TAS5411-Q1 [TI]

具有 I2C 诊断和负载突降保护功能的汽车类 8W、单通道、4.5V 至 18V 模拟输入 D 类音频放大器;
TAS5411-Q1
型号: TAS5411-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I2C 诊断和负载突降保护功能的汽车类 8W、单通道、4.5V 至 18V 模拟输入 D 类音频放大器

放大器 音频放大器
文件: 总36页 (文件大小:1706K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
TAS5411-Q1 具有负载突降和 I2C 诊断功能的 8W 单声道汽车类 D 类音频  
放大器  
1 特性  
耐热增强型 16 引脚散热薄型小外形尺寸 HTSSOP  
(PWP) 封装以及 PowerPAD™封装(焊盘朝下)  
1
符合汽车类应用的 应用  
具有符合 AEC-Q100 标准的下列特性:  
旨在满足汽车电磁兼容性 (EMC) 要求  
ISO9000:2002 TS16949 认证  
器件温度等级 1:环境工作温度范围为 –40°C  
125°C  
2 应用  
器件 HBM 分类等级 H2  
器件 CDM 分类等级 C5  
汽车类紧急呼叫 (eCall) 放大器  
车载通讯系统  
仪表板系统  
单声道桥接负载 (BTL) D 类功率放大器  
负载为 4Ω 且总谐波失真 + 噪声 (THD+N) 10%  
时的输出功率为 8W  
3 说明  
运行电压范围:4.5V 18V  
负载为 4Ω 时的效率为 83%  
差分模拟输入  
TAS5411-Q1 是一款单声道 D 类音频放大器,非常适  
用于汽车类紧急呼叫 (eCall)、远程信息处理、仪表板  
应用。该器件采用 14.4 VDC 汽车电池供电,可在负载  
4Ω THD+N 不超过 10% 的情况下提供高达 8W  
的功率。该器件具有较宽的工作电压范围和优异的效  
率,是需要起停支持或使用备用电池运行时的理想选  
择。集成的负载突降保护能够缩减外部电压钳位电路的  
成本与尺寸,板载负载诊断功能能够通过 I2C 报告扬声  
器状态。  
采用可调功率限制器的 Speaker Guard™ 扬声器保  
75dB 电源抑制比 (PSRR)  
负载诊断功能:  
开路和短路输出负载  
输出到电源和输出到接地短接  
保护和监控功能:  
器件信息(1)  
短路保护  
40V 负载突降保护符合 ISO-7637-2 标准  
在音乐播放的同时进行输出直流电平检测  
过热保护  
器件编号  
TAS5411-Q1  
封装  
封装尺寸(标称值)  
HTSSOP (16)  
5.00mm x 4.40mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
过压及欠压保护  
效率  
简化框图  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
I2C  
System  
µP  
OUTP  
OUTN  
IN_P  
IN_N  
TAS5411-Q1  
LC  
Device Efficiency  
10%  
System Efficiency  
0
0
1
2
3
4
5
6
7
8
Output Power (W)  
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLOS921  
 
 
 
 
 
