TAS5720LRSMT [TI]

20W 单声道、4.5V 至 16.5V 电源电压、数字输入 D 类音频放大器 | RSM | 32 | -25 to 85;
TAS5720LRSMT
型号: TAS5720LRSMT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

20W 单声道、4.5V 至 16.5V 电源电压、数字输入 D 类音频放大器 | RSM | 32 | -25 to 85

放大器 商用集成电路 音频放大器
文件: 总51页 (文件大小:1669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
TAS5720x 具有支持多达 8 通道的 TDM 接口的数字输入单声道 D 类音频  
放大器  
1 特性  
3 说明  
1
单声道 D 类放大器  
TAS5720x 器件是一款高效单声道 D 类音频功率放大  
器,针对高瞬态功率能力进行了优化,从而能够利用小  
型扬声器的动态功率余量。该器件可持续为 4Ω 的扬声  
器提供超过 15W 的功率。  
0.15% 总谐波失真 (THD) 时的持续输出功率为  
20W  
(19V/4Ω)  
时分复用 (TDM) 音频输入  
数字时分复用 (TDM) 接口支持多达 8 个器件共用同一  
条总线。  
多达 8 条通道(32 位,48kHz)  
I2C 控制,有 8 I2C 地址可供选择  
电源  
TAS5720x 器件采用 32 引脚、  
功率放大器:4.5V 16.5VTAS5720L  
功率放大器:4.5V 26.4VTAS5720M  
数字 I/O 电压:3.3V  
4mm × 4mmVQFN 封装,使得 PCB 外形更加紧  
凑。  
器件信息(1)  
保护:热保护和短路保护  
器件型号  
TAS5720L  
TAS5720M  
封装  
封装尺寸(标称值)  
封装:4mm × 4mm32 引脚超薄四方扁平无引线  
封装 (VQFN)  
VQFN (32)  
4.00mm x 4.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
2 应用  
低音炮  
音箱  
条形扬声器  
环绕立体声系统  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS903  
 
 
 
