IM_LDO_OV  
IM_LDO_UV  
IM_LDO_OL  
IM_TDTH2  
IM_TDTH1  
0
1
0
1
0
0
Device in shutdown  
Device in shutdown  
Device in shutdown  
IL_TDTH2  
IL_TDTH1  
8.6.1 Faults and Status over TDM  
Faults and device operation information can be sent over the TDM bus when STATUS_TX register bit is set high.  
The slot position in TDM bus can be configured using STATUS_SLOT[5:0] register bits.  
8-6. TDM Information Bits  
TDM_STATUS[7:0] Bit  
Bit Information  
Power up state  
Y-Bridge  
0 Value  
1 Value  
0
1
2
3
Powered down(1)  
Powered up  
PVDD active  
VBAT1S active  
Noise gate active  
Noise-Gate Status  
Limiter Active  
Normal operation  
No Limiter or ICLA attenuation  
applied  
Limiter or ICLA attenuation  
applied  
4
5
6
7
BOP Active  
Over Temperature Error  
Over Current Error  
PVDD Status  
No BOP attenuation applied  
No Over-temperature  
No Over-current  
BOP attenuation applied  
Over-temperature detected(1)  
Over-current detected(1)  
PVDD UVLO detected(1)  
No PVDD UVLO  
(1) Can be read only during the transient shutdown phase. After shutdown the TDM slots are not available.  
8.7 Power Sequencing Requirements  
There are no power sequencing requirements for order of the supplies other than PVDD and VBAT1S. During  
power up and power down PVDD voltage must be greater than (VBAT1S-0.7V). See 11 for details.  
8.8 Digital Input Pull Downs  
Each digital input and IO has an optional weak pull down to prevent the pin from floating. Register bits  
DIN_PD[4:0] are used to enable/disable pull downs. The pull downs are not enabled during HW shutdown.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9 Register Map  
8.9.1 Register Summary Table Page=0x00  
Addr  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
Register  
Description  
Section  
8.9.4  
PAGE  
Device Page  
SW_RESET  
MODE_CTRL  
CHNL_0  
Software Reset  
8.9.5  
Device operational mode  
Y Bridge and Channel settings  
SAR Filter and DC Path Blocker  
ERC and Record DC Blocke  
Misc Configuration 1  
Misc Configuration 2  
TDM Configuration 0  
TDM Configuration 1  
TDM Configuration 2  
Limiter  
8.9.6  
8.9.7  
DC_BLK0  
8.9.8  
DC_BLK1  
8.9.9  
MISC_CFG1  
MISC_CFG2  
TDM_CFG0  
TDM_CFG1  
TDM_CFG2  
LIM_MAX_ATTN  
TDM_CFG3  
TDM_CFG4  
TDM_CFG5  
TDM_CFG6  
TDM_CFG7  
TDM_CFG8  
TDM_CFG9  
TDM_CFG10  
TDM_CFG11  
ICC_CNFG2  
TDM_CFG12  
ICLA_CFG0  
ICLA_CFG1  
DG_0  
8.9.10  
8.9.11  
8.9.12  
8.9.13  
8.9.14  
8.9.15  
8.9.16  
8.9.17  
8.9.18  
8.9.19  
8.9.20  
8.9.21  
8.9.22  
8.9.23  
8.9.24  
8.9.25  
8.9.26  
8.9.27  
8.9.28  
8.9.29  
8.9.30  
8.9.31  
8.9.32  
8.9.33  
8.9.34  
8.9.35  
8.9.36  
8.9.37  
8.9.38  
8.9.39  
8.9.40  
8.9.41  
8.9.42  
8.9.43  
8.9.44  
8.9.45  
8.9.46  
8.9.47  
8.9.48  
TDM Configuration 3  
TDM Configuration 4  
TDM Configuration 5  
TDM Configuration 6  
TDM Configuration 7  
TDM Configuration 8  
TDM Configuration 9  
TDM Configuration 10  
TDM Configuration 11  
ICC Mode  
TDM Configuration 12  
Inter Chip Limiter Alignment 0  
Inter Chip Gain Alignment 1  
Diagnostic Signal  
DVC  
Digital Volume Control  
Limiter Configuration 0  
Limiter Configuration 1  
Brown Out Prevention 0  
Brown Out Prevention 1  
Brown Out Prevention 2  
Brown Out Prevention 3  
Brown Out Prevention 4  
BOP Configuration 5  
Brown Out Prevention 6  
Brown Out Prevention 7  
Brown Out Prevention 8  
Brown Out Prevention 9  
BOP Configuration 10  
Brown Out Prevention 11  
Brown Out Prevention 12  
Brown Out Prevention 13  
Brown Out Prevention 14  
BOP Configuration 15  
LIM_CFG0  
LIM_CFG1  
BOP_CFG0  
BOP_CFG1  
BOP_CFG2  
BOP_CFG3  
BOP_CFG4  
BOP_CFG5  
BOP_CFG6  
BOP_CFG7  
BOP_CFG8  
BOP_CFG9  
BOP_CFG10  
BOP_CFG11  
BOP_CFG12  
BOP_CFG13  
BOP_CFG14  
BOP_CFG15  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x40  
0x41  
0x42  
0x43  
0x44  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x5C  
0x5D  
0x60  
0x63  
0x65  
0x67  
0x68  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
BOP_CFG17  
BOP_CFG18  
BOP_CFG19  
BOP_CFG20  
BOP_CFG21  
BOP_CFG22  
BOP_CFG23  
BOP_CFG24  
NG_CFG0  
Brown Out Prevention 17  
Brown Out Prevention 18  
Brown Out Prevention 19  
Brown Out Prevention 20  
BOP Configuration 21  
Brown Out Prevention 22  
Lowest PVDD Measured  
Lowest BOP Attack Rate  
Noise Gate 0  
8.9.49  
8.9.50  
8.9.51  
8.9.52  
8.9.53  
8.9.54  
8.9.55  
8.9.55  
8.9.57  
8.9.58  
8.9.59  
8.9.60  
8.9.61  
8.9.62  
8.9.63  
8.9.64  
8.9.65  
8.9.66  
8.9.67  
8.9.68  
8.9.69  
8.9.70  
8.9.71  
8.9.72  
8.9.73  
8.9.74  
8.9.75  
8.9.76  
8.9.77  
8.9.78  
8.9.79  
8.9.80  
8.9.81  
8.9.82  
8.9.83  
8.9.84  
8.9.85  
8.9.86  
8.9.87  
8.9.88  
8.9.89  
8.9.90  
8.9.91  
8.9.92  
8.9.93  
8.9.94  
8.9.95  
8.9.96  
8.9.97  
NG_CFG1  
Noise Gate 1  
LVS_CFG0  
DIN_PD  
Low Voltage Signaling  
Digital Input Pin Pull Down  
Output Driver Strength  
Output Driver Strength  
Interrupt Mask 0  
IO_DRV0  
IO_DRV1  
INT_MASK0  
INT_MASK1  
INT_MASK4  
INT_MASK2  
INT_MASK3  
INT_LIVE0  
INT_LIVE1  
INT_LIVE1_0  
INT_LIVE2  
INT_LIVE3  
INT_LTCH0  
INT_LTCH1  
INT_LTCH1_0  
INT_LTCH2  
INT_LTCH3  
INT_LTCH4  
VBAT_MSB  
VBAT_LSB  
PVDD_MSB  
PVDD_LSB  
TEMP  
Interrupt Mask 1  
Interrupt Mask 4  
Interrupt Mask 2  
Interrupt Mask 3  
Live Interrupt Read-back 0  
Live Interrupt Read-back 1  
Live Interrupt Read-back 1_0  
Live Interrupt Read-back 2  
Live Interrupt Read-back 3  
Latched Interrupt Read-back 0  
Latched Interrupt Read-back 1  
Latched Interrupt Read-back 1_0  
Latched Interrupt Read-back 2  
Latched Interrupt Read-back 3  
Latched Interrupt Read-back 4  
SAR VBAT1S 0  
SAR VBAT1S 1  
SAR PVDD 0  
SAR PVDD 1  
SAR ADC Conversion 2  
Clock Setting and IRQZ  
Misc Configuration 3  
Clock Configuration  
INT_CLK_CFG  
MISC_CFG3  
CLOCK_CFG  
IDLE_IND  
Idle channel current optimization  
Misc Configuration 4  
Idle Channel Hysterisis  
Detect Clock Ration and Sample Rate  
Class-D and LVS Delays  
Noise Gate 2  
MISC_CFG4  
TG_CFG0  
CLK_CFG  
LV_EN_CFG  
NG_CFG2  
NG_CFG3  
Noise Gate 3  
NG_CFG4  
Noise Gate 4  
NG_CFG5  
Noise Gate 5  
NG_CFG6  
Noise Gate 6  
NG_CFG7  
Noise Gate 7  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
0x71  
0x76  
0x7D  
0x7E  
0x7F  
PVDD_UVLO  
DAC_MOD_RST  
REV_ID  
UVLO Threshold  
DAC Modulator Reset  
Revision and PG ID  
I2C Checksum  
8.9.98  
8.9.99  
8.9.100  
8.9.101  
8.9.102  
I2C_CKSUM  
BOOK  
Device Book  
8.9.2 Register Summary Table Page=0x01  
0x19  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x47  
LSR  
Modulation  
8.9.103  
8.9.104  
8.9.105  
8.9.106  
8.9.107  
8.9.108  
8.9.109  
8.9.110  
8.9.111  
8.9.112  
8.9.113  
SDOUT_HIZ_1  
SDOUT_HIZ_2  
SDOUT_HIZ_3  
SDOUT_HIZ_4  
SDOUT_HIZ_5  
SDOUT_HIZ_6  
SDOUT_HIZ_7  
SDOUT_HIZ_8  
SDOUT_HIZ_9  
TG_EN  
Slots Control  
Slots Control  
Slots Control  
Slots Control  
Slots Control  
Slots Control  
Slots Control  
Slots Control  
Slots Control  
Thermal Detection Enable  
8.9.3 Register Summary Table Page=0x04  
Addr  
Register  
DG_DC_VAL1  
Description  
Diagnostic DC Level  
Section  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
8.9.114  
8.9.115  
8.9.116  
8.9.117  
8.9.118  
8.9.119  
8.9.120  
8.9.121  
8.9.122  
8.9.123  
8.9.124  
8.9.125  
8.9.126  
8.9.127  
8.9.128  
8.9.129  
8.9.130  
8.9.131  
8.9.132  
8.9.133  
8.9.134  
8.9.135  
8.9.136  
8.9.137  
8.9.138  
8.9.139  
8.9.140  
DG_DC_VAL2  
DG_DC_VAL3  
DG_DC_VAL4  
LIM_TH_MAX1  
LIM_TH_MAX2  
LIM_TH_MAX3  
LIM_TH_MAX4  
LIM_TH_MIN1  
LIM_TH_MIN2  
LIM_TH_MIN3  
LIM_TH_MIN4  
LIM_INF_PT1  
LIM_INF_PT2  
LIM_INF_PT3  
LIM_INF_PT4  
LIM_SLOPE1  
LIM_SLOPE2  
LIM_SLOPE3  
LIM_SLOPE4  
TF_HLD1  
Diagnostic DC Level  
Diagnostic DC Level  
Diagnostic DC Level  
Limiter Maximum Threshold  
Limiter Maximum Threshold  
Limiter Maximum Threshold  
Limiter Maximum Threshold  
Limiter Minimum Threshold  
Limiter Minimum Threshold  
Limiter Minimum Threshold  
Limiter Minimum Threshold  
Limiter Inflection Point  
Limiter Inflection Point  
Limiter Inflection Point  
Limiter Inflection Point  
Limiter Slope  
Limiter Slope  
Limiter Slope  
Limiter Slope  
TFB Maximum Hold  
TFB Maximum Hold  
TFB Maximum Hold  
TFB Maximum Hold  
TFB Release Rate  
TF_HLD2  
TF_HLD3  
TF_HLD4  
TF_RLS1  
TF_RLS2  
TFB Release Rate  
TF_RLS3  
TFB Release Rate  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
TF_RLS4  
TFB Release Rate  
8.9.141  
8.9.142  
8.9.143  
8.9.144  
8.9.145  
8.9.146  
8.9.147  
8.9.148  
8.9.149  
8.9.150  
8.9.151  
8.9.152  
8.9.153  
8.9.154  
8.9.155  
8.9.156  
8.9.157  
8.9.158  
8.9.159  
8.9.160  
8.9.161  
8.9.162  
8.9.163  
8.9.164  
8.9.165  
8.9.166  
8.9.167  
8.9.168  
8.9.169  
TF_SLOPE1  
TF_SLOPE2  
TF_SLOPE3  
TF_SLOPE4  
TF_TEMP_TH1  
TF_TEMP_TH2  
TF_TEMP_TH3  
TF_TEMP_TH4  
TF_MAX_ATTN1  
TF_MAX_ATTN2  
TF_MAX_ATTN3  
TF_MAX_ATTN4  
LD_CFG0  
TFB Limiter Slope  
TFB Limiter Slope  
TFB Limiter Slope  
TFB Limiter Slope  
TFB Threshold  
TFB Threshold  
TFB Threshold  
TFB Threshold  
TFB Gain Reduction  
TFB Gain Reduction  
TFB Gain Reduction  
TFB Gain Reduction  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Lower Threshold  
Load Diagnostics Resistance Lower Threshold  
Load Diagnostics Resistance Lower Threshold  
Load Diagnostics Resistance Lower Threshold  
Class D Efficiency  
LD_CFG1  
LD_CFG2  
LD_CFG3  
LD_CFG4  
LD_CFG5  
LD_CFG6  
LD_CFG7  
CLD_EFF_1  
CLD_EFF_2  
CLD_EFF_3  
CLD_EFF_4  
LDG_RES1  
LDG_RES2  
LDG_RES3  
LDG_RES4  
Class D Efficiency  
Class D Efficiency  
Class D Efficiency  
Load Diagnostics Resistance Value  
Load Diagnostics Resistance Value  
Load Diagnostics Resistance Value  
Load Diagnostics Resistance Value  
NOTE: all register bits described in italic font can be programmed in Active mode.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.9.4 PAGE (page=0x00 address=0x00) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
RW  
0h  
Sets the device page.  
00h = Page 0  
01h = Page 1  
...  
FFh = Page 255  
8.9.5 SW_RESET (page=0x00 address=0x01) [reset=00h]  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
SW_RESET  
Reserved  
RW  
0h  
Software reset. Bit is self clearing.  
0b = De-asserted  
1b = Asserted  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.6 MODE_CTRL (page=0x00 address=0x02) [reset=1Ah]  
Bit  
Field  
Type  
Reset  
Description  
7
BOP_SRC  
RW  
0h  
BOP input source and PVDD UVLO  
0b = VBAT1S input and PVDD UVLO disabled.  
* With this bit low at reset all BOP thresholds are by default at  
2.75V  
1b = PVDD input and PVDD UVLO enabled.  
6-5  
4
Reserved  
RW  
RW  
0h  
1h  
Reserved  
ISNS_PD  
Current sense is  
0b = Active  
1b = Powered down  
3
VSNS_PD  
MODE[2:0]  
RW  
RW  
1h  
2h  
Voltage sense is  
0b = Active  
1b = Powered down  
2-0  
Device operational mode.  
000b = Active without Mute  
001b = Active with Mute  
010b = Software Shutdown  
011b = Load Diagnostics followed by normal device power up  
100b = Standalone Load Diagnostic, after completion these bits  
are self reset to 010b  
101b = Diagnostic Generator Mode  
110b-111b = Reserved  
8.9.7 CHNL_0 (page=0x00 address=0x03) [reset=28h]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CDS_MODE[1:0]  
RW  
0h  
Class-D switching mode  
00b =Y-Bridge, high power on VBAT1S  
01b = VBAT1S Only Supply of Class D  
10b =PVDD Only Supply of Class D  
11b=Y-Bridge, low power on VBAT1S  
5-1  
AMP_LEVEL[4:0]  
RW  
14h  
Setting  
00h  
11 dBV  
01h  
11.5 dBV  
12.0 dBV  
12.5 dBV  
......  
20 dBV  
02h  
03h  
......  
12h  
13h  
20.5 dBV  
21 dBV  
14h  
Others : Reserved  
Reserved  
0
Reserved  
RW  
0h  
8.9.8 DC_BLK0 (page=0x00 address=0x04) [reset=21h]  
Bit  
Field  
Type  
Reset  
Description  
7
VBAT1S_MODE  
RW  
0h  
VBAT1S supply  
0b = Supplied externally  
1b = Internal generated from PVDD  
6
IRQZ_PU  
RW  
0h  
IRQZ internal pull up enable.  
0b = Disabled  
1b = Enabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
5
AMP_SS  
*When Spread Spectrum and Sync  
RW  
1h  
Low EMI spread spectrum is  
0b = Disabled  
1b = Enabled  
Mode are both enabled, Sync Mode  
takes priority  
4-3  
2-0  
SAR_FLT[1:0]  
RW  
RW  
0h  
1h  
VBAT1S and PVDD ADC filter frequency  
00b = Disabled  
01b = 300 KHz  
10b = 150 KHz  
11b = 50 KHz  
HPF_FREQ_PB[2:0]  
Forward Path DC blocker -3dB corner frequency for 48/96 kHz  
sampling rates  
0h = Disabled (filter bypassed)  
1h = 2 Hz  
2h = 50 Hz  
3h = 100 Hz  
4h = 200 Hz  
5h = 400 Hz  
6h = 800 Hz  
7h = Reserved  
* For 44.1/88.2 kHz sampling rates divide the values from above  
by 1.0884  
8.9.9 DC_BLK1 (page=0x00 address=0x05) [reset=41h]  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ERC_EN  
Reserved  
6
RW  
1h  
Closed-loop edge rate control is  
0b = Disabled  
1b = Enabled  
5-4  
EDGE_RATE[1:0]  
RW  
0h  
Class-D ERC control  
0h = 1 V/ns  
1h = 0.5 V/ns  
2h = 0.35 V/ns  
3h = 0.25 V/ns  
3
TFB_EN  
RW  
RW  
0h  
1h  
Thermal Foldback is  
0b = Disabled  
1b = Enabled  
2-0  
HPF_FREQ_REC[2:0]  
Record Path DC blocker -3dB corner frequency for 48/96 kHz  
sampling rates  
0h = Disabled (filter bypassed)  
1h = 2 Hz  
2h = 50 Hz  
3h = 100 Hz  
4h = 200 Hz  
5h = 400 Hz  
6h = 800 Hz  
7h = Reserved  
* For 44.1/88.2 kHz sampling rates divide the values from above  
by 1.0884  
8.9.10 MISC_CFG1 (page=0x00 address=0x06) [reset=00h]  
8-7.  
Bit  
7-6  
5
Field  
Type  
RW  
Reset  
Description  
Reserved  
*OCE_RETRY  
0h  
Reserved  
RW  
0h  
Retry after over current event.  
0b = Disabled  
1b = Enabled, retry after timer.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8-7. (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
*OTE_RETRY  
RW  
0h  
Retry after over temperature event.  
0b = Disabled  
1b = Enabled, retry after timer.  
3
2
PFFB_EN  
RW  
RW  
0h  
0h  
Post-Filter Feedback is  
0b = Disabled (uses OUT)  
1b = Enable (uses VSNS)  
SMODE_EN  
When safe mode is enabled adds 18dB attenuation on channel  
gain. Safe mode is  
0b = Disabled  
1b = Enabled  
1-0  
Reserved  
R
0h  
Reserved  
*Certain limitations applied. Contact TI if need to use this bit.  
8.9.11 MISC_CFG2 (page=0x00 address=0x07) [reset=20h]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SDZ_MODE[1:0]  
RW  
0h  
SDZ Mode configuration.  
00b = Shutdown after timeout  
01b = Immediate forced shutdown  
10b = Reserved  
11b = Reserved  
5-4  
3-2  
SDZ_TIMEOUT[1:0]  
RW  
RW  
2h  
0h  
SDZ Timeout value  
00b = 2 ms  
01b = 4 ms  
10b = 6 ms  
11b = 23.8 ms  
DVC_RAMP_RATE[1:0]  
Digital volume control ramp rate for low to high ramp  
00b = 0.5 dB per 1 sample  
01b = 0.5 dB per 4 samples  
10b = 0.5 dB per 8 samples  
11b = Volume ramping disabled  
1
0
I2C_GBL_EN  
I2C_AD_DET  
RW  
RW  
0h  
0h  
I2c global address is  
0b = Disabled  
1b = Enabled  
Re-detect I2C slave address (self clearing bit).  
0b = Normal  
1b = Re-detect address  
8.9.12 TDM_CFG0 (page=0x00 address=0x08) [reset=09h]  
Bit  
Field  
Type  
Reset  
Description  
7
AMP_INV  
RW  
0h  
Invert audio amplifier ouput  
0b = Normal  
1b = Invert  
6
CLASSD_SYNC  
RW  
0h  
Class-D synchronization mode.  
0b = Not synchronized to audio clocks  
1b = Synchronized to audio clocks  
*When Spread Spectrum and Sync  
Mode are both enabled, Sync Mode  
takes priority  
5
4
RAMP_RATE  
AUTO_RATE  
RW  
RW  
0h  
0h  
Sample rate based on 44.1kHz or 48 kHz when  
CLASSD_SYNC=1.  
0b = 48 kHz  
1b = 44.1 kHz  
Auto detection of TDM sample rate.  
0b = Enabled  
1b = Disabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
3-1  
SAMP_RATE[2:0]  
RW  
4h  
Sample rate of the TDM bus.  
000b-011b = Reserved  
100b = 44.1/48 kHz  
101b = 88.2/96 kHz  
110b-111b = Reserved  
0
FRAME_START  
RW  
1h  
TDM frame start polarity.  
0b = Low to High on FSYNC  
1b = High to Low on FSYNC  
8.9.13 TDM_CFG1 (page=0x00 address=0x09) [reset=02h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
RX_JUSTIFY  
Reserved  
6
RW  
0h  
TDM RX sample justification within the time slot.  
0b = Left  
1b = Right  
5-1  
0
RX_OFFSET[4:0]  
RX_EDGE  
RW  
RW  
1h  
0h  