 
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 11  
9.4 Device Functional Modes........................................ 17  
9.5 Register Maps......................................................... 18  
10 Application and Implementation........................ 20  
10.1 Application Information.......................................... 20  
10.2 Typical Application ............................................... 20  
11 Power Supply Recommendations ..................... 23  
12 Layout................................................................... 24  
12.1 Layout Guidelines ................................................. 24  
12.2 Layout Examples................................................... 24  
13 器件和文档支持 ..................................................... 26  
13.1 器件支持................................................................ 26  
13.2 文档支持................................................................ 26  
13.3 接收文档更新通知 ................................................. 27  
13.4 社区资源................................................................ 27  
13.5 ....................................................................... 27  
13.6 静电放电警告......................................................... 27  
13.7 术语表 ................................................................... 27  
14 机械、封装和可订购信息....................................... 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements for I2C Interface Signals......... 8  
7.7 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 11  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2015) to Revision B  
Page  
特性列表中增加了汽车标题............................................................................................................................................. 1  
Added voltage ratings for several pins to the Absolute Maximum Ratings table .................................................................. 4  
Added test conditions for voltage gain in Electrical Characteristics table ............................................................................. 6  
Added a capacitance specification to the I2C section of the Electrical Characteristics table................................................. 7  
Changed the condition statement for the Typical Characteristics section.............................................................................. 9  
Changed section title of Load Diagnostics Sequence ......................................................................................................... 13  
添加了新的接收文档更新通知 部分....................................................................................................................................... 27  
Changes from Original (November 2015) to Revision A  
Page  
已更改 器件状态,从产品预览更改为量产数据....................................................................................................................... 1  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
5 Device Comparison Table  
PART NUMBER  
TAS5411-Q1  
TAS5421-Q1  
OUTPUT POWER  
OVERCURRENT SHUTDOWN  
8 W  
2.4 A  
3.5 A  
22 W  
6 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP PowerPAD Package  
Top View  
GND  
STANDBY  
BYP  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
PVDD  
FAULT  
BSTP  
OUTP  
OUTN  
BSTN  
GND  
SDA  
Thermal  
Pad  
SCL  
IN_P  
IN_N  
MUTE  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BSTN  
NO.  
10  
13  
3
AI  
AI  
Bootstrap for negative-output high-side FET  
Bootstrap for positive-output high-side FET  
Voltage-regulator bypass-capacitor pin  
BSTP  
BYP  
PBY  
DO  
FAULT  
14  
1
Active-low open-drain output used to report faults  
GND  
9
GND  
Ground  
16  
7
IN_N  
AI  
AI  
Inverting analog input  
IN_P  
6
Non-inverting analog input  
MUTE  
OUTN  
OUTP  
PVDD  
SCL  
8
DI  
Mute input, active-high (no internal pullup or pulldown)  
11  
12  
15  
5
PO  
PO  
PWR  
DI  
Output (–)  
Output (+)  
Power supply  
I2C clock  
SDA  
4
DI/DO  
DI  
I2C data  
STANDBY  
Thermal pad  
2
Active-low STANDBY pin (no internal pullup or pulldown)  
Must be soldered to ground  
(1) DI = digital input, DO = digital output, AI = analog input, PWR = power supply, PBY = power bypass, PO = power output, GND = ground  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–1  
MAX  
UNIT  
V
DC supply voltage range, V(PVDD)  
Relative to GND  
30  
40  
15  
5
Pulsed supply voltage range, V(PVDD_MAX)  
Supply voltage ramp rate, ΔV(PVDD_RAMP)  
For SCL, SDA, STANDBY, FAULT pins  
t 400 ms exposure  
V/ms  
Relative to GND  
Relative to GND  
Relative to GND  
Relative to GND  
Relative to BYP  
Relative to GND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
Input voltage  
For IN_N, IN_P, and MUTE pins  
6.5  
7
BYP  
V
BSTN, BSTP  
36.3  
30  
30  
±4  
±1  
7
BSTN, BSTP  
OUTN, OUTP  
DC current on PVDD, GND and OUTx pins, I(PVDD), IO  
A
(2)  
Current  
Maximum current, on all input pins, I(IN_MAX)  
mA  
Maximum sink current for open-drain pin, I(IN_ODMAX)  
Junction temperature, TJ  
Storage temperature, Tstg  
–40  
–55  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) See Table 11 for information on analog input voltage and ac coupling.  
7.2 ESD Ratings  
VALUE  
±3500  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
Supply voltage range relative to GND.  
V(PVDD_OP)  
Includes ac transients, requires proper  
4-Ω ±20% load (or higher)  
4.5  
14.4  
18  
V
decoupling.(1)  
V(PVDD_RIPPLE)  
Maximum ripple on PVDD  
V(PVDD) < 8 V  
1
Vpp  
(2)  
V(AIN)  
Analog audio input-signal level  
AC-coupled input voltage  
0
2
0.25–1(3)  
Vrms  
STANDBY pin input voltage for logic-level  
high  
V(IH_STANDBY)  
V(IL_STANDBY)  
V(IH_SCL)  
V
V
V
STANDBY pin input voltage for logic-level low  
SCL pin input voltage for logic-level high  
0.7  
5.5  
R(PU_I2C) = 4.7-kΩ pullup, supply voltage =  
3.3 V or 5 V  
2.1  
2.1  
–0.5  
–0.5  
2
R(PU_I2C) = 4.7-kΩ pullup, supply voltage =  
3.3 V or 5 V  
V(IH_SDA)  
V(IL_SCL)  
V(IL_SDA)  
R(L)  
SDA pin input voltage for logic-level high  
SCL pin input voltage for logic-level low  
SDA pin input voltage for logic-level low  
Nominal speaker load impedance  
5.5  
1.1  
1.1  
16  
V
V
V
Ω
V
R(PU_I2C) = 4.7-kΩ pullup, supply voltage =  
3.3 V or 5 V  
R(PU_I2C) = 4.7-kΩ pullup, supply voltage =  
3.3 V or 5 V  
When using low-impedance loads, do not  
exceed overcurrent limit.  
4
Pullup voltage supply (for open-drain logic  
outputs)  
V(PU)  
3
3.3  
3.6  
External pullup resistor on open-drain logic  
outputs  
Resistor connected between open-drain logic  
output and V(PU) supply.  
R(PU_EXT)  
R(PU_I2C)  
C(PVDD)  
10  
1
50  
10  
kΩ  
kΩ  
μF  
I2C pullup resistance on SDA and SCL pins  
4.7  
10  
External capacitor on the PVDD pin, typical  
value ± 20%(1)  
External capacitor on the BYP pin, typical  
value ± 10%  
C(BYP)  
C(OUT)  
C(IN)  
1
μF  
μF  
μF  
External capacitance to GND on OUT_X pins  
4
External capacitance to analog input pin in  
series with input signal  
1
External boostrap capacitor, typical value ±  
20%  
C(BSTN), C(BSTP)  
TA  
220  
nF  
°C  
Operating ambient temperature  
–40  
125  
(1) See the Power Supply Recommendations section.  
(2) Signal input for full unclipped output with gains of 36 dB, 32 dB, 26 dB, and 20 dB  
(3) Maximum recommended input voltage is determined by the gain setting.  
7.4 Thermal Information  
TAS5411-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
39.4  
24.9  
20  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
19.8  
2
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
 