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
中的引脚名称 SCLK 更改为 BCLK  
简化电路原理图  
4.5 V - 16.5 V, TAS5720L  
4.5 V - 26.4 V, TAS5720M  
3.3 V  
BST_P  
OUT_P  
SDZ  
Protections:  
Pop/Click  
Overcurrent  
Over Temperature  
ñ
ñ
ñ
ADR0  
ADR1  
SCL  
Closed-  
Loop  
Class-D  
Amplifier  
OUT_N  
BST_N  
SDA  
System  
Interface  
DAC  
FAULTZ  
SDIN  
LRCLK  
BCLK  
Voltage  
Regulators  
MCLK  
TAS5720L/M  
2
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
目录  
7.4 Device Functional Modes ....................................... 31  
7.5 Register Maps......................................................... 33  
Applications and Implementation ...................... 41  
8.1 Application Information............................................ 41  
8.2 Typical Application .................................................. 41  
Power Supply Recommendations...................... 43  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Timing Requirements.............................................. 10  
6.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 20  
7.1 Overview ................................................................. 20  
7.2 Functional Block Diagram ....................................... 20  
7.3 Feature Description................................................. 20  
8
9
10 Layout................................................................... 43  
10.1 Layout Guidelines ................................................. 43  
10.2 Layout Example .................................................... 44  
11 器件和文档支持 ..................................................... 45  
11.1 文档支持................................................................ 45  
11.2 社区资源................................................................ 45  
11.3 ....................................................................... 45  
11.4 静电放电警告......................................................... 45  
11.5 Glossary................................................................ 45  
12 机械、封装和可订购信息....................................... 45  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (November 2015) to Revision B  
Page  
Updated Typical Characteristics graphs with new data, new standards.............................................................................. 13  
已添加 new Layout Example ............................................................................................................................................... 44  
Changes from Original (September 2015) to Revision A  
Page  
量产发布 ................................................................................................................................................................................ 1  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
5 Pin Configuration and Functions  
RSM Package  
VQFN 32 PINS  
Top View  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VREF_N  
FAULTZ  
SDZ  
OUT_P  
BST_P  
PGND  
PGND  
PGND  
PGND  
BST_N  
OUT_N  
LRCLK  
MCLK  
BCLK  
SDIN  
Exposed Thermal Pad  
SCL  
Pin Functions  
PIN  
I/O/P(1) DESCRIPTION  
NAME  
ADR1  
NO.  
12  
13  
28  
18  
23  
11  
2
I2C address inputs. Each pin can detect a short to DVDD, a short to GND, a 22-kΩ connection to GND,  
and a 22-kΩ connection to DVDD.  
I
ADR0  
I
AVDD  
BST_N  
BST_P  
DVDD  
FAULTZ  
LRCLK  
P
P
P
P
O
I
Analog power supply input. Connect directly to PVDD.  
Class-D Amplifier negative bootstrap. Connect to a capacitor between BST_N and OUT_N.  
Class-D Amplifier positive bootstrap. Connect to a capacitor between BST_P and OUT_P.  
Digital power supply. Connect to a 3.3-V supply with external decoupling capacitor.  
Open drain active low fault flag. Pull up on PCB with resistor to DVDD.  
TDM interface frame synchronization.  
4
10  
29  
30  
5
GND  
P
Ground. Connect to PCB ground plane.  
GVDD  
MCLK  
O
I
Class-D amplifier gate drive regulator output. Connect decoupling cap to PCB ground plane.  
Device master clock.  
19  
20  
21  
22  
14  
15  
26  
27  
16  
17  
24  
25  
6
PGND  
P
Power ground. Connect to PCB ground plane.  
PVDD  
P
Class-D amplifier power supply input. Connect to PVDD supply and decouple externally.  
Class-D amplifier negative output.  
OUT_N  
O
OUT_P  
BCLK  
O
I
Class-D amplifier positive output.  
TDM Interface serial bit clock.  
(1) I = input, O = output, P = power, I/O = bi-directional  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
Pin Functions (continued)  
PIN  
NAME  
SCL  
I/O/P(1) DESCRIPTION  
NO.  
8
I
I/O  
I
I2C clock Input. Pull up on PCB with a 2.4-kΩ resistor.  
I2C bi-directional data. Pull up on PCB with a 2.4-kΩ resistor.  
TDM interface data input.  
SDA  
9
SDIN  
7
SDZ  
3
I
Active low shutdown signal. Assert low to hold device inactive.  
Thermal  
Pad  
33  
G
Connect to GND for best system performance. If not connected to GND, leave floating.  
VCOM  
VREF_N  
VREG  
32  
1
O
P
Common mode reference output. Connect decoupling capacitor to the VREF_N pin.  
Negative reference for analog. Connect to VCOM and VREG capacitor negative pins.  
Analog regulator output. Connect decoupling capacitor to the VREF_N pin.  
31  
O
Copyright © 2015–2016, Texas Instruments Incorporated  
5
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.5  
–25  
MAX  
UNIT  
PVDD, AVDD (TAS5720L)  
20  
Supply voltage(2)  
PVDD, AVDD (TAS5720M)  
DVDD  
30  
V
4
VDVDD + 0.5  
85  
Digital input voltage  
Digital inputs referenced to DVDD supply  
V
Ambient operating temperature, TA  
Storage temperature, Tstg  
°C  
°C  
–40  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.  
(2) All voltages are with respect to network ground pin.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
3
TYP  
MAX  
16.5  
26.4  
3.6  
UNIT  
V
TAS5720L  
TAS5720M  
PVDD/  
AVDD  
Power supply voltage  
V
DVDD  
VIH(DR)  
VIL(DR)  
RSPK  
TA  
Power supply voltage  
3.3  
VDVDD  
0
V
High-level digital input voltage  
Low-level digital input voltage  
Minimum speaker load  
V
V
3.2  
–25  
–25  
Ω
Operating free-air temperature  
Operating junction temperature  
85  
°C  
°C  
TJ  
150  
6.4 Thermal Information  
TAS5720x  
RSM (VQFN)  
32 PINS  
37.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
30.4  
7.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
7.7  
RθJCbot  
2.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6
版权 © 2015–2016, Texas Instruments Incorporated  
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
6.5 Electrical Characteristics  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUT AND OUTPUT  
High-level digital input logic  
voltage threshold  
VIH  
All digital pins  
All digital pins  
70% VDVDD  
Low-level digital input logic  
voltage threshold  
VIL  
30% VDVDD  
Input logic "high" leakage for  
digital inputs  
IIH  
All digital pins, excluding SDZ  
15  
µA  
µA  
µA  
µA  
Input logic "low" leakage for  
digital inputs  
IIL  
All digital pins, excluding SDZ  
–15  
Input logic "high" leakage for  
SDZ inputs  
IIH(SDZ)  
IIL(SDZ)  
VOL  
CIN  
SDZ  
1
–1  
Input logic "low" leakage for  
SDZ inputs  
SDZ  
Output logic "low" for FAULTZ  
open drain Output  
IOL = –2 mA  
All digital pins  
10% VDVDD  
Input capacitance for digital  
inputs  
5
pF  
MASTER CLOCK  
D(MCLK)  
Allowable MCLK duty cycle  
MCLK input frequency  
45%  
50%  
55%  
25  
MHz  
Supported single-speed MCLK  
frequencies  
Values: 64, 128, 256, and 512  
Values: 64, 128, and 256  
64 × fS  
64 × fS  
512 × fS  
256 × fS  
f(MCLK)  
Supported double-speed MCLK  
frequencies  
SERIAL AUDIO PORT  
D(BCLK)  
Allowable BCLK duty cycle  
BCLK input frequency  
45%  
50%  
55%  
25  
MHz  
Supported single-speed BCLK  
frequencies  
Values: 64, 128, 256, and 512  
Values: 64, 128, and 256  
Values: 44.1 and 48  
64 × fS  
64 × fS  
44.1  
512 × fS  
256 × fS  
48  
f(BCLK)  
Supported double-speed BCLK  
frequencies  
Supported single-speed input  
sample rates  
kHz  
kHz  
fS  
Supported double-speed input  
sample rates  
Values: 88.2 and 96  
88.2  
96  
I2C CONTROL PORT  
Allowable load capacitance for  
each I2C Line  
CL(I2C)  
400  
400  
pF  
fSCL  
SCL frequency  
No wait states  
kHz  
PROTECTION  
Overtemperature error (OTE)  
threshold  
OTE(THRESH)  
OTE(HYST)  
150  
15  
°C  
°C  
Overtemperature error (OTE)  
hysteresis  
Overcurrent error (OCE)  
threshold  
OCE(THRESH)  
DCE(THRESH)  
V(PVDD) = 16.5 V, TA = 25°C  
V(PVDD) = 16.5 V, TA = 25°C  
6
A
V
DC error (DCE) threshold  
2.6  
版权 © 2015–2016, Texas Instruments Incorporated  
7
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Electrical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AMPLIFIER PERFORMANCE  
RL= 4 Ω, 10% THD+N, V(PVDD) = 7.2 V,  
fIN = 1 kHz  
6.6  
3.7  
RL= 8 Ω, 10% THD+N, V(PVDD) = 7.2 V,  
fIN = 1 kHz  
RL= 4 Ω, 10% THD+N, V(PVDD) = 12 V,  
fIN = 1 kHz  
17.8  
10.1  
27.4  
15.8  
27  
RL= 8 Ω, 10% THD+N, V(PVDD) = 12 V,  
fIN = 1 kHz  
RL= 4 Ω, 10% THD+N, V(PVDD) = 15 V,  
fIN = 1 kHz, TA= 60°C  
POUT  
Continuous average power  
W
RL= 8 Ω, 10% THD+N, V(PVDD) = 15 V,  
fIN = 1 kHz  
RL= 4 Ω, 10% THD+N, V(PVDD) = 19 V,  
fIN = 1 kHz  
RL= 8 Ω, 10% THD+N, V(PVDD) = 19 V,  
fIN = 1 kHz  
25.3  
RL= 4 Ω, 10% THD+N, V(PVDD) = 24 V,  
fIN = 1 kHz  
22.1  
39.8  
RL= 8 Ω, 10% THD+N, V(PVDD) = 24 V,  
fIN = 1 kHz  
RL= 4 Ω,V(PVDD) = 7.2 V, POUT = 1 W,  
fIN = 1 kHz  
0.033%  
0.015%  
0.03%  
RL= 8 Ω,V(PVDD) = 7.2 V, POUT = 1 W,  
fIN = 1 kHz  
RL= 4 Ω, V(PVDD)= 12 V, POUT = 1 W,  
fIN = 1 kHz  
RL= 8 Ω, V(PVDD)= 12 V, POUT = 1 W,  
20 Hz fIN 20 kHz  
0.013v  
0.028%  
0.012%  
0.026%  
0.013%  
0.026%  
RL= 4 Ω, V(PVDD) = 15 V, POUT = 1 W,  
20 Hz fIN20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
RL= 8 Ω, V(PVDD) = 15 V, POUT = 1 W,  
20 Hz fIN20 kHz  
RL= 4 Ω, V(PVDD) = 19 V, POUT = 1 W,  
20 Hz fIN 20 kHz  
RL= 8 Ω, V(PVDD) = 19 V, POUT = 1 W,  
20 Hz fIN 20 kHz  
RL= 4 Ω, V(PVDD) = 24 V, POUT = 1 W,  
20 Hz fIN 20 kHz  
RL= 8 Ω, V(PVDD) = 24 V, POUT = 1 W,  
20 Hz fIN 20 kHz  
0.016%  
91%  
RL= 8 Ω, V(PVDD) = 12 V, POUT = 9 W  
RL= 8 Ω, V(PVDD) = 12 V, POUT = 9 W;  
fPWM = 384 kHz  
PEFF  
Power efficiency  
90%  
RL= 8 Ω, V(PVDD) = 24 V, POUT = 40 W  
A-Weighted,RL= 8 Ω, Gain = 20.7 dBV  
90%  
50  
VN  
Integrated noise floor voltage  
Channel-to-channel phase shift  
µVrms  
deg  
Output phase shift between multiple  
devices from 20 Hz to 20 kHz. Across all  
sample frequencies and SAIF operating  
modes.  
φCC  
0.2  
Maximum deviation above or below  
passband gain.  
A(RIPPLE)  
Frequency response  
±0.15  
dB  
Hz  
-3 dB Output Cutoff Frequency  
0.47 × fS  
8
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
Electrical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AV(00)  
AV(01)  
AV(10)  
AV(11)  
ANALOG_GAIN[1:0] register bits set to  
"00"  
19.2  
dBV  
ANALOG_GAIN[1:0] register bits set to  
"01"  
20.7  
23.5  
26.3  
Amplifier analog gain(1)  
ANALOG_GAIN[1:0] register bits set to  
"10"  
ANALOG_GAIN[1:0] register bits set to  
"11"  
AV(ERROR)  
VOS  
Amplifier analog gain error  
DC output offset voltage  
Click-pop performance  
±0.15  
dB  
mV  
Measured between OUTP and OUTN  
1.5  
–60  
87  
KCP  
dBV  
DC, 5.5 V V(PVDD) 26.4 V  
AC, V(PVDD)= 16.5 V + 100 mVP-P, f(RIPPLE)  
from 20 Hz to 10 kHz  
53  
PSRR  
Power supply rejection ratio  
dB  
AC, V(PVDD)= 16.5 V + 100 mVP-P, f(RIPPLE)  
from 10 Hz to 20 kHz  
50  
120  
150  
RDS(on)FET  
RDS(on)TOT  
IPK  
Power stage FET on-resistance TA = 25°C  
mΩ  
mΩ  
A
Power stage total on-resistance  
TA = 25°C  
(FET+bond+package)  
Peak output current  
TA = 25°C  
5
3.675  
4
f = 44.1 kHz  
f = 48 kHz  
–3 dB high-pass filter corner  
frequency  
f(HP)  
Hz  
f = 88.2 kHz  
7.35  
8
f = 96 kHz  
f(PWM)  
PWM switching frequency  
Values: 6, 8, 10, 12, 14, 16, 20, and 24  
6
24  
fS  
(1) When PVDD is less than 5.5 V, the voltage regulator that operates the analog circuitry does not have enough headroom to maintain the  
nominal 5.4-V internal voltage. The lack of headroom causes a direct reduction in gain (approximately –0.8 dB at 5 V and –1.74 dB at  
4.5 V), but the device functions properly down to VPVDD = 4.5 V.  
版权 © 2015–2016, Texas Instruments Incorporated  
9
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
MAX UNIT  
6.6 Timing Requirements  
MIN  
NOM  
From deassertion of SDZ (both pin and I2C  
register bit) until the Class-D amplifier  
begins switching.  
tACTIVE  
Shutdown to Active Time  
25  
From the deassertion of SLEEP until the  
Class-D amplifier starts switching.  
tWAKE  
tSLEEP  
tMUTE  
tPLAY  
Wake Time  
1
tvrmp + 1  
tvrmp  
From the assertion of SLEEP until the  
Class-D amplifier stops switching.  
Sleep Time  
ms  
From the assertion of MUTE mode until the  
volume has ramped to the minimum.  
Play to Mute Time  
Un-Mute to Play Time  
From the deassertion of MUTE until the  
volume has returned to its current setting.  
tvrmp  
From the assertion of SDZ (pin or I2C  
register bit) until the Class-D amplifier stops  
switching.  
tSD  
Active to Shutdown Time  
tvrmp + 1  
SERIAL AUDIO PORT  
Time high and low, BCLK, LRCLK,  
SDIN inputs  
tH_L  
10  
ns  
Input tRISE 1 ns, input tFALL 1 ns  
Input tRISE 4 ns, input tFALL 4 ns  
Input tRISE 8 ns, input tFALL 8 ns  
5
tSU  
tHLD  
Setup and hold time. LRCLK,  
SDIN input to BCLK edge.  
8
ns  
12  
Rise-time BCLK, LRCLK, SDIN  
inputs  
tRISE  
tFALL  
8
8
ns  
Fall-time BCLK, LRCLK, SDIN  
inputs  
I2C CONTROL PORT  
Bus free time between start and  
stop conditions  
tBUS  
1.3  
µs  
tHOLD1(I2C)  
tHOLD2(I2C)  
Hold Time, SCL to SDA  
Hold Time, start condition to SCL  
80  
ns  
µs  
0.6  
I2C Startup Time after DVDD  
Power On Reset  
tSTART(I2C)  
12  
ms  
tRISE(I2C)  
tFALL(I2C)  
tSU1(I2C)  
tSU2(I2C)  
tSU3(I2C)  
Rise Time, SCL and SDA  
Fall Time, SCL and SDA  
Setup, SDA to SCL  
300  
300  
ns  
ns  
ns  
µs  
µs  
100  
0.6  
0.6  
Setup, SCL to start condition  
Setup, SCL to stop condition  
Required pulse duration, SCL  
"HIGH"  
tW(H)  
0.6  
1.3  
µs  
µs  
Required pulse duration, SCL  
"LOW"  
tW(L)  
PROTECTION  
DC detect error  
650  
1.3  
ms  
s
tFAULTZ  
Amplifier fault time-out period  
OTE or OCE fault  
10  
版权 © 2015–2016, Texas Instruments Incorporated  
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
t
SU  
BCLK  
t
t
HD  
HD  
t
SU  
LRCLK  
SDIN  
1. SAIF Timing  
tw(H)  
tw(L)  
tr  
tf  
SCL  
tsu1  
th1  
SDA  
T0027-01  
2. SCL and SDA Timing  
SCL  
t(buf)  
th2  
tsu2  
tsu3  
SDA  
Start  
Condition  
Stop  
Condition  
T0028-01  
3. Start and Stop Conditions Timing  
版权 © 2015–2016, Texas Instruments Incorporated  
11  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
When SDZ is deasserted (and the device is not in sleep mode), the amplifier begins to switch after a period of  
tACTIVE. At this point, the volume ramps from –100 dB to the programmed digital volume control (DVC) setting at  
a rate of 0.5 dB every eight sample periods. Ramping the volume prevents audible artifacts that can occur if  
discontinuous volume changes are applied while audio is being played back. This period, tVRMP, depends on the  
DVC setting and sample rate. Typical values for tVRMP for a DVC of 0 dB are shown in Timing Requirements. 4  
illustrates mode timing.  
The time to enter or exit sleep or mute and the time to enter shudown are dominated by tVRMP. 1 lists the  
timing parameters based on tVRMP  
.
tMUTE  
tPLAY  
tSD  
t
t
t
SLEEP  
ACTIVE  
VRMP  
t
WAKE  
SDZ  
SLEEP  
MUTE  
VOLUME  
OUTx  
4. Mode Timing  
1. Typical DVC Ramp Times  
SAMPLE  
RAMP TIMES (tVRAMP)  
RATE (kHZ)  
FROM –100 dB to 0 dB (ms)  
44.1  
48  
36.3  
33.3  
18.1  
16.7  
88.2  
96  
12  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
6.7 Typical Characteristics  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D0021  
D0021  
V(PVDD) = 7.2 V  
POUT = 1 W  
f(PWM) = 384 kHz  
V(PVDD) = 7.2 V  
POUT = 1 W  
5. THD+N vs Frequency  
6. THD+N vs Frequency  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D0021  
D0021  
V(PVDD) = 12 V  
POUT = 1 W  
f(PWM) = 384 kHz  
V(PVDD) = 12 V  
POUT = 1 W  
7. THD+N vs Frequency  
8. THD+N vs Frequency  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D006  
D007  
V(PVDD) = 15 V  
POUT = 1 W  
f(PWM) = 384 kHz  
V(PVDD) = 15 V  
POUT = 1 W  
9. THD+N vs Frequency  
10. THD+N vs Frequency  
版权 © 2015–2016, Texas Instruments Incorporated  
13  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D008  
D009  
V(PVDD) = 19 V  
POUT = 1 W  
f(PWM) = 384 kHz  
V(PVDD) = 19 V  
POUT = 1 W  
11. THD+N vs Frequency  
12. THD+N vs Frequency  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D010  
D011  
V(PVDD) = 24 V  
POUT = 1 W  
f(PWM) = 384 kHz  
V(PVDD) = 24 V  
POUT = 1 W  
13. THD+N vs Frequency  
14. THD+N vs Frequency  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
1
0.1  
0.1  
0.01  
0.01  
0.005  
0.005  
0.01  
0.1  
Output Power (W)  
1
10  
0.01  
0.1  
Output Power (W)  
1
10  
D012  
D013  
V(PVDD) = 7.2 V  
f(PWM) = 384 kHz  
V(PVDD) = 7.2 V  
16. THD+N vs Output Power  
15. THD+N vs Output Power  
14  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
Typical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
1
0.1  
0.1  
0.01  
0.01  
0.005  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
D014  
D015  
V(PVDD) = 12 V  
f(PWM) = 384 kHz  
V(PVDD) = 12 V  
17. THD+N vs Output Power  
18. THD+N vs Output Power  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
1
0.1  
0.1  
0.01  
0.01  
0.005  
0.01  
0.1  
1
10  
30  
0.01  
0.1  
1
10  
30  
Output Power (W)  
Output Power (W)  
D016  
D017  
V(PVDD) = 15 V  
f(PWM) = 384 kHz  
V(PVDD) = 15 V  
19. THD+N vs Output Power  
20. THD+N vs Output Power  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
1
0.1  
0.1  
0.01  
0.01  
0.005  
0.01  
0.1  
1
10  
50  
0.01  
0.1  
1
10  
50  
Output Power (W)  
Output Power (W)  
D018  
D019  
V(PVDD) = 19 V  
f(PWM) = 384 kHz  
V(PVDD) = 19 V  
22. THD+N vs Output Power  
21. THD+N vs Output Power  
版权 © 2015–2016, Texas Instruments Incorporated  
15  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
10  
10  
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
1
0.1  
0.01  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
D020  
D021  
V(PVDD) = 24 V  
f(PWM) = 384 kHz  
V(PVDD) = 24 V  
Gain = 20.7 dBV  
23. THD+N vs Output Power  
24. THD+N vs Output Power  
80  
70  
RL = 8 W  
RL = 8 W  
RL = 6 W  
RL = 6 W  
70  
60  
50  
40  
30  
20  
10  
0
60  
RL = 4 W  
RL = 4 W  
RL = 6 W, Thermal Limit  
RL = 4 W, Thermal Limit  
RL = 6 W, Thermal Limit  
RL = 4 W, Thermal Limit  
50  
40  
30  
20  
10  
0
10  
15  
Supply Voltage (V)  
20  
25  
10  
15  
Supply Voltage (V)  
20  
25  
D022  
D023  
Analog Gain = Setting 11  
f(PWM) = 384 kHz  
Analog Gain = Setting 11  
26. Output Power vs Supply Voltage  
25. Output Power vs Supply Voltage  
16  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
Typical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Analog Gain = 00  
Analog Gain = 01  
Analog Gain = 10  
Analog Gain = 11  
Analog Gain = 00  
Analog Gain = 01  
Analog Gain = 10  
Analog Gain = 11  
5
10  
15  
20  
25  
5
10  
15  
20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
D025  
D024  
f(PWM) = 384 kHz  
27. A-Weighted Idle Channel Noise vs Supply Voltage  
28. Efficiency vs Output Power  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 7.2 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 19 V  
PVDD = 24 V  
PVDD = 7.2 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 19 V  
PVDD = 24 V  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Output Power (W)  
Output Power (W)  
D026  
D027  
RL = 4 Ω  
f(PWM) = 384 kHz  
RL = 4 Ω  
29. Efficiency vs Output Power  
30. Efficiency vs Output Power  
版权 © 2015–2016, Texas Instruments Incorporated  
17  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 7.2 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 19 V  
PVDD = 24 V  
PVDD = 7.2 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 19 V  
PVDD = 24 V  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Output Power (W)  
Output Power (W)  
D028  
D029  
RL = 8 Ω  
f(PWM) = 384 kHz  
RL = 8 Ω  
31. Efficiency vs Output Power  
32. Efficiency vs Output Power  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
PVDD = 12V  
PVDD = 24V  
PVDD = 12V  
PVDD = 24V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D030  
D031  
f(PWM) = 384 kHz  
33. PVDD PSRR vs Frequency  
34. PVDD PSRR vs Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
PVDD = 12V  
PVDD = 24V  
PVDD = 12V  
PVDD = 24V  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D032  
D033  
f(PWM) = 384 kHz  
35. DVDD PSRR vs Frequency  
36. DVDD PSRR vs Frequency  
18  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
Typical Characteristics (接下页)  
TA = 25ºC, V(PVDD) = 15 V, V(DVDD) = 3.3 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, f(PWM) = 768 kHz, Gain = 20.7 dBV, SDZ = 1,  
Measured with an Audio Precision SYS-2722 High-Performance Audio Analyzer and using a 15-µH, 0.68-µF reconstruction  
filter at the device output.  
30  
26  
22  
18  
14  
10  
70  
60  
50  
40  
30  
20  
10  
FPWM = 384kHz  
FPWM = 768kHz  
5
10  
15  
Supply Voltage (V)  
20  
25  
5
10  
15  
20  
25  
Supply Voltage (V)  
D034  
D035  
37. Supply Idle Current vs PVDD  
38. Shutdown Current vs PVDD  
版权 © 2015–2016, Texas Instruments Incorporated  
19  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TAS5720L/M device is a high-efficiency mono Class-D audio power amplifier optimized for high-transient  
power capability to utilize the dynamic power headroom of small loudspeakers. It’s capable of delivering more  
than 15-W continuously into a 4-Ω speaker.  
7.2 Functional Block Diagram  
DVDD  
PVDD AVDD  
SDZ  
ADR0  
ADR1  
SDA  
Protections:  
Pop/Click  
Overcurrent  
OUT_P  
BST_P  
ñ
ñ
ñ
Over Temperature  
Closed-Loop  
Class-D  
Amplifier  
OUT_N  
BST_N  
DAC  
System  
Interface  
FAULTZ  
SDIN  
LRCLK  
BCLK  
Voltage  
Regulators  
MCLK  
TAS5720L/M  
VREF_N  
PGND  
GND  
VCOM  
VREG GVDD  
7.3 Feature Description  
7.3.1 Adjustable I2C Address  
The TAS5720L/M device has two address pins, which allow up to 8 I2C addressable devices to share a common  
TDM bus. 2 lists each I2C Device ID setting.  
The I2C Device ID is the 7 most significant bits of the 8-bit address transaction on the bus  
(with the read/write bit being the least significant bit). For example, a Device ID of 0x6C  
would be read as 0xD8 when the read/write bit is 0.  
2. I2C Device Identifier (ID) Generation  
DEFAULT TDM  
ADR1  
ADR0  
I2C_DEV_ID  
SLOT  
Short to GND  
22-kΩ to GND  
22-kΩ to DVDD  
Short to DVDD  
Short to GND  
22-kΩ to GND  
22-kΩ to DVDD  
Short to DVDD  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0
1
2
3
4
5
6
7
Short to GND  
22-kΩ to GND  
20  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
Use a 22-kΩ resistor with a 5% (or better) tolerance to operate as a pull-up or pull-down resistor. By default, the  
device uses the TDM time slot equal to the offset from the base I2C Device ID (see 2). The TDM slot can also  
be manually configured by setting the TDM_CFG_SRC bit high (bit 6, reg 0x02) and programming the  
TDM_SLOT_SELECT[2:0] bits to the desired slot (bits 0-2, reg 0x03).  
For 2-channel, I2S operation, TDM slots 0 and 1 correspond to right and left channels respectively. For left and  
right justified formats, TDM slots 0 and 1 correspond to left and right channels respectively.  
7.3.2 I2C Interface  
The TAS5720L/M device has a bidirectional I2C interface that is compatible with the Inter-Integrated Circuit (I2C)  
bus protocol and supports both 100-kHz and 400-kHz data transfer rates. This slave-only device does not  
support a multimaster bus environment or wait-state insertion. The control interface is used to program the  
registers of the device and to read device status.  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data can be transferred in byte  
(8-bit) format, with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is  
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master  
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.  
The bus uses transitions on the data pin (SDA) while the clock (SCL) is "HIGH" to indicate start and stop  
conditions. A high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal  
data-bit transitions must occur within the low time of the clock period. The conditions are shown in 39. The  
master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The TAS5720L/M device holds SDA "LOW" during the  
acknowledge clock period to indicate an acknowledgment. When this hold occurs, the master transmits the next  
byte of the sequence. All compatible devices share the same signals via a bidirectional bus using a wired-AND  
connection. An external pull-up resistor must be used for the SDA and SCL signals to set the "HIGH" level for the  
bus.  
8-Bit Register Data For  
Address (N)  
8-Bit Register Data For  
Address (N)  
R/  
W
8-Bit Register Address (N)  
7-Bit Slave Address  
A
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
T0035-01  
39. Typical I2C Timing Sequence  
Any number of bytes can be transmitted between start and stop conditions. When the last word transfers, the  
master generates a stop condition to release the bus. A generic data transfer sequence is shown in 39.  
版权 © 2015–2016, Texas Instruments Incorporated  
21  
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.3.2.1 Writing to the I2C Interface  
As shown 40, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C bit and the read/write bit. The read/write bit determines the direction of the data transfer. For  
a data-write transfer, the read/write bit is a 0. After receiving the correct I2C bit and the read/write bit, the  
TAS5720L/M device responds with an acknowledge bit. Next, the master transmits the address byte  
corresponding to the TAS5720L/M device register being accessed. After receiving the address byte, the  
TAS5720L/M device again responds with an acknowledge bit. Next, the master device transmits the data byte to  
be written to the memory address being accessed. After receiving the data byte, the TAS5720L/M device again  
responds with an acknowledge bit. Lastly, the master device transmits a stop condition to complete the single-  
byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
Data Byte  
Stop  
Condition  
T0036-01  
40. Single Byte Write Transfer Timing  
A multi-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes are  
transmitted as shown in 41. After receiving each data byte, the TAS5720L/M device responds with an  
acknowledge bit. Sequential data bytes are written to sequential addresses.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4 A3  
A1 A0 ACK D7  
I2C Device Address and  
Read/Write Bit  
Subaddress  
First Data Byte  
Last Data Byte  
Stop  
Condition  
Other Data Bytes  
T0036-02  
41. Multi-Byte Write Transfer Timing  
22  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
7.3.2.2 Reading from the I2C Interface  
As shown in 41, a data-read transfer begins with the master device transmitting a start condition, followed by  
the I2 device address and the read/write bit. For the data read transfer, both a write followed by a read are  
actually done. Initially, a write is done to transfer the address byte of the internal register to be read. As a result,  
the read/write bit becomes a 0. After receiving the TAS5720L/M device address and the read/write bit,  
TAS5720L/M device responds with an acknowledge bit. In addition, after sending the internal memory address  
byte or bytes, the master device transmits another start condition followed by the TAS5720L/M device address  
and the read/write bit again. This time, the read/write bit becomes a 1, indicating a read transfer. After receiving  
the address and the read/write bit, the TAS5720L/M device again responds with an acknowledge bit. Next, the  
TAS5720L/M device transmits the data byte from the register being read. After receiving the data byte, the  
master device transmits a not-acknowledge followed by a stop condition to complete the data-read transfer.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and  
Read/Write Bit  
Data Byte  
Stop  
Condition  
T0036-03  
42. Single Byte Read Transfer Timing  
A multiple-byte data read transfer is identical to a single-byte data read transfer except that multiple data bytes  
are transmitted by the TAS5720L/M to the master device as shown 43. Except for the last data byte, the  
master device responds with an acknowledge bit after receiving each data byte.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
T0036-04  
43. Multi-Byte Read Transfer Timing  
7.3.3 Serial Audio Interface (SAIF)  
The TAS5720L/M device SAIF supports a variety of standard stereo serial audio formats including I2S, left-  
justifiedand Right Justified. The device also supports a time division multiplexed (TDM) format that is capable of  
transporting up to 8 channels of audio data on a single bus. LRCLK and SDIN are sampled on the rising edge of  
BCLK.  
For the stereo formats (I2S, left-justified and right-justified), the TAS5720L/M device supports BCLK to LRCLK  
ratios of 32, 48 and 64. If the BCLK to LRCLK ratio is 64, MCLK can be tied directly to BCLK. Otherwise MCLK  
must be driven externally. The valid MCLK to LRCLK ratios are 64, 128, 256 and 512 as long as the frequency of  
MCLK is 25MHz or less.  
For TDM operation, the TAS5720L/M device supports 4 or 8 channels for single speed (44.1/48 kHz) and double  
speed (88.2/96 kHz) sample rates. Each channel occupies a 32-bit time slot, therefore valid BCLK to LRCLK  
ratios are 128 and 256. MCLK can be tied to BCLK for all TDM modes or driven externally. If MCLK is driven  
externally, the MCLK to LRCLK ratio should be 64, 128, 256 or 512 and MCLK should be no faster than 25MHz.  
The TAS5720L/M device selects the channel for playback based on either the I2C base address offset or based  
on a dedicated time slot selection register. See the Adjustable I2C Address section for more information.  
版权 © 2015–2016, Texas Instruments Incorporated  
23  
 