TDM RX start of frame to time slot 0 offset (SBCLK cycles).  
TDM RX capture clock polarity.  
0b = Rising edge of SBCLK  
1b = Falling edge of SBCLK  
8.9.14 TDM_CFG2 (page=0x00 address=0x0A) [reset=0Ah]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
IVMON_LEN[1:0]  
RW  
0h  
Sets the current and voltage data to length of  
00b = 16 bits  
01b = 12 bits  
10b = 8 bits  
11b = Reserved  
5-4  
3-2  
1-0  
RX_SCFG[1:0]  
RX_WLEN[1:0]  
RX_SLEN[1:0]  
RW  
RW  
RW  
0h  
2h  
2h  
TDM RX time slot select config.  
00b = Mono with time slot equal to I2C address offset  
01b = Mono left channel  
10b = Mono right channel  
11b = Stereo downmix (L+R)/2  
TDM RX word length.  
00b = 16-bits  
01b = 20-bits  
10b = 24-bits  
11b = 32-bits  
TDM RX time slot length.  
00b = 16-bits  
01b = 24-bits  
10b = 32-bits  
11b = Reserved  
8.9.15 LIM_MAX_ATTN (page=0x00 address=0x0B) [reset=80h]  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LIM_MAX_ATTN[3:0]  
RW  
8h  
Limiter Maximum Attenuation  
0h = 1 dB  
1h = 2 dB  
2h = 3 dB  
...  
0Eh = 15 dB  
0Fh = Reserved  
3-0  
Reserved  
R
0h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.16 TDM_CFG3 (page=0x00 address=0x0C) [reset=10h]  
Bit  
7-4  
3-0  
Field  
Type  
RW  
Reset  
1h  
Description  
RX_SLOT_R[3:0]  
RX_SLOT_L[3:0]  
TDM RX Right Channel Time Slot.  
TDM RX Left Channel Time Slot.  
RW  
0h  
8.9.17 TDM_CFG4 (page=0x00 address=0x0D) [reset=13h]  
Bit  
Field  
Type  
Reset  
Description  
7
TX_KEEPCY  
RW  
0h  
TDM and ICC TX SDOUT LSB data will be driven for full/half  
cycles when TX_KEEPEN is enabled  
0b = Full-cycle  
1b = Half-cycle  
6
TX_KEEPLN  
RW  
0h  
TDM and ICC TX SDOUT will hold the bus for the following  
when TX_KEEPEN is enabled  
0b = 1 LSB cycle  
1b = Always  
5
4
TX_KEEPEN  
TX_FILL  
RW  
RW  
0h  
1h  
TDM and ICC TX SDOUT bus keeper enable.  
0b = Disable bus keeper  
1b = Enable bus keeper  
TDM and ICC TX SDOUT unused bit field fill.  
0b = Transmit 0  
1b = Transmit Hi-Z  
3-1  
0
TX_OFFSET[2:0]  
TX_EDGE  
RW  
RW  
1h  
1h  
TDM TX start of frame to time slot 0 offset.  
TDM TX launch clock polarity.  
0b = Rising edge of SBCLK  
1b = Falling edge of SBCLK  
8.9.18 TDM_CFG5 (page=0x00 address=0x0E) [reset=42h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
VSNS_TX  
Reserved  
6
RW  
1h  
TDM TX voltage sense transmit  
0b = Disabled  
1b = Enabled  
5-0  
VSNS_SLOT[5:0]  
RW  
2h  
TDM TX voltage sense time slot.  
8.9.19 TDM_CFG6 (page=0x00 address=0x0F) [reset=40h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
ISNS_TX  
Reserved  
6
RW  
1h  
TDM TX current sense transmit  
0b = Disabled  
1b = Enabled  
5-0  
ISNS_SLOT[5:0]  
RW  
0h  
TDM TX current sense time slot.  
8.9.20 TDM_CFG7 (page=0x00 address=0x10) [reset=04h]  
Bit  
Field  
Type  
Reset  
Description  
7
VBAT1S_SLEN  
RW  
0h  
TDM TX VBAT1S time slot length.  
0b = Truncate to 8-bits  
1b = Left justify to 16-bits  
6
VBAT1S_TX  
RW  
RW  
0h  
4h  
TDM TX VBAT1S transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
VBAT1S_SLOT[5:0]  
TDM TX VBAT1S time slot.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TAS2764  
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.21 TDM_CFG8 (page=0x00 address=0x11) [reset=05h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
TEMP_TX  
Reserved  
6
RW  
0h  
TDM TX temp sensor transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
TEMP_SLOT[5:0]  
RW  
5h  
TDM TX temp sensor time slot.  
8.9.22 TDM_CFG9 (page=0x00 address=0x12) [reset=06h]  
Bit  
Field  
Type  
Reset  
Description  
7
PVDD_SLEN  
RW  
0h  
TDM TX PVDD time slot length.  
0b = Truncate to 8-bits  
1b = Left justify to 16-bits  
6
PVDD_TX  
RW  
RW  
0h  
6h  
TDM TX PVDD transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
PVDD_SLOT[5:0]  
TDM TX PVDD time slot.  
8.9.23 TDM_CFG10 (page=0x00 address=0x13) [reset=08h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
STATUS_TX  
Reserved  
6
RW  
0h  
TDM TX status transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
STATUS_SLOT[5:0]  
RW  
8h  
TDM TX status time slot.  
Bit7- PVDD status(Cannot be read post analog blocks  
shutdown)  
0b = PVDD UVLO not detected  
1b = PVDD UVLO detected  
Bit6 -Over Current status(Cannot be read post analog blocks  
shutdown)  
0b = No OC detected  
1b = OC detected  
Bit5- Over Temp status(Cannot be read post analog blocks  
shutdown)  
0b = No OT detected  
1b = OT detected  
Bit4- BOP status  
0b = BOP not detected  
1b = BOP detected  
Bit3- Signal distortion limiter status  
0b = No distortion limiter or ICLA gain applied  
1b = Gain attenuation done due to distortion limiter/ICLA  
Bit2- Noise Gate status  
0b = Device in normal mode  
1b = Device in Noise Gate mode  
Bit1- Class D Power Stage status  
0b = Class D Power switch connected to VBAT1S  
1b = Class D Power switch connected to PVDD  
Bit0- Power Up state (Cannot be read post analog blocks  
shutdown)  
0b = Device is powered down  
1b = Device is in active state  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.24 TDM_CFG11 (page=0x00 address=0x14) [reset=0Ah]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
GAIN_TX  
Reserved  
6
RW  
0h  
TDM /ICC TX limiter gain reduction transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
GAIN_SLOT[5:0]  
RW  
Ah  
TDM /ICC TX limiter gain reduction time slot.  
00h = 0  
01h = 1  
........  
3Eh = 62  
3Fh = 63  
8.9.25 ICC_CNFG2 (page=0x00 address=0x15) [reset=00h]  
Bit  
7-5  
4-2  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
ICC_MODE[2:0]  
Reserved  
RW  
0h  
Selects ICC pin function  
0h = Gain alignment on ICC pin  
1h = Reserved  
2h = ICC pin buffers disabled  
3h = ICC pin is a general purpose input  
4h = ICC pin is a general purpose output  
5h-7h = Reserved  
1-0  
Reserved  
R
0h  
Reserved  
8.9.26 TDM_CFG12 (page=0x00 address=0x16) [reset=12h]  
Bit  
Field  
Type  
Reset  
Description  
7
AUDIO_SLEN  
RW  
0h  
TDM audio slot length  
0b = 16-bits  
1b = 24-bits  
6
AUDIO_TX  
RW  
RW  
0h  
TDM audio output transmit is  
0b = Disabled  
1b = Enabled  
5-0  
AUDIO_SLOT[5:0]  
12h  
TDM TX status time slot.  
8.9.27 ICLA_CFG0 (page=0x00 address=0x17) [reset=0Ch]  
Bit  
Field  
Type  
Reset  
Description  
7
ICBA_EN  
RW  
0h  
Inter chip brownout gain alignment is  
0b = Disabled  
1b = Enabled  
6-1  
0
ICGA_SLOT[5:0]  
ICLA_EN  
RW  
RW  
6h  
0h  
Inter chip gain alignment starting time slot.  
Inter chip limiter alignment gain is  
0b = Disabled  
1b = Enabled  
8.9.28 ICLA_CFG1 (page=0x00 address=0x18) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
ICGA_SEN[7]  
RW  
0h  
Time slot equals ICGA_SLOT[5:0]+7*3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TAS2764  
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
6
ICGA_SEN[6]  
RW  
0h  
Time slot equals ICGA_SLOT[5:0]+6*3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
5
4
3
2
1
0
ICGA_SEN[5]  
ICGA_SEN[4]  
ICGA_SEN[3]  
ICGA_SEN[2]  
ICGA_SEN[1]  
ICGA_SEN[0]  
RW  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
0h  
Time slot equals ICGA_SLOT[5:0]+5*3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Time slot equals ICGA_SLOT[5:0]+4*3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Time slot equals ICGA_SLOT[5:0]+3*3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Time slot equals ICGA_SLOT[5:0]+2*3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Time slot equals ICGA_SLOT[5:0]+1*3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Time slot equals ICGA_SLOT[5:0]+0. When enabled, the limiter  
will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
8.9.29 DG_0 (page=0x00 address=0x19) [reset=0Dh]  
Bit  
Field  
Type  
Reset  
Description  
7
ICGA_NG_EN  
RW  
0h  
Better and audio friendly ICGA feature (when Noise gate is  
enabled)  
0b = Feature disabled  
1b = Feature enabled  
6
5
DG_CLK  
RW  
RW  
RW  
0h  
0h  
Dh  
Diagnostic generate clock source is  
0b = internal osscilator  
1b = external SBCLK and FSYNC  
ICG_MODE  
DG_SIG[4:0]  
Device attenuation is  
0b = BOP and Limiter attenuation added together  
1b = Max attenuation of either BOP or limiter  
4-0  
Selects Tone Freq for DG MODE  
00h = Zero input (Idle channel)  
01h = -6 dBFS positive DC  
02h = -6 dBFS negative DC  
03h = -12 dBFS positive DC  
04h = -12 dBFS negative DC  
05h = -18 dBFS positive DC  
06h = -18 dBFS negative DC  
07h = -24 dBFS positive DC  
08h = -24 dBFS negative DC  
09h = -30 dBFS positive DC  
0Ah = -30 dBFS negative DC  
0Bh = -6 dBFS fs/4  
0Ch = -4.8 dBFS fs/6  
0Dh = 0 dBFS 1KHz sine  
0Eh = Programmable DC using B0_P4, registers 0x08 to 0x0B  
0Fh-1Fh = Reserved  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.30 DVC (page=0x00 address=0x1A) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_LVL[7:0]  
RW  
0h  
00h = 0 dB  
01h = -0.5 dB  
02h = -1 dB  
...  
C8h = -100 dB  
Others : Mute  
8.9.31 LIM_CFG0 (page=0x00 address=0x1B) [reset=22h]  
Bit  
7-6  
5
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
LIM_DHYS_EN  
Reserved  
RW  
1h  
Limiter dynamic headroom is  
0b = Disabled  
1b = Enabled  
4-1  
LIM_ATK_RT[3:0]  
RW  
1h  
00h = 20 us/dB  
01h = 40 us/dB  
02h = 80 us/dB  
03h = 160 us/dB  
04h = 320 us/dB  
05h = 640 us/dB  
06h = 1280 us/dB  
07h = 2560 us/dB  
08h = 5120 us/dB  
09h = 10240 us/dB  
Ah = 20480 us/dB  
Bh = 40960 us/dB  
Ch = 81920 us/dB  
Others : Reserved  
0
LIM_EN  
RW  
0h  
Limiter is  
0b = Disabled  
1b = Enabled  
8.9.32 LIM_CFG1 (page=0x00 address=0x1C) [reset=32h]  
Bit  
Field  
Type  
Reset  
Description  
7
LIM_PDB  
RW  
0h  
During BOP the limiter will be  
0b = Running  
1b = Paused  
6-3  
LIM_RLS_RT[3:0]  
RW  
6h  
00h = Reserved  
01h = 4 ms/dB  
02h = 8 ms/dB  
03h = 16 ms/dB  
04h = 32 ms/dB  
05h = 64 ms/dB  
06h = 128 ms/dB  
07h = 256 ms/dB  
08h = 512 ms/dB  
09h = 1024 ms/dB  
Ah = 2048 ms/dB  
Bh = 4096 ms/dB  
Ch = 8192 ms/dB  
Others : reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
2-0  
LIM_HLD_TM[2:0]  
RW  
2h  
Limiter hold time.  
000b = 0 ms  
001b = 10 ms  
010b = 25 ms  
011b = 50 ms  
100b = 100 ms  
101b = 250 ms  
110b = 500 ms  
111b = 1000 ms  
8.9.33 BOP_CFG0 (page=0x00 address=0x1D) [reset=40h]  
Bit  
Field  
Type  
Reset  
Description  
7-3  
LIM_DHR[4:0]  
RW  
8h  
Limiter Maximum Headroom as % of PVDD  
00h = -20 %  
01h = -17.5 %  
02h = -15 %  
..  
0Fh = 17.5 %  
10h = 20 %  
Others = Reserved  
2
1
Reserved  
R
0h  
0h  
Reserved  
BOP_SHDN  
RW  
When BOP level 0 is reached device  
0b = Attenuates based on level 0 setttings  
1b = Mutes followed by device shutdown  
0
BOP_EN  
RW  
0h  
Brown out prevention is  
0b = Disabled  
1b = Enabled  
8.9.34 BOP_CFG1 (page=0x00 address=0x1E) [reset=32h]  
Bit  
Field  
Type  
Reset  
Description  
7
BOP_HLD_CLR  
RW  
0h  
BOP infinite hold clear (self clearing).  
0b = Don't clear  
1b = Clear  
6-0  
DEV_MAX_ATTEN[6:0]  
RW  
32h  
Device maximum attenuation of limiter and BOP combined.  
00h = 0 dB  
01h= -1 dB  
02h = -2 dB  
03h = -3 dB  
..  
2Eh = -46 dB  
2Fh-7Fh = Reserved  
8.9.35 BOP_CFG2 (page=0x00 address=0x1F) [reset=02h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_DT3[2:0]  
RW  
0h  
BOP level 3 dwell time  
0h= 0 us  
1h = 100 us  
2h = 250 us  
3h = 500 us  
4h = 1000 us  
5h = 2000 us  
6h = 4000 us  
7h = 8000 us  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
BOP_ATK_ST3[3:0]  
Type  
Reset  
Description  
4-1  
RW  
1h  
BOP level 3 attack step size  
0h = -0.0625 dB  
1h = -0.5 dB  
2h = -0.8958 dB  
3h = -1.2916 dB  
4h = -1.6874 dB  
5h = -2.0832 dB  
6h = -2.479 dB  
7h = -2.8748 dB  
8h = -3.2706 dB  
9h = -3.6664 dB  
Ah =-4.0622 dB  
Bh = -4.458 dB  
Ch = -4.8538 dB  
Dh = -5.2496 dB  
Eh = -5.6454 dB  
Fh = -6dB  
0
Reserved  
R
0h  
Reserved  
8.9.36 BOP_CFG3 (page=0x00 address=0x20) [reset=06h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_ATK_RT3[2:0]  
RW  
0h  
BOP level 3 attack rate.  
0h= 2.5 us  
1h = 5 us  
2h = 10 us  
3h = 25 us  
4h = 50 us  
5h = 100 us  
6h = 250 us  
7h = 500 us  
4-1  
BOP_RLS_ST3[3:0]  
RW  
3h  
BOP level 3 release step size.  
0h = 0.0625 dB  
1h = 0.5 dB  
2h = 0.8958 dB  
3h = 1.2916 dB  
4h = 1.6874 dB  
5h = 2.0832 dB  
6h = 2.479 dB  
7h = 2.8748 dB  
8h = 3.2706 dB  
9h = 3.6664 dB  
0Ah =4.0622 dB  
0Bh = 4.458 dB  
0Ch = 4.8538 dB  
0Dh = 5.2496 dB  
0Eh = 5.6454 dB  
0Fh = 6 dB  
0
Reserved  
R
0h  
Reserved  
8.9.37 BOP_CFG4 (page=0x00 address=0x21) [reset=2Ch]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_RLS_RT3[2:0]  
RW  
1h  
BOP level 3 release rate time.  
0h= 5 ms  
1h = 10 ms  
2h = 25 ms  
3h = 50 ms  
4h = 100 ms  
5h = 250 ms  
6h = 500 ms  
7h = 1000 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
4-0  
BOP_MAX_ATTN3[4:0]  
RW  
Ch  
BOP level 3 maximum attenuation.  
00h = 0 dB  
01h = -1 dB  
02h = -2 dB  
..  
0Ch = -12 dB  
..  
1Eh = -30 dB  
1Fh = -31 dB  
8.9.38 BOP_CFG5 (page=0x00 address=0x22) [reset=4Ch]  
Bit Field  
Type Reset Description  
7-0 BOP_TH3[7:0]  
RW  
4Ch  
BOP level 3 threshold  
Setting  
BOP Threshold (V) -  
BOP Threshold (V) -  
BOP_SRC=0 (VBAT1S Source) BOP_SRC=1 (PVDD Source)  
00h  
01h  
2.7  
2.75  
2.8  
.....  
5.5  
0
5.5  
5.55  
5.6  
.....  
8.3  
8.35  
.....  
10  
02h  
.....  
38h  
39h  
.....  
0
5Ah  
.....  
0
0
.....  
15.95  
16  
D1h  
D2h  
D3h-FFh  
0
0
0
0
8.9.39 BOP_CFG6 (page=0x00 address=0x23) [reset=20h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_HT3[2:0]  
RW  
1h  
BOP level 3 hold time.  
0h = 0 ms  
1h = 10 ms  
2h = 100 ms  
3h = 250 ms  
4h = 500ms  
5h = 1000 ms  
6h = 2000 ms  
7h = Infinite (This can be exited using BOP_HLD_CLR bit)  
4
BOP_DIS3  
RW  
0h  
BOP level 3 is  
0b = Enabled  
1b = Disabled  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
BOP_STAT_STATE[3:0]  
Type  
Reset  
Description  
3-0  
R
0h  
BOP current state. Set BOP_STAT_HLD high to hold for  
readack.  
0h = Idle  
1h = Attacking Level 3  
2h = Attacking Level 2  
3h = Attacking Level 1  
4h = Attacking Level 0  
5h = Holding Level 3  
6h = Holding Level 2  
7h = Holding Level1  
8h =Holding Level 0  
9h = Releasing Level 3  
Ah = Releasing Level 2  
Bh = Releasing Level 1  
Ch = Releasing Level 0  
Dh-Fh = Reserved  
8.9.40 BOP_CFG7 (page=0x00 address=0x24) [reset=02h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_DT2[2:0]  
RW  
0h  
BOP level 3 dwell time  
0h= 0 us  
1h = 100 us  
2h = 250 us  
3h = 500 us  
4h = 1000 us  
5h = 2000 us  
6h = 4000 us  
7h = 8000 us  
4-1  
BOP_ATK_ST2[3:0]  
RW  
1h  
BOP level 2 attack step size  
0h = -0.0625 dB  
1h = -0.5 dB  
2h = -0.8958 dB  
3h = -1.2916 dB  
4h = -1.6874 dB  
5h = -2.0832 dB  
6h = -2.479 dB  
7h = -2.8748 dB  
8h = -3.2706 dB  
9h = -3.6664 dB  
Ah =-4.0622 dB  
Bh = -4.458 dB  
Ch = -4.8538 dB  
Dh = -5.2496 dB  
Eh = -5.6454 dB  
Fh = -6 dB  
0
Reserved  
R
0h  
Reserved  
8.9.41 BOP_CFG8 (page=0x00 address=0x25) [reset=06h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_ATK_RT2[2:0]  
RW  
0h  
BOP level 2 attack rate.  
0h= 2.5 us  
1h = 5 us  
2h = 10 us  
3h = 25 us  
4h = 50 us  
5h = 100 us  
6h = 250 us  
7h = 500 us  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
4-1  
BOP_RLS_ST2[3:0]  
RW  
3h  
BOP level 2 release step size.  
0h = 0.0625 dB  
1h = 0.5 dB  
2h = 0.8958 dB  
3h = 1.2916 dB  
4h = 1.6874 dB  
5h = 2.0832 dB  
6h = 2.479 dB  
7h = 2.8748 dB  
8h = 3.2706 dB  
9h = 3.6664 dB  
Ah =4.0622 dB  
Bh = 4.458 dB  
Ch = 4.8538 dB  
Dh = 5.2496 dB  
Eh = 5.6454 dB  
Fh = 6 dB  
0
Reserved  
R
0h  
Reserved  
8.9.42 BOP_CFG9 (page=0x00 address=0x26) [reset=32h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_RLS_RT2[2:0]  
RW  
1h  
BOP level 2 release rate time.  
0h= 5 ms  
1h = 10 ms  
2h = 25 ms  
3h = 50 ms  
4h = 100 ms  
5h = 250 ms  
6h = 500 ms  
7h = 1000 ms  
4-0  
BOP_MAX_ATTN2[4:0]  
RW  
12h  
BOP level 2 maximum attenuation.  
00h = 0 dB  
01h = -1 dB  
02h = -2 dB  
..  
0Ch = -12 dB  
..  
1Eh = -30 dB  
1Fh = -31 dB  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.43 BOP_CFG10 (page=0x00 address=0x27) [reset=46h]  
Bit Field  