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.5 Electrical Characteristics  
TC = 25°C, PVDD = 14.4 V, RL = 4 Ω, P(O) = 1 W/ch, AES17 filter, default I2C settings (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING CURRENT  
PVDD idle current  
PVDD standby current  
OUTPUT POWER  
In PLAY mode, no audio present  
16  
5
mA  
STANDBY mode, MUTE = 0 V  
20  
μA  
4 Ω, THD+N 1%, 1 kHz, TC = 75°C  
4 Ω, THD+N = 10%, 1 kHz, TC = 75°C  
4 Ω, P(O) = 8 W (10% THD)  
6
8
Output power per channel  
W
Power efficiency  
83%  
AUDIO PERFORMANCE  
Noise voltage at output  
G = 20 dB, zero input, and A-weighting  
f = 1 kHz, 100 mVrms referenced to GND, G = 20 dB  
PVDD = 14.4 Vdc + 1 Vrms, f = 1 kHz  
P(O) = 1 W, f = 1 kHz  
65  
63  
μV  
dB  
dB  
Common-mode rejection ratio  
Power-supply rejection ratio  
Total harmonic distortion + noise  
75  
0.05%  
400  
500  
3
Switching frequency selectable for AM interference  
avoidance  
Switching frequency  
kHz  
V
Internal common-mode input bias voltage  
Internal bias applied to IN_N, IN_P pins  
Source impedance = 0 Ω, register 0x03 bits 7–6 = 00  
Source impedance = 0 Ω, register 0x03 bits 7–6 = 01  
Source impedance = 0 Ω, register 0x03 bits 7–6 = 10  
Source impedance = 0 Ω, register 0x03 bits 7–6 = 11  
19  
25  
31  
35  
20  
21  
27  
33  
37  
26  
Voltage gain (VO / VIN  
)
dB  
32  
36  
PWM OUTPUT STAGE  
FET drain-to-source resistance  
Output offset voltage  
TJ = 25°C  
180  
mΩ  
Zero input signal, G = 20 dB  
±25  
mV  
PVDD OVERVOLTAGE (OV) PROTECTION  
PVDD overvoltage-shutdown set  
PVDD overvoltage-shutdown hysteresis  
PVDD UNDERVOLTAGE (UV) PROTECTION  
PVDD undervoltage-shutdown set  
PVDD undervoltage-shutdown hysteresis  
BYP  
19.5  
3.6  
21  
22.5  
V
V
0.6  
4
4.4  
V
V
0.25  
BYP pin voltage  
6.4  
6.9  
0.3  
7.4  
4.1  
V
POWER-ON RESET (POR)  
PVDD voltage for POR  
V
V
PVDD recovery hysteresis voltage for POR  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
Electrical Characteristics (continued)  
TC = 25°C, PVDD = 14.4 V, RL = 4 Ω, P(O) = 1 W/ch, AES17 filter, default I2C settings (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OVERTEMPERATURE (OT) PROTECTION  
Junction temperature for overtemperature shutdown  
155  
170  
15  
°C  
°C  
Junction temperature overtemperature shutdown  
hysteresis  
OVERCURRENT (OC) SHUTDOWN PROTECTION  
Maximum current (peak output current)  
STANDBY PIN  
2.4  
0.1  
2.9  
A
STANDBY pin current  
0.2  
μA  
DC DETECT  
DC detect threshold  
V
DC detect step response time  
FAULT REPORT  
700  
ms  
FAULT pin output voltage for logic-level high (open-drain  
logic output)  
External 47-kΩ pullup resistor to 3.3 V  
External 47-kΩ pullup resistor to 3.3 V  
2.4  
V
V
FAULT pin output voltage for logic-level low (open-drain  
logic output)  
0.5  
LOAD DIAGNOSTICS  
Resistance to detect a short from OUT pin(s) to PVDD or  
ground  
200  
Ω
Open-circuit detection threshold  
Short-circuit detection threshold  
I2C  
Including speaker wires  
Including speaker wires  
70  
95  
120  
1.5  
Ω
Ω
0.9  
1.2  
SDA pin output voltage for logic-level high  
SDA pin output voltage for logic-level low  
Capacitance for SCL and SDA pins  
Capacitance for SDA pin  
R(PU_I2C) = 4.7-kΩ pullup, supply voltage = 3.3 V or 5 V  
2.4  
V
V
3-mA sink current  
0.4  
10  
pF  
pF  
STANDBY mode  
30  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.6 Timing Requirements for I2C Interface Signals  
over recommended operating conditions (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
kHz  
ns  
f(SCL)  
tr  
SCL clock frequency  
400  
300  
300  
Rise time for both SDA and SCL signals  
Fall time for both SDA and SCL signals  
SCL pulse duration, high  
tf  
ns  
tw(H)  
tw(L)  
tsu(2)  
th(2)  
tsu(1)  
th(1)  
tsu(3)  
C(B)  
0.6  
1.3  
0.6  
0.6  
100  
0(1)  
0.6  
μs  
SCL pulse duration, low  
μs  
Setup time for START condition  
START condition hold time before generation of first clock pulse  
Data setup time  
μs  
μs  
ns  
Data hold time  
ns  
Setup time for STOP condition  
Load capacitance for each bus line  
μs  
400  
pF  
(1) A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of  
SCL.  
tw(H)  
tw(L)  
tr  
tf  
SCL  
tsu(1)  
th(1)  
SDA  
T0027-03  
Figure 1. SCL and SDA Timing  
SCL  
t(buf)  
th(2)  
tsu(2)  
tsu(3)  
SDA  
Start  
Condition  
Stop  
Condition  
T0028-02  
Figure 2. Timing for Start and Stop Conditions  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
7.7 Typical Characteristics  
TC = 25°C, PVDD = 14.4 V, RL = 4 Ω, P(O) = 1 W per channel, AES17 filter, 1-kHz input, default I2C settings (unless otherwise  
noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
10%  
1%  
0.1%  
Device Efficiency  
System Efficiency  
0.01%  
0
1
2
3
4
5
6
7
8
0.1  
1
10  
Output Power (W)  
Output Power (W)  
D001  
D002  
f(SW) = 400 kHz  
TA = 25ºC  
V(PVDD) = 14.4 V  
Figure 3. Efficiency vs Output Power  
Figure 4. THD+N vs Output Power  
10%  
1%  
1.6  
1.4  
1.2  
1
5-W Data  
1-W Data  
0.1%  
0.8  
0.6  
0.4  
0.2  
0
0.01%  
0.001%  
0
1
2
3
4
5
6
7
8
10  
100  
1k  
10k  
Output Power (W)  
Frequency (Hz)  
D003  
D004  
Figure 5. Power Dissipation vs Output Power  
Figure 6. THD+N vs Frequency  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k  
Frequency (Hz)  
0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k  
Frequency (Hz)  
D005  
D006  
Figure 7. Noise FFT With –60-dB Output  
Figure 8. Noise FFT With 1-W Output  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
 
 
 