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.3.3.1 Stereo I2S Format Timing  
44 illustrates the timing of the stereo I2S format with 64 BCLKs per LRCLK. Two’s complement data is  
transmitted MSB to LSB with the left channel word beginning one BCLK after the falling edge of LRCLK and the  
right channel beginning one BCLK after the rising edge of LRCLK. Because data is MSB aligned to the beginning  
of word transmission, data precision does not be configured. Set the SAIF_FORMAT[2:0] register bits to I2S  
(register 0x02, bits 2:0=3’b100).  
32 Clks  
32 Clks  
LRCLK (Note Reversed Phase)  
Right Channel  
Left Channel  
BCLK  
BCLK  
MSB  
24-Bit Mode  
SDIN  
LSB  
MSB  
LSB  
23 22  
9
5
1
8
4
0
5
1
4
1
0
23 22  
19 18  
15 14  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
0
16-Bit Mode  
15 14  
A. Data presented in two's-complement form with most significant bit (MSB) first.  
44. I2S 64-fSW Format  
24  
版权 © 2015–2016, Texas Instruments Incorporated  
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
7.3.3.2 Stereo Left-Justified Format Timing  
The stereo left justified format is very similar to the I2S format timing, except the data word begins transmission  
at the same cycle that LRCLK toggles (when it is shifted by one bit from I2S). The phase of LRCLK is also  
opposite of I2S. The left channel begins transmission when LRCLK transitions from low to high and the right  
channel begins transmission when LRCLK transitions from high-to-low. Set the SAIF_FORMAT[2:0] register bits  
to left-justified (register 0x02, bits 2:0=3’b101).The timing is illustrated in 45.  
32 Clks  
32 Clks  
LRCLK  
Right Channel  
Left Channel  
BCLK  
BCLK  
MSB  
24-Bit Mode  
SDIN  
LSB MSB  
23 22  
LSB  
23 22  
9
5
1
8
4
0
5
1
4
0
1
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18  
19 18  
15 14  
16-Bit Mode  
15 14  
A. Data presented in two's-complement form with most significant bit (MSB) first.  
45. Left-Justified 64-fSW Format  
版权 © 2015–2016, Texas Instruments Incorporated  
25  
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.3.3.3 Stereo Right-Justified Format Timing  
The stereo right justified format aligns the LSB of left channel data to the high to low transition of LRCLK and the  
LSB of the right channel data to the low to high transition of LRCLK. To insure data is received correctly, the  
SAIF must be configured for the proper data precision. The TAS5720L/M supports 16, 18, 20 and 24-bit data  
precision in right justified format. Set the SAIF_FORMAT[2:0] register bits (register 0x02, bits 2:0) to the  
appropriate right-justifiedsetting based on bit precision (value=3’b000 for 24-bit, 3’b001 for 20-bit, 3’b010 for 18-  
bit and 3’b011 for 16-bit). The timing is illustrated in 46.  
32 Clks  
32 Clks  
LRCLK  
Right Channel  
Left Channel  
BCLK  
MSB  
BCLK  
LSB MSB  
LSB  
0
24-Bit Mode  
SDIN  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
20-Bit Mode  
16-Bit Mode  
0
0
0
0
46. Right-Justified 64-fSW Format  
26  
版权 © 2015–2016, Texas Instruments Incorporated  
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
7.3.3.4 TDM Format Timing  
A TDM frame begins with the low to high transition of LRCLK. As long as LRCLK is high for at least one BCLK  
period and low for one BCLK period, duty cycle is irrelevent. The SAIF automatically detects the number of time  
slots as long as valid BCLK to LRCLK ratios are utilized (see Serial Audio Interface (SAIF)).  
For I2S aligned TDM operation (when time slot 0 begins one clock cycle after the low to high transition of LRCLK,  
set SAIF_FORMAT[2:0] register bits to I2S (register 0x02, bits 2:0=3’b100). Data is MSB aligned within the 32-bit  
time slots, therefore data precision is not required to be configured. The TDM format timing is illustrated in 47.  
BCLK  
LRCLK  
Slot N  
LSB  
Slot 0  
MSB  
Slot 0  
MSB-1  
Slot 0  
LSB  
Slot 1  
MSB  
Slot 1  
MSB-1  
Slot 1  
MSB-2  
Slot N-1  
LSB  
Slot N  
MSB  
Slot N  
MSB-1  
Slot N  
MSB-2  
Slot N  
LSB+1  
SDIN  
47. TDM I2S Format  
For left-justifiedTDM operation (when time slot 0 begins the cycle LRCLK transitions from low to high),  
SAIF_FORMAT[2:0] register bits to left-justified(register 0x02, bits 2:0=3’b101). As with I2S, data is MSB aligned.  
The timing is illustrated in 48.  
BCLK  
LRCLK  
Slot 0  
MSB  
Slot 0  
MSB-1  
Slot 0  
MSB-2  
Slot 0  
LSB  
Slot 1  
MSB  
Slot 1  
MSB-1  
Slot 1  
MSB-2  
Slot N-1  
LSB  
Slot N  
MSB  
Slot N  
MSB-1  
Slot N  
MSB-2  
Slot N  
LSB  
SDIN  
48. TDM Left- and Right-Justified Format  
For right-justified TDM operation (when time slot 0 begins the cycle LRCLK transitions from low to high), data is  
LSB aligned to the 32-bit time slot. As with stereo right-justified formats, the TAS5720L/M must have the data  
precision configured. Set the SAIF_FORMAT[2:0] register bits (register 0x02, bits 2:0) to the appropriate right-  
justified setting based on bit precision (value=3’b000 for 24-bit, 3’b001 for 20-bit, 3’b010 for 18-bit and 3’b011 for  
16-bit). The timing shown in 48 is the same as left-justified TDM, with the data LSB aligned.  
版权 © 2015–2016, Texas Instruments Incorporated  
27  
 