Type Reset Description  
7-0 BOP_TH2[7:0]  
RW  
46h  
BOP level 2 threshold  
Setting  
BOP Threshold (V) -  
BOP Threshold (V) -  
BOP_SRC=0 (VBAT1S Source) BOP_SRC=1 (PVDD Source)  
00h  
01h  
2.7  
2.75  
2.8  
.....  
5.5  
0
5.5  
5.55  
5.6  
.....  
8.3  
8.35  
.....  
10  
02h  
.....  
38h  
39h  
.....  
0
5Ah  
.....  
0
0
.....  
15.95  
16  
D1h  
D2h  
D3h-FFh  
0
0
0
0
8.9.44 BOP_CFG11 (page=0x00 address=0x28) [reset=20h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_HT2[2:0]  
RW  
1h  
BOP level 2 hold time.  
0h = 0 ms  
1h = 10 ms  
2h = 100 ms  
3h = 250 ms  
4h = 500ms  
5h = 1000 ms  
6h = 2000 ms  
7h = Infinite (This can be exited using BOP_HLD_CLR bit)  
4
BOP_DIS2  
Reserved  
RW  
R
0h  
0h  
BOP level 2 is  
0b = Enabled  
1b = Disabled  
3-0  
Reserved  
8.9.45 BOP_CFG12 (page=0x00 address=0x29) [reset=02h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_DT1[2:0]  
RW  
0h  
BOP level 1 dwell time  
0h= 0 us  
1h = 100 us  
2h = 250 us  
3h = 500 us  
4h = 1000 us  
5h = 2000 us  
6h = 4000 us  
7h = 8000 us  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
4-1  
BOP_ATK_ST1[3:0]  
RW  
1h  
BOP level 1 attack step size  
0h = -0.0625 dB  
1h = -0.5 dB  
2h = -0.8958 dB  
3h = -1.2916 dB  
4h = -1.6874 dB  
5h = -2.0832 dB  
6h = -2.479 dB  
7h = -2.8748 dB  
8h = -3.2706 dB  
9h = -3.6664 dB  
Ah =-4.0622 dB  
Bh = -4.458 dB  
Ch = -4.8538 dB  
Dh = -5.2496 dB  
Eh = -5.6454 dB  
Fh = -6 dB  
0
Reserved  
R
0h  
Reserved  
8.9.46 BOP_CFG13 (page=0x00 address=0x2A) [reset=06h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_ATK_RT1[2:0]  
RW  
0h  
BOP level 1 attack rate.  
0h= 2.5 us  
1h = 5 us  
2h = 10 us  
3h = 25 us  
4h = 50 us  
5h = 100 us  
6h = 250 us  
7h = 500 us  
4-1  
BOP_RLS_ST1[3:0]  
RW  
3h  
BOP level 1 release step size.  
0h = 0.0625 dB  
1h = 0.5 dB  
2h = 0.8958 dB  
3h = 1.2916 dB  
4h = 1.6874 dB  
5h = 2.0832 dB  
6h = 2.479 dB  
7h = 2.8748 dB  
8h = 3.2706 dB  
9h = 3.6664 dB  
Ah =4.0622 dB  
Bh = 4.458 dB  
Ch = 4.8538 dB  
Dh = 5.2496 dB  
Eh = 5.6454 dB  
Fh = 6 dB  
0
Reserved  
R
0h  
Reserved  
8.9.47 BOP_CFG14 (page=0x00 address=0x2B) [reset=38h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_RLS_RT1[2:0]  
RW  
1h  
BOP level 1 release rate time.  
0h= 5 ms  
1h = 10 ms  
2h = 25 ms  
3h = 50 ms  
4h = 100 ms  
5h = 250 ms  
6h = 500 ms  
7h = 1000 ms  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
BOP_MAX_ATTN1[4:0]  
Type  
Reset  
Description  
4-0  
RW  
18h  
BOP level 1 maximum attenuation.  
0h = 0 dB  
1h = -1 dB  
2h = -2 dB  
..  
Ch = -12 dB  
..  
1Eh = -30 dB  
1Fh = -31 dB  
8.9.48 BOP_CFG15 (page=0x00 address=0x2C) [reset=40h]  
Bit Field  
Type Reset Description  
7-0 BOP_TH1[7:0]  
RW  
40h  
BOP level 1 threshold  
Setting  
BOP Threshold (V) -  
BOP Threshold (V) -  
BOP_SRC=0 (VBAT1S Source) BOP_SRC=1 (PVDD Source)  
00h  
01h  
2.7  
2.75  
2.8  
.....  
5.5  
0
5.5  
5.55  
5.6  
.....  
8.3  
8.35  
.....  
10  
02h  
.....  
38h  
39h  
.....  
0
5Ah  
.....  
0
0
.....  
15.95  
16  
D1h  
D2h  
D3h-FFh  
0
0
0
0
8.9.49 BOP_CFG17 (page=0x00 address=0x2D) [reset=20h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_HT1[2:0]  
RW  
1h  
BOP level 1 hold time.  
0h = 0 ms  
1h = 10 ms  
2h = 100 ms  
3h = 250 ms  
4h = 500ms  
5h = 1000 ms  
6h = 2000 ms  
7h = Infinite (This can be exited using BOP_HLD_CLR bit)  
4
BOP_DIS1  
Reserved  
RW  
R
0h  
0h  
BOP level 1 is  
0b = Enabled  
1b = Disabled  
3-0  
Reserved  
8.9.50 BOP_CFG18 (page=0x00 address=0x2E) [reset=02h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_DT0[2:0]  
RW  
0h  
BOP level 0 dwell time locked  
0h= 0 us  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
4-1  
BOP_ATK_ST0[3:0]  
RW  
1h  
BOP level 0 attack step size.  
3h = -1.2916 dB  
4h = -1.6874 dB  
5h = -2.0832 dB  
6h = -2.479 dB  
7h = -2.8748 dB  
8h = -3.2706 dB  
9h = -3.6664 dB  
Ah =-4.0622 dB  
Bh = -4.458 dB  
Ch = -4.8538 dB  
Dh = -5.2496 dB  
Eh = -5.6454 dB  
Fh = -6 dB  
0
Reserved  
R
0h  
Reserved  
8.9.51 BOP_CFG19 (page=0x00 address=0x2F) [reset=06h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_ATK_RT0[2:0]  
RW  
0h  
BOP level 0 attack rate.  
0h= 2.5 us  
1h = 5 us  
2h = 10 us  
3h = 25 us  
4h = 50 us  
5h = 100 us  
4-1  
BOP_RLS_ST0[3:0]  
RW  
3h  
BOP level 0 release step size.  
0h = 0.0625 dB  
1h = 0.5 dB  
2h = 0.8958 dB  
3h = 1.2916 dB  
4h = 1.6874 dB  
5h = 2.0832 dB  
6h = 2.479 dB  
7h = 2.8748 dB  
8h = 3.2706 dB  
9h = 3.6664 dB  
Ah =4.0622 dB  
Bh = 4.458 dB  
Ch = 4.8538 dB  
0Dh = 5.2496 dB  
Eh = 5.6454 dB  
Fh = 6 dB  
0
Reserved  
R
0h  
Reserved  
8.9.52 BOP_CFG20 (page=0x00 address=0x30) [reset=3Eh]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_RLS_RT0[2:0]  
RW  
1h  
BOP level 0 release rate time.  
0h= 5 ms  
1h = 10 ms  
2h = 25 ms  
3h = 50 ms  
4h = 100 ms  
5h = 250 ms  
6h = 500 ms  
7h = 1000 ms  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
BOP_MAX_ATTN0[4:0]  
Type  
Reset  
Description  
4-0  
RW  
1Eh  
BOP level 0 maximum attenuation.  
0h - Bh= Reserved  
Ch = -12 dB  
..  
1Eh = -30 dB  
1Fh = -31 dB  
8.9.53 BOP_CFG21 (page=0x00 address=0x31) [reset=37h]  
Bit Field  
Type Reset Description  
7-0 BOP_TH0[7:0]  
RW  
37h  
BOP level 0 threshold  
Setting  
BOP Threshold (V) -  
BOP Threshold (V) -  
BOP_SRC=0 (VBAT1S Source) BOP_SRC=1 (PVDD Source)  
00h  
01h  
2.7  
2.75  
2.8  
.....  
5.45  
5.5  
0
5.5  
5.55  
5.6  
02h  
.....  
.....  
37h  
8.3  
38h  
8.35  
8.4  
39h  
.....  
0
.....  
D1h  
D2h  
D3h-FFh  
0
15.95  
16  
0
0
0
8.9.54 BOP_CFG22 (page=0x00 address=0x32) [reset=20h]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_HT0[2:0]  
RW  
1h  
BOP level 0 hold time.  
0h - 1h = Reserved  
2h = 100 ms  
3h = 250 ms  
4h = 500ms  
5h = 1000 ms  
6h = 2000 ms  
7h = Infinite (This can be exited using BOP_HLD_CLR bit)  
4
BOP_DIS0  
RW  
0h  
BOP level 0 is  
0b = Enabled  
1b = Disabled  
3-1  
0
Reserved  
RW  
RW  
0h  
0h  
Reserved  
BOP_STAT_HLD  
Hold BOP status for BOP_STAT_STATE, BOP_STAT_LLVL, and  
BOP_STAT_PVDD. When register is set back to low the status  
registers will be reset and updating will resume.  
0b= hold update disabled, status register readback invalid  
1b= hold update enabled, status register readback valid  
8.9.55 BOP_CFG23 (page=0x00 address=0x33) [reset=FFh]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOP_STAT_PVDD[9:2]  
R
FFh  
Lowest PVDD measured since last read. Set BOP_STAT_HLD  
high before reading.Till the time SAR does not get enabled in  
device, this register wll readback default value on PVDD (0xff) if  
device is in PWR_MODE2, else it will readback default value on  
VBAT (0xff) when device is in PWR_MODE1. Note: default of  
PVDD is 16V and of VBAT is 6V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.56 BOP_CFG24 (page=0x00 address=0x34) [reset=E6h]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BOP_STAT_PVDD[1:0]  
R
3h  
Lowest PVDD measured since last read. Set BOP_STAT_HLD  
high before reading.Till the time SAR does not get enabled in  
device, this register wll readback default value on PVDD (2'b11)  
if device is in PWR_MODE2, else it will readback default value  
on VBAT (2'b11) when device is in PWR_MODE1. Note: default  
of PVDD is 16V and of VBAT is 6V.  
5-3  
BOP_STAT_LLVL[2:0]  
R
4h  
Lowest BOP level attacked since last read. Set  
BOP_STAT_HLD high before reading.  
0h = Attack level 0 was lowest attack level  
1h = Attack level 1 was lowest attack level  
2h = Attack level 2 was lowest attack level  
3h = Attack level 3 was lowest attack level  
4h = No BOP attacked since last read  
2-1  
0
LVS_FTH_LOW[1:0]  
Reserved  
RW  
R
3h  
0h  
Threshold for LVS when CDS_MODE=2'b11  
0h = -121.5 dBFS  
1h=- -101.5 dBFS (default)  
2h= -81.5 dBFS  
3h = -71.5 dBFS  
Reserved  
8.9.57 NG_CFG0 (page=0x00 address=0x35) [reset=BDh]  
Bit  
Field  
Type  
Reset  
Description  
7-5  
NG_HSYT[2:0]  
RW  
5h  
Noise Gate Entry hysteris timer  
0h = 260us  
1h = 500us  
2h = 800us  
3h = 2 ms  
4h = 10 ms  
5h = 50 ms  
6h = 100 ms  
7h = 1000 ms  
4-3  
NG_LVL[1:0]  
RW  
3h  
Noise-gate audio threshold level  
0h = -90 dBFS  
1h= -100 dBFS  
2h = -110 dBFS  
3h = -120 dBFS  
2
NG_EN  
RW  
RW  
1h  
1h  
Noise gate  
0b = Disabled  
1b = Enabled  
1-0  
Reserved  
Reserved  
8.9.58 NG_CFG1 (page=0x00 address=0x36) [reset=ADh]  
Bit  
7-6  
5
Field  
Type  
RW  
Reset  
2h  
Description  
Reserved  
NG_DVR_EN  
Reserved  
RW  
1h  
Volume ramping on noise-gate control is  
0b = Enabled  
1b = Disabled  
4
Reserved  
R
0h  
Reserved  
3-0  
LVS_HYS[3:0]  
RW  
Dh  
PVDD to VBAT1S hysteresis time  
0h - 9h= Reserved  
Ah = 1 ms  
Bh = 10 ms  
Ch = 20 ms  
Dh = 50 ms  
Eh = 75 ms  
Fh = 100 ms  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.59 LVS_CFG0 (page=0x00 address=0x37) [reset=A8h]  
Bit  
Field  
Type  
Reset  
Description  
7
LVS_TMODE  
RW  
1h  
Low-Voltage signaling detection threshold is  
0b = Fixed  
1b = Relative to VBAT1S voltage  
6
5
Reserved  
RW  
RW  
RW  
0h  
1h  
8h  
Reserved  
Reserved  
Reserved  
4-0  
LVS_FTH[4:0]  
Threshold for LVS when CDS_MODE=2'b00  
0h = -18.5 dBFS  
1h=-18.25 dBFS (default)  
2h=-18 dBFS  
3h = -17.75 dBFS  
4h=-17.5 dBFS  
..  
8h=-16.5 dBFS  
..  
1Eh=-11 dBFS  
1Fh=-10.75 dBFS  
8.9.60 DIN_PD (page=0x00 address=0x38) [reset=03h]  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
DIN_PD[4]  
Reserved  
6
RW  
0h  
Weak pull down for ICC  
0b = Disabled  
1b = Enabled  
5
4
DIN_PD[3]  
DIN_PD[2]  
DIN_PD[1]  
DIN_PD[0]  
Reserved  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
3h  
Weak pull down for SDOUT.  
0b = Disabled  
1b = Enabled  
Weak pull down for SDIN.  
0b = Disabled  
1b = Enabled  
3
Weak pull down for FSYNC.  
0b = Disabled  
1b = Enabled  
2
Weak pull down for SBCLK.  
0b = Disabled  
1b = Enabled  
1-0  
Reserved  
8.9.61 IO_DRV0 (page=0x00 address=0x39) [reset=FFh]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SDA_IO_DS[1:0]  
RW  
3h  
SDA Drive Strength  
00b = 2 mA  
01b = 4 mA  
10b = 6 mA  
11b = 8 mA  
5-4  
3-2  
Reserved  
RW  
RW  
3h  
3h  
Reserved  
SDOUT_IO_DS[1:0]  
SDOUT Drive Strength  
00b = 2 mA  
01b = 4 mA  
10b = 6 mA  
11b = 8 mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
1-0  
ICC_IO_DS[1:0]  
RW  
3h  
ICC Drive Strength  
00b = 2 mA  
01b = 4 mA  
10b = 6 mA  
11b = 8 mA  
8.9.62 IO_DRV1 (page=0x00 address=0x3A) [reset=FFh]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SBCLK_IO_DS[1:0]  
RW  
3h  
SBCLK Drive Strength  
00b = 2 mA  
01b = 4 mA  
10b = 6 mA  
11b = 8 mA  
5-4  
3-2  
Reserved  
RW  
RW  
3h  
3h  
Reserved  
IRQZ_IO_DS[1:0]  
IRQZ Drive Strength  
00b = 2 mA  
01b = 4 mA  
10b = 6 mA  
11b = 8 mA  
1-0  
BYP_EN_IO_DS[1:0]  
RW  
3h  
Bypass Enable Drive Strength  
00b = 2 mA  
01b = 4 mA  
10b = 6 mA  
11b = 8 mA  
8.9.63 INT_MASK0 (page=0x00 address=0x3B) [reset=FCh]  
Bit  
Field  
Type  
Reset  
Description  
7
IM_BOPM  
RW  
1h  
BOP mute interrupt.  
0b = Don't Mask  
1b = Mask  
6
5
4
3
2
1
0
IM_BOPIH  
IM_LIMMA  
IM_PBIP  
IM_LIMA  
IM_TDMCE  
IM_OC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1h  
1h  
1h  
1h  
1h  
0h  
0h  
Bop infinite hold interrupt.  
0b = Don't Mask  
1b = Mask  
Limiter max attenuation interrupt.  
0b = Don't Mask  
1b = Mask  
PVDD below limiter inflection point interrupt.  
0b = Don't Mask  
1b = Mask  
Limiter active interrupt.  
0b = Don't Mask  
1b = Mask  
TDM clock error interrupt.  
0b = Don't Mask  
1b = Mask  
Over current error interrupt.  
0b = Don't Mask  
1b = Mask  
IM_OT  
Over temp error interrupt.  
0b = Don't Mask  
1b = Mask  
8.9.64 INT_MASK1 (page=0x00 address=0x3C) [reset=BEh]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
RW  
2h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
5
IM_LDC  
RW  
1h  
Load Diagnostic Completion Mask  
0b = Don't Mask  
1b = Masked  
4
IM_SOL[1:0]  
RW  
3h  
Load Mask  
00b = Don't Mask  
01b = Mask Open Load Detection  
10b = Mask Short Load Detection  
01b = Mask Open/Short Load Detection  
2
IM_BOPSD  
*If BOP_SHDN=1 and brownout is  
RW  
RW  
1h  
2h  
BOP Started Mask  
0b = Don't Mask  
1b = Mask  
detected DSP shuts down if not  
masked  
1-0  
Reserved  
Reserved  
8.9.65 INT_MASK4 (page=0x00 address=0x3D) [reset=DFh]  
Bit  
Field  
Type  
Reset  
Description  
7
IM_PLL_CLK  
RW  
1h  
Internal PLL Derived Clock Error Mask  
0b = Don't Mask  
1b = Mask  
6
5
Reserved  
RW  
RW  
1h  
0h  
Reserved  
IM_VBAT1S_UVLO  
VBAT1S Under Voltage  
0b = Don't Mask  
1b = Mask  
4-0  
Reserved  
RW  
1Fh  
Reserved  
8.9.66 INT_MASK2 (page=0x00 address=0x40) [reset=F6h]  
Bit  
Field  
Type  
Reset  
Description  
7
IM_TO105  
RW  
1h  
Temperature over 105C interrupt.  
0b = Don't Mask  
1b = Mask  
6
5
4
3
2
1
0
IM_TO115  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1h  
1h  
1h  
0h  
1h  
1h  
0h  
Temperature over 115C interrupt.  
0b = Don't Mask  
1b = Mask  
IM_TO125  
IM_TO135  
IM_LDO_UV  
IM_LDO_OV  
IM_LDO_OL  
IM_PUVLO  
Temperature over 125C interrupt.  
0b = Don't Mask  
1b = Mask  
Temperature over 135C interrupt.  
0b = Don't Mask  
1b = Mask  
Internal VBAT1S LDO Under Voltage  
0b = Don't Mask  
1b = Mask  
Internal VBAT1S LDO Over Voltage  
0b = Don't Mask  
1b = Mask  
Internal VBAT1S LDO Over Load  
0b = Don't Mask  
1b = Mask  
PVDD UVLO interrupt.  
0b = Don't Mask  
1b = Mask  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.67 INT_MASK3 (page=0x00 address=0x41) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IM_TDTH2  
RW  
0h  
Thermal Detection Threshold 2 mask  
0b = Don't Mask  
1b = Mask  
6
5
4
3
2
1
0
IM_TDTH1  
IM_PVBT  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Thermal Detection Threshold 1 mask  
0b = Don't Mask  
1b = Mask  
PVDD - VBAT1S below threshold mask  
0b = Don't Mask  
1b = Mask  
IM_BOPA  
BOP active interrupt. Mask  
0b = Don't mask  
1b = Mask  
IM_BOPL3A  
IM_BOPL2A  
IM_BOPL1A  
IM_BOPL0A  
BOP level 3 detected interrupt mask  
0b = Don't mask  
1b = Mask  
BOP level 2 detected interrupt mask  
0b = Don't mask  
1b = Mask  
BOP level 1 detected interrupt mask  
0b = Don't mask  
1b = Mask  
BOP level 0 detected interrupt mask  
0b = Don't mask  
1b = Mask  
8.9.68 INT_LIVE0 (page=0x00 address=0x42) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IL_BOPM  
R
0h  
Interrupt due to bop mute.  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
IL_BOPIH  
IL_LIMMA  
IL_PBIP  
IL_LIMA  
IL_TDMCE  
IL_OC  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Interrupt due to bop infinite hold.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter max attenuation.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to PVDD below limiter inflection point.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter active.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to TDM clock error.  
0b = No interrupt  
1b = Interrupt - Device in shutdown  
Interrupt due to over current error.  
0b = No interrupt  
1b = Interrupt - Device in shutdown  
IL_OT  
Interrupt due to over temp error.  
0b = No interrupt  
1b = Interrupt - Device in shutdown  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.69 INT_LIVE1 (page=0x00 address=0x43) [reset=00h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
IL_OTPCRC  
Reserved  
6
R
0h  
Interrupt due to OTP CRC Error Flag  
0b = No interrupt  
1b = Interrupt - Device in shutdown  
5-3  
2
Reserved  
IL_NGA  
R
R
0h  
0h  
Reserved  
Noise Gate Acive flag  
0b = Noise gate not detected  
1b = Noise gate detected  
1-0  
Reserved  
R
0h  
Reserved  
8.9.70 INT_LIVE1_0 (page=0x00 address=0x44) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IL_PLL_CLK  
R
0h  
Internal PLL Clock Error  
0b = No interrupt  
1b = Interrupt - Device in shutdown  
6
5
Reserved  
R
R
0h  
0h  
Reserved  
IL_VBAT1S_UVLO  
VBAT1S Under Voltage  
0b = No interrupt  
1b = Interrupt - Device in shutdown  
4-0  
Reserved  
R
0h  
Reserved  
8.9.71 INT_LIVE2 (page=0x00 address=0x47) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IL_TO105  