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
TC = 25°C, PVDD = 14.4 V, RL = 4 Ω, P(O) = 1 W per channel, AES17 filter, 1-kHz input, default I2C settings (unless otherwise  
noted)  
3
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D007  
Figure 9. Overcurrent Threshold vs Temperature  
8 Parameter Measurement Information  
The parameters for the TAS5411-Q1 device were measured using the circuit in Figure 17.  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
9 Detailed Description  
9.1 Overview  
The TAS5411-Q1 device is a mono analog-input audio amplifier for use in the automotive environment. The  
design uses an ultra-efficient class-D technology developed by Texas Instruments, but with features added for  
the automotive industry. This technology allows for reduced power consumption, reduced heat, and reduced  
peak currents in the electrical system. The device realizes an audio sound system design with smaller size and  
lower weight than traditional class-AB solutions.  
There are seven core design blocks:  
PWM  
Gate drive  
Power FETs  
Diagnostics  
Protection  
Power supply  
I2C serial communication bus  
9.2 Functional Block Diagram  
Overcurrent Detection  
DC Detection  
PVDD  
BYP  
LDO  
Regulator  
GVDD  
GVDD  
Biases  
and  
References  
Protection  
Control  
SDA  
I2C  
Thermal Protection  
Voltage Protection  
SCL  
Short-to-Ground  
Short-to-Power  
Shorted Load  
Open Load  
BSTN  
PVDD  
Control  
Diagnostics  
Control  
FAULT  
MUTE  
Gate  
Drive  
OUTN  
STANDBY  
GVDD  
IN_N  
Pulse  
Width  
GND  
Gain  
Control  
Speaker  
Guard  
Preamplifier  
BSTP  
Modulator  
(PWM)  
PVDD  
IN_P  
GND  
Gate  
Drive  
OUTP  
GND  
9.3 Feature Description  
9.3.1 Analog Audio Input and Preamplifier  
The differential input stage of the amplifier cancels common-mode noise that appears on the inputs. For a  
differential audio source, connect the positive lead to IN_P and the negative lead to IN_N. The inputs must be  
ac-coupled to minimize the output dc-offset and ensure correct ramping of the output voltages. For good  
transient performance, the impedance seen at each of the two differential inputs should be the same.  
The gain setting impacts the analog input impedance of the amplifier. See Table 1 for typical values.  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 1. Input Impedance and Gain  
GAIN  
20 dB  
26 dB  
32 dB  
36 dB  
INPUT IMPEDANCE  
60 kΩ ± 20%  
30 kΩ ± 20%  
15 kΩ ± 20%  
9 kΩ ± 20%  
9.3.2 Pulse-Width Modulator (PWM)  
The PWM converts the analog signal from the preamplifier into a switched signal of varying duty cycle. This is  
the critical stage that defines the class-D architecture. In the TAS5411-Q1 device, the modulator is an advanced  
design with high bandwidth, low noise, low distortion, and excellent stability.  
The pulse-width modulation scheme allows increased efficiency at low power. Each output is switching from 0 V  
to PVDD. The OUTP and OUTN pins are in phase with each other with no input, so that there is little or no  
current in the speaker. The duty cycle of OUTP is greater than 50% and OUTN is less than 50% for positive  
output voltages. The duty cycle of OUTN is greater than 50% and that of OUTP is less than 50% for negative  
output voltages. The voltage across the load is at 0 V through most of the switching period, reducing power loss.  
OUTP  
OUTN  
No Output  
OUTP – OUTN  
0 V  
0 A  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVDD  
0 V  
OUTP – OUTN  
Speaker  
Current  
0 A  
OUTP  
OUTN  
Negative Output  
0 V  
OUTP – OUTN  
–PVDD  
0 A  
Speaker  
Current  
Figure 10. BD Mode Modulation  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
9.3.3 Gate Drive  
The gate driver accepts the low-voltage PWM signal and level-shifts it to drive a high-current, full-bridge, power  
FET stage. The device uses proprietary techniques to optimize EMI and audio performance.  
9.3.4 Power FETs  
The BTL output comprises four matched N-channel FETs for high efficiency and maximum power transfer to the  
load. By design, the FETs withstand large voltage transients during a load-dump event.  
9.3.5 Load Diagnostics  
The device incorporates load diagnostic circuitry designed for detecting and determining the status of output  
connections. The device supports the following diagnostics:  
Short to GND  
Short to PVDD  
Short across load  
Open load  
The device reports the presence of any of the short or open conditions to the system via I2C register read.  
9.3.5.1 Load Diagnostics Sequence  
The load diagnostic function runs on deassertion of STANDBY or when the device is in a fault state (dc detect,  
overcurrent, overvoltage, undervoltage, or overtemperature). During this test, the outputs are in a Hi-Z state. The  
device determines whether the output is a short to GND, short to PVDD, open load, or shorted load. The load  
diagnostic biases the output, which therefore requires limiting the capacitance value for proper functioning; see  
the Recommended Operating Conditions. The load diagnostic test takes approximately 229 ms to run. Note that  
the check phase repeats up to 5 times if a fault is present or a large capacitor to GND is present on the output.  
On detection of an open load, the output still operates. On detection of any other fault condition, the output goes  
into a Hi-Z state, and the device checks the load continuously until removal of the fault condition. After detection  
of a normal output condition, the audio output starts. The load diagnostics run after every other overvoltage (OV)  
event. The load diagnostic for open load only has I2C reporting. All other faults have I2C and FAULT pin  
assertion.  
The device performs load diagnostic tests as shown in Figure 11.  
Figure 12 illustrates how the diagnostics determine the load based on output conditions.  
Discharge  
(75 ms)  
Ramp Up  
(52 ms)  
Check  
(50 ms)  
Ramp Down  
(52 ms)  
Figure 11. Load Diagnostics Sequence of Events  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
 