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.3.4 Audio Signal Path  
49 illustrates the audio signal flow from the TDM SAIF to the speaker.  
Digital  
Volume  
Control  
œ100 dB  
to 24 dB  
0.5 dB Steps  
SDIN  
LRCLK  
BCLK  
¯D  
DAC  
Class-D  
Amplifier  
TDM  
SAIF  
HPF  
œ3 dB  
at  
Interpolation  
Filter  
Digital  
Clipper  
4 Hz  
MCLK  
19.2 dBV | 20.7 dBV | 23.5 dBV | 26.3 dBV  
49. Audio Signal Path  
7.3.4.1 High-Pass Filter (HPF)  
Excessive DC in audio content can damage loudspeakers, therefore the amplifier employs a DC detect circuit  
that shutdowns the power stage and issue a latching fault if this condition occurs. A high-pass filter is provided in  
the TAS5720L/M device to remove DC from incoming audio data to prevent this from occurring. 3 shows the  
high-pass, –3 dB corner frequencies for each sample rate. The filter can be bypassed by writing a 1 into bit 7 of  
register 0x02.  
3. High-Pass Filter –3 dB Corner Frequencies by  
Sample Rate  
SAMPLE  
-3dB CORNER  
RATE (kHZ)  
FREQUENCY (Hz)  
44.1  
48.0  
88.2  
96.0  
3.675  
4.000  
7.350  
8.000  
7.3.4.2 Amplifier Analog Gain and Digital Volume Control  
The gain from TDM SAIF to speaker is controlled by setting the amplifier’s analog gain and digital volume  
control. Amplifier analog gain settings are presented as the output level in dBV (dB relative to 1 Vrms) with a full  
scale serial audio input (0 dBFS) and the digital volume control set to 0 dB. These levels might not be achievable  
because of analog clipping in the amplifier, therefore they should be used to convey gain only.  
4 outlines each gain setting expressed in dBV and VPK  
.
4. Amplifier Gain Settings  
FULL SCALE OUTPUT  
ANALOG_GAIN {1:0}  
SETTING  
dBV  
VPEAK  
12.9  
15.3  
21.2  
29.2  
00  
01  
10  
11  
19.2  
20.7  
23.5  
26.3  
公式 1 calculates the amplifiers output voltage.  
6°≠∞ = )Æ∞µ¥ + !§∂£ + !°≠∞ §"6  
where  
VAMP is the amplifier output voltage in dBV  
Input is the digital input amplitude in dB with respect to 0 dBFS  
ADVC is the digital volume control setting, –100 dB to 24dB in 0.5-dB steps  
AAMP is the amplifier analog gain setting (19.2, 20.7, 23.5, or 26.3) in dBV  
(1)  
Clipping in the digital domain occurs if the input level (in dB relative to 0 dBFS) plus the digital volume control  
setting (in dB) are greater than 0 dB. The signal path has approximately 0.5 dB of headroom, but TI does not  
recommend utilizing it.  
28  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
 