R
0h  
Temperature over 105C  
0b = No Interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
IL_TO115  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Temperature over 115C  
0b = No Interrupt  
1b = Interrupt  
IL_TO125  
Temperature over 125C  
0b = No Interrupt  
1b = Interrupt  
IL_TO135  
Temperature over 135C  
0b = No Interrupt  
1b = Interrupt  
IL_LDO_UV  
IL_LDO_OV  
IL_LDO_OL  
IL_PUVLO  
VBAT1S Internal LDO Under Voltage  
0b = No Interrupt  
1b = Interrupt - Device in shutdown  
VBAT1S Internal LDO Over Voltage  
0b = No Interrupt  
1b = Interrupt - Device in shutdown  
VBAT1S Internal LDO Over Load  
0b = No Interrupt  
1b = Interrupt - Device in shutdown  
PVDD UVLO  
0b = No Interrupt  
1b = Interrupt - Device in shutdown  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.72 INT_LIVE3 (page=0x00 address=0x48) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IL_TDTH2  
R
0h  
Thermal Detection Threshold 2 active flag  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
IL_TDTH1  
IL_PVBT  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Thermal Detection Threshold 1 active flag  
0b = No interrupt  
1b = Interrupt  
PVDD -VBAT1S going below the threshold flag  
0b = No interrupt  
1b = Interrupt  
IL_BOPA  
BOP active flag  
0b = No interrupt  
1b = Interrupt  
IL_BOPL3A  
IL_BOPL2A  
IL_BOPL1A  
IL_BOPL0A  
BOP level 3 detected flag  
0b = No interrupt  
1b = Interrupt  
BOP level 2 detected flag  
0b = No interrupt  
1b = Interrupt  
BOP level 1 detected flag  
0b = No interrupt  
1b = Interrupt  
BOP level 0 detected flag  
0b = No interrupt  
1b = Interrupt  
8.9.73 INT_LTCH0 (page=0x00 address=0x49) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IR_BOPM  
R
0h  
Interrupt due to bop mute.  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
IR_BOPIH  
IR_LIMMA  
IR_PBIP  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Interrupt due to BOP infinite hold.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter max attenuation.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to PVDD below limiter inflection point.  
0b = No interrupt  
1b = Interrupt  
IR_LIMA  
Interrupt due to limiter active  
0b = No interrupt  
1b = Interrupt  
IR_TDMCE  
Interrupt due to TDM clock error. Type of clock error can be  
seen from INT_LTCH8  
0b = No interrupt  
1b = Interrupt  
1
0
IR_OC  
IR_OT  
R
R
0h  
0h  
Interrupt due to over current error  
0b = No interrupt  
1b = Interrupt  
Interrupt due to over temp error  
0b = No interrupt  
1b = Interrupt  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.74 INT_LTCH1 (page=0x00 address=0x4A) [reset=00h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
IR_OTPCRC  
Reserved  
6
R
0h  
Interrupt due to OTP CRC Error Flag.  
0b = No interrupt  
1b = Interrupt  
5
IR_LDC  
R
R
0h  
0h  
Interrupt due to load diagnostic completion.  
0b = Not completed  
1b = Completed  
4-3  
IR_LDSL IR_LDO  
Interrupt due to Load Diagnostic Mode Fault Status  
00b = Normal Load  
01b = Open Load Detected  
10b = Short Load Detected  
11b = Reserved  
2-0  
Reserved  
R
0h  
Reserved  
8.9.75 INT_LTCH1_0 (page=0x00 address=0x4B) [reset=00h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
IR_PLL_CLK  
Reserved  
Internal PLL Clock Error  
Reserved  
6
R
0h  
5
IR_VBAT1S_UVLO  
Reserved  
R
0h  
VBAT1S Under Voltage  
Reserved  
4-0  
R
0h  
8.9.76 INT_LTCH2 (page=0x00 address=0x4F) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IR_TO105  
R
0h  
Temperature over 105C  
0b = No Interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
IR_TO115  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Temperature over 115C  
0b = No Interrupt  
1b = Interrupt  
IR_TO125  
IR_TO135  
IR_LDO_UV  
IR_LDO_OV  
IR_LDO_OL  
IR_PUVLO  
Temperature over 125C  
0b = No Interrupt  
1b = Interrupt  
Temperature over 135C  
0b = No Interrupt  
1b = Interrupt  
Internal VBAT1S LDO Under Voltage  
0b = No Interrupt  
1b = Interrupt  
Internal VBAT1S LDO Over Voltage  
0b = No Interrupt  
1b = Interrupt  
Internal VBAT1S LDO Over Load  
0b = No Interrupt  
1b = Interrupt  
PVDD UVLO  
0b = No Interrupt  
1b = Interrupt  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.77 INT_LTCH3 (page=0x00 address=0x50) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
IR_TDTH2  
R
0h  
Thermal Detection Threshold 2  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
IR_TDTH1  
IR_PVBT  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Thermal Detection Threshold 1  
0b = No interrupt  
1b = Interrupt  
Interrupt due to PVDD-VBAT1S going below the threshold  
0b = No interrupt  
1b = Interrupt  
IR_BOPA  
BOP active flag  
0b = No interrupt  
1b = Interrupt  
IR_BOPL3A  
IR_BOPL2A  
IR_BOPL1A  
IR_BOPL0A  
BOP level 3 detected sticky  
0b = No interrupt  
1b = Interrupt  
BOP level 2 detected sticky  
0b = No interrupt  
1b = Interrupt  
BOP level 1 detected sticky  
0b = No interrupt  
1b = Interrupt  
BOP level 0 detected sticky  
0b = No interrupt  
1b = Interrupt  
8.9.78 INT_LTCH4 (page=0x00 address=0x51) [reset=00h]  
Bit  
7-3  
2
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
IR_TDMCEIR  
Reserved  
R
0h  
TDM clock error type = Invalid SBCLK ratio or FS rate  
0b = Not detected during TDM clock error  
1b = Detected during TDM clock error  
1
0
IR_TDMCEFC  
IR_TDMCERC  
R
R
0h  
0h  
TDM clock error type = FS changed on the fly  
0b = Detected during TDM clock error  
1b = Not detected during TDM clock error  
TDM clock error type = SBCLK FS ratio changed on the fly  
0b = Not detected during TDM clock error  
1b = Detected during TDM clock error  
8.9.79 VBAT_MSB (page=0x00 address=0x52) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
VBAT1S_CNV[11:4]  
R
0h  
Returns SAR ADC VBAT1S conversio:  
VBAT1S=[hex2dec(VBAT1S_CNV<11:0>)]/128  
8.9.80 VBAT_LSB (page=0x00 address=0x53) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-4  
VBAT1S_CNV[3:0]  
R
0h  
Returns SAR ADC VBAT1S conversio:  
VBAT1S=[hex2dec(VBAT1S_CNV<11:0>)]/128  
3-0  
Reserved  
R
0h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.81 PVDD_MSB (page=0x00 address=0x54) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PVDD_CNV[11:4]  
R
0h  
Returns SAR ADC PVDD conversio:  
PVDD=[hex2dec(PVDD_CNV<11:0>)]/128  
8.9.82 PVDD_LSB (page=0x00 address=0x55) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-4  
PVDD_CNV[3:0]  
R
0h  
Returns SAR ADC PVDD conversio:  
PVDD=[hex2dec(PVDD_CNV<11:0>)]/128  
3-0  
Reserved  
R
0h  
Reserved  
8.9.83 TEMP (page=0x00 address=0x56) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TMP_CNV[7:0]  
R
0h  
Returns SAR ADC temp sensor conversion:  
TEMP(0C)=[hex2dec(TEMP_CNV(7:0)]-93  
8.9.84 INT_CLK_CFG (page=0x00 address=0x5C) [reset=19h]  
Bit  
Field  
Type  
Reset  
Description  
7
*CLK_ERR_PWR_EN  
RW  
0h  
Clock based device power up/power down feature enable  
0b = Enable clk halt detection after clock error detection  
1b = Disable clock halt detection, after clock error is detected  
6
*DIS_CLK_HALT  
RW  
RW  
0h  
3h  
Clock halt timer enable  
0b = Feature disabled  
1b = Feature enabled  
5-3  
CLK_HALT_TIMER[2:0]  
Clock halt timer values  
0b = 820 us  
1b = 3.27ms  
2b = 26.21ms  
3b =52.42ms  
4b = 104.85ms  
5b = 209.71ms  
6b = 419.43ms  
7b = 838.86 ms  
2
IRQZ_CLR  
RW  
RW  
0h  
1h  
Clear INT_LATCH registers  
0b = Don't clear  
1b = Clear (self clearing bit)  
1-0  
IRQZ_PIN_CFG[1:0]  
IRQZ interrupt configuration. IRQZ will assert  
00b = On any unmasked live interrupts  
01b = On any unmasked latched interrupts  
10b = For 2-4ms one time on any unmasked live interrupt event  
11b = For 2-4ms every 4ms on any unmasked latched interrupts  
* Certain limitations applied. Contact TI if need to use this bit.  
8.9.85 MISC_CFG3 (page=0x00 address=0x5D) [reset=80h]  
Bit  
Field  
Type  
Reset  
Description  
7
IRQZ_POL  
RW  
1h  
IRQZ pin polarity for interrupt.  
0b = Active high  
1b = Active low  
6-4  
Reserved  
RW  
0h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TAS2764  
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
3-2  
YB_BOP_CTRL  
RW  
0h  
This register selects on which BOP level, Y-bridge and BYP_EN  
pad need to shift to PVDD when PVDD_SELECTION = 0.  
0h = Shift to PVDD when BOP LVL0 is detected  
1h = Shift to PVDD when BOP LVL1 or LVL0 is detected  
2h = Shift to PVDD when BOP LVL2 or LVL1 or LVL0 is detected  
3h = Shift to PVDD when BOP LVL3 or LVL2 or LVL1 or LVL0 is  
detected  
1
0
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.9.86 CLOCK_CFG (page=0x00 address=0x60) [reset=0Dh]  
Bit  
7-6  
5-2  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
SAMP_RATIO[3:0]  
RW  
3h  
SBCLK to FS ratio when AUTO_RATE=1 (disabled)  
00h = 16  
01h = 24  
02h = 32  
03h = 48  
04h = 64  
05h = 96  
06h = 128  
07h = 192  
08h = 256  
09h = 384  
0Ah = 512  
0Bh = 125  
0Ch = 250  
0Dh = 500  
0Eh-0Fh = Reserved  
1-0  
Reserved  
RW  
1h  
Reserved  
8.9.87 IDLE_IND (page=0x00 address=0x63) [reset=48]  
Bit  
Field  
Type  
Reset  
Description  
7
IDLE_IND  
RW  
0h  
Idle channel Class D output current optimization  
0b = Used for inductors 15uH and higher  
1b = Used for 5uH inductors  
6-0  
Reserved  
RW  
48h  
Reserved  
8.9.88 MISC_CFG4 (page=0x00 address=0x65) [reset=08]  
Bit  
7-4  
3
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
LDG_CLK  
Reserved  
RW  
1h  
Clock source for load diagnostic  
0b = External TDM  
1b = Internal oscillator  
2-1  
0
LDG_IVSNS_AVG  
Reserved  
0h  
0h  
Duration on averaging on V/I data  
0h = 5 ms  
1h = 10 ms  
2h = 50 ms  
3h =100 ms  
RW  
Reserved  
8.9.89 TG_CFG0 (page=0x00 address=0x67) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R
0h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
ID_CH_HYST_TIME[1:0]  
Type  
Reset  
Description  
1-0  
RW  
0h  
Idle channel hysteresis timer.  
00h = 50 ms  
01h = 100 ms  
02h = 200 ms  
03h = 1000 ms  
8.9.90 CLK_CFG (page=0x00 address=0x68) [reset=7Fh]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
FS_RATIO[3:0]  
Reserved  
6-3  
R
Fh  
Detected SBCLK to FSYNC ratio.  
00h = 16  
01h = 24  
02h = 32  
03h = 48  
04h = 64  
05h = 96  
06h = 128  
07h = 192  
08h = 256  
09h = 384  
0Ah = 512  
0Bh = 125  
0Ch = 250  
0Dh = 500  
0Eh = Reserved  
0F = Invalid ratio  
2-0  
FS_RATE[2:0]  
R
7h  
Detected sample rate of TDM bus.  
000b = Reserved  
001b = Reserved  
010b = Reserved  
011b = Reserved  
100b = 44.1/48 kHz  
101b = 88.2/96 kHz  
110b = Reserved  
111b = Error condition  
8.9.91 LV_EN_CFG (page=0x00 address=0x6A) [reset=12h]  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CDS_DLY[1:0]  
RW  
0h  
Delay (1/fs) of the Class-D Y-bridge switching with respect to the  
input signal  
00b = 8.1(NG enabled,48ksps), 6.1(NG disabled,48ksps)  
00b = 12.6(NG enabled,96ksps), 9.6(NG disabled,96ksps)  
01b = 7.1(NG enabled,48ksps), 5.1(NG disabled,48ksps),  
01b = 10.6(NG enabled,96ksps), 7.6(NG disabled,96ksps)  
10b = 6.1(NG enabled,48ksps), 4.1(NG disabled,48ksps)  
10b = 8.5(NG enabled,96ksps), 5.6(NG disabled,96ksps)  
11b = 5.6(NG enabled,48ksps), 3.6(NG disabled,48ksps  
11b = 7.6(NG enabled,96ksps), 4.6(NG disabled,96ksps)  
5-4  
LVS_DLY[1:0]  
RW  
1h  
Delay (1/fs) of the BYP_EN signaling with respect to the input  
signal  
00b = 7.8(NG enabled,48ksps), 5.8(NG disabled,48ksps)  
00b = 12.1(NG enabled,96ksps), 9.1(NG disabled,96ksps)  
01b = 6.8(NG enabled,48ksps), 4.8(NG disabled,48ksps),  
01b = 10.1(NG enabled,96ksps), 7.1(NG disabled,96ksps)  
10b = 5.8(NG enabled,48ksps), 3.8(NG disabled,48ksps)  
10b = 8.1(NG enabled,96ksps), 5.1(NG disabled,96ksps)  
11b = 5.1(NG enabled,48ksps), 3.1(NG disabled,48ksps  
11b = 6.6(NG enabled,96ksps), 3.6(NG disabled,96ksps)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
3-0  
LVS_RTH[3:0]  
RW  
2h  
Relative threshold for Low-Voltage Signaling. Headroom is from  
current VBAT1S voltage.  
00h = 0.5 V  
01h = 0.6 V  
02h = 0.7 V  
...  
0Eh = 1.9 V  
0Fh = 2 V  
8.9.92 NG_CFG2 (page=0x00 address=0x6B) [reset=01h]  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
6
CONV_VBAT_PVDD_MODE  
RW  
0h  
Convert the VBAT1S in PVDD Only Mode  
0b=No VBAT1S conversion  
1b=VBAT1S conversion will show the value of internal LDO  
supplying VBAT1S pin  
5-3  
2
Reserved  
R
0h  
0h  
Reserved  
NGFR_EN  
RW  
Noise-gate fine resolution register mode  
0b = Disabled  
1b = Enabled  
1-0  
Reserved  
RW  
1h  
Reserved  
8.9.93 NG_CFG3 (page=0x00 address=0x6C) [reset=00h]  
Programmable bits for Noise Gate fine resolution threshold to a level -NGLVL(dBFS)  
Bit  
Field  
Type  
Reset  
Description  
7-0  
NGFR_LVL[23:16]  
RW  
0h  
dec2hex{round{ 10^(-NGLVL)/20)]*2^23}  
8.9.94 NG_CFG4 (page=0x00 address=0x6D) [reset=00h]  
Programmable bits for Noise Gate fine resolution threshold to a level -NGLVL(dBFS)  
Bit  
Field  
Type  
Reset  
Description  
7-0  
NGFR_LVL[15:8]  
RW  
0h  
dec2hex{round{ 10^(-NGLVL)/20)]*2^23}  
8.9.95 NG_CFG5 (page=0x00 address=0x6E) [reset=1Ah]  
Programmable bits for Noise Gate fine resolution threshold to a level -NGLVL(dBFS)  
Bit  
Field  
Type  
Reset  
Description  
7-0  
NGFR_LVL[7:0]  
RW  
1Ah  
dec2hex{round{ 10^(-NGLVL)/20)]*2^23}  
8.9.96 NG_CFG6 (page=0x00 address=0x6F) [reset=00h]  
Programmable bits for Noise Gate fine resolution threshold to a level -NGLVL(dBFS)  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-8. Noise Gate 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
NGFR_HYST[18:11]  
RW  
0h  
dec2bin[(NGHYS*fs),19]  
fs=sampling rate in kHz  
8.9.97 NG_CFG7 (page=0x00 address=0x70) [reset=96h]  
Programmable bits for Noise Gate fine resolution threshold to a level -NGLVL(dBFS)  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-9. Noise Gate 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
NGFR_HYST[10:3]  
RW  
96h  
dec2bin[(NGHYS*fs),19]  
fs=sampling rate in kHz  
Example  
NGFR_HYST[15:0] is the result of 19 bits processing with last three bits thrown away (000)  
For 50 ms and 48ksps formula is: dec2bin[50*48,19]=dec2bin[2400,19]=0000000100101100000  
Result: 01h in register 0x6F and 2Ch in register 0x70.  
8.9.98 PVDD_UVLO (page=0x00 address=0x71) [reset=00h]  
Bit  
7-6  
5-0  
Field  
Type  
RW  
Reset  
00h  
Description  
Reserved  
Reserved  
PVDD_UVLO_TH[5:0]  
RW  
00h  
PVDD UVLO Thresholds.  
00h = 2.2 V  
01h = 2.419 V  
02h = 2.638 V  
...........  
3Fh= 16 V  
8.9.99 DAC_MOD_RST (page=0x00 address=0x76) [reset=02h]  
Bit  
7-2  
1
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
DIS_DMOD_RST  
RW  
1h  
Reset of DAC Modulator when DSP is OFF:  
0= Enable reset of DAC Modulator when DSP is OFF  
1= Disable reset of DAC Modulator when DSP is OFF  
0
Reserved  
R
0h  
Reserved  
Reset value can change when read back .  
8.9.100 REV_ID (page=0x00 address=0x7D) [reset=30h]  
Bit  
7-4  
3-0  
Field  
Type  
R
Reset  
3h  
Description  
REV_ID[3:0]  
PG_ID[3:0]  
Returns the revision ID.  
Returns the PG ID.  
R
0h  
8.9.101 I2C_CKSUM (page=0x00 address=0x7E) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
I2C_CKSUM[7:0]  
RW  
0h  
Returns I2C checksum. Writing to this register will reset the  
checksum to the written value. This register is updated on writes  
to other registers on all books and pages.  
8.9.102 BOOK (page=0x00 address=0x7F) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOOK[7:0]  
RW  
0h  
Sets the device book.  
00h = Book 0  
01h = Book 1  
...  
FFh = Book 255  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TAS2764  
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.103 LSR (page=0x01 address=0x19) [reset=40h]  
Bit  
7
Field  
Type  
R
Reset  
0b  
Description  
Reserved  
Reserved  
EN_LLSR  
6
RW  
1b  
Modulation  
0b = LSR  
1b = Linear LSR  
Reserved  
5-0  
Reserved  
R
0h  
8.9.104 SDOUT_HIZ_1 (page=0x01 address=0x3D) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ1[7:0]  
RW  
0h  
Force '0' output control for slots 7 down to 0. This register to be  
programmed as zero in case the slot is not valid as per valid  
FSRATIO  