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Output Conditions  
Load Diagnostics  
Open Load  
Open Load Detected  
OL Max  
OL Min  
SL Max  
SL Min  
Normal or Open Load  
May Be Detected  
Open Load (OL)  
Detection Threshold  
Normal  
Load  
Play Mode  
Shorted Load (SL)  
Detection Threshold  
Normal or Shorted Load  
May Be Detected  
Shorted Load  
Detected  
Shorted  
Load  
Figure 12. Load Diagnostic Reporting Thresholds  
9.3.5.2 Faults During Load Diagnostics  
If the device detects a fault (overtemperature, overvoltage, undervoltage) during the load diagnostics test, the  
device exits the load diagnostics, which may result in a pop or click on the output.  
9.3.6 Protection and Monitoring  
Overcurrent Shutdown (OCSD)—The overcurrent shutdown forces the output into Hi-Z. The device asserts  
the FAULT pin and updates the I2C register.  
DC Detect—This circuit checks for a dc offset continuously during normal operation at the output of the  
amplifier. If a dc offset occurs, the device asserts the FAULT pin and updates the I2C register. Note that the  
dc detection threshold follows PVDD changes.  
Overtemperature Shutdown (OTSD)—The device shuts down when the die junction temperature reaches  
the overtemperature threshold. The device asserts the FAULT pin and updates I2C register. Recovery is  
automatic when the temperature returns to a safe level.  
Undervoltage (UV)—The undervoltage (UV) protection detects low voltages on PVDD. In the event of an  
undervoltage condition, the device asserts the FAULT pin and resets the I2C register.  
Power-On Reset (POR)—Power-on reset (POR) occurs when PVDD drops below the POR threshold. A POR  
event causes the I2C bus to go into a high-impedance state. After recovery from the POR event, the device  
restarts automatically with default I2C register settings. The I2C is active as long as the device is not in POR.  
Overvoltage (OV) and Load Dump—OV protection detects high voltages on PVDD. If PVDD reaches the  
overvoltage threshold, the device asserts the FAULT pin and updates the I2C register. The device can  
withstand 40-V load-dump voltage spikes.  
SpeakerGuard™ Protection Circuitry—This protection circuitry limits the output voltage to the value  
selected in I2C register 0x03. This value determines both the positive and negative limits. One can use this  
feature to improve battery life or protect the speaker from exceeding its excursion limits.  
Adjacent-Pin Shorts—The device design is such that shorts between adjacent pins do not cause damage.  
9.3.7 I2C Serial Communication Bus  
The device communicates with the system processor via the I2C serial communication bus as an I2C slave-only  
device. The processor can poll the device via I2C to determine the operating status. All reports of fault conditions  
and detections are via I2C. The system can also set numerous features and operating conditions via the I2C  
interface. The I2C interface is active approximately 1 ms after the STANDBY pin is high.  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
The I2C interface controls the following device features:  
Changing the gain setting to 20 dB, 26 dB, 32 dB, or 36 dB  
Controlling the peak voltage value of the SpeakerGuard protection circuitry  
Reporting load diagnostic results  
Changing of the switching frequency for AM radio avoidance  
9.3.7.1 I2C Bus Protocol  
The device has a bidirectional serial control interface that is compatible with the Inter IC (I2C) bus protocol and  
supports 400-kbps data transfer rates for random and sequential write and read operations. This is a slave-only  
device that does not support a multimaster bus environment or wait-state insertion. The master device uses the  
I2C control interface to program the registers of the device and to read device status.  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data transfer on the bus is serial, one bit at a time. The transfer of address and data is in byte (8-bit)  
format with the most-significant bit (MSB) transferred first. In addition, the receiving device acknowledges each  
byte transferred on the bus with an acknowledge bit. Each transfer operation begins with the master device  
driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus  
uses transitions on the data pin (SDA) while the clock is HIGH to indicate start and stop conditions. A HIGH-to-  
LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop. Normal data bit  
transitions must occur within the low time of the clock period. Figure 13 shows these conditions. The master  
generates the 7-bit slave address and the read/write (R/W) bit to open communication with another device and  
then waits for an acknowledge condition. The device holds SDA LOW during the acknowledge clock period to  
indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. The address  
for each device is a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same  
signals via a bidirectional bus using a wired-AND connection. The SDA and SCL signals require the use of an  
external pullup resistor to set the HIGH level for the bus. There is no limit on the number of bytes that the  
communicating devices can transmit between start and stop conditions. After transfer of the last word, the master  
generates a stop condition to release the bus.  
8-Bit Register Data For  
Address (N)  
8-Bit Register Data For  
Address (N)  
R/  
W
8-Bit Register Address (N)  
7-Bit Slave Address  
A
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
T0035-02  
Figure 13. Typical I2C Sequence  
To communicate with the device, the I2C master uses addresses shown in Figure 13. Transmission of read and  
write data can be by single-byte or multiple-byte data transfers.  
9.3.7.2 Random Write  
As shown in Figure 14, a single-byte data-write transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I2C device address  
and the read/write bit, the device responds with an acknowledge bit. Next, the master transmits the address byte  
corresponding to the internal memory address being accessed. After receiving the address byte, the device  
again responds with an acknowledge bit. Next, the master device transmits the data byte for writing to the  
memory address being accessed. After receiving the data byte, the device again responds with an acknowledge  
bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
 