 
 
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
The digital volume control can be adjusted from –100 dB to 24 dB in 0.5-dB steps. 公式 2 calculates the 8-bit  
volume control register setting at address 0x04.  
!
0.5  
§∂£  
$6#∂°¨µ• = 0∏#& +  
(2)  
For example, digital volume settings of 0 dB, 24 dB and –100 dB map to 0xCF, 0xFF and 0x07 respectively.  
Values below 0x07 are equivalent to mute (the amplifier continues to switch with no audio).When a change in  
digital volume control occurs, the device ramps the volume to the new setting in 0.5 dB steps after every 8 audio  
samples to ensure smooth transitions in volume.  
The Class-D amplifier uses a closed-loop architecture, therefore the gain does not depend on the supply input  
(VPVDD). The approximate threshold for the onset of analog clipping is calculated in 公式 3.  
2ꢀ  
60+(≠°∏ ,∞≤•£¨©∞ ) = 606$$  
F
G 6  
ꢁ × 2$3(ØÆ) ꢂ 2©Æ¥•≤£ØÆÆ•£¥ ꢂ 2ꢀ  
where  
VPK(max,preclip) is the maximum peak unclipped output voltage in V  
VPVDD is the power supply voltage  
RL is the speaker load in Ω  
Rinterconnect is the additional resistance in the PCB (such as cabling and filters) in Ω  
RDS(on) is the power stage total on resistance (FET+bonding+packaging) in Ω  
(3)  
The effective on-resistance for this device (including FETs, bonding and packaging leads) is approximately 150  
mΩ at room temperature and increasex by approximately 1.6 times over 100°C rise in temperature.5 shows  
approximate maximum unclipped peak output voltages at room temperature (excluding interconnect resistances).  
5. Approximate Maximum Unclipped Peak Output  
Voltage at Room Temperature  
MAXIMUM UNCLIPPED  
PEAK VOLTAGE  
VPK (V)  
SUPPLY VOLTAGE  
VPVDD (V)  
RL = 4 Ω  
RL = 8 Ω  
11.57  
12  
17  
11.16  
15.81  
16.39  
7.3.4.3 Digital Clipper  
The digital clipper hard limits the maximum DAC sample value, which provides a simple hardware mechanism to  
control the largest signal applied to the speaker. Because this block resides in the digital domain, the actual  
maximum output voltage also depends on the amplifier gain setting and the supply voltage (VPVDD) limited  
amplifier voltage swing (For example, analog clipping can occur before digital clipping).  
The maximum amplifier output voltage (excluding limitation due to swing) is calculated in 公式 4.  
$#¨•∂•¨  
6!-0 ≠°∏ ,§£ = 2ꢀ × ¨Øß l  
p + ꢀ.5 + !!-0  
:
;
1ꢀ  
ꢀ∏&&&&&  
where  
VAMP(max,dc) is the amplifier maximum output voltage in dBV  
DClevel is the digital clipper level  
AAMP is the amplifier analog gain setting (19.2, 20.7, 23.5, or 26.3) in dBV  
(4)  
Configure the digital clipper by writing the 20-bit DClevel to registers 0x01, 0x10 and 0x11. Set the DClevel to  
0xFFFFF effectively bypasses the digital clipper.  
版权 © 2015–2016, Texas Instruments Incorporated  
29  
 
 
 
 
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.3.4.4 Class-D Amplifier Settings  
The PWM switching rate of the Class-D amplifier is a phase locked multiple of the input audio sample rate. 6  
lists the PWM switching rate settings as programmed in bit 4 through bit 6 in register 0x06. The double-speed  
sample rates (for example 88.2kHz, 96kHz) have the same PWM switching frequencies as their equivalent  
single-speed sample rates.  
6. PWM Switching Rates  
SINGLE-SPEED  
PWM RATE (× fLRCLK  
DOUBLE-SPEED  
PWM RATE × fLRCLK)  
44.1 kHz, 88.2 kHz  
fPWM(kHz)  
48 kHz, 96 kHz  
fPWM(kHz)  
PWM_RATE[2:0]  
)
000  
001  
010  
011  
100  
101  
110  
111  
6
3
4
264.6  
352.8  
441  
288  
384  
480  
576  
672  
768  
960  
1152  
8
10  
12  
14  
16  
20  
24  
5
6
529.2  
617.4  
705.6  
882  
7
8
10  
12  
1058.4  
The Class-D power stage Over Current detector issues a latching fault if the load current exceeds the safe limit  
for the device. The threshold can be proportionately adjusted if desired by programming bits 4-5 of register 0x08.  
7 shows the relative setting for each Over Current setting.  
7. Over Current Threshold Settings  
OC_THRESH  
[1:0]  
OVERCURRENT  
THRESHOLD (%)  
00  
01  
10  
11  
100  
75  
50  
25  
30  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
 