8.9.105 SDOUT_HIZ_2 (page=0x01 address=0x3E) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ2[7:0]  
RW  
0h  
Force '0' output control for slots 15 down to 8. This register to be  
programmed as zero in case the slot is not valid as per valid  
FSRATIO  
8.9.106 SDOUT_HIZ_3 (page=0x01 address=0x3F) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ3[7:0]  
RW  
0h  
Force '0' output control for slots 23 down to 16. This register to  
be programmed as zero in case the slot is not valid as per valid  
FSRATIO  
8.9.107 SDOUT_HIZ_4 (page=0x01 address=0x40) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ4[7:0]  
RW  
0h  
Force '0' output control for slots 31 down to 24. This register to  
be programmed as zero in case the slot is not valid as per valid  
FSRATIO  
8.9.108 SDOUT_HIZ_5 (page=0x01 address=0x41) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ5[7:0]  
RW  
0h  
Force '0' output control for slots 39 down to 32. This register to  
be programmed as zero in case the slot is not valid as per valid  
FSRATIO  
8.9.109 SDOUT_HIZ_6 (page=0x01 address=0x42) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ6[7:0]  
RW  
0h  
Force '0' output control for slots 47 down to 40. This register to  
be programmed as zero in case the slot is not valid as per valid  
FSRATIO  
8.9.110 SDOUT_HIZ_7 (page=0x01 address=0x43) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ7[7:0]  
RW  
0h  
Force '0' output control for slots 55 down to 48. This register to  
be programmed as zero in case the slot is not valid as per valid  
FSRATIO  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.111 SDOUT_HIZ_8 (page=0x01 address=0x44) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SDOUT_HIZ8[7:0]  
RW  
0h  
Force '0' output control for slots 63 down to 56. This register to  
be programmed as zero in case the slot is not valid as per valid  
FSRATIO  
8.9.112 SDOUT_HIZ_9 (page=0x01 address=0x45) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7
SDOUT_FORCE_0_CNT_EN  
RW  
0h  
Control over sending "0" to un-used slots  
0b = All unused slots will have 'Hi-Z' transmitted  
1b = Unused slots can transmit '0' base on programming in  
registers 0x44 to 0x3D  
6-0  
Reserved  
RW  
0h  
Reserved  
8.9.113 TG_EN (page=0x01 address=0x47) [reset=ABh]  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R
6'b101010 Reserved  
Reset value can change when read back .  
1
0
TG_TH2  
TG_TH1  
RW  
RW  
1'b1  
Thermal threshold 2  
1=Enabled  
0=Disabled  
1'b1  
Thermal threshold 1  
1=Enabled  
0=Disabled  
8.9.114 DG_DC_VAL1 (page=0x04 address=0x08) [reset=40h]  
Programmable Diagnostic bits for a DC_VAL (dBFS) desired level.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DG_DC_VAL [31:24]  
RW  
40h  
dec2hex{256*round[10^(DC_VAL/20)*2^23]}  
8.9.115 DG_DC_VAL2 (page=0x04 address=0x09) [reset=26h]  
Programmable Diagnostic bits for a DC_VAL (dBFS) desired level.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DG_DC_VAL [23:16]  
RW  
26h  
dec2hex{256*round[10^(DC_VAL/20)*2^23]}  
8.9.116 DG_DC_VAL3 (page=0x04 address=0x0A) [reset=40h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DG_DC_VAL [15:8]  
RW  
40h  
dec2hex{256*round[10^(DC_VAL/20)*2^23]}  
8.9.117 DC_DG_VAL4 (page=0x04 address=0x0B) [reset=00h]  
Programmable Diagnostic bits for a DC_VAL (dBFS) desired level.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DG_DC_VAL [7:0]  
RW  
00h  
dec2hex{256*round[10^(DC_VAL/20)*2^23]}  
8.9.118 LIM_TH_MAX1 (page=0x04 address=0x0C) [reset=68h]  
Programmable bits to set limiter maximum threshold to a LIM_TH_MAX (V).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MAX[31:24]  
RW  
68h  
dec2hex{256*round [LIM_TH_MAX*2^19]}  
8.9.119 LIM_TH_MAX2 (page=0x04 address=0x0D) [reset=00h]  
Programmable bits to set limiter maximum threshold to a LIM_TH_MAX (V).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MAX[23:16]  
RW  
00h  
dec2hex{256*round [LIM_TH_MAX*2^19]}  
8.9.120 LIM_TH_MAX3 (page=0x04 address=0x0E) [reset=00h]  
Programmable bits to set limiter maximum threshold to a LIM_TH_MAX (V).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MAX[15:8]  
RW  
00h  
dec2hex{256*round [LIM_TH_MAX*2^19]}  
8.9.121 LIM_TH_MAX4 (page=0x04 address=0x0F) [reset=00h]  
Programmable bits to set limiter maximum threshold to a LIM_TH_MAX (V).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MAX[7:0]  
RW  
00h  
dec2hex{256*round [LIM_TH_MAX*2^19]}  
8.9.122 LIM_TH_MIN1 (page=0x04 address=0x10) [reset=28h]  
Sets limiter minimum threshold to a LIM_TH_MIN (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MIN[31:24]  
RW  
28h  
dec2hex{256*round [LIM_TH_MIN*2^19]}  
8.9.123 LIM_TH_MIN2 (page=0x04 address=0x11) [reset=00h]  
Sets limiter minimum threshold to a LIM_TH_MIN (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MIN[23:16]  
RW  
00h  
dec2hex{256*round [LIM_TH_MIN*2^19]}  
8.9.124 LIM_TH_MIN3 (page=0x04 address=0x12) [reset=00h]  
Sets limiter minimum threshold to a LIM_TH_MIN (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MIN[15:8]  
RW  
00h  
dec2hex{256*round [LIM_TH_MIN*2^19]}  
8.9.125 LIM_TH_MIN4 (page=0x04 address=0x13) [reset=00h]  
Sets limiter minimum threshold to a LIM_TH_MIN (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_TH_MIN[7:0]  
RW  
0h  
dec2hex{256*round [LIM_TH_MIN*2^19]}  
8.9.126 LIM_INF_PT1 (page=0x04 address=0x14) [reset=56h]  
Sets limiter inflection point to a value of LIM_INF_PT (V).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_INF_PT[31:24]  
RW  
56h  
dec2hex{256*round [LIM_INF_PT*2^19]}  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.127 LIM_INF_PT2 (page=0x04 address=0x15) [reset=66h]  
Sets limiter inflection point to a value of LIM_INF_PT (V).  
Bit  
Field  
Type  
Reset  
Description  
dec2hex{256*round [LIM_INF_PT*2^19]}  
7-0  
LIM_INF_PT[23:16]  
RW  
66h  
8.9.128 LIM_INF_PT3 (page=0x04 address=0x16) [reset=66h]  
Sets limiter inflection point to a value of LIM_INF_PT (V).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_INF_PT[15:8]  
RW  
66h  
dec2hex{256*round [LIM_INF_PT*2^19]}  
8.9.129 LIM_INF_PT4 (page=0x04 address=0x17) [reset=00h]  
Sets limiter inflection point to a value of LIM_INF_PT (V).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_INF_PT[7:0]  
RW  
0h  
dec2hex{256*round [LIM_INF_PT*2^19]}  
8.9.130 LIM_SLOPE1 (page=0x04 address=0x18) [reset=10h]  
Sets limiter slope to a LIM_SLOPE (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_SLOPE[31:24]  
RW  
10h  
dec2hex{256*round [LIM_SLOPE*2^20]}  
8.9.131 LIM_SLOPE2 (page=0x04 address=0x19) [reset=00h]  
Sets limiter slope to a LIM_SLOPE (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_SLOPE[23:16]  
RW  
00h  
dec2hex{256*round [LIM_SLOPE*2^20]}  
8.9.132 LIM_SLOPE3 (page=0x04 address=0x1A) [reset=00h]  
Sets limiter slope to a LIM_SLOPE (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_SLOPE[15:8]  
RW  
00h  
dec2hex{256*round [LIM_SLOPE*2^20]}  
8.9.133 LIM_SLOPE4 (page=0x04 address=0x1B) [reset=00h]  
Sets limiter slope to a LIM_SLOPE (V) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_SLOPE[7:0]  
RW  
00h  
dec2hex{256*round [LIM_SLOPE*2^20]}  
8.9.134 TF_HLD1 (page=0x04 address=0x1C) [reset=00h]  
Thermal fold-back hold count set to a TF_HLD (s) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_ HOLD_CNT[31:24]  
RW  
00h  
dec2hex [256*round (TF_HLD*9600)]  
8.9.135 TF_HLD2 (page=0x04 address=0x1D) [reset=03h]  
Thermal fold-back hold count set to a TF_HLD (s) value.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_HOLD_CNT23:16]  
RW  
03h  
dec2hex [256*round (TF_HLD*9600)]  
8.9.136 TF_HLD3 (page=0x04 address=0x1E) [reset=E8h]  
Thermal fold-back hold count set to a TF_HLD (s) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_HOLD_CNT[15:8]  
RW  
E8h  
dec2hex [256*round (TF_HLD*9600)]  
8.9.137 TF_HLD4 (page=0x04 address=0x1F) [reset=00h]  
Thermal fold-back hold count set to a TF_HLD (s) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_HOLD_CNT[7:0]  
RW  
00h  
dec2hex [256*round (TF_HLD*9600)]  
8.9.138 TF_RLS1 (page=0x04 address=0x20) [reset=40h]  
Thermal fold-back limiter release rate set to a value TF_RLS (dB/100us).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[31:24]  
RW  
40h  
dec2hex{256*round[10^(TF_RLS/20)*2^22]}  
8.9.139 TF_RLS2 (page=0x04 address=0x21) [reset=12h]  
Thermal fold-back limiter release rate set to a value TF_RLS (dB/100us).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[23:16]  
RW  
12h  
dec2hex{256*round[10^(TF_RLS/20)*2^22]}  
8.9.140 TF_RLS3 (page=0x04 address=0x22) [reset=E0h]  
Thermal fold-back limiter release rate set to a value TF_RLS (dB/100us).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[15:8]  
RW  
E0h  
dec2hex{256*round[10^(TF_RLS/20)*2^22]}  
8.9.141 TF_RLS4 (page=0x04 address=0x23) [reset=00h]  
Thermal fold-back limiter release rate set to a value TF_RLS (dB/100us).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[7:0]  
RW  
0h  
dec2hex{256*round[10^(TF_RLS/20)*2^22]}  
8.9.142 TF_SLOPE1 (page=0x04 address=0x24) [reset=04h]  
Thermal fold-back limiter attenuation slope set to a value TF_SLOPE (V/0C).  
Input level is assumed 0dB and gain is 21dB. Extra 3dB (from 24dB) is due to rms to peak conversion.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_LIMS[31:24]  
RW  
04h  
dec2hex {256*round[TF_SLOPE/10^(24/20)]*2^23}  
8.9.143 TF_SLOPE2 (page=0x04 address=0x25) [reset=08h]  
Thermal fold-back limiter attenuation slope set to a value TF_SLOPE (V/0C).  
Input level is assumed 0dB and gain is 21dB. Extra 3dB (from 24dB) is due to rms to peak conversion.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
TF_LIMS[23:16]  
Type  
Reset  
Description  
dec2hex {256*round[TF_SLOPE/10^(24/20)]*2^23}  
7-0  
RW  
08h  
8.9.144 TF_SLOPE3 (page=0x04 address=0x26) [reset=89h]  
Thermal fold-back limiter attenuation slope set to a value TF_SLOPE (V/0C).  
Input level is assumed 0dB and gain is 21dB. Extra 3dB (from 24dB) is due to rms to peak conversion.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_LIMS[15:8]  
RW  
89h  
dec2hex {256*round[TF_SLOPE/10^(24/20)]*2^23}  
8.9.145 TF_SLOPE4 (page=0x04 address=0x27) [reset=00h]  
Thermal fold-back limiter attenuation slope set to a value TF_SLOPE (V/0C).  
Input level is assumed 0dB and gain is 21dB. Extra 3dB (from 24dB) is due to rms to peak conversion.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_LIMS[7:0]  
RW  
0h  
dec2hex {256*round[TF_SLOPE/10^(24/20)]*2^23}  
8.9.146 TF_TEMP_TH1 (page=0x04 address=0x28) [reset=39h]  
Thermal fold-back temperature threshold set to TF_TEMP (0C) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[31:24]  
RW  
39h  
dec2hex{256*round[TF_TEMP*(2^15)]}  
8.9.147 TF_TEMP_TH2 (page=0x04 address=0x29) [reset=80h]  
Thermal fold-back temperature threshold set to TF_TEMP (0C) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[23:16]  
RW  
80h  
dec2hex{256*round[TF_TEMP*(2^15)]}  
8.9.148 TF_TEMP_TH3 (page=0x04 address=0x2A) [reset=00h]  
Thermal fold-back temperature threshold set to TF_TEMP (0C) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[15:8]  
RW  
00h  
dec2hex{256*round[TF_TEMP*(2^15)]}  
8.9.149 TF_TEMP_TH4 (page=0x04 address=0x2B) [reset=00h]  
Thermal fold-back temperature threshold set to TF_TEMP (0C) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[7:0]  
RW  
00h  
dec2hex{256*round[TF_TEMP*(2^15)]}  
8.9.150 TF_MAX_ATTN1 (page=0x04 address=0x2C) [reset=2Dh]  
Thermal fold-back maximum gain reduction set to TF_ATTN (dB) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN[31:24]  
RW  
2Dh  
dec2hex{256*round[10^(-TF_ATTN/20)*2^ 23]}  
8.9.151 TF_MAX_ATTN2 (page=0x04 address=0x2D) [reset=6Ah]  
Thermal fold-back maximum gain reduction set to TF_ATTN (dB) value.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN(23:16]  
RW  
6Ah  
dec2hex{256*round[10^(-TF_ATTN/20)*2^ 23]}  
8.9.152 TF_MAX_ATTN3 (page=0x04 address=0x2E) [reset=86h]  
Thermal fold-back maximum gain reduction set to TF_ATTN (dB) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN[15:8]  
RW  
86h  
dec2hex{256*round[10^(-TF_ATTN/20)*2^ 23]}  
8.9.153 TF_MAX_ATTN4 (page=0x04 address=0x2F) [reset=00h]  
Thermal fold-back maximum gain reduction set to TF_ATTN (dB) value.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN[7:0]  
RW  
0h  
dec2hex{256*round[10^(-TF_ATTN/20)*2^ 23]}  
8.9.154 LD_CFG0 (page=0x04 address=0x40) [reset=02h]  
Load diagnostic resistance upper threshold value set to LDG_RES_UT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
dec2hex {256*round[LDG_RES_UT*(3.75/14)*2^14]}  
7-0  
LDG_RES_UT[31:24]  
RW  
02h  
8.9.155 LD_CFG1 (page=0x04 address=0x41) [reset=ADh]  
Load diagnostic resistance upper threshold value set to LDG_RES_UT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_UT[23:16]  
RW  
ADh  
dec2hex {256*round[LDG_RES_UT*(3.75/14)*2^14]}  
8.9.156 LD_CFG2 (page=0x04 address=0x42) [reset=B7h]  
Load diagnostic resistance upper threshold value set to LDG_RES_UT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_UT[15:8]  
RW  
B7h  
dec2hex {256*round[LDG_RES_UT*(3.75/14)*2^14]}  
8.9.157 LD_CFG3 (page=0x04 address=0x43) [reset=00h]  
Load diagnostic resistance upper threshold value set to LDG_RES_UT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_UT[7:0]  
RW  
0h  
dec2hex {256*round[LDG_RES_UT*(3.75/14)*2^14]}  
8.9.158 LD_CFG4 (page=0x04 address=0x44) [reset=00h]  
Load diagnostics resistance lower threshold value set to LDG_RES_LT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[31:24]  
RW  
0h  
dec2hex {256*round[LDG_RES_LT*(3.75/14)*2^14]}  
8.9.159 LD_CFG5 (page=0x04 address=0x45) [reset=1Bh]  
Load diagnostics resistance lower threshold value set to LDG_RES_LT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[23:16]  
RW  
1Bh  
dec2hex {256*round[LDG_RES_LT*(3.75/14)*2^14]}  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.160 LD_CFG6 (page=0x04 address=0x46) [reset=6Eh]  
Load diagnostics resistance lower threshold value set to LDG_RES_LT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[15:8]  
RW  
6Eh  
dec2hex {256*round[LDG_RES_LT*(3.75/14)*2^14]}  
8.9.161 LD_CFG7 (page=0x04 address=0x47) [reset=00h]  
Load diagnostics resistance lower threshold value set to LDG_RES_LT (Ω).  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[7:0]  
RW  
0h  
dec2hex {256*round[LDG_RES_LT*(3.75/14)*2^14]}  
8.9.162 CLD_EFF_1 (page=0x04 address=0x48) [reset=6Ch]  
Class D efficiency for LVS relative threshold expressed as a fraction (EFF). Default is 0.85.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ClassD Efficiency [31:24]  
RW  
6Ch  
dec2hex[256*round(EFF*2^23)]  
8.9.163 CLD_EFF_2 (page=0x04 address=0x49) [reset=CCh]  
Class D efficiency for LVS relative threshold expressed as a fraction (EFF). Default is 0.85.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ClassD Efficiency [23:16]  
RW  
CCh  
dec2hex[256*round(EFF*2^23)]  
8.9.164 CLD_EFF_3 (page=0x04 address=0x4A) [reset=CDh]  
Class D efficiency for LVS relative threshold expressed as a fraction (EFF). Default is 0.85.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ClassD Efficiency [15:8]  
RW  
CDh  
dec2hex[256*round(EFF*2^23)]  
8.9.165 CLD_EFF_4 (page=0x04 address=0x4B) [reset=00h]  
Class D efficiency for LVS relative threshold expressed as a fraction (EFF). Default is 0.85.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ClassD Efficiency [7:0]  
RW  
00h  
dec2hex[256*round(EFF*2^23)]  
8.9.166 LDG_RES1 (page=0x04 address=0x4C) [reset=00h]  
Diagnostic Mode load resistance measured value in Ω. Read value is 0xUUVVXXYY and the last byte to be  
dropped.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_VAL[32:24]  
R
0h  
(14/3.75)*{[hex2dec(0xUUVVXX)]/2^14)  
8.9.167 LDG_RES2 (page=0x04 address=0x4D) [reset=00h]  
Diagnostic Mode load resistance measured value in Ω. Read value is 0xUUVVXXYY and the last byte to be  
dropped.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_VAL[23:16]  
R
0h  
(14/3.75)*{[hex2dec(0xUUVVXX)]/2^14)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TAS2764  
 