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
Data Byte  
Stop  
Condition  
T0036-05  
Figure 14. Random Write Transfer  
9.3.7.3 Random Read  
As shown in Figure 15, a single-byte data-read transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. For the data-read transfer, the master device  
performs both a write and a following read. Initially, the master device performs a write to transfer the address  
byte of the internal memory address to be read. As a result, the read/write bit is a 0. After receiving the address  
and the read/write bit, the device responds with an acknowledge bit. In addition, after sending the internal  
memory address byte, the master device transmits another start condition followed by the device address and  
the read/write bit again. This time, the read/write bit is a 1, indicating a read transfer. After receiving the address  
and the read/write bit, the device again responds with an acknowledge bit. Next, the device transmits the data  
byte from the memory address being read. After receiving the data byte, the master device transmits a not-  
acknowledge followed by a stop condition to complete the single-byte data-read transfer.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and  
Read/Write Bit  
Data Byte  
Stop  
Condition  
T0036-03  
Figure 15. Random Read Transfer  
9.3.7.4 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that the TAS5411-Q1  
device transmits multiple data bytes to the master device as shown in Figure 16. Except for the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte and automatically increments  
the I2C subaddress by 1. After receiving the last data byte, the master device transmits a not-acknowledge  
followed by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
T0036-07  
Figure 16. Sequential Read Transfer  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
9.4 Device Functional Modes  
9.4.1 Hardware Control Pins  
There are three discrete hardware pins for real-time control and indication of device status.  
FAULT pin: This active-low open-drain output pin indicates the presence of a fault condition which requires  
the device to go into the Hi-Z mode. On assertion of this pin, the device has protected itself and the system  
from potential damage. The system can read the exact nature of the fault via I2C with the exception of PVDD  
undervoltage faults below POR, in which case the I2C bus is no longer operational.  
STANDBY pin: Assertion of this active-low pin sends the device into a complete shutdown, limiting the  
current draw.  
MUTE pin: On assertion of this active-high pin, the device is in mute mode. The output pins stop switching  
and audio does not pass from the input to the output. To place the device back into play mode, it is  
necessary to deassert this pin.  
9.4.2 EMI Considerations  
Automotive-level EMI performance depends on both careful integrated-circuit design and good system-level  
design. Controlling sources of electromagnetic interference (EMI) was a major consideration in all aspects of the  
design.  
The design has minimal parasitic inductances due to the short leads on the package. This dramatically reduces  
the EMI that results from current passing from the die to the system PCB. The design incorporates circuitry that  
optimizes output transitions that cause EMI.  
9.4.3 Operating Modes and Faults  
The following tables list operating modes and faults.  
Table 2. Operating Modes  
STATE NAME  
Standby  
OUTPUT  
Hi-Z, floating  
OSCILLATOR  
Stopped  
Active  
I2C  
Stopped  
Active  
Active  
Active  
Load diagnostic  
Fault and mute  
Play  
DC biased  
Hi-Z, floating  
Active  
Switching with audio  
Active  
Table 3. Faults and Actions  
FAULT  
EVENT  
FAULT EVENT  
CATEGORY  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
TYPE  
ACTION  
RESULT  
CLEARING  
POR  
Not applicable  
I2C + FAULT pin  
FAULT pin  
Standby  
UV or OV  
Load dump(1)  
OTSD  
Voltage fault  
All  
Hard mute (no ramp)  
Thermal fault  
Hi-Z, mute, play  
Play  
Hi-Z  
Self-clearing  
OC fault  
DC detect  
Output channel  
fault  
I2C + FAULT pin  
Load diagnostic –  
short  
Hi-Z, rerun  
diagnostics  
Diagnostic  
Hi-Z  
None  
Load diagnostic –  
open  
Clears on next  
diagnostic  
cycle  
I2C  
None  
(1) Tested in accordance with ISO7637-1  
Copyright © 2015–2018, Texas Instruments Incorporated  
17  
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
9.5 Register Maps  
Table 4. I2C Address  
FIXED ADDRESS  
READ/WRITE BIT  
DESCRIPTION  
I2C write  
I2C read  
I2C ADDRESS  
MSB  
6
1
1
5
0
0
4
1
1
3
1
1
2
0
0
1
0
0
LSB  
1
1
0
1
0xD8  
0xD9  
Table 5. I2C Address Register Definitions  
ADDRESS  
R/W  
REGISTER DESCRIPTION  
0x01  
0x02  
0x03  
R
R
Latched fault register  
Status and load diagnostics register  
Control register  
R/W  
Table 6. Fault Register (0x01)  
D7  
0
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
FUNCTION  
0
1
0
0
No protection-created faults, default value  
Reserved  
1
1
Reserved  
1
A load-diagnostics fault has occurred.  
Overcurrent shutdown has occurred.  
PVDD undervoltage has occurred.  
PVDD overvoltage has occurred.  
DC offset protection has occurred.  
Overtemperature shutdown has occurred.  
1
1
1
1
Table 7. Status and Load Diagnostic Register (0x02)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
No speaker-diagnostic-created faults, default value  
Output short to PVDD is present.  
Output short to ground is present.  
Open load is present.  
1
1
1
1
Shorted load is present.  
1
In a fault condition  
1
Performing load diagnostics  
In mute mode  
1
1
In play mode  
18  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
Table 8. Control Register (0x03)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
0
1
1
1
1
0
0
0
26-dB gain, switching frequency set to 400 kHz, SpeakerGuard protection  
circuitry disabled  
0
1
1
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
1
-
Switching frequency set to 500 kHz  
Reserved  
SpeakerGuard protection circuitry set to 14-V peak output  
SpeakerGuard protection circuitry set to 11.8-V peak output  
SpeakerGuard protection circuitry set to 9.8-V peak output  
SpeakerGuard protection circuitry set to 8.4-V peak output  
SpeakerGuard protection circuitry set to 7-V peak output  
SpeakerGuard protection circuitry set to 5.9-V peak output  
SpeakerGuard protection circuitry set to 5-V peak output  
Gain set to 20 dB  
Gain set to 32 dB  
Gain set to 36 dB  
Copyright © 2015–2018, Texas Instruments Incorporated  
19  
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The device is a mono high-efficiency class-D audio amplifier. Typical use of the device is to amplify an audio  
input to drive a speaker. The intent of its use is for a bridge-tied load (BTL) application, not for support of a  
single-ended configuration. This section presents how to use the device in the application, including what  
external components are necessary and how to connect unused pins.  
10.2 Typical Application  
L1  
PVDD  
10uH  
C8  
330µF  
C5  
4.7µF  
C4  
4.7µF  
C3  
0.082µF  
C2  
2200pF  
C7  
10µF  
C6  
0.1µF  
C9  
IN_P  
1µF  
R5  
49.9k  
U1  
L2  
R6  
49.9k  
6
7
15  
13  
12  
IN_P  
PVDD  
C10  
OUTP  
15µH 2.7A  
C16  
1µF  
BSTP  
OUTP  
R4  
5.6  
IN_N  
IN_N  
0.22µF  
C11  
2.2uF  
C12  
0.01µF  
C13  
5
4
SCL  
SDA  
SCL  
SDA  
11  
10  
OUTN  
BSTN  
470pF  
C14  
2
8
STANDBY  
MUTE  
STANDBY  
MUTE  
0.22µF  
16  
9
C15  
GND  
GND  
GND  
PAD  
14  
FAULT  
FAULT  
1
470pF  
L3  
3
BYP  
R7  
5.6  
TAS5411QPWPRQ1  
C20  
1µF  
OUTM  
15µH 2.7A  
C17  
2.2uF  
C18  
0.01µF  
Figure 17. TAS5411-Q1 Typical Application Schematic  
20  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
Typical Application (continued)  
10.2.1 Design Requirements  
Use the following for the design requirements:  
Power Supplies  
The device needs only a single power supply compliant with the recommended operation range. The device  
is designed to work with either a vehicle battery or regulated power supply such as from a backup battery.  
Communication  
The device communicates with the system controller with both discrete hardware control pins and with I2C.  
The device is an I2C slave and thus requires a master. If a master I2C-compliant device is not present in the  
system, it is still possible to use the device, but only with the default settings. Diagnostic information is limited  
to the discrete reporting FAULT pin.  
External Components  
Table 9 lists the components required for the device.  
Table 9. Supporting Components  
EVM DESIGNATOR QUANTITY  
C7  
VALUE  
10 μF ± 10%  
330 μF ± 20%  
1 μF ± 10%  
SIZE  
DESCRIPTION  
X7R ceramic capacitor, 25-V  
Low-ESR aluminum capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 250-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 50-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
Shielded ferrite inductor  
USE IN APPLICATION  
Power supply  
1
1
3
2
2
2
1
1
1
2
2
1
1
2
2
1206  
10 mm  
0805  
0603  
0805  
0603  
0603  
0603  
0603  
1206  
0603  
C8  
Power supply  
C9, C16, C20  
C10, C14  
C11, C17  
C13, C15  
C6  
Analog audio input filter, bypass  
Bootstrap capacitors  
Amplifier output filtering  
Amplifier output snubbers  
Power supply  
0.22 μF ± 10%  
2.2 μF ± 10%  
470 pF ± 10%  
0.1 μF ± 10%  
2200 pF ± 10%  
0.082 μF ± 10%  
4.7 μF ± 10%  
0.01 μF ± 10%  
10 μH ± 20%  
15 μH ± 20%  
49.9 kΩ ± 1%  
5.6 Ω ± 5%  
C2  
Power supply  
C3  
Power supply  
C4, C5  
C12, C18  
L1  
Power supply  
Output EMI filtering  
Power supply  
13.5 mm ×13.5 mm  
7 mm × 7 mm  
0805  
L2, L3  
R5, R6  
R4, R7  
Metal alloy inductor  
Amplifier output filtering  
Analog audio input filter  
Output snubbers  
Resistors, 0.125-W  
0805  
Resistors, 0.125-W  
10.2.1.1 Amplifier Output Filtering  
Output FETs drive the amplifier outputs in an H-bridge configuration. These transistors are either fully off or on.  
The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the audio  
signal. The amplifier outputs require a low-pass filter to filter out the PWM modulation carrier frequency. People  
frequently call this filter the L-C filter, due to the presence of an inductive element L and a capacitive element C  
to make up the 2-pole low-pass filter. The L-C filter attenuates the carrier frequency, reducing electromagnetic  
emissions and smoothing the current waveform which the load draws from the power supply. See the Class-D  
LC Filter Design application report, SLOA119, for a detailed description on proper component selection and  
design of an L-C filter based on the desired load and response.  
10.2.1.2 Amplifier Output Snubbers  
A snubber is an RC network placed at the output of the amplifier to dampen ringing or overshoot on the PWM  
output waveform. Overshoot and ringing have several negative impacts including: potential EMI sources,  
degraded audio performance, and overvoltage stress of the output FETs or board components. For more  
information on the use and design of output snubbers, see the Class-D Output Snubber Design Guide,  
SLOA201.  
10.2.1.3 Bootstrap Capacitors  
The output stage uses dual NMOS transistors; therefore, the circuit requires bootstrap capacitors for the high  
side of each output to turn on correctly. The required capacitor connection is from BSTN to OUTN and from  
BSTP to OUTP as shown in Figure 17.  
Copyright © 2015–2018, Texas Instruments Incorporated  
21  
 