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
7.4 Device Functional Modes  
This section describes the modes of operation for the TAS5720L/M device.  
8. Typical Current Consumption(1)  
INPUT  
VOLTAGE  
VPVDD (V)  
PWM  
FREQUENCY  
fPWM (kHz)  
INPUT  
CURRENT  
IDVDD (mA)  
IPVDD+IAVDD  
MODE  
(mA)  
384  
768  
14.5  
18.4  
9.0  
Idle and Mute  
4.1  
7.2  
12  
15  
19  
24  
Sleep  
1.32  
Shutdown  
0.039  
17.4  
21.3  
9.0  
0.077  
384  
768  
Idle and Mute  
4.1  
Sleep  
1.32  
Shutdown  
0.045  
19.4  
22.9  
9.1  
0.077  
384  
768  
Idle and Mute  
4.1  
Sleep  
1.32  
Shutdown  
0.049  
22.4  
24.8  
9.3  
0.077  
384  
768  
Idle and Mute  
4.1  
Sleep  
1.32  
Shutdown  
0.054  
26.2  
26.9  
9.4  
0.077  
384  
768  
Idle and Mute  
4.1  
Sleep  
1.32  
Shutdown  
0.061  
0.077  
(1) TA = 25ºC, PVDD pin tied to AVDD pin, VDVDD = 3.3 V, RLOAD = 4Ω, fIN = Idle, fS = 48 kHz, Gain =  
20.7 dBV  
7.4.1 Shutdown Mode (SDZ)  
The device enters shutdown mode if either the SDZ pin is asserted low or the I2C SDZ register bit is set low (bit  
0, reg 0x01). In shutdown mode, the device consumes the minimum quiescent current with most analog and  
digital blocks powered down. The Class-D amplifier power stage powers down and the output pins are in a Hi-Z  
state. I2C communication remains possible in shutdown mode and register bits states are retained.  
If a latching fault condition has occurred (over temperature, Over Current or DC detect), the SDZ pin or I2C bit  
must toggle low before the fault register can be cleared. For more information on faults and recovery, see the  
Faults and Status section.  
When the device exits shutdown mode (by releasing both the SDZ pin high and setting the I2C SDZ register bit  
high), the device powers up the internal analog and digital blocks required for operation. If the I2C SLEEP bit is  
set low (bit 1, reg 0x01), the device powers up the Class-D amplifier and begins the switching of the power  
stage. If the I2C MUTE bit is set low (bit 4, reg 0x03), the device ramps up the volume to the current setting and  
begins playing audio.  
If shutdown mode is asserted while audio is playing, the device ramps down the volume on the audio, stops the  
Class-D switching, puts the Class-D power stage output pins in a Hi-Z state and powers down the analog and  
digital blocks.  
7.4.2 Sleep Mode  
Sleep mode is similar to shutdown mode, except analog and digital blocks required to begin playing audio quickly  
are left powered up. Sleep mode operates as a hard mute where the Class-D amplifier stops switching, but the  
device does not power down completely. Entering sleep mode does not clear latching faults.  
版权 © 2015–2016, Texas Instruments Incorporated  
31  
 