 
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
8.9.168 LDG_RES3 (page=0x04 address=0x4E) [reset=00h]  
Diagnostic Mode load resistance measured value in Ω. Read value is 0xUUVVXXYY and the last byte to be  
dropped.  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_VAL[15:8]  
R
0h  
(14/3.75)*{[hex2dec(0xUUVVXX)]/2^14)  
8.9.169 LDG_RES4 (page=0x04 address=0x4F) [reset=00h]  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_VAL[7:0]  
R
0h  
Drop this byte.  
8.10 SDOUT Equations  
The following equations will alow to convert data read on SDOUT.  
PVDD (V)= 16* [Hex2Dec(SDOUTdata)]/2^PVDDSlotLength  
By default, PVDDSlotLength=8.  
VBAT (V)= 8* [Hex2Dec(SDOUTdata)]/2^VBATSlotLength  
By default,VBATSlotLength=8.  
TEMP (0C)= [Hex2Dec(SDOUTdata)] -93  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TAS2764 is a digital input Class-D audio power amplifier with integrated current and voltage sense. I2S  
audio data is supplied by host processor. TAS2764 sends to the host processor current and voltage data in I2S  
format. I2C bus is used for configuration and control.  
9.2 Typical Application  
9-1. Typical Application - Digital Audio Input  
9-1. Recommended External Components  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
MIN  
TYP  
MAX  
UNIT  
Type  
X7R  
10  
VBAT1S Decoupling Capacitor - VBAT1S  
External Supply (PWR_MODE1)  
Capacitance, 20% Tolerance  
Rated Voltage  
µF  
V
6
C1  
Type  
X7R  
0.68  
6
VBAT1S Decoupling Capacitor - VBAT1S  
Internally Generated (PWR_MODE2)  
Capacitance, 20% Tolerance  
Rated Voltage  
1
1.5  
µF  
V
Type  
X7R  
C2  
C3  
C4  
VBAT1S Decoupling Capacitor  
PVDD Decoupling Capacitor  
PVDD Decoupling Capacitor  
Capacitance, 20% Tolerance  
Rated Voltage  
100  
nF  
V
6
Type  
X7R  
10  
Capacitance, 20% Tolerance  
Rated Voltage  
µF  
V
20  
Type  
X7R  
Capacitance, 20% Tolerance  
Rated Voltage  
100  
nF  
V
20  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TAS2764  
 