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
10.2.1.4 Analog Audio Input Filter  
The circuit requires an input capacitor to allow biasing of the amplifier put to the proper dc level. The input  
capacitor and the input impedance of the amplifier form a high-pass filter with a –3-dB corner frequency  
determined by the equation: f = 1 / (2πR(i)C(i)), where R(i) is the input impedance of the device based on the gain  
setting and C(i) is the input capacitor value. Table 10 lists largest recommended input capacitor values. Use a  
capacitor which matches the application need for the lowest frequency but does not exceed the values listed.  
Table 10. Recommended Input AC-Coupling Capacitors  
TYPICAL INPUT IMPEDANCE  
GAIN (dB)  
INPUT CAPACITANCE (µF)  
HIGH-PASS FILTER (Hz)  
(kΩ)  
20  
60  
1
2.7  
1.8  
5.3  
1.6  
2.3  
1.8  
1.5  
1
26  
30  
3.3  
5.6  
10  
32  
36  
15  
9
10.2.2 Detailed Design Procedure  
Use the following steps for the design procedure:  
1. Hardware Schematic Design: Using the Typical Application Schematic as a guide, integrate the hardware  
into the system schematic.  
2. Following the recommended layout guidelines, integrate the device and its supporting components into the  
system PCB file.  
3. Thermal Design: The device has an exposed thermal pad which requires proper soldering. For more  
information, see the Semiconductor and IC Package Thermal Metrics, SPRA953, and the PowerPAD  
Thermally Enhanced Package, SLMA002G, application reports.  
4. Develop software: The EVM User's Guide, SLOU431, has detailed instructions for how to set up the device,  
interpret diagnostic information, and so forth. For information about control registers, see the Register Maps  
section.  
10.2.2.1 Unused Pin Connections  
Even if unused, always connect pins to a fixed rail; do not leave them floating. Floating input pins represent an  
ESD risk, so adhere to the following guidance for each pin.  
10.2.2.1.1 MUTE Pin  
If the MUTE pin is unused in the application, connect it to GND through a high-impedance resistor.  
10.2.2.1.2 STANDBY Pin  
If the STANDBY pin is unused in the application, connect it to a low-voltage rail such as 3.3 V or 5 V through a  
high-impedance resistor.  
10.2.2.1.3 I2C Pins (SDA and SCL)  
If there is no microcontroller in the system, use of the device without I2C communication is possible. In this  
situation, connect the SDA and SCL pins to 3.3 V.  
10.2.2.1.4 Terminating Unused Outputs  
If the FAULT pin does not report to a system microcontroller in the application, connect it to GND.  
10.2.2.1.5 Using a Single-Ended Audio Input  
When using a single-ended audio source, ac-ground the negative input through a capacitor equal in value to the  
input capacitor on the positive input, and apply the audio source to the positive input. For best performance, the  
ac ground should be at the audio source instead of at the device input if possible.  
22  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
10.2.3 Application Curves  
See the graphs listed in Table 11 for the application performance plots.  
Table 11. Table of Graphs  
GRAPH  
FIGURE NO.  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Efficiency vs Output Power  
THD+N vs Output Power  
Output Power vs PVDD  
THD+N vs Frequency  
Noise FFT With –60-dB Output  
Noise FFT With 1-W Output  
Overcurrent Threshold vs Temperature  
11 Power Supply Recommendations  
A car battery that can have a large voltage range most commonly provides power for the device. PVDD, a filtered  
battery voltage, is the supply for the output FETs and the low-side FET gate driver. Good power-supply  
decoupling is necessary, especially at low voltage and temperature levels. To meet the PVDD specifications in  
the Electrical Characteristics section, TI uses 10-µF and 0.1-µF ceramic capacitors near the PVDD pin along with  
a larger bulk 330-µF electrolytic decoupling capacitor.  
An internal linear regulator, which powers the analog circuitry, provides the voltage on the BYP pin. This supply  
requires an external bypass ceramic capacitor at the BYP pin.  
Copyright © 2015–2018, Texas Instruments Incorporated  
23  
 
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The EVM layout optimizes for thermal dissipation and EMC performance. The TAS5411-Q1 device has a thermal  
pad down, and good thermal conduction and dissipation require adequate copper area. Layout also affects EMC  
performance. TAS5411Q1EVM illustrations form the basis for the layout discussions.  
12.2 Layout Examples  
12.2.1 Top Layer  
The red boxes around number 1 are the copper ground on the top layer. Soldered directly to the thermal pad,  
this ground is the first significant thermal dissipation needed. There are vias that go to the other layers for further  
thermal relief, but vias have high thermal resistance. TI recommends that use of this top layer be mostly for  
thermal dissipation. A further recommendation is short routes from output pins to the second-order LC filter for  
EMC suppression. The number 2 arrow indicates these short routes. The shorter the distance, the less EMC  
radiates. A short route from the PVDD pin to the LC filter from the battery or power source, as indicated by the  
number 3 arrow, also improves EMC suppression. The red box around number 4 indicates the ground plane that  
is common to both OUTP and OUTN. Place the capacitors of the LC filter in this common ground plane to help  
with common-mode noise and short ground loops.  
Figure 18. Top Layer  
24  
Copyright © 2015–2018, Texas Instruments Incorporated  
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
Layout Examples (continued)  
12.2.2 Second Layer – Signal Layer  
If possible, route the I2C and the positive and negative input traces close together and cover with ground plane,  
keeping the signals from noise.  
Figure 19. Signal Layer  
12.2.3 Third Layer – Power Layer  
There is no need for a power plane, but TI recommends a wide single PVDD trace to keep the switching noise to  
a minimum and provide enough current to the device. The wide trace provides a low-impedance path from the  
power source to the PVDD pin and from the GND pin to the source return. Suppression of switching noise (ripple  
voltage) on both the positive and return (ground) paths requires a low impedance.  
Figure 20. Power Layer  
Copyright © 2015–2018, Texas Instruments Incorporated  
25  
TAS5411-Q1  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Layout Examples (continued)  
12.2.4 Bottom Layer – Ground Layer  
The device has an exposed thermal pad on the bottom side for improved thermal performance. Conducting heat  
from the thermal pad to other layers requires thermal vias. Because the bottom layer is the secondary heat  
exchange surface to ambient, the thermal vias area must have low thermal resistance, that is, no signal vias or  
traces that can increase thermal resistance from the thermal vias to the bottom copper.  
Figure 21. Bottom Layer  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
AN-1737 管理 D 类音频 应用中的 EMI》  
D LC 滤波器设计》  
D 类输出缓冲器设计指南》  
《音频功率放大器性能测量指南》  
PowerPAD 热增强型封装》  
TAS5411Q1EVM 用户指南》  
《具有负载突降和 I2C 诊断功能的 TAS5421-Q1 22W 单声道汽车类数字音频放大器》  
26  
版权 © 2015–2018, Texas Instruments Incorporated  
TAS5411-Q1  
www.ti.com.cn  
ZHCSEH3B DECEMBER 2015REVISED SEPTEMBER 2018  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
PowerPAD, SpeakerGuard, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航面板。  
版权 © 2015–2018, Texas Instruments Incorporated  
27  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5411QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
16  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TAS5411  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5411QPWPRQ1  
HTSSOP PWP  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TAS5411QPWPRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
0.19  
B
0.1  
C A  
B
(0.15) TYP  
SEE DETAIL A  
4X 0.15 MAX  
NOTE 5  
2X 0.95 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.0  
2.4  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.0  
2.4  
4218971/A 01/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
SYMM  
(3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4218971/A 01/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.35 X 3.35  
3 X 3 (SHOWN)  
2.74 X 2.74  
0.125  
0.15  
0.175  
2.54 X 2.54  
4218971/A 01/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TAS5411QPWPRQ1

具有 I2C 诊断和负载突降保护功能的汽车类 8W、单通道、4.5V 至 18V 模拟输入 D 类音频放大器 | PWP | 16 | -40 to 125
TI

TAS5412-Q1

具有 I2C 诊断和负载突降保护功能的汽车类 28W、2 通道、6V 至 24V 模拟单端输入 D 类音频放大器
TI

TAS5412TPHDRQ1

具有 I2C 诊断和负载突降保护功能的汽车类 28W、2 通道、6V 至 24V 模拟单端输入 D 类音频放大器 | PHD | 64 | -40 to 105
TI

TAS5414

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414A

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414ATDKDMQ1

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414ATDKDMQ1G4

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414ATDKDQ1

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414ATDKDQ1G4

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414ATDKDRMQ1

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414ATDKDRMQ1G4

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI

TAS5414ATDKDRQ1

FOUR-CHANNEL AUTOMOTIVE DIGITAL AMPLIFIERS
TI