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.4.3 Active Mode  
If shutdown mode and sleep mode are not asserted, the device is in active mode. During active mode, audio  
playback is enabled.  
7.4.4 Mute Mode  
When the I2C_MUTE bit is set high (bit 4, reg 0x03) and the device is in active mode, the volume is ramped  
down and the Class-D amplifier continues to operate with an idle audio input.  
7.4.5 Faults and Status  
During the power-up sequence, the power-on-reset circuit (POR) monitoring the DVDD pin domain releases all  
registers from reset (including the I2C registers) once DVDD is valid. The device does not exit shutdown mode  
until the PVDD pin has a valid voltage between the undervoltage lockout (UVLO) and overvoltage lockout  
(OVLO) thresholds. If DVDD drops below the POR threshold the device transitions into shutdown mode with all  
registers held in reset. If UVLO or OVLO thresholds are violated by the PVDD pin thresholds, the device  
transitions into shutdown mode, but registers are not be forced into reset. Both of the conditions are non-latching  
and the device operates normally once supply voltages are valid again. The device can be reset only by reducing  
DVDD below the POR threshold.  
The device transitions into sleep mode if it detects any faults with the SAIF clocks such as  
Invalid MCLK to LRCLK and BCLK to LRCLK ratios  
Invalid MCLK and LRCLK switching rates  
Halting of MCLK, BCLK or LRCLK switching  
Upon detection of a SAIF clock error, the device transitions into sleep mode as quickly as possible to limit the  
possibility of audio artifacts. Once all SAIF clock errors are resolved, the device will volume ramp back to the  
previous playback state. During a SAIF clock error, the FAULTZ pin will be asserted low and the CLKE bit will be  
asserted high (register 0x08, bit 3).  
While operating in shutdown mode, the SAIF clock error detect circuitry powers down and the CLKE bit reads  
high. This reading is not an indication of a SAIF clock error. If the device has not entered active mode after a  
power-up sequence or after transitioning out of shutdown mode, the FAULTZ pin pulses low for only  
approximately 10 µs every 350 µs. This action prevents a possible locking condition if the FAULTZ is connected  
to the SDZ pin to accomplish automatic recovery. Once the device has entered active mode one time (after  
power up or deassertion of shutdown mode), the SAIF clock errors pull the FAULTZ pin low continuously until the  
fault has cleared.  
The device also monitors die temperature, power stage load current and amplifier output DC content and issues  
latching faults if any of the conditions occur. A die temperature of approximately 150°C causes the device to  
enter sleep mode and issue an Over-temperature error (OTE) readable via I2C (bit 0, reg 0x08).  
Sustained excessive DC content at the output of the Class-D amplifier can damage loudspeakers via voice coil  
heating. The amplifier has an internal circuit to detect significant DC content that forces the device into sleep  
mode. The device issues a DC detect error (DCE) readable via I2C (bit 1, reg 0x08).  
If the Class-D amplifier load current exceeds the threshold set by the OC_THRESH register bits (bits 5-4, reg  
0x08), the device enters sleep mode and issues an Over Current Error (OCE) that is readable via I2C (bit 2, reg  
0x08).  
During OTE, DCE and OCE, the FAULTZ pin asserts low until the latched fault is cleared. FAULTZ is an open  
drain pin and requires a pull-up resistor to the DVDD pin.  
Latched faults can be cleared only by toggling the SDZ pin or SDZ I2C bit (bit 0, reg 0x01). This toggle does not  
clear I2C registers (except the fault status of OTE, OCE and DCE). If the device is intended to attempt automatic  
recovery after latching faults, implement a circuit like the one shown in 50. The device waits approximately  
650 ms after a DCE fault has cleared and 1.3 s after an OTE or OCE fault has cleared before releasing FAULTZ  
high and allowing the device to enter active mode.  
32  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
DVDD  
10 kΩ  
TAS5720L  
SDZ  
Signal from Host  
FAULTZ  
Open-drain driver  
or  
N-channel FET  
50. Auto Recovery Circuit  
7.5 Register Maps  
When writing to registers with reserved bits, maintain the values shown in 9 to ensure proper device  
operation. Default register values are loaded during the power-up sequence or any time the DVDD voltage falls  
below the power-on-reset (POR) threshold and then returns to valid operation.  
版权 © 2015–2016, Texas Instruments Incorporated  
33  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
9. I2C Register Map Summary  
REGISTER BITS  
ADDR  
(Dec)  
ADDR  
(Hex)  
REGISTER  
NAME  
DEFAULT  
(Hex)  
B7  
0
B6  
0
B5  
B4  
B3  
B2  
0
B1  
B0  
DEVICE_ID  
0
1
0x00  
0x01  
0x02  
0x03  
0x04  
0x06  
0x08  
0x10  
0x11  
Device ID  
0x01  
0xFD  
0x04  
0x80  
0xCF  
0x55  
0x00  
0xFF  
0xFC  
0
0
0
0
1
SDZ  
1
DIGITAL_CLIP_LEVEL [19:14]  
SLEEP  
Power Control  
Digital Control 1  
Digital Control 2  
Volume Control  
Analog Control  
1
1
1
0
0
1
1
SSZ/DS  
0
1
0
HPF_BYPASS TDM_CFG_SRC  
RSV  
SAIF_FORMAT  
2
0
0
RSV  
0
0
MUTE  
0
1
0
0
0
1
RSV  
0
TDM_SLOT_SELECT  
0
3
1
0
VOLUME_CONTROL  
4
1
RSV  
0
1
1
0
1
1
0
PWM_RATE  
0
0
1
0
1
1
1
RSV  
0
ANALOG_GAIN  
6
0
CLKE  
0
1
OCE  
0
1
OTE  
0
RSV  
OC_THRESH  
DCE  
0
Fault Config and  
Error Status  
8
0
1
1
0
1
DIGITAL_CLIP_LEVEL[13:6]  
16  
17  
Digital Clipper 2  
Digital Clipper 1  
1
1
1
1
1
1
0
DIGITAL_CLIP_LEVEL[5:0]  
RSV  
0
1
1
1
34  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
7.5.1 Device Identification  
51. Device Identification, Address: 0x000  
7
6
5
4
3
2
1
0
DEVICE_ID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. Device Identification, Address: 0x000  
Bit  
7
Field  
Type  
Reset  
Description  
0
0
0
0
0
0
0
1
6
5
4
DEVICE_ID[7:0]  
R
This register returns a value of 0x01 when read.  
3
2
1
0
7.5.2 Power Control Register  
11. Power Control Register, Address: 0x001  
7
6
5
4
3
2
1
0
DIGITAL_CLIP_LEVEL  
R/W  
SLEEP  
R/W  
SDZ  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. Power Control Register, Address: 0x001  
Bit  
7
Field  
Type  
Reset  
Description  
1
1
1
1
1
1
6
This register holds the top 6-bits of the 20-bit Digital Clipper  
level. The Digital Clipper limits the magnitude of the sample  
applied to the DAC. See the Digital Clipper section for more  
information.  
5
DIGITAL_CLIP_LEVEL[19:14]  
R/W  
4
3
2
When the device enters SLEEP mode, volume ramps down and  
the Class-D output stage powers down to a Hi-Z state. The rest  
of the blocks will be kept in a state such that audio playback can  
be restarted as quickly as possible. This mode has lower  
dissipation than MUTE, but higher than SHUTDOWN. For more  
information see the Device Functional Modes section.  
0: Exit Sleep (default)  
1
0
SLEEP  
R/W  
R/W  
0
1
1: Enter Sleep  
The device enters SHUTDOWN mode if either this bit is set to a  
0 or the SDZ pin is pulled low externally. In SHUTDOWN, the  
device holds the lowest dissipation state. I2C communication  
remains functional and all registers are retained. For more  
information see the Device Functional Modes section.  
0: Enter SHUTDOWN  
SDZ  
1: Exit SHUTDOWN (default)  
版权 © 2015–2016, Texas Instruments Incorporated  
35  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.5.3 Digital Control Register 1  
13. Digital Control Register 1, Address: 0x002  
7
6
5
4
3
2
1
0
HPF_BYPASS TDM_CFG_SR  
C
RSV  
R/W  
SSZ/DS  
SAIF_FORMAT  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. Digital Control Register 1, Address: 0x002  
Bit  
Field  
Type  
Reset  
Description  
The high-pass filter removes any DC component in the audio  
content that could trip the DC detect protection feature in the  
amplifer, which is a latching fault. Setting this bit bypasses the  
high-pass filter. See the High-Pass Filter (HPF) section for more  
information.  
7
HPF_BYPASS  
R/W  
0
0:Enable high-pass filter (default)  
1: Bypass high-pass filter  
This bit determines how the device selects which audio channel  
direct to the playback stream. See the Serial Audio Interface  
(SAIF) section for more information.  
6
TDM_CFG_SRC  
RSV[1:0]  
R/W  
0
0:Set TDM Channel to I2C Device ID (default).  
1:Set TDM Channel to TDM_SLOT_SELECT in register 0x03.  
5
4
R/W  
R/W  
0
0
These bits are reserved and should be set to 00 when writing to  
this register.  
This bit sets the sample rate to single speed or double speed  
operation. See the Serial Audio Interface (SAIF) section for more  
information.  
0: Single speed operation (44.1 kHz/48 kHz) - default.  
1: Double speed operation (88.2 kHz/96 kHz)  
3
2
SSZ/DS  
R/W  
R/W  
0
1
These bits set the Serial Audio Interface format. See the Serial  
Audio Interface (SAIF) section for more information.  
000: Right justified, 24-bit  
001: Right justified, 20-bit  
010: Right justified, 18-bit  
011: Right justified, 16-bit  
100: I2S (default)  
SAIF_FORMAT[2:0]  
1
0
R/W  
R/W  
0
0
101: Left Justified, 16-24 bits  
110: Reserved. Do not select this value.  
111: Reserved. Do not select this value.  
36  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
7.5.4 Digital Control Register 2  
15. Digital Control Register 2, Address: 0x003  
7
6
5
4
3
2
1
TDM_SLOT_SELECT  
R/W  
0
RSV  
R/W  
MUTE  
R/W  
RSV  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. Digital Control Register 2, Address: 0x003  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
1
0
0
These bits are reserved and should be set to 100 when this  
register is written to  
6
RSV[2:0]  
5
When set the device ramps down volume and play idle audio.  
See the Amplifier Analog Gain and Digital Volume Control  
section for more information.  
4
MUTE  
R/W  
0
0: Exit mute mode (default)  
1: Enter mute mode  
This bit is reserved and should be set to 0 when writing to this  
register.  
3
RSV  
R/W  
0
2
1
0
R/W  
R/W  
R/W  
0
0
0
When the TDM_CFG_SRC bit is set to 1 in register 0x02, these  
bits select which TDM channel is directed to audio playback.  
See the Serial Audio Interface (SAIF) section for more  
information  
TDM_SLOT_SELECT[2:0]  
7.5.5 Volume Control Register  
17. Volume Control Register, Address: 0x004  
7
6
5
4
3
2
1
0
VOLUME_CONTROL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. Volume Control Register, Address: 0x004  
Bit  
Field  
Type  
Reset  
Description  
This register sets the Digital Volume Control, which ranges from  
-100 dB to +24 dB in 0.5 dB steps. Register settings of less than  
0x07 are equivalent to setting the Mute bit in register 0x03. See  
the Amplifier Analog Gain and Digital Volume Control section for  
more information.  
7
R/W  
1
0xFF: +24.0 dB  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
0
0
1
1
1
1
0xFE: +23.5 dB  
...  
VOLUME_CONTROL[7:0]  
0xCF: 0 dB (default)  
...  
0x08: –99.5 dB  
0x07: –100 dB  
< 0x07: MUTE  
版权 © 2015–2016, Texas Instruments Incorporated  
37  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.5.6 Analog Control Register  
19. Analog Control Register, Address: 0x006  
7
6
5
4
3
2
1
0
RSV  
R/W  
PWM_RATE  
R/W  
ANALOG_GAIN  
R/W  
RSV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. Analog Control Register, Address: 0x006  
Bit  
Field  
Type  
Reset  
Description  
This bit is reserved and should be set to a 0 when this register is  
written to.  
7
RSV  
R/W  
0
These bits set the PWM switching rate, which is a locked ratio of  
LRCLK. For more information see the Class-D Amplifier Settings  
section.  
000: 6 × LRCLK (single speed), 3 × LRCLK (double speed)  
001: 8 × LRCLK (single speed), 4 × LRCLK (double speed)  
6
5
R/W  
1
010: 10 × LRCLK (single speed), 5 × LRCLK (double speed)  
011: 12 × LRCLK (single speed), 6 × LRCLK (double speed)  
100: 14 × LRCLK (single speed), 7 × LRCLK (double speed)  
PWM_RATE[2:0]  
R/W  
R/W  
0
1
101: 16 × LRCLK (single speed), 8 × LRCLK (double speed) -  
default  
110: 20 × LRCLK (single speed), 10 × LRCLK (double speed)  
111: 24 × LRCLK (single speed), 12 × LRCLK (double speed)  
4
Sets the analog gain of the Class-D amplifer. The values shown  
indicate the output level with digital volume control set to 0 dB  
and a full scale digital input (0 dBFS). This level might not be  
acheivable because of analog clipping. See the Amplifier Analog  
Gain and Digital Volume Control section for more information.  
00: 19.2 dBV  
3
2
R/W  
R/W  
0
1
ANALOG_GAIN[1:0]  
01: 20.7 dBV (default)  
10: 23.5 dBV  
11: 26.3 dBV  
1
0
R/W  
R/W  
0
1
These bits are reserved and should be set to 01 when writing to  
this register  
RSV[1:0]  
38  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
7.5.7 Fault Configuration and Error Status Register  
21. Fault Configuration and Error Status Register, Address: 0x008  
7
6
5
4
3
CLKE  
R
2
OCE  
R
1
DCE  
R
0
OTE  
R
RSV  
R/W  
OC_THRESH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. Fault Configuration and Error Status Register, Address: 0x008  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
This bit is reserved and should be set to a 00 when this register  
is written to.  
RSV[1:0]  
6
This register sets the Over Current detector threshold. For more  
information see the Class-D Amplifier Settings section.  
00: 100% of Over Current limit (default)  
5
4
3
R/W  
R/W  
R
0
1
0
OC_THRESH[1:0]  
01: 75% of Over Current limit  
10: 50% of Over Current limit  
11: 25% of Over Current limit  
This bit indicates the status of the SAIF clock error detector.  
This is a self clearning value.  
0: No SAIF clock errors.  
CLKE  
OCE  
1: SAIF clock errors are present.  
This bit indicates the status of the over current error detector.  
This is a latching value  
0: The Class-D output stage has not experienced an over  
current event.  
1: The Class-D output stage has experienced an over current  
event.  
2
1
0
R
R
R
0
0
0
This bit indicates the status of the DC detector. This is a latching  
value.  
0: The Class-D output stage has not experienced a DC detect  
error.  
1: The Class-D output stage has experienced a DC detect error.  
DCE  
OTE  
This bit indicates the status of the over temperature detector.  
This is a latching value.  
0: The Class-D output stage has not experienced an over  
temperature error.  
1: The Class-D output stage has experienced an over  
temperature error.  
版权 © 2015–2016, Texas Instruments Incorporated  
39  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.5.8 Digital Clipper 2  
23. Digital Clipper 2, Address: 0x010  
7
6
5
4
3
2
1
0
DIGITAL_CLIP_LEVEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. Digital Clipper 2, Address: 0x010  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
1
1
1
1
1
1
1
1
6
5
This register holds the bits 13 through 6 of the 20-bit Digital  
Clipper level. The Digital Clipper limits the magnitude of the  
sample applied to the DAC. See the Digital Clipper section for  
more information.  
4
DIGITAL_CLIP_LEVEL[13:6]  
3
2
1
0
7.5.9 Digital Clipper 1  
25. Digital Clipper 1, Address: 0x011  
7
6
5
4
3
2
1
0
DIGITAL_CLIP_LEVEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
26. Digital Clipper 1, Address: 0x011  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
1
1
1
1
1
1
0
0
6
This register holds the bits 5 through 0 of the 20-bit Digital  
Clipper level. The Digital Clipper limits the magnitude of the  
sample applied to the DAC. See the Digital Clipper section for  
more information.  
5
DIGITAL_CLIP_LEVEL[5:0]  
4
3
2
1
These bits are reserved and should be set to 00 when writing to  
this register.  
RSV[1:0]  
0
40  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
This section describes a filter-free,TDM application.  
8.2 Typical Application  
PVDD  
4.5 V to 26.4 V  
1 µF  
1 µF  
1 µF  
0.1 µF  
220 nF  
100 µF  
3.3 V  
OUT_P  
VREF_N  
100 kΩ  
Control and  
Status  
BST_P  
PGND  
PGND  
PGND  
PGND  
BST_N  
OUT_N  
FAULTZ  
SDZ  
TAS5720x  
LRCLK  
MCLK  
BCLK  
TDM Master  
220 nF  
SDIN  
SCL  
3.3 V  
3.3 V  
2.5 kΩ  
2.5 kΩ  
I2C Master  
3.3 V  
PVDD  
1 µF  
0.1 µF  
100 µF  
52. Filter Free 3-Wire TDM Application Circuit (I2C_DEV_ID = 0x6C)  
8.2.1 Design Requirements  
Input voltage range PVDD and AVDD: 4.5 V to 26.4 V  
Input voltage range DVDD: 3.3 V to 3.6 V  
Input sample rate: 44.1 kHz to 48 kHz or 88.2 kHz to 96 kHz  
I2C clock frequency: up tp 400 kHz  
版权 © 2015–2016, Texas Instruments Incorporated  
41  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Application (接下页)  
8.2.2 Design Procedure  
8.2.2.1 Overview  
The TAS5720L/M is a flexible and easy to use Class D amplifier; therefore the design process is straightforward.  
Before beginning the design, gather the following information regarding the audio system.  
PVDD rail planned for the design  
Speaker or load impedance  
Audio sample rate  
Maximum output power requirement  
Desired PWM frequency  
8.2.2.2 Select the PWM Frequency  
Set the PWM frequency by writing to the PWM_RATE bits (bits 6-4, reg 0x06). The default setting for this register  
is 101, which is 16 × LRCLK for single speed applications and 8 × LRCLK for double speed application. This  
value equates to a default PWM frequency of 768 kHz for a 48 Hz sample rate.  
8.2.2.3 Select the Amplifier Gain and Digital Volume Control  
To select the amplifier gain setting, the designer must determine the maximum power target and the speaker  
impedance. Once the parameters have been determined, calculate the required output voltage swing which  
delivers the maximum output power.  
Choose the lowest analog gain setting that corresponds to produce an output voltage swing greater than the  
required output swing for maximum power. The analog gain can be set by writing to the ANALOG_GAIN bits (bits  
3-2, reg 0x06). The default gain setting is 20.7 dBV referenced to 0dBFS input.  
8.2.2.4 Select Input Capacitance  
Select the bulk capacitors at the PVDD inputs for proper voltage margin and adequate capacitance to support the  
power requirements. The TAS5720L/M has very good PVDD PSRR, so the capacitor is more about limiting the  
ripple and droop for the rest of system than preserving good audio performance. The amount of bulk decoupling  
can be reduced as long as the droop and ripple is acceptable. One capacitor should be placed near the PVDD  
inputs at each side of the device. PVDD capacitors should be a low ESR type because they are being used in a  
high-speed switching application.  
8.2.2.5 Select Decoupling Capacitors  
Good quality decoupling capacitors should be added at each of the PVDD inputs to provide good reliability, good  
audio performance, and to meet regulatory requirements. X5R or better ratings should be used in this  
application. Consider temperature, ripple current, and voltage overshoots when selecting decoupling capacitors.  
Also, the decoupling capacitors should be located near the PVDD and GND connections to the device to  
minimize series inductances.  
8.2.2.6 Select Bootstrap Capacitors  
Each of the outputs require bootstrap capacitors to provide gate drive for the high-side output FETs. For this  
design, use 0.22-µF, 25-V capacitors of X5R quality or better.  
42  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
Typical Application (接下页)  
8.2.3 Application Curves  
10  
10  
1
Rspk = 4 W  
Rspk = 8 W  
Rspk = 4 W  
Rspk = 8 W  
1
0.1  
0.1  
0.01  
0.01  
0.01  
0.1  
1
10  
30  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
D016  
D020  
V(PVDD) = 15 V  
f(PWM) = 384 kHz  
V(PVDD) = 24 V  
f(PWM) = 384 kHz  
53. THD+N vs. Output Power  
54. THD+N vs. Output Power  
9 Power Supply Recommendations  
The power supply requirements for the TAS5720L/M device consist of one 3.3-V supply to power the low-voltage  
analog and digital circuitry and one higher-voltage supply to power the output stage of the speaker amplifier.  
Several on-chip regulators are included on the TAS5720L/M device to generate the voltages necessary for the  
internal circuitry of the audio path. The voltage regulators which have been integrated are sized only to provide  
the current necessary to power the internal circuitry. The external pins are provided only as a connection point  
for off-chip bypass capacitors to filter the supply. Connecting external circuitry to the regulator outputs can result  
in reduced performance and damage to the device.  
The TAS5720L/M requires two power supplies. A 3.3-V supply, called DVDD, is required to power the digital  
section of the chip. A higher-voltage supply, between 4.5 V and 26.4 V, supplies the analog circuitry (AVDD) and  
the power stage (PVDD). The AVDD supply feeds several LDOs including GVDD, VREG, and VCOM. The LDO  
outputs are connected to external pins for filtering purposes, but should not be connected to external circuits. The  
LDO outputs have been sized to provide current necessary for internal functions but not for external loading.  
10 Layout  
10.1 Layout Guidelines  
Pay special attention to the power stage power supply layout. Each H-bridge has two PVDD input pins so that  
decoupling capacitors can be placed nearby. Use at least a 0.1-µF capacitor of X5R quality or better for each  
set of inputs.  
Keep the current circulating loops containing the supply decoupling capacitors, the H-bridges in the device  
and the connections to the speakers as tight as possible to reduce emissions.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. The area directly under the device should be treated as a central ground area for the  
device, and all device grounds must be connected directly to that area.  
Use a via pattern to connect the area directly under the device to the ground planes in copper layers below  
the surface. This connection helps to dissipate heat from the device.  
Avoid interrupting the ground plane with circular traces around the device. Interruption disconnects the copper  
and interrupt flow of heat and current. Radial copper traces are better to use if necessary.  
版权 © 2015–2016, Texas Instruments Incorporated  
43  
TAS5720L, TAS5720M  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
10.2 Layout Example  
Connect top ground  
to lower ground plane  
with vias  
Connect top power  
connection to lower  
supply layer with vias  
Speaker Connector  
OUT_P  
BST_P  
LRCLK  
Serial  
Audio  
MCLK  
BCLK  
SDIN  
Source  
BST_N  
OUT_N  
Exposed Thermal  
Pad Area  
I2C  
SCL  
Control  
SDA  
55. TAS5720L Layout Example  
44  
版权 © 2015–2016, Texas Instruments Incorporated  
TAS5720L, TAS5720M  
www.ti.com.cn  
ZHCSET5B MAY 2015REVISED FEBRUARY 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访  
问。  
27. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TAS5720L  
TAS5720M  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5720LRSMR  
TAS5720LRSMT  
TAS5720MRSMR  
TAS5720MRSMT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RSM  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
TAS  
5720L  
ACTIVE  
ACTIVE  
ACTIVE  
RSM  
NIPDAU  
NIPDAU  
NIPDAU  
TAS  
5720L  
RSM  
TAS  
5720M  
RSM  
TAS  
5720M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5720LRSMR  
TAS5720LRSMT  
TAS5720MRSMR  
TAS5720MRSMT  
VQFN  
VQFN  
VQFN  
VQFN  
RSM  
RSM  
RSM  
RSM  
32  
32  
32  
32  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS5720LRSMR  
TAS5720LRSMT  
TAS5720MRSMR  
TAS5720MRSMT  
VQFN  
VQFN  
VQFN  
VQFN  
RSM  
RSM  
RSM  
RSM  
32  
32  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS5720M

20W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器
TI

TAS5720MRSMR

20W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | RSM | 32 | -25 to 85
TI

TAS5720MRSMT

20W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | RSM | 32 | -25 to 85
TI

TAS5721

Digital Audio Power Amplifier with EQ, DRC, 2.1 Support, and Headphone/Line Driver
TI

TAS5721DCA

Digital Audio Power Amplifier with EQ, DRC, 2.1 Support, and Headphone/Line Driver
TI

TAS5721DCAR

Digital Audio Power Amplifier with EQ, DRC, 2.1 Support, and Headphone/Line Driver
TI

TAS5721_16

Digital Audio Power Amplifier
TI

TAS5721_17

Digital Audio Power Amplifier With EQ, DRC, 2.1 Support, and Headphone/Line Driver
TI

TAS5722L

15W 单声道、4.5V 至 17V 电源电压、数字输入 D 类音频放大器
TI

TAS5722LRSMR

15W 单声道、4.5V 至 17V 电源电压、数字输入 D 类音频放大器 | RSM | 32 | -25 to 85
TI

TAS5722LRSMT

15W 单声道、4.5V 至 17V 电源电压、数字输入 D 类音频放大器 | RSM | 32 | -25 to 85
TI

TAS5727

25-W DIGITAL AUDIO POWER AMPLIFIER WITH EQ AND DRC
TI