 
 
 
 
TAS2764  
www.ti.com.cn  
UNIT  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
9-1. Recommended External Components (continued)  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
MIN  
TYP  
MAX  
Type  
X7R  
4.7  
6
C5  
AVDD Decoupling Capacitor  
Capacitance, 20% Tolerance  
Rated Voltage  
µF  
V
Type  
X7R  
0.68  
6
C6  
C7  
DREG Decoupling Capacitor  
IOVDD Decoupling Capacitor  
High-side Boost Capacitors  
Capacitance, 20% Tolerance  
Rated Voltage  
1
1.5  
µF  
V
Type  
X7R  
1
Capacitance, 20% Tolerance  
Rated Voltage  
µF  
V
6
Type  
X7R  
68  
C8, C9  
Capacitance, 20% Tolerance  
Rated Voltage  
100  
120  
150  
nF  
V
6
EMI Filter Inductors (optional). These are  
not recommended as it degrades THD+N  
performance. The TAS2764 device is a  
filter-less Class-D and does not require  
these bead inductors.  
Impedance at 100MHz  
DC Resistance  
Ω
Ω
0.095  
Lf1, Lf2  
DC Current  
Capacitance  
5
A
EMI Filter Capacitors (optional, must use  
Lf2, Lf3 if Cf1, Cf2 used)  
Cf1, Cf2  
RF1, RF2  
1
5
nF  
Feedback resistor to be connected if Lf, Cf  
filters are used  
1
1
kΩ  
RP1, RP2  
Pull up resistors to IOVDD  
For minimum driving capability of  
2mA  
10  
kΩ  
9.3 Design Requirements  
For this design example, use the parameters shown in 9.2.  
9-2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Digital Audio, I2S  
Digital Audio, I2S  
Mono  
Audio Input  
Current and Voltage Data Stream  
Mono or Stereo Configuration  
Max Output Power at 1% THD+N,  
over temperature and frequency  
range, RL = 4 Ω  
10 W  
9.4 Detailed Design Procedure  
9.4.1 Mono/Stereo Configuration  
In this application, the device is assumed to be operating in mono mode. See 8.3.1 for information on  
changing the I2C address of the TAS2764 to support stereo operation. Mono or stereo configuration does not  
impact the device performance.  
9.4.2 EMI Passive Devices  
The TAS2764 supports spread spectrum to minimize EMI. It is allowed to include passive devices on the Class-  
D outputs. The passive devices Lf1, Lf2, Cf1 and Cf2 from 9-1 have recommended specifications provided in  
9-1. The passive devices Lf1, Lf2, Cf1 and Cf2 have to be properly selected to maintain the stability of the  
output stage. See 8.4.5 for details.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
9.5 Application Curves  
0
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 2.95 V, PVDD = 6.5 V  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VBAT = 4.2 V, PVDD = 8.4 V  
VBAT = 3.8 V, PVDD = 12 V  
VBAT = 3.8 V, PVDD = 16 V  
20  
100  
1000  
Frequency (Hz)  
10K 20K  
0.001  
0.01  
0.1  
POUT (W)  
1
10 25  
PWR_MODE2  
f=1kHz  
PWR_MODE2  
f=1kHz  
RL=4Ω  
RL=4Ω  
9-3. THDN vs Frequency  
9-2. THDN vs Pout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
10 Initialization Set Up  
10.1 Recommended Configuration at Power Up  
The following configuration is recommended after power up.  
w 70 00 00 # Page-0  
w 70 7F 00 # Book-0  
w 70 01 01 # SW reset  
d 1 # 1mS Delay  
w 70 0E 44 # TDM TX voltage sense transmit enable with slot 4,  
w 70 0F 40 # TDM TX current sense transmit enable with slot 0  
w 70 00 00 # Page-0  
w 70 7F 00 # Book-0  
w 70 00 06 # Switch to Page-6  
#250C # Write quadratic without additional TCO and ratio of 1.7  
w 70 14 00 13 52 00 E4 0C AA 00 12 A0 D8 00  
w 70 00 01 # Page-01  
w 70 47 AA # Threshold-1 disabled  
w 70 19 40 # Linear LSR mode  
w 70 37 AA # Linear LSR deglitch disabled  
w 70 33 80 # SAR reaction on noise gate  
w 70 00 00 # Page-0  
w 70 76 00 # DAC mod reset for reduced POP  
w 70 02 00 # Power up audio playback with I,V enabled  
10.2 Initial Device Configuration - 4 Channel Power Up (Default Mode - PWR_MODE1)  
The following I2C sequence is an example of initializing four TAS2764 devices. This sequence contains a 1 ms  
delay required after a software or hardware reset as illustrated in 11.  
###### Configure Channel 1  
w 70 60 11 # sbclk to fs ratio = 64  
w 70 0D 33 # TX bus keeper, Hi-Z, offset 1, TX on Falling edge  
w 70 0E 42 # TDM TX voltage sense transmit enable with slot 2,  
w 70 0F 40 # TDM TX current sense transmit enable with slot 0  
w 70 03 14 # 21 dB gain  
w 70 02 00 # power up audio playback with I,V enabled  
###### Configure Channel 2  
w 72 60 11 # sbclk to fs ratio = 64  
w 72 0D 13 # TX bus keeper, Hi-Z, offset 1, TX on Falling edge  
w 72 0E 46 # TDM TX voltage sense transmit enable with slot 6,  
w 72 0F 44 # TDM TX current sense transmit enable with slot 4  
w 72 03 14 # 21 dB gain  
w 72 02 00 # power up audio playback with I,V enabled  
###### Configure Channel 3  
w 74 60 11 # sbclk to fs ratio = 64  
w 74 0D 13 # TX bus keeper, Hi-Z, offset 1, TX on Falling edge  
w 74 0E 4A # TDM TX voltage sense transmit enable with slot 10,  
w 74 0F 48 # TDM TX current sense transmit enable with slot 8  
w 74 03 14 # 21 dB gain  
w 74 02 00 # power up audio playback with I,V enabled  
###### Configure Channel 4  
w 76 60 11 # sbclk to fs ratio = 64  
w 76 0D 13 # TX bus keeper, Hi-Z, offset 1, TX on Falling edge  
w 76 0E 4E # TDM TX voltage sense transmit enable with slot 14,  
w 76 0F 4C # TDM TX current sense transmit enable with slot 12  
w 76 03 14 # 21 dB gain  
w 76 02 00 # power up audio playback with I,V enabled  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
10.3 Initial Device Configuration - 44.1 kHz  
The following I2C sequence is an example of initializing a TAS2764 device into 44.1 kHz sampling rate. This  
sequence contains a 1 ms delay required after a software or hardware reset as illustrated in 11.  
###### Configure Channel 1  
w 70 60 21 # sbclk to fs ratio = 256 / 8 TDM Slots  
w 70 08 39 # 44.1KHz, Auto TDM off, Frame start High to Low  
w 70 09 03 # Offset = 1, Sync on BCLK falling edge  
w 70 0a 0a # TDM slot by address, Word = 24 bit, Frame = 32 bit  
w 70 0c 20 # Right Ch = TDM slot 2, Left Ch = TDM slot 0  
w 70 0d 33 # TX bus keeper, Hi-Z, offset 1, TX on Falling edge  
w 70 0e 42 # TDM TX voltage sense transmit enable with slot 2,  
w 70 0f 40 # TDM TX current sense transmit enable with slot 0  
w 70 03 14 # 21 dB gain  
w 70 02 00 # power up audio playback with I,V enabled  
10.4 Sample Rate Change - 48 kHz to 44.1kHz  
The following I2C sequence is an example of changing the sampling rate from 48 kHz to 44.1 kHz .  
w 70 07 28 #Set DVC Ramp Rate to 0.5 dB / 8 samples  
w 70 02 01 #Mute  
d 1  
w 70 02 02 #Software shutdown  
w 70 08 39 #44.1KHz, Auto TDM off, Frame start High to Low  
### change source sample rate now  
w 70 02 01 #Take device out of low-power shutdown  
d 1  
w 70 02 00 #Un-mute  
10.5 Idle Channel Hysterisis  
Recommended to set hysterisis to 1s to ensure gain release operation gets maximum time.  
w 70 00 00 #Page 0x00  
w 70 67 03 #IC histeresis at 1s  
10.6 DSP Loopback  
The following I2C sequence will enable the DSP loopback for echo reference.  
#####DSP Echo Reference Loopback  
w 70 00 00 #Page -0  
w 70 7F 00  
w 70 16 C0 #Audio TX slot programmed to 0  
w 70 0E 00 #Disable Vsense  
w 70 0E 00 #Disable Vsense  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TAS2764  
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
11 Power Supply and I2C Recommendations  
During power up and power down PVDD voltage must be greater than (VBAT1S-0.7V)  
Once all supplies are stable the SDZ pin can be set high to initialize the part. After a hardware or software reset  
additional commands to the device should be delayed for at least 1 mS to allow the OTP memory to load.  
If the TDM clocks are sent to TAS2764 after the part is programmed through I2C to go to Active Mode the TDM  
clock interrupts will be triggered.  
When VBAT1S is internally generated (see below 11.1) it is recommended that the device enters Software  
Shutdown mode before entering Hardware Shutdown mode. This ensures that VBAT1S pin is discharged using  
the internal 5 kOhms pull down resistor (not present in HW shutdown mode).  
11-1. Power Supply Sequence for Power-Up and Power-Down  
11.1 Power Supply Modes  
The TAS2764 can operate with both VBAT1S and PVDD as supplies or with only PVDD as supply. The table  
below shows different power supply modes of operation depending on the customer need.  
11-1. Device Configuration and Power Supply Modes  
Output  
Supply Power Mode  
PWR_MODE1  
Switching  
Mode  
Supply Condition  
Device Configurations  
Use Case and Device Functionality  
VBAT1S is used to deliver output power  
based on level and headroom configured.  
When audio signal crosses a programmed  
threshold Class-D output is switched over  
PVDD.  
BOP source is VBAT1S. PVDD UVLO is  
disabled. SAR conversion done for VBAT1S,  
PVDD and temperature.  
Y Bridge High  
Power on  
VBAT1S_MODE=0  
BOP_SRC=0  
CDS_MODE[1:0]=00  
PVDD>VBAT1S  
VBAT1S  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
11-1. Device Configuration and Power Supply Modes (continued)  
Output  
Switching  
Mode  
Supply Power Mode  
Supply Condition  
Device Configurations  
Use Case and Device Functionality  
PVDD is the only supply. VBAT1S is  
delivered by an internal LDO and used to  
supply at signals close to idle channel levels.  
When audio signal levels crosses -100dBFS  
(default), Class_D output switches to PVDD.  
BOP source is PVDD. PVDD UVLO is  
enabled. SAR conversion done for PVDD  
and temperature.  
Y Bridge Low  
Power on  
VBAT1S  
VBAT1S_MODE=1  
BOP_SRC=1  
CDS_MODE[1:0]=11  
PWR_MODE2  
PVDD>VBAT1S+2.5V  
VBAT1S is used to deliver output power  
based on level and headroom configured.  
When audio signal crosses a programmed  
threshold Class-D output is switched over  
PVDD.  
BOP source is PVDD. PVDD UVLO is  
enabled. SAR conversion done for PVDD  
and temperature.  
Y Bridge High  
Power on  
VBAT1S_MODE=0  
BOP_SRC=1  
CDS_MODE[1:0]=00  
PWR_MODE3  
PWR_MODE4  
PVDD>VBAT1S  
VBAT1S  
Class-D power supplied by PVDD branch of  
Y bridge. VBAT1S is delivered by an  
internal LDO.  
BOP source is PVDD. PVDD UVLO is  
enabled. SAR conversion done for PVDD  
and temperature.  
VBAT1S_MODE=1  
BOP_SRC=1  
CDS_MODE[1:0]=10  
PVDD  
PVDD>VBAT1S+2.5V  
For PWR_MODE2 and PWR_MODE4, by default, the internal ADC samples only the PVDD pin in order to meet  
the stringent requirement on brownout latency. If the monitoring of VBAT1S pin is needed the register bit  
CONV_VBAT_PVDD_MODE should be set to high. The additional monitoring of VBAT1S will come at the cost of  
losing brownout latency.  
If VBAT1S is generated by internal LDO, customer needs to ensure that PVDD supply level is at least 2.5V  
above the VBAT1S voltage generated internally. To enable voltage protection the UVLO of PVDD supply should  
be set above 7.3V by using register bits PVDD_UVLO[5:0]. This will ensure that, with an internally generated  
VBAT1S of 4.8V, PVDD supply is at least 2.5V higher than VBAT1S.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
12 Layout  
12.1 Layout Guidelines  
All supply rails should be bypassed by low-ESR ceramic capacitors as shown in 9-1 and described in 9-1.  
Place the decoupling capacitors as close as possible to the respective power supply pins. Do not place vias  
between the decoupling capacitors and the device pin. Connect the vias to the ground or power planes on the  
far side of the capacitor.  
Ground plane in the adjacent layer is recommended. It is required to maintain a single solid ground plane  
underneath the IC and its decoupling caps. Solid ground plane is the best option, providing continuous  
(uninterrupted) and low-impedance path for return currents back to the source. Fill the device side layer of the  
system board with ground copper and connect it to main ground plane using lots of vias. Each ground pin (GND,  
PGND) should directly shorted to the ground plane in the same layer as device as well as to the main solid  
ground plane in the adjacent layer through vias.  
Specific layout design recommendations should be followed for this device:  
Do not use vias for traces that carry high current: PVDD, VBAT1S, PGND, GND and the speaker OUT_P,  
OUT_N.  
Connect VSNS_P and VSNS_N as close as possible to the speaker.  
VSNS_P and VSNS_N should be connected between the EMI ferrite filter and the speaker if EMI ferrites are  
used at the outputs.  
VSNS_P and VSNS_N routing should be separated and shielded from switching signals (interface signals,  
speaker outputs, bootstrap pins).  
Place bootstrap capacitors as close as possible to the BST pins.  
12.2 Layout Example  
The figure below describes the placement of critical components as presented in 9-1.  
12-1. Component Placement  
For the component placement from 12-1 an example of layout of top layer is presented below.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
12-2. Layout Design - Top Copper Layer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
13 Device and Documentation Support  
13.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TAS2764  
 
 
 
 
 
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TAS2764  
 
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
PACKAGE OUTLINE  
YBH0030-C01  
DSBGA - 0.4 mm max height  
SCALE 7.000  
DIE SIZE BALL GRID ARRAY  
2.147  
2.107  
A
B
BALL A1  
CORNER  
2.502  
2.462  
C
0.4 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
1.6 TYP  
0.16  
0.10  
(0.1939)  
0.0696  
(0.3331)  
(0.2313)  
F
E
BALL ARRAY  
0.0097  
2
D
TYP  
PKG  
C
B
A
0.4  
TYP  
(0.2507)  
2
3
4
5
1
0.225  
0.185  
30X  
0.015  
PKG  
C A B  
0.4 TYP  
4224895/B 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
EXAMPLE BOARD LAYOUT  
YBH0030-C01  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
(0.0696)  
30X ( 0.2)  
1
4
5
2
A
(0.4) TYP  
B
C
SYMM  
BALL ARRAY  
PKG  
D
E
(0.0097)  
F
SYMM  
BALL ARRAY  
PKG  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
( 0.2)  
METAL  
(
0.2)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224895/B 04/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TAS2764  
TAS2764  
www.ti.com.cn  
ZHCSMU9A DECEMBER 2020 REVISED SEPTEMBER 2021  
EXAMPLE STENCIL DESIGN  
YBH0030-C01  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(0.0696)  
4
30X ( 0.21)  
(R0.05) TYP  
2
3
5
1
A
(0.4) TYP  
B
C
SYMM  
BALL ARRAY  
PKG  
(0.0097)  
D
E
METAL  
TYP  
F
SYMM  
BALL ARRAY  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 30X  
4224895/B 04/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TAS2764  
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS2764YBHR  
ACTIVE  
DSBGA  
YBH  
30  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
TAS2764  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS2764YBHR

具有 I/V 感应功能、用于扬声器保护和多级电源的 13W 数字输入 2.3V 至 16V 智能放大器 | YBH | 30 | -40 to 85
TI

TAS276K006P1C

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS276K010P1C

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS276K015P1F

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS276K020P1F

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS276K035P1G

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS2770

具有 I/V 感应扬声器保护的 20W 数字输入 4.5V 至 18V 智能放大器
TI

TAS2770RJQR

具有 I/V 感应扬声器保护的 20W 数字输入 4.5V 至 18V 智能放大器 | RJQ | 26 | -40 to 85
TI

TAS2770RJQT

具有 I/V 感应扬声器保护的 20W 数字输入 4.5V 至 18V 智能放大器 | RJQ | 26 | -40 to 85
TI

TAS2770YFFR

具有 I/V 感应扬声器保护的 20W 数字输入 4.5V 至 18V 智能放大器 | YFF | 30 | -40 to 85
TI

TAS2770YFFT

具有 I/V 感应扬声器保护的 20W 数字输入 4.5V 至 18V 智能放大器 | YFF | 30 | -40 to 85
TI

TAS277K006P1G

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE