TAS5733LDCAR [TI]

具有 EQ 和 AGL 功能的 10W 立体声、20W 单声道、8V 至 16.5V、数字输入、开环 D 类音频放大器 | DCA | 48 | 0 to 85;
TAS5733LDCAR
型号: TAS5733LDCAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 EQ 和 AGL 功能的 10W 立体声、20W 单声道、8V 至 16.5V、数字输入、开环 D 类音频放大器 | DCA | 48 | 0 to 85

放大器 光电二极管 商用集成电路 音频放大器
文件: 总70页 (文件大小:2910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
TAS5733L - 具有 EQ 3 波段 AGL 且集成耳机放大器的数字输入音频  
1 特性  
2 应用  
1
音频输入/输出  
LCD TVLED TV  
低成本音频设备  
单立体声串行音频输入  
支持 44.1kHz 48kHz 采样速率 (LJ/RJ/I²S)  
支持三线制 I²S 模式(无需 MCLK)  
自动音频端口速率检测  
3 说明  
TAS5733L 器件是一款高效数字输入音频放大器,用  
于驱动采用桥接负载 (BTL) 配置的立体声扬声器。对  
于并行桥接负载 (PBTL),该器件可将并行输出驱动为  
单个低阻抗负载,从而产生更高功率。一个串行数据输  
入可处理最多两个离散音频通道并能与大多数数字音频  
处理器和 MPEG 解码器无缝整合。此器件可接受宽范  
围的输入数据和数据传输速率。一个完全可编程数据路  
径将这些通道路由至内部扬声器驱动器。  
支持桥接负载 (BTL) 和并行桥接负载 (PBTL) 配  
POUT = 10 W(总谐波失真 + 噪声 (THD+N) 为  
10% 时)  
PVDD = 12V8Ω1kHz  
音频/脉宽调制 (PWM) 处理  
独立通道音量控制,增益为静音到 24dB 增益  
(步长为 0.125dB)  
TAS5733L 器件仅用作从器件,以接收外部提供的所  
有时钟。TAS5733L 器件采用开关频率介于 288kHz  
384kHz 之间的 PWM 载波,具体取决于输入采样  
率。与四阶噪声整形器结合的过采样可提供一个白噪音  
基准以及 20Hz 20kHz 的出色动态范围。  
可编程 3 波段自动增益限制 (AGL)  
20 个可编程的 Biquad,适用于扬声器均衡  
(EQ) 及其他音频处理 特性  
总体说明 特性  
104-dB 信噪比 (SNR)A 加权,以满量程  
(0dB) 为基准  
器件信息(1)  
具有两个地址的 I²C 串行控制接口  
热保护、短路保护和欠压保护  
效率高达 90%  
器件型号  
TAS5733L  
封装  
封装尺寸(标称值)  
HTSSOP (48)  
12.50mm x 6.10mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
ADBD 和三重调制  
脉宽调制 (PWM) 电平计量  
功率与 PVDD 间的关系  
30  
简化框图  
AVDD  
RL = 4 Ω  
DVDD  
PVDD  
RL = 8 Ω  
25  
Power-On Reset  
(POR)  
Internal Voltage Supplies  
Internal Regulation and Power Distribution  
MCLK Monitoring  
and Watchdog  
Open Loop Stereo  
Stereo PWM Amplifier  
Digital to PWM  
Converter  
(DPC)  
20  
15  
10  
5
Sensing & Protection  
Serial Audio Port  
(SAP)  
AMP_OUT_A  
AMP_OUT_B  
MCLK  
LRCK  
SCLK  
SDIN  
Digital Audio  
Processor  
(DAP)  
Sample Rate  
Converter  
(SRC)  
2 Ch. PWM  
Modulator  
Temperature  
Short Circuits  
PVDD Voltage  
Output Current  
Sample Rate  
Auto-Detect  
Noise Shaping  
PLL  
AMP_OUT_C  
AMP_OUT_D  
Click & Pop  
Suppression  
Fault Notification  
Internal Register/State Machine Interface  
I²C Control Port  
0
8
9
10  
11  
12  
13  
14  
15  
SCL SDA DR_SD PDN  
RST  
PVDD (V)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE77  
 
 
 
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Audio Signal Processing Overview......................... 16  
7.4 Feature Description................................................. 17  
7.5 Device Functional Modes........................................ 19  
7.6 Programming........................................................... 20  
7.7 Register Maps......................................................... 31  
Application and Implementation ........................ 49  
8.1 Application Information............................................ 49  
8.2 Typical Applications ............................................... 50  
Power Supply Recommendations...................... 55  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Characteristics ............................................ 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Speaker Amplifier Characteristics............................. 7  
6.7 Protection Characteristics ......................................... 7  
6.8 Master Clock Characteristics .................................... 7  
6.9 I²C Interface Timing Requirements........................... 8  
6.10 Serial Audio Port Timing Requirements.................. 8  
6.11 Typical Characteristics - Stereo BTL Mode .......... 11  
6.12 Typical Characteristics - Mono PBTL Mode ......... 13  
Detailed Description ............................................ 15  
8
9
10 Layout................................................................... 56  
10.1 Layout Guidelines ................................................. 56  
10.2 Layout Example .................................................... 57  
11 器件和文档支持 ..................................................... 59  
11.1 ....................................................................... 59  
11.2 静电放电警告......................................................... 59  
11.3 Glossary................................................................ 59  
12 机械、封装和可订购信息....................................... 60  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2016) to Revision A  
Page  
已从产品预览改为量产数据版本。 ..................................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
5 Pin Configuration and Functions  
DCA Package  
48-Pin HTSSOP With PowerPAD™  
Top View  
BSTRP_B  
AMP_OUT_B  
AMP_OUT_B  
PGND  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
BSTRP_C  
AMP_OUT_C  
AMP_OUT_C  
PGND  
2
3
4
PGND  
5
PGND  
AMP_OUT_A  
PVDD  
6
AMP_OUT_D  
PVDD  
7
PVDD  
8
PVDD  
BSTRP_A  
SSTIMER  
PBTL  
9
BSTRP_D  
GVDD_REG  
AVDD_REG  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
NC  
NC  
PLL_GND  
PLL_FLTM  
PLL_FLTP  
AVDD _REF  
AVDD  
AGND  
DGND  
DVDD  
TEST  
PowerPADTM  
RST  
ADR / FAULT  
MCLK  
NC  
SCL  
20  
21  
22  
23  
24  
29  
28  
27  
26  
25  
OSC_RES  
OSC _GND  
DVDD_REG  
PDN  
SDA  
SDIN  
SCLK  
LRCLK  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Dual function terminal which sets the LSB of the I²C Address to 0 if pulled to GND, 1 if  
pulled to AVDD. Also, if configured to be a fault output by the methods described in the  
Fault Indication section, this terminal will be pulled low when an internal fault occurs.  
ADR/FAULT  
19  
DI/DO  
P
Ground reference for analog circuitry (NOTE: This terminal should be connected to the  
system ground)  
AGND  
35  
AMP_OUT_A  
6
2
AMP_OUT_B  
AMP_OUT_C  
3
AO  
Speaker amplifier outputs  
46  
47  
43  
18  
AMP_OUT_D  
AVDD  
P
P
Power supply for internal analog circuitry  
Internal power supply (NOTE: This terminal is provided as a connection point for filtering  
capacitors for this supply and must not be used to power any external circuitry)  
AVDD_REF  
17  
Voltage regulator derived from AVDD supply (NOTE: This terminal is provided as a  
connection point for filtering capacitors for this supply and must not be used to power  
any external circuitry)  
AVDD_REG  
38  
P
P
BSTRP_A  
BSTRP_B  
BSTRP_C  
BSTRP_D  
9
1
Connection points to for the bootstrap capacitors, which are used to create a power  
supply for the gate drive for the high-side device  
48  
40  
Ground reference for digital circuitry (NOTE: This terminal should be connected to the  
system ground)  
DGND  
DVDD  
34  
33  
P
P
Power supply for the internal digital circuitry  
Voltage regulator derived from DVDD supply (NOTE: This terminal is provided as a  
connection point for filtering capacitors for this supply and must not be used to power  
any external circuitry)  
DVDD_REG  
23  
P
Voltage regulator derived from PVDD supply (NOTE: This terminal is provided as a  
connection point for filtering capacitors for this supply and must not be used to power  
any external circuitry)  
GVDD_REG  
LRCLK  
39  
25  
P
Word select clock for the digital signal that is active on the input data line of the serial  
port  
DI  
(1) TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output  
Copyright © 2016, Texas Instruments Incorporated  
3
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
MCLK  
NO.  
20  
12  
13  
30  
36  
37  
DI  
Master clock used for internal clock tree and sub-circuit/state machine clocking  
Not connected inside the device (all "no connect" terminals should be connected to  
system ground)  
NC(2)  
P
Ground reference for oscillator circuitry (NOTE: These terminals should be connected to  
the system ground)  
OSC_GND  
OSC_RES  
22  
21  
11  
P
Connection point for precision resistor used by internal oscillator circuit. Details for this  
resistor are shown in the Typical Applications section  
AO  
Places the power stage in BTL mode when pulled low, or in PBTL mode when pulled  
high  
PBTL  
PDN  
DI  
DI  
24  
4
Places the device in power down when pulled low  
5
Ground reference for power device circuitry (NOTE: This terminal should be connected  
to the system ground)  
PGND  
44  
45  
15  
16  
PLL_FLTM  
PLL_FLTP  
AO  
AO  
Negative connection point for the PLL loop filter components  
Positive connection point for the PLL loop filter components  
Ground reference for PLL circuitry (NOTE: This terminal should be connected to the  
system ground)  
PLL_GND  
14  
P
7
8
PVDD  
P
Power supply for internal power circuitry  
41  
42  
31  
29  
26  
28  
27  
RST  
DI  
DI  
Places the devices in reset when pulled low  
I²C serial control port clock  
SCL  
SCLK  
SDA  
SDIN  
DI  
Bit clock for the digital signal that is active on the input data line of the serial data port  
I²C serial control port data  
DI/DO  
DI  
Data line to the serial data port  
Connection point for the capacitor that is used by the ramp timing circuit, as described in  
the SSTIMER Pin Functionality section  
SSTIMER  
TEST  
10  
32  
AO  
Used by TI for testing during device production (NOTE: This terminal should be  
connected to system ground)  
Exposed metal pad on the underside of the device, which serves as an electrical  
connection point for ground as well as a heat conduction path from the device into the  
board (NOTE: This terminal should be connected to ground through a land pattern  
defined in the Mechanical Data section)  
PowerPAD  
P
(2) Although these pins are not connected internally, optimum thermal performance is realized when these pins are connected to the ground  
plane. Doing so allows copper on the PCB to fill up to and including these pins, providing a path for heat to conduct away from the  
device and into the surrounding PCB area.  
4
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
–0.3 to 3.6  
UNIT  
DVDD, AVDD  
Supply voltage  
V
PVDD  
–0.3 to 20  
3.3-V digital input  
5-V tolerant(2) digital input (except MCLK)  
–0.5 to DVDD + 0.5  
–0.5 to DVDD + 2.5(3)  
–0.5 to AVDD + 2.5(3)  
22(4)  
Input voltage  
V
5-V tolerant MCLK input  
AMP_OUT_x to GND  
V
V
BSTRP_x to GND  
29(4)  
Operating free-air temperature  
Storage temperature range, Tstg  
0 to 85  
°C  
°C  
–40 to 125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum conditions for extended periods may affect device reliability.  
(2) 5-V tolerant inputs are PDN, RST, SCLK, LRCK, MCLK, SDIN, SDA, and SCL.  
(3) Maximum pin voltage should not exceed 6 V.  
(4) DC voltage + peak ac waveform measured at the pin should be below the allowed limit for all conditions.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
V
DVDD, AVDD Digital, analog supply voltage  
3
8
3.3  
3.6  
PVDD  
Output power devices supply voltage  
16.5(1)  
V
(2)  
VIH  
VIL  
TA  
High-level input voltage  
5-V tolerant  
5-V tolerant  
2
V
V
Low-level input voltage  
0.8  
85  
Operating ambient temperature range  
Operating junction temperature range  
Load impedance  
0
0
4
2
°C  
°C  
(2)  
TJ  
125  
RL  
RL  
8
Load impedance in PBTL  
Minimum output inductance under  
short-circuit condition  
LO  
Output-filter inductance  
10  
μH  
(1) For operation at PVDD levels greater than 14.5 V, the modulation limit must be set to 96.1% or lower via the control port register 0x10.  
(2) 16.5 V is the maximum recommended voltage for continuous operation of the TAS5733L device. Testing and characterization of the  
device is performed up to and including 16.5 V to ensure “in system” design margin. However, continuous operation at these levels is  
not recommended. Operation above the maximum recommended voltage may result in reduced performance, errant operation, and  
reduction in device reliability.  
版权 © 2016, Texas Instruments Incorporated  
5
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
6.4 Thermal Characteristics  
DCA (48 PINS)  
THERMAL METRIC(1)  
UNITS  
JEDEC  
Standard 2-  
Layer PCB  
JEDEC  
Standard 4-  
Layer PCB  
TAS5733LEVM  
Special Test  
Case  
θJA  
θJCtop Junction-to-case (top) thermal resistance(3)  
Junction-to-ambient thermal resistance(2)  
50.7  
27.6  
16.7  
7.9  
25.0  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
14.9  
6.9  
θJB  
ψJT  
ψJB  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
1.2  
0.8  
0.7  
5.8  
11.8  
7.8  
θJCbot Junction-to-case (bottom) thermal resistance(7)  
1.7  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
6.5 Electrical Characteristics  
TA = 25°, PVDD_x = 12 V, DVDD = AVDD = 3.3 V, RL= 8 , BTL BD mode, fS = 48 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
IOH = –4 mA  
DVDD = AVDD = 3 V  
VOH  
VOL  
IIL  
High-level output voltage  
2.4  
V
ADR/FAULT and SDA  
Digital Inputs  
IOL = 4 mA  
DVDD = AVDD = 3 V  
Low-level output voltage  
Low-level input current  
High-level input current  
0.5  
75  
75  
V
VI < VIL  
DVDD = AVDD = 3.6 V  
μA  
μA  
VI > VIH  
DVDD = AVDD = 3.6 V  
IIH  
Normal mode  
49  
23  
68  
38  
3.3-V supply voltage  
(DVDD, AVDD)  
IDD  
3.3-V supply current  
mA  
Reset (RST = low, PDN =  
high)  
6
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
6.6 Speaker Amplifier Characteristics  
PVDD = 12 V, BTL BD mode, AVDD = DVDD = 3.3 V, fS = 48 KHz, RL = 8 , audio frequency = 1 kHz, AES17 filter, fPWM  
=
384 kHz, TA = 25°C (unless otherwise specified). All performance is in accordance with recommended operating conditions  
and as tested on the TAS5733L EVM.  
PARAMETER  
TEST CONDITIONS  
PVDD = 12 V, 10% THD, 1-kHz input signal  
PVDD = 12 V, 7% THD, 1-kHz input signal  
PVDD = 12 V, 1% THD, 1-kHz input signal  
PVDD = 13.2 V, 10% THD, 1-kHz input signal  
PVDD = 13.2 V, 7% THD, 1-kHz input signal  
PVDD = 13.2 V, 1% THD, 1-kHz input signal  
PVDD = 12 V, PO = 1 W  
MIN  
TYP  
10  
MAX UNIT  
9
7.5  
12  
PO  
Power output per channel  
W
11  
9
0.25  
0.3  
30  
Total harmonic distortion +  
noise  
THD+N  
Vn  
%
PVDD = 13.2 V, PO = 1 W  
Output integrated noise (rms) A-weighted  
μV  
dB  
dB  
PO = 1 W, f = 1 kHz (BD Mode), PVDD = 12 V  
–79  
–62  
288  
384  
16  
Crosstalk  
PO =1 W, f = 1 kHz (AD Mode), PVDD = 12 V  
11.025, 22.05, 44.1-kHz data rate ±2%  
48, 24, 12, 8, 16, 32-kHz data rate ±2%  
Output switching frequency  
Supply current  
kHz  
Normal mode  
No load (PVDD)  
25  
mA  
8
IPVDD  
Reset (RST = low, PDN = high)  
3
Drain-to-source resistance,  
low side  
TJ = 25°C, includes metallization resistance  
120  
120  
3
(1)  
rDS(on)  
mΩ  
kΩ  
Drain-to-source resistance,  
high side  
TJ = 25°C, includes metallization resistance  
Internal pulldown resistor at  
the output of each half-bridge state to provide bootstrap capacitor charge.  
Connected when drivers are in the high-impedance  
RPD  
(1) This does not include bond-wire or pin resistance.  
6.7 Protection Characteristics  
TA = 25°, PVDD_x = 12 V, DVDD = AVDD = 3.3 V, RL= 8 , BTL BD mode, fS = 48 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
Vuvp(fall)  
Vuvp(rise)  
OTE  
Undervoltage protection limit  
Undervoltage protection limit  
Overtemperature error  
PVDD falling  
PVDD rising  
5.4  
5.8  
150  
4
V
°C  
A
IOC  
Overcurrent limit protection  
Overcurrent response time  
IOCT  
150  
ns  
6.8 Master Clock Characteristics(1)  
PVDD = 12 V, BTL BD mode, AVDD = DVDD = 3.3 V, fS = 48 kHz, RL = 8 , audio frequency = 1 kHz, AES17 filter, fPWM  
=
384 kHz, TA = 25°C (unless otherwise specified). All performance is in accordance with recommended operating conditions  
(unless otherwise specified).  
PARAMETER  
PLL INPUT PARAMETERS  
fMCLKI MCLK frequency  
MCLK duty cycle  
tr / tf(MCLK) Rise/fall time for MCLK  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
2.8224  
40%  
24.576  
60%  
5
50%  
(1) For clocks related to the serial audio port, please see Serial Audio Port Timing Requirements.  
版权 © 2016, Texas Instruments Incorporated  
7
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
MAX UNIT  
6.9 I²C Interface Timing Requirements  
MIN  
NOM  
tw(RST)  
td(I²C_ready)  
fSCL  
tw(H)  
tw(L)  
tr  
Pulse duration, RST active  
Time to enable I²C after RST goes high  
Frequency, SCL  
100  
μs  
13.5  
400  
ms  
kHz  
μs  
μs  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
pF  
Pulse duration, SCL high  
0.6  
1.3  
Pulse duration, SCL low  
Rise time, SCL and SDA  
300  
300  
tf  
Fall time, SCL and SDA  
tsu1  
Setup time, SDA to SCL  
100  
0
th1  
Hold time, SCL to SDA  
t(buf)  
tsu2  
Bus free time between stop and start conditions  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
Load capacitance for each bus line  
1.3  
0.6  
0.6  
0.6  
th2  
tsu3  
CL  
400  
6.10 Serial Audio Port Timing Requirements  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCLKIN  
Frequency, SCLK 32 × fS, 48 × fS, 64 × fS  
CL 30 pF  
1.024  
12.28  
8
MHz  
tsu1  
th1  
tsu2  
th2  
Setup time, LRCK to SCLK rising edge  
Hold time, LRCK from SCLK rising edge  
Setup time, SDIN to SCLK rising edge  
Hold time, SDIN from SCLK rising edge  
LRCK frequency  
10  
10  
ns  
ns  
10  
ns  
10  
ns  
8
48  
50%  
50%  
48  
60%  
60%  
kHz  
SCLK duty cycle  
40%  
40%  
LRCK duty cycle  
SCLK  
edges  
SCLK rising edges between LRCK rising edges  
32  
64  
t(edge)  
tr/tf  
SCLK  
period  
LRCK clock edge with respect to the falling edge of SCLK  
–1/4  
1/4  
Rise/fall time for SCLK/LRCK  
8
4
ns  
LRCK allowable drift before LRCK reset  
MCLKs  
8
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
RST  
tw(RST)  
I2C Active  
I2C Active  
td(I2C_ready)  
System Initialization.  
Enable via I2C.  
T0421-01  
NOTE: On power up, hold the TAS5733L RST LOW for at least 100 μs after DVDD has reached 3 V.  
NOTE: If RST is asserted LOW while PDN is LOW, then RST must continue to be held LOW for at least 100 μs after PDN is  
deasserted (HIGH).  
1. Reset Timing  
tw(H)  
tw(L)  
tr  
tf  
SCL  
tsu1  
th1  
SDA  
T0027-01  
2. SCL and SDA Timing  
SCL  
t(buf)  
th2  
tsu2  
tsu3  
SDA  
Start  
Condition  
Stop  
Condition  
T0028-01  
3. Start and Stop Conditions Timing  
版权 © 2016, Texas Instruments Incorporated  
9
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
tr  
tf  
SCLK  
(Input)  
t(edge)  
th1  
tsu1  
LRCLK  
(Input)  
th2  
tsu2  
SDIN  
T0026-04  
4. Serial Audio Port Timing  
10  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
6.11 Typical Characteristics - Stereo BTL Mode  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
THD+N = 10%; 8 Ohms  
THD+N = 1%; 8 Ohms  
THD+N = 10%; 6 Ohms  
THD+N = 1%; 6 Ohms  
THD+N = 10%; 4 Ohms  
THD+N = 1%; 4 Ohms  
8 Ohms  
6 Ohms  
4 Ohms  
25  
20  
15  
10  
5
0
0
8
9
10  
11  
12  
13  
14  
15  
8
9
10  
11  
12  
13  
14  
15  
PVDD (V)  
PVDD (V)  
D007  
D012  
5. Output Power vs Supply Voltage - BTL  
6. Idle Channel Noise vs Supply Voltage - BTL  
10  
1
10  
1
1 W  
2.5 W  
5 W  
1 W  
2.5 W  
5 W  
0.1  
0.1  
0.01  
0.01  
0.002  
0.002  
20  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D001  
D002  
PVDD = 12 V  
RL = 8 Ω  
PVDD = 12 V  
RL = 6 Ω  
7. THD+N vs Frequency - BTL  
8. THD+N vs Frequency - BTL  
10  
1
5
1
20 Hz  
1 kHz  
7 kHz  
1 W  
2.5 W  
5 W  
0.1  
0.01  
0.1  
0.001  
0.01  
20  
100  
1k  
10k 20k  
0.01  
0.1  
1
10  
50  
Frequency (Hz)  
Output Power (W)  
D003  
D001  
PVDD = 12 V  
RL = 4 Ω  
PVDD = 12 V  
RL = 8 Ω  
9. THD+N vs Frequency - BTL  
10. THD+N vs Output Power - BTL  
版权 © 2016, Texas Instruments Incorporated  
11  
 
 
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics - Stereo BTL Mode (接下页)  
20  
10  
10  
1
20 Hz  
1 kHz  
7 kHz  
20 Hz  
1 kHz  
7 kHz  
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.01  
0.1  
1
10  
50  
0.01  
0.1  
1
10  
50  
Output Power (W)  
Output Power (W)  
D001  
D006  
PVDD = 12 V  
RL = 6 Ω  
PVDD = 12 V  
RL = 4 Ω  
11. THD+N vs Output Power - BTL  
12. THD+N vs Output Power - BTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 8 V  
PVDD = 12 V  
PVDD = 13.2 V  
PVDD = 8 V  
PVDD = 12 V  
PVDD = 13.2 V  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Total Output Power (W)  
Output Power (W)  
D008  
D009  
RL = 8 Ω  
RL = 4 Ω  
Total Output Power includes power delivered from both amplifier  
outputs. For instance, 40 W of total output power means 2 × 20 W,  
with 20 W delivered by one channel and 20 W delivered by the  
other channel.  
Total Output Power includes power delivered from both amplifier  
outputs. For instance, 40 W of total output power means 2 × 20 W,  
with 20 W delivered by one channel and 20 W delivered by the  
other channel.  
13. Efficiency vs Total Output Power - BTL  
14. Efficiency vs Total Output Power - BTL  
0
0
Right to Left  
Left to Right  
Right to Left  
Left to Right  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D010  
D011  
PVDD = 12 V  
RL = 8 Ω  
PVDD = 12 V  
RL = 4 Ω  
15. Crosstalk vs Frequency - BTL  
16. Crosstalk vs Frequency - BTL  
12  
版权 © 2016, Texas Instruments Incorporated  
 
 
                                                                                                                                                                                
                                                                                                                                                                                  
                                                                                                                                                                                   
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
6.12 Typical Characteristics - Mono PBTL Mode  
10  
5
1
1 W  
2.5 W  
5 W  
1 W  
2.5 W  
5 W  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D013  
D014  
PVDD = 12 V  
RL = 4 Ω  
PVDD = 12 V  
RL = 3 Ω  
17. THD+N vs Frequency - PBTL  
18. THD+N vs Frequency - PBTL  
10  
1
20  
10  
1 W  
2.5 W  
5 W  
20 Hz  
1 kHz  
7 kHz  
1
0.1  
0.1  
0.01  
0.001  
0.01  
20  
100  
1k  
10k 20k  
0.001  
0.01  
0.1  
1
10  
50  
Frequency (Hz)  
Output Power (W)  
D015  
D016  
PVDD = 12 V  
RL = 2 Ω  
PVDD = 12 V  
RL = 4 Ω  
19. THD+N vs Frequency - PBTL  
20. THD+N vs Output Power - PBTL  
20  
10  
20  
10  
20 Hz  
1 kHz  
7 kHz  
20 Hz  
1 kHz  
7 kHz  
1
0.1  
1
0.1  
0.01  
0.02  
0.001  
0.01  
0.1  
1
10  
50  
0.002  
0.01  
0.1  
1
10  
60  
Output Power (W)  
Output Power (W)  
D017  
D018  
PVDD = 12 V  
RL = 3 Ω  
PVDD = 12 V  
RL = 2 Ω  
21. THD+N vs Output Power - PBTL  
22. THD+N vs Output Power - PBTL  
版权 © 2016, Texas Instruments Incorporated  
13  
 
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics - Mono PBTL Mode (接下页)  
100  
80  
60  
40  
20  
0
60  
THD+N = 10%; RL = 4R  
THD+N = 1%; RL = 4R  
THD+N = 10%; RL = 3R  
THD+N = 1%; RL = 3R  
THD+N = 10%; RL = 2R  
THD+N = 1%; RL = 2R  
50  
40  
30  
20  
10  
0
PVDD = 8 V  
PVDD = 12 V  
PVDD = 13.2 V  
8
9
10  
11  
12  
13  
14  
15  
0
5
10  
15  
20  
25  
Supply Voltage (V)  
Output Power (W)  
D019  
D020  
RL = 4 Ω  
Total Output Power includes power delivered from both amplifier  
outputs. For instance, 40 W of total output power means 2 × 20 W,  
with 20 W delivered by one channel and 20 W delivered by the  
other channel.  
23. Output Power vs PVDD - PBTL  
24. Efficiency vs Output Power - PBTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
RL = 4 R  
RL = 3 R  
RL = 2 R  
50  
40  
30  
20  
10  
0
PVDD = 8 V  
PVDD = 12 V  
PVDD = 13.2 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
8
9
10  
11  
12  
13  
14  
15  
Output Power (W)  
PVDD (V)  
D021  
D022  
RL = 2 Ω  
Total Output Power includes power delivered from both amplifier  
outputs. For instance, 40 W of total output power means 2 × 20 W,  
with 20 W delivered by one channel and 20 W delivered by the  
other channel.  
26. Idle Channel Noise vs PVDD - PBTL  
25. Efficiency vs Output Power - PBTL  
14  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
7 Detailed Description  
7.1 Overview  
The TAS5733L device is an efficient, digital-input audio amplifier for driving stereo speakers configured as a  
bridge tied load (BTL). In parallel bridge tied load (PBTL) in can produce higher power by driving the parallel  
outputs into a single lower impedance load. One serial data input allows processing of up to two discrete audio  
channels and seamless integration to most digital audio processors and MPEG decoders. The device accepts a  
wide range of input data and data rates. A fully programmable data path routes these channels to the internal  
speaker drivers.  
The TAS5733L device is a slave-only device receiving all clocks from external sources. The TAS5733L device  
operates with a PWM carrier between a 384-kHz switching rate and a 288-kHz switching rate, depending on the  
input sample rate. Oversampling combined with a fourth-order noise shaper provides a flat noise floor and  
excellent dynamic range from 20 Hz to 20 kHz.  
7.2 Functional Block Diagram  
DVDD  
AVDD  
PVDD  
Power-On Reset  
(POR)  
Internal Voltage Supplies  
Internal Regulation and Power Distribution  
MCLK Monitoring  
and Watchdog  
Open Loop Stereo  
Stereo PWM Amplifier  
Digital to PWM  
Converter  
(DPC)  
Sensing & Protection  
Serial Audio Port  
(SAP)  
AMP_OUT_A  
AMP_OUT_B  
MCLK  
LRCK  
SCLK  
SDIN  
Digital Audio  
Processor  
(DAP)  
Sample Rate  
Converter  
(SRC)  
2 Ch. PWM  
Modulator  
Temperature  
Short Circuits  
PVDD Voltage  
Output Current  
Sample Rate  
Auto-Detect  
Noise Shaping  
PLL  
AMP_OUT_C  
AMP_OUT_D  
Click & Pop  
Suppression  
Fault Notification  
Internal Register/State Machine Interface  
I²C Control Port  
SCL SDA DR_SD PDN  
RST  
27. TAS5733L Functional Block Diagram  
版权 © 2016, Texas Instruments Incorporated  
15  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
7.3 Audio Signal Processing Overview  
DC Block and LR Mixer  
Equalizer  
Multi Band AGL  
Full Band AGL  
Master Volume  
0x59  
0x3B - 0x3C, 0x40  
Biquad  
AGL 1  
Low Band  
0x5E  
0x8  
0x51  
0x72, 0x73  
Biquad  
0x26  
0x27 - 0x2F, 0x58  
10 Biquads  
0x44 - 0x45, 0x48  
0x07 - 0x57, 0x56  
Input  
Mixer L  
Biquad  
L
Mixer L  
L
0x5A  
0x3E - 0x3F, 0x43  
Vol 1  
0x9  
Biquad  
AGL 4  
Full Band  
AGL 2  
High Band  
Master Volume,  
Pre Scale,  
Post Scale  
R
0x5F  
0x52  
0x76, 0x77  
Biquad  
0x30  
0x31 - 0x39, 0x5D  
10 Biquads  
Input  
Mixer R  
Mixer R  
Biquad  
R
0x5B, 0x5C  
0x42 - 0x41, 0x47  
Vol 2  
2 Biquads  
AGL 3  
Mid Band  
0x60, 0x61  
2 Biquads  
28. TAS5733L Audio Process Flow  
16  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
7.4 Feature Description  
7.4.1 Clock, Autodetection, and PLL  
The TAS5733L device is an I²S slave device. The TAS5733L device accepts MCLK, SCLK, and LRCK. The  
digital audio processor (DAP) supports all the sample rates and MCLK rates that are defined in the Clock Control  
Register.  
The TAS5733L device checks to verify that SCLK is a specific value of 32 fS, 48 fS, or 64 fS. The DAP only  
supports a 1 × fS LRCK. The timing relationship of these clocks to SDIN is shown in subsequent sections. The  
clock section uses MCLK or the internal oscillator clock (when MCLK is unstable, out of range, or absent) to  
produce the internal clock (DCLK) running at 512 times the PWM switching frequency.  
The DAP can autodetect and set the internal clock control logic to the appropriate settings for all supported clock  
rates as defined in the Clock Control Register.  
The TAS5733L device has robust clock error handling that uses the built-in trimmed oscillator clock to quickly  
detect changes/errors. Once the system detects a clock change/error, the system mutes the audio (through a  
single-step mute) and then forces PLL to limp using the internal oscillator as a reference clock. Once the clocks  
are stable, the system autodetects the new rate and reverts to normal operation. During this process, the default  
volume is restored in a single step (also called hard unmute). The ramp process can be programmed to ramp  
back slowly (also called soft unmute) as defined in the Volume Configuration Register.  
7.4.2 PWM Section  
The TAS5733L DAP device uses noise-shaping and customized nonlinear correction algorithms to achieve high  
power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper to  
increase dynamic range and SNR in the audio band. The PWM section accepts 24-bit PCM data from the DAP  
and outputs two BTL PWM audio output channels.  
The PWM section has individual-channel dc-blocking filters that can be enabled and disabled. The filter cutoff  
frequency is less than 1 Hz.  
The PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%. For PVDD > 14.5 V the  
modulation index must be limited to 96.1% for safe and reliable operation.  
7.4.3 PWM Level Meter  
The structure in 29 shows the PWM level meter that can be used to study the power profile.  
Post-DAP Processing  
1 – a  
Z–1  
32-Bit Level  
rms  
a
a
Ch1  
Ch2  
ABS  
ABS  
ADDR = 0x6B  
I2C Registers  
(PWM Level Meter)  
1 – a  
Z–1  
32-Bit Level  
rms  
ADDR = 0x6C  
B0396-01  
29. PWM Level Meter Structure  
7.4.4 Automatic Gain Limiter (AGL)  
The AGL scheme has three AGL blocks. One ganged AGL exists for the high-band left/right channels, the mid-  
band left/right channels, and the low-band left/right channels.  
The AGL input/output diagram is shown in 30.  
版权 © 2016, Texas Instruments Incorporated  
17  
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
1:1 Transfer Function  
Implemented Transfer Function  
T
Input Level (dB)  
M0091-04  
Professional-quality dynamic range compression automatically adjusts volume to flatten volume level.  
• Each AGL has adjustable threshold levels.  
• Programmable attack and decay time constants  
Transparent compression: compressors can attack fast enough to avoid apparent clipping before engaging,  
and decay times can be set slow enough to avoid pumping.  
30. Automatic Gain Limiter  
Alpha Filter Structure  
S
a
–1  
Z
w
T = 9.23 format, all other AGL coefficients are 3.23 format  
31. AGL Structure  
1. AGL Structure  
α, ω  
0x3B  
0x3E  
0x47  
0x48  
T
αa, ωa / αd, ωd  
AGL 1  
AGL 2  
AGL 3  
AGL 4  
0x40  
0x43  
0x41  
0x44  
0x3C  
0x3F  
0x42  
0x45  
7.4.5 Fault Indication  
ADR/FAULT is an input pin during power up. This pin can be programmed after RST to be an output by writing 1  
to bit 0 of I²C register 0x05. In that mode, the ADR/FAULT pin has the definition shown in 2.  
Any fault resulting in device shutdown is signaled by the ADR/FAULT pin going low (see 2). A latched version  
of this pin is available on D1 of register 0x02. This bit can be reset only by an I²C write.  
2. ADR/FAULT Output States  
ADR/FAULT  
DESCRIPTION  
0
Overcurrent (OC) or undervoltage (UVP) error or overtemperature error (OTE) or overvoltage  
error  
1
No faults (normal operation)  
18  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
7.4.6 SSTIMER Pin Functionality  
The SSTIMER pin uses a capacitor connected between this pin and ground to control the output duty cycle when  
exiting all-channel shutdown. The capacitor on the SSTIMER pin is slowly charged through an internal current  
source, and the charge time determines the rate at which the output transitions from a near-zero duty cycle to the  
desired duty cycle. This allows for a smooth transition that minimizes audible pops and clicks. When the part is  
shut down, the drivers are placed in the high-impedance state and transition slowly down through an internal 3-  
kresistor, similarly minimizing pops and clicks. The shutdown transition time is independent of the SSTIMER  
pin capacitance. Larger capacitors increase the start-up time, while smaller capacitors decrease the start-up  
time. The SSTIMER pin can be left floating for BD modulation.  
7.4.7 Device Protection System  
7.4.7.1 Overcurrent (OC) Protection With Current Limiting  
The TAS5733L device has independent, fast-reacting current detectors on all high-side and low-side power-stage  
FETs. The detector outputs are closely monitored to prevent the output current from increasing beyond the  
overcurrent threshold defined in the Protection Characteristics table.  
If the output current increases beyond the overcurrent threshold, the device shuts down and the outputs  
transition to the off or high impedance (Hi-Z) state. The device returns to normal operation once the fault  
condition (i.e., a short circuit on the output) is removed. Current-limiting and overcurrent protection are not  
independent for half-bridges. That is, if the bridge-tied load between half-bridges A and B causes an overcurrent  
fault, half-bridges A, B, C, and D shut down.  
7.4.7.2 Overtemperature Protection  
The TAS5733L device has an overtemperature-protection system. If the device junction temperature exceeds  
150°C (nominal), the device enters thermal shutdown, where all half-bridge outputs enter the high-impedance  
(Hi-Z) state, and ADR/FAULT asserts low if the device is configured to function as a fault output. The TAS5733L  
device recovers automatically once the junction temperature of the device drops approximately 30°C.  
7.4.7.3 Undervoltage Protection (UVP) and Power-On Reset (POR)  
The UVP and POR circuits of the TAS5733L device fully protect the device in any power-up/down and brownout  
situation. While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are  
fully operational when the PVDD and AVDD supply voltages reach 7.6 V and 2.7 V, respectively. Although PVDD  
and AVDD are independently monitored. For PVDD, if the supply voltage drops below the UVP threshold, the  
protection feature immediately sets all half-bridge outputs to the high-impedance (Hi-Z) state and asserts  
ADR/FAULT low.  
7.5 Device Functional Modes  
The TAS5733L device is a digital input class-d amplifier with audio processing capabilities. The TAS5733L  
device has numerous modes to configure and control the device.  
7.5.1 Serial Audio Port Operating Modes  
The serial audio port in the TAS5733L device supports industry-standard audio data formats, including I²S, Left-  
justified(LJ) and Right-justified(RJ) formats. To select the data format that will be used with the device can  
controlled by using the serial data interface registers 0x04. The default is 24bit, I²S mode. The timing diagrams  
for the various serial audio port are shown in the Serial Interface Control and Timing section  
7.5.2 Communication Port Operating Modes  
The TAS5733L device is configured via an I²C communication port. The I²C communication protocol is detailed in  
the 7.7 I²C Serial Control Port Requirements and Specifications section.  
版权 © 2016, Texas Instruments Incorporated  
19  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.5.3 Speaker Amplifier Modes  
The TAS5733L device can be configured as:  
Stereo Mode  
Mono Mode  
7.5.3.1 Stereo Mode  
Stereo mode is the most common option for the TAS5733L. TAS5733L can be connected in 2.0 mode to drive  
stereo channels. Detailed application section regarding the stereo mode is discussed in the Stereo Bridge Tied  
Load Application section.  
7.5.3.2 Mono Mode  
Mono mode is described as the operation where the two BTL outputs of amplifier are placed in parallel with one  
another to provide increase in the output power capability. This mode is typically used to drive subwoofers, which  
require more power to drive larger loudspeakers with high-amplitude, low-frequency energy. Detailed application  
section regarding the mono mode is discussed in the Mono Parallel Bridge Tied Load Application section.  
7.6 Programming  
7.6.1 I²C Serial Control Interface  
The TAS5733L device has a bidirectional I²C interface that is compatible with the Inter IC (I²C) bus protocol and  
supports both 100-kHz and 400-kHz data transfer rates for single- and multiple-byte write and read operations.  
This is a slave-only device that does not support a multimaster bus environment or wait-state insertion. The  
control interface is used to program the registers of the device and to read device status.  
The DAP supports the standard-mode I²C bus operation (100 kHz maximum) and the fast I²C bus operation  
(400 kHz maximum). The DAP performs all I²C operations without I²C wait cycles.  
7.6.1.1 General I²C Operation  
The I²C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data can be transferred in byte  
(8-bit) format, with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is  
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master  
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.  
The bus uses transitions on the data pin (SDA) while the clock is high to indicate start and stop conditions. A  
high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data-bit  
transitions must occur within the low time of the clock period. These conditions are shown in 32. The master  
generates the 7-bit slave address and the read/write (R/W) bit to open communication with another device and  
then waits for an acknowledge condition. The TAS5733L device holds SDA low during the acknowledge clock  
period to indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence.  
Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the  
same signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for  
the SDA and SCL signals to set the high level for the bus.  
8-Bit Register Data For  
Address (N)  
8-Bit Register Data For  
Address (N)  
R/  
W
8-Bit Register Address (N)  
7-Bit Slave Address  
A
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
T0035-01  
32. Typical I²C Sequence  
20  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Programming (接下页)  
No limit exists for the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is  
shown in 32.  
The 7-bit address for the TAS5733L device is 0101 010 (0x54) or 0101 011 (0x56) as defined by ADR/FAULT  
(external pulldown for 0x54 and pullup for 0x56).  
7.6.1.2 I²C Slave Address  
The ADR/FAULT is an input pin during power-up and after each toggle of RST, which is used to set the I²C sub-  
address of the device. The ADR/FAULT can also operate as a fault output after power-up is complete and the  
address has been latched in.  
At power-up, and after each toggle of RST, the pin is read to determine its voltage level. If the pin is left floating,  
an internal pull-up will set the I²C sub-address to 0x56. This will also be the case if an external resistor is used to  
pull the pin up to AVDD. To set the sub-address to 0x54, an external resistor (specified in Typical Applications )  
must be connected to the system ground.  
As mentioned, the pin can also be reconfigured as an output driver via I²C for fault monitoring. Use System  
Control Register 2 (0x05) to set ADR/FAULT pin to be used as a fault output during fault conditions.  
I²C Device Address Change Procedure  
1. Write to device address change enable register, 0xF8 with a value of 0xF9A5 A5A5.  
2. Write to device register 0xF9 with a value of 0x0000 00XX, where XX is the new address.  
3. Any writes after that should use the new device address XX.  
7.6.1.3 Single- and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for subaddresses  
0x00 to 0x1F. However, for the subaddresses 0x20 to 0xFF, the serial control interface supports only multiple-  
byte read/write operations (in multiples of 4 bytes).  
During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the subaddress  
assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does  
not contain 32 bits, the unused bits are read as logic 0.  
During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes  
that are required for each specific subaddress. For example, if a write command is received for a biquad  
subaddress, the DAP must receive five 32-bit words. If fewer than five 32-bit data words have been received  
when a stop command (or another start command) is received, the received data is discarded.  
Supplying a subaddress for each subaddress transaction is referred to as random I²C addressing. The  
TAS5733L device also supports sequential I²C addressing. For write transactions, if a subaddress is issued  
followed by data for that subaddress and the 15 subaddresses that follow, a sequential I²C write transaction has  
taken place, and the data for all 16 subaddresses is successfully received by the TAS5733L device. For I²C  
sequential-write transactions, the subaddress then serves as the start address, and the amount of data  
subsequently transmitted before a stop or start is transmitted determines how many subaddresses are written.  
As was true for random addressing, sequential addressing requires that a complete set of data be transmitted. If  
only a partial set of data is written to the last subaddress, the data for the last subaddress is discarded. However,  
all other data written is accepted; only the incomplete data is discarded.  
版权 © 2016, Texas Instruments Incorporated  
21  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Programming (接下页)  
7.6.1.4 Single-Byte Write  
As shown in 33, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I²C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a data-write transfer, the read/write bit is a 0. After receiving the correct I²C device address and the  
read/write bit, the DAP responds with an acknowledge bit. Next, the master transmits the address byte or bytes  
corresponding to the internal memory address being accessed. After receiving the address byte, the TAS5733L  
device again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to  
the memory address being accessed. After receiving the data byte, the TAS5733L device again responds with an  
acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data-write  
transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
Data Byte  
Stop  
Condition  
T0036-01  
33. Single-Byte Write Transfer  
7.6.1.5 Multiple-Byte Write  
A multiple-byte data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes  
are transmitted by the master device to the DAP as shown in 34. After receiving each data byte, the  
TAS5733L device responds with an acknowledge bit.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4 A3  
A1 A0 ACK D7  
I2C Device Address and  
Read/Write Bit  
Subaddress  
First Data Byte  
Last Data Byte  
Stop  
Condition  
Other Data Bytes  
T0036-02  
34. Multiple-Byte Write Transfer  
7.6.1.6 Single-Byte Read  
As shown in 35, a single-byte data-read transfer begins with the master device transmitting a start condition,  
followed by the I²C device address and the read/write bit. For the data read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory  
address to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5733L address and the  
read/write bit, TAS5733L device responds with an acknowledge bit. In addition, after sending the internal  
memory address byte or bytes, the master device transmits another start condition followed by the TAS5733L  
address and the read/write bit again. This time, the read/write bit becomes a 1, indicating a read transfer. After  
receiving the address and the read/write bit, the TAS5733L device again responds with an acknowledge bit.  
Next, the TAS5733L device transmits the data byte from the memory address being read. After receiving the  
data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the single-  
byte data-read transfer.  
22  
版权 © 2016, Texas Instruments Incorporated  
 
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Programming (接下页)  
Repeat Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A0 ACK  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and  
Read/Write Bit  
Data Byte  
Stop  
Condition  
T0036-03  
35. Single-Byte Read Transfer  
7.6.1.7 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS5733L device to the master device as shown in 36. Except for the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
T0036-04  
36. Multiple-Byte Read Transfer  
7.6.2 Serial Interface Control and Timing  
7.6.2.1 Serial Data Interface  
Serial data is input on SDIN. The PWM outputs are derived from SDIN. The TAS5733L DAP accepts serial data  
in 16-bit, 20-bit, or 24-bit left-justified, right-justified, and I²S serial data formats.  
7.6.2.2 I²S Timing  
I²S timing uses LRCK to define when the data being transmitted is for the left channel and when the data is for  
the right channel. LRCK is low for the left channel and high for the right channel. A bit clock running at 32 × fS,  
48 × fS, or 64 × fS is used to clock in the data. A delay of one bit clock exists from the time the LRCK signal  
changes state to the first bit of data on the data lines. The data is written MSB-first and is valid on the rising edge  
of bit clock. The DAP masks unused trailing data bit positions.  
版权 © 2016, Texas Instruments Incorporated  
23  
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Programming (接下页)  
2-Channel I2S (Philips Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK (Note Reversed Phase)  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
23 22  
19 18  
15 14  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
16-Bit Mode  
15 14  
T0034-01  
NOTE: All data presented in two's-complement form with MSB first.  
37. I²S 64-fS Format  
24  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Programming (接下页)  
2-Channel I2S (Philips Format) Stereo Input/Output (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
1
MSB  
LSB  
24-Bit Mode  
23 22  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
3
2
0
23 22  
19 18  
15 14  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
3
2
1
20-Bit Mode  
19 18  
16-Bit Mode  
15 14  
9
8
9
8
T0092-01  
NOTE: All data presented in two's-complement form with MSB first.  
38. I²S 48-fS Format  
2-Channel I2S (Philips Format) Stereo Input  
16 Clks  
16 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
1
MSB  
LSB  
16-Bit Mode  
15 14 13 12 11 10  
9
8
5
4
3
2
0
15 14 13 12 11 10  
9
8
5
4
3
2
1
T0266-01  
NOTE: All data presented in two's-complement form with MSB first.  
39. I²S 32-fS Format  
版权 © 2016, Texas Instruments Incorporated  
25  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Programming (接下页)  
7.6.2.3 Left-Justified  
Left-justified (LJ) timing uses LRCK to define when the data being transmitted is for the left channel and when  
the data is for the right channel. LRCK is high for the left channel and low for the right channel. A bit clock  
running at 32 × fS, 48 × fS, or 64 × fS is used to clock in the data. The first bit of data appears on the data lines at  
the same time LRCK toggles. The data is written MSB-first and is valid on the rising edge of the bit clock. The  
DAP masks unused trailing data bit positions.  
2-Channel Left-Justified Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
23 22  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18  
19 18  
15 14  
16-Bit Mode  
15 14  
T0034-02  
NOTE: All data presented in two's-complement form with MSB first.  
40. Left-Justified 64-fS Format  
26  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Programming (接下页)  
2-Channel Left-Justified Stereo Input (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22 21  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
1
23 22 21  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18 17  
19 18 17  
16-Bit Mode  
15 14 13  
9
8
15 14 13  
9
8
T0092-02  
NOTE: All data presented in two's-complement form with MSB first.  
41. Left-Justified 48-fS Format  
2-Channel Left-Justified Stereo Input  
16 Clks  
16 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
16-Bit Mode  
15 14 13 12 11 10  
9
8
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
5
4
3
2
1
0
T0266-02  
NOTE: All data presented in two's-complement form with MSB first.  
42. Left-Justified 32-fS Format  
版权 © 2016, Texas Instruments Incorporated  
27  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Programming (接下页)  
7.6.2.4 Right-Justified  
Right-justified (RJ) timing uses LRCK to define when the data being transmitted is for the left channel and when  
the data is for the right channel. LRCK is high for the left channel and low for the right channel. A bit clock  
running at 32 × fS, 48 × fS, or 64 × fS is used to clock in the data. The first bit of data appears on the data 8 bit-  
clock periods (for 24-bit data) after LRCK toggles. In RJ mode, the LSB of data is always clocked by the last bit  
clock before LRCK transitions. The data is written MSB-first and is valid on the rising edge of bit clock. The DAP  
masks unused leading data bit positions.  
2-Channel Right-Justified (Sony Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
0
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
20-Bit Mode  
16-Bit Mode  
0
0
0
0
T0034-03  
All data presented in two's-complement form with MSB first.  
43. Right-Justified 64-fS Format  
28  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Programming (接下页)  
2-Channel Right-Justified Stereo Input (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
6
6
6
5
5
5
2
2
2
1
1
1
0
0
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
6
6
6
5
5
5
2
2
2
1
1
1
0
0
20-Bit Mode  
16-Bit Mode  
0
T0092-03  
All data presented in two's-complement form with MSB first.  
44. Right-Justified 48-fS Format  
All data presented in two's-complement form with MSB first.  
45. Right-Justified 32-fS Format  
7.6.3 26-Bit 3.23 Number Format  
All mixer gain coefficients are 26-bit coefficients using a 3.23 number format. Numbers formatted as 3.23  
numbers mean that the binary point has 3 bits to the left and 23 bits to the right. This is shown in 46.  
版权 © 2016, Texas Instruments Incorporated  
29  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Programming (接下页)  
2–23 Bit  
2–5 Bit  
2–1 Bit  
20 Bit  
21 Bit  
Sign Bit  
S_xx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx  
M0125-01  
46. 3.23 Format  
The decimal value of a 3.23 format number can be found by following the weighting shown in 46. If the most  
significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct number. If  
the most significant bit is a logic 1, then the number is a negative number. In the case every bit must be inverted,  
a 1 added to the result, and then the weighting shown in 47 applies to obtain the magnitude of the negative  
number.  
21 Bit  
20 Bit  
2–1 Bit  
2–4 Bit  
2–23 Bit  
(1 or 0) ´ 21 + (1 or 0) ´ 20 + (1 or 0) ´ 2–1 + ....... (1 or 0) ´ 2–4 + ....... (1 or 0) ´ 2–23  
M0126-01  
47. Conversion Weighting Factors—3.23 Format to Floating Point  
Gain coefficients, entered via the I²C bus, must be entered as 32-bit binary numbers. The format of the 32-bit  
number (4-byte or 8-digit hexadecimal number) is shown in 48.  
Fraction  
Digit 6  
Sign  
Bit  
Fraction  
Digit 1  
Fraction  
Digit 2  
Fraction  
Digit 3  
Fraction  
Digit 4  
Fraction  
Digit 5  
Integer  
Digit 1  
u
u
u
u
u
u
x
x.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x x x x  
0
S
Coefficient  
Digit 8  
Coefficient  
Digit 7  
Coefficient  
Digit 6  
Coefficient  
Digit 5  
Coefficient  
Digit 4  
Coefficient  
Digit 3  
Coefficient  
Digit 2  
Coefficient  
Digit 1  
u = unused or don’t care bits  
Digit = hexadecimal digit  
M0127-01  
48. Alignment of 3.23 Coefficient in 32-Bit I²C Word  
30  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
3. Sample Calculation for 3.23 Format  
db  
0
Linear  
1
Decimal  
8,388,608  
14,917,288  
4,717,260  
Hex (3.23 Format)  
80 0000  
5
1.77  
00E3 9EA8  
0047 FACC  
–5  
X
0.56  
L = 10(X / 20)  
D = 8,388,608 × L H = dec2hex (D, 8)  
4. Sample Calculation for 9.17 Format  
db  
0
Linear  
1
Decimal  
131,072  
Hex (9.17 Format)  
2 0000  
5
1.77  
231,997  
3 8A3D  
–5  
X
0.56  
L = 10(X / 20)  
73,400  
1 1EB8  
D = 131,072 × L  
H = dec2hex (D, 8)  
7.7 Register Maps  
7.7.1 Register Summary  
NO. OF  
BYTES  
DEFAULT  
VALUE  
SUBADDRESS  
REGISTER NAME  
CONTENTS  
A u indicates unused bits.  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
Clock control register  
1
1
1
1
1
1
1
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(1)  
0x6C  
0x40  
Device ID register  
Error status register  
System control register 1  
Serial data interface register  
System control register 2  
Soft mute register  
Master volume  
0x00  
0xA0  
0x05  
0x40  
0x00  
0x03FF (mute)  
0x00C0 (0 dB)  
0x00C0 (0 dB)  
0x00C0 (0 dB)  
0x03FF  
0x00C0  
0xC0  
Channel 1 vol  
Channel 2 vol  
Channel 3 vol  
Reserved  
Reserved(1)  
Reserved(1)  
Volume configuration register  
Reserved  
Description shown in subsequent section  
Reserved(1)  
0xF0  
0x97  
Modulation limit register  
IC delay channel 1  
IC delay channel 2  
IC delay channel 3  
IC delay channel 4  
Reserved  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(1)  
0x01  
0xAC  
0x54  
0xAC  
0x54  
0xAC  
0x54  
0x00  
PWM Start  
0x0F  
PWM Shutdown Group Register  
Start/stop period register  
Oscillator trim register  
1
1
1
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
0x30  
0x68  
0x82  
(1) Do not access reserved registers.  
Copyright © 2016, Texas Instruments Incorporated  
31  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Register Maps (continued)  
NO. OF  
BYTES  
DEFAULT  
VALUE  
SUBADDRESS  
REGISTER NAME  
BKND_ERR register  
CONTENTS  
0x1C  
0x1D–0x1F  
0x20  
1
1
Description shown in subsequent section  
Reserved(1)  
0x57  
0x00  
Input MUX register  
Reserved  
4
Description shown in subsequent section  
Reserved(1)  
0x0001 7772  
0x0000 4303  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0102 1345  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x21  
4
0x22  
4
0x23  
4
0x24  
4
0x25  
PWM MUX register  
ch1_bq[0]  
4
Description shown in subsequent section  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x26  
20  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
ch1_bq[1]  
ch1_bq[2]  
ch1_bq[3]  
ch1_bq[4]  
ch1_bq[5]  
ch1_bq[6]  
20  
20  
20  
20  
20  
20  
32  
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Register Maps (continued)  
NO. OF  
BYTES  
DEFAULT  
VALUE  
SUBADDRESS  
REGISTER NAME  
CONTENTS  
0x2D  
ch1_bq[7]  
ch1_bq[8]  
ch1_bq[9]  
ch2_bq[0]  
ch2_bq[1]  
ch2_bq[2]  
ch2_bq[3]  
ch2_bq[4]  
ch2_bq[5]  
20  
20  
20  
20  
20  
20  
20  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
Copyright © 2016, Texas Instruments Incorporated  
33  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Register Maps (continued)  
NO. OF  
BYTES  
DEFAULT  
VALUE  
SUBADDRESS  
REGISTER NAME  
ch2_bq[6]  
CONTENTS  
0x36  
20  
20  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
Reserved(1)  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x37  
0x38  
0x39  
ch2_bq[7]  
ch2_bq[8]  
ch2_bq[9]  
Reserved  
0x3A  
0x3B  
4
8
0x0080 0000 0000  
0000  
AGL1 softening filter alpha  
AGL1 softening filter omega  
AGL1 attack rate  
u[31:26], ae[25:0]  
u[31:26], oe[25:0]  
0x0008 0000  
0x0078 0000  
0x0000 0100  
0xFFFF FF00  
0x3C  
8
Description shown in subsequent section  
Description shown in subsequent section  
AGL1 release rate  
34  
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Register Maps (continued)  
NO. OF  
BYTES  
DEFAULT  
VALUE  
SUBADDRESS  
REGISTER NAME  
CONTENTS  
0x3D  
0x3E  
8
8
Reserved(1)  
AGL2 softening filter alpha  
AGL2 softening filter omega  
AGL2 attack rate  
u[31:26], ae[25:0]  
0x0008 0000  
0x0078 0000  
0x0008 0000  
0xFFF8 0000  
0x0800 0000  
0x0074 0000  
0x0008 0000  
0xFFF8 0000  
0x0074 0000  
0x0074 0000  
0x0008 0000  
0xFFF8 0000  
0x0002 0000  
0x0008 0000  
0x0078 0000  
0x0008 0000  
0x0078 0000  
u[31:26], oe[25:0]  
0x3F  
8
u[31:26], at[25:0]  
AGL2 release rate  
u[31:26], rt[25:0]  
0x40  
0x41  
0x42  
AGL1 attack threshold  
AGL3 attack threshold  
AGL3 attack rate  
4
4
8
T1[31:0] (9.23 format)  
T1[31:0] (9.23 format)  
Description shown in subsequent section  
Description shown in subsequent section  
T2[31:0] (9.23 format)  
T1[31:0] (9.23 format)  
AGL3 release rate  
0x43  
0x44  
0x45  
AGL2 attack threshold  
AGL4 attack threshold  
AGL4 attack rate  
4
4
8
AGL4 release rate  
0x46  
0x47  
AGL control  
4
8
Description shown in subsequent section  
u[31:26], ae[25:0]  
AGL3 softening filter alpha  
AGL3 softening filter omega  
AGL4 softening filter alpha  
AGL4 softening filter omega  
Reserved  
u[31:26], oe[25:0]  
0x48  
8
u[31:26], ae[25:0]  
u[31:26], oe[25:0]  
Reserved(1)  
0x49  
0x4A  
4
4
0x1212 1010 E1FF  
FFFF F95E 1212  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
4
4
0x0000 296E  
0x0000 5395  
0x0000 0000  
0x0000 0000  
0x0000 0008  
0x0F70 8000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
4
4
PWM switching rate control  
Bank switch control  
4
u[31:4], src[3:0]  
4
Description shown in subsequent section  
Ch 1 output mix1[2]  
Ch 1 output mix1[1]  
Ch 1 output mix1[0]  
Ch 2 output mix2[2]  
Ch 2 output mix2[1]  
Ch 2 output mix2[0]  
Reserved(1)  
Ch 1 output mixer  
12  
0x52  
Ch 2 output mixer  
12  
0x53  
0x54  
16  
16  
0x0080 0000 0000  
0000 0000 0000  
Reserved(1)  
0x0080 0000 0000  
0000 0000 0000  
0x56  
0x57  
0x58  
Output post-scale  
Output pre-scale  
ch1_bq[10]  
4
4
u[31:26], post[25:0]  
u[31:26], pre[25:0] (9.17 format)  
u[31:26], b0[25:0]  
0x0080 0000  
0x0002 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
20  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
Copyright © 2016, Texas Instruments Incorporated  
35  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Register Maps (continued)  
NO. OF  
BYTES  
DEFAULT  
VALUE  
SUBADDRESS  
REGISTER NAME  
ch1_cross_bq[0]  
CONTENTS  
0x59  
20  
20  
20  
20  
20  
20  
20  
20  
20  
4
u[31:26], b0[25:0]  
ch1_cross_bq[1]  
ch1_cross_bq[2]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0080  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
ch1_cross_bq[1]  
ch1_cross_bq[2]  
ch1_cross_bq[3]  
ch2_bq[10]  
ch2_cross_bq[0]  
ch2_cross_bq[1]  
ch2_cross_bq[2]  
ch2_cross_bq[3]  
IDF post scale  
Description shown in subsequent section  
36  
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Register Maps (continued)  
NO. OF  
BYTES  
DEFAULT  
VALUE  
SUBADDRESS  
REGISTER NAME  
CONTENTS  
0x63–0x69  
0x6A  
Reserved  
4
4
4
4
8
Reserved(1)  
0x0000 0000  
0x0000 8312  
0x007F 7CED  
0x0000 0000  
0x6B  
Left channel PWM level meter  
Right channel PWM level meter  
Reserved  
Data[31:0]  
Data[31:0]  
Reserved(1)  
0x6C  
0x6D  
0x0000 0000 0000  
0000  
0x6E–0x6F  
0x70  
4
4
4
4
4
4
4
4
4
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0054  
ch1 inline mixer  
u[31:26], in_mix1[25:0]  
u[31:26], in_mixagl_1[25:0]  
u[31:26], right_mix1[25:0]  
u[31:26], left_mix_1[25:0]  
u[31:26], in_mix2[25:0]  
u[31:26], in_mixagl_2[25:0]  
u[31:26], left_mix1[25:0]  
u[31:26], right_mix_1[25:0]  
Reserved(1)  
0x71  
inline_AGL_en_mixer_ch1  
ch1 right_channel mixer  
ch1 left_channel_mixer  
ch2 inline mixer  
0x72  
0x73  
0x74  
0x75  
inline_AGL_en_mixer_ch2  
ch2 left_chanel mixer  
ch2 right_channel_mixer  
0x76  
0x77  
0x78–0xF7  
0xF8  
Update device address key  
Update device address  
4
4
4
Dev Id Update Key[31:0] (Key =  
0xF9A5A5A5)  
0xF9  
u[31:8],New Dev Id[7:0] (New Dev Id = 0x54  
for TAS5733L)  
Reserved(1)  
0x0000 0054  
0x0000 0000  
0xFA–0xFF  
All DAP coefficients are 3.23 format unless specified otherwise.  
Registers 0x3B through 0x46 should be altered only during the initialization phase.  
7.7.2 Detailed Register Descriptions  
7.7.2.1 Clock Control Register (0x00)  
The clocks and data rates are automatically determined by the TAS5733L. The clock control register contains the  
autodetected clock status. Bits D7–D5 reflect the sample rate. Bits D4–D2 reflect the MCLK frequency.  
Table 5. Clock Control Register (0x00)  
D7  
0
0
0
0
1
1
1
1
0
D6  
0
0
1
1
0
0
1
1
0
D5  
0
1
0
1
0
1
0
1
0
D4  
0
0
0
0
D3  
0
0
1
1
D2  
0
1
0
1
D1  
1
0
D0  
0
FUNCTION  
fS = 32-kHz sample rate  
Reserved  
Reserved  
fS = 44.1/48-kHz sample rate(1)  
fS = 16-kHz sample rate  
fS = 22.05/24-kHz sample rate  
fS = 8-kHz sample rate  
fS = 11.025/12-kHz sample rate  
(2)  
MCLK frequency = 64 × fS  
(2)  
MCLK frequency = 128 × fS  
(3)  
MCLK frequency = 192 × fS  
(1)(4)  
MCLK frequency = 256 × fS  
(1) Default values are in bold.  
(2) Only available for 44.1-kHz and 48-kHz rates  
(3) Rate only available for 32/44.1/48-KHz sample rates  
(4) Not available at 8 kHz  
Copyright © 2016, Texas Instruments Incorporated  
37  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Table 5. Clock Control Register (0x00) (continued)  
D7  
D6  
D5  
D4  
1
D3  
0
D2  
0
D1  
D0  
FUNCTION  
MCLK frequency = 384 × fS  
MCLK frequency = 512 × fS  
Reserved  
1
0
1
1
1
0
1
1
1
Reserved  
0
Reserved  
0
Reserved  
7.7.2.2 Device ID Register (0x01)  
The device ID register contains the ID code for the firmware revision.  
Table 6. General Status Register (0x01)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
(1)  
Identification code  
(1) Default values are in bold.  
7.7.2.3 Error Status Register (0x02)  
The error bits are sticky and are not cleared by the hardware. This means that the software must clear the  
register (write zeroes) and then read them to determine if they are persistent errors.  
Error definitions:  
MCLK error: MCLK frequency is changing. The number of MCLKs per LRCLK is changing.  
SCLK error: The number of SCLKs per LRCLK is changing.  
LRCLK error: LRCLK frequency is changing.  
Frame slip: LRCLK phase is drifting with respect to internal frame sync.  
Table 7. Error Status Register (0x02)  
D7  
1
D6  
-
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
MCLK error  
1
0
0
PLL autolock error  
SCLK error  
1
1
LRCLK error  
Frame slip  
1
1
Clip indicator  
1
Overcurrent, overtemperature, overvoltage, or undervoltage error  
Reserved  
0
0
0
0
0
0
0
(1)  
0
0
0
0
0
0
0
No errors  
(1) Default values are in bold.  
7.7.2.4 System Control Register 1 (0x03)  
System control register 1 has several functions:  
Bit D7:  
Bit D5:  
If 0, the dc-blocking filter for each channel is disabled.  
If 1, the dc-blocking filter (–3 dB cutoff <1 Hz) for each channel is enabled.  
If 0, use soft unmute on recovery from a clock error. This is a slow recovery. Unmute takes the  
same time as the volume ramp defined in register 0x0E.  
If 1, use hard unmute on recovery from clock error. This is a fast recovery, a single-step volume  
ramp.  
Bits D1–D0: Select de-emphasis  
38  
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Table 8. System Control Register 1 (0x03)  
D7  
0
1
D6  
0
D5  
1
1
D4  
0
D3  
0
D2  
0
D1  
0
0
1
1
D0  
0
1
0
1
FUNCTION  
PWM high-pass (dc blocking) disabled  
(1)  
PWM high-pass (dc blocking) enabled  
(1)  
Reserved  
(1)  
Soft unmute on recovery from clock error  
Hard unmute on recovery from clock error  
(1)  
Reserved  
(1)  
Reserved  
(1)  
Reserved  
(1)  
No de-emphasis  
De-emphasis for fS = 32 kHz  
De-emphasis for fS = 44.1 kHz  
De-emphasis for fS = 48 kHz  
(1) Default values are in bold.  
7.7.2.5 Serial Data Interface Register (0x04)  
As shown in Table 9, the TAS5733L supports nine serial data modes. The default is 24-bit, I2S mode.  
Table 9. Serial Data Interface Control Register (0x04) Format  
RECEIVE SERIAL DATA  
INTERFACE FORMAT  
WORD  
LENGTH  
D7–D4  
D3  
D2  
D1  
D0  
Right-justified  
16  
20  
24  
16  
20  
24  
16  
20  
24  
0000  
0000  
0000  
000  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Right-justified  
Right-justified  
I2S  
I2S  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(1)  
I2S  
Left-justified  
Left-justified  
Left-justified  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Default values are in bold.  
Copyright © 2016, Texas Instruments Incorporated  
39  
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
7.7.2.6 System Control Register 2 (0x05)  
When bit D6 is set low, the system exits all-channel shutdown and starts playing audio; otherwise, the outputs  
are shut down (hard mute).  
Table 10. System Control Register 2 (0x05)  
D7 D6 D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
(1)  
0
1
0
1
0
Mid-Z ramp disabled  
Mid-Z ramp enabled  
Exit all-channel shutdown (normal operation)  
(1)  
Enter all-channel shutdown (hard mute)  
(1)  
0
Reserved  
(1)  
0
Ternary modulation disabled  
1
Ternary modulation enabled  
(1)  
0
Reserved  
0
configured as input  
1
configured configured as output to function as fault output pin.  
(1)  
0
Reserved  
(1) Default values are in bold.  
Ternary modulation is disabled by default. To enable ternary modulation, the following writes are required before  
bringing the system out of shutdown:  
1. Set bit D3 of register 0x05 to 1.  
2. Write the following ICD settings:  
(a) 0x11= 80  
(b) 0x12= 7C  
(c) 0x13= 80  
(d) 0x14 =7C  
3. Set the input mux register as follows:  
(a) 0x20 = 00 89 77 72  
7.7.2.7 Soft Mute Register (0x06)  
Writing a 1 to any of the following bits sets the output of the respective channel to 50% duty cycle (soft mute).  
Table 11. Soft Mute Register (0x06)  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
(1)  
0
0
0
0
0
Reserved  
1
Soft mute channel 3  
(1)  
(1)  
(1)  
0
Soft unmute channel 3  
Soft mute channel 2  
1
0
Soft unmute channel 2  
Soft mute channel 1  
1
0
Soft unmute channel 1  
(1) Default values are in bold.  
7.7.2.8 Volume Registers (0x07, 0x08, 0x09)  
The volume register 0x07, 0x08, and 0x09 correspond to master volume, channel 1 volume, and channel 2  
volume, respectively. Step size is 0.125 dB and volume registers are 2 bytes.  
Master volume  
– 0x07 (default is mute, 0x03FF)  
– 0x08 (default is 0 dB, 0x00C0)  
Channel-1 volume  
40  
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Channel-2 volume  
– 0x09 (default is 0 dB, 0x00C0)  
Table 12. Master Volume  
Table  
Value  
0x0000  
0x0001  
...  
Level  
24.000  
23.875  
(0.125 dB steps)  
–103.750  
0x03FE  
0x03FF  
Mute  
7.7.2.9 Volume Configuration Register (0x0E)  
Bits Volume slew rate (used to control volume change and MUTE ramp rates). These bits control the  
D2–D0: number of steps in a volume ramp. Volume steps occur at a rate that depends on the sample rate of  
the I2S data as follows:  
Sample rate (kHz)  
8/16/32  
Approximate ramp rate  
125 μs/step  
11.025/22.05/44.1  
12/24/48  
90.7 μs/step  
83.3 μs/step  
In two-band AGL, register 0x0A should be set to 0x30 and register 0x0E bits 6 and 5 should be set to 1.  
Table 13. Volume Configuration Register (0x0E)  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
(1)  
1
0
1
0
1
1
0
Reserved  
AGL2 volume 1 (ch4) from I2C register 0x08  
AGL2 volume 1 (ch4) from I2C register 0x0A(1)  
AGL2 volume 2 (ch3) from I2C register 0x09  
AGL2 volume 2 (ch3) from I2C register 0x0A(1)  
(1)  
Reserved  
(1)  
0
0
0
Volume slew 512 steps (43 ms volume ramp time at 48 kHz)  
Volume slew 1024 steps (85-ms volume ramp time at 48 kHz)  
Volume slew 2048 steps (171-ms volume ramp time at 48 kHz)  
Volume slew 256 steps (21-ms volume ramp time at 48 kHz)  
Reserved  
0
0
1
0
1
0
0
1
1
1
X
X
(1) Default values are in bold.  
Copyright © 2016, Texas Instruments Incorporated  
41  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
7.7.2.10 Modulation Limit Register (0x10)  
Table 14. Modulation Limit Register (0x10)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
D1  
D0  
MODULATION LIMIT  
Reserved  
Reserved  
98.4%(1)  
97.7%  
0
0
0
0
0
1
0
1
0
0
1
1
96.9%  
1
0
0
96.1%  
1
0
1
95.3%  
1
1
0
94.5%  
1
1
1
93.8%  
(1) Default values are in bold.  
7.7.2.11 Interchannel Delay Registers (0x11, 0x12, 0x13, and 0x14)  
Internal PWM channels 1, 2, 1, and 2 are mapped into registers 0x11, 0x12, 0x13, and 0x14.  
Table 15. Channel Interchannel Delay Register Format  
BITS DEFINITION  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
FUNCTION  
Minimum absolute delay, 0 DCLK cycles  
Maximum positive delay, 31 × 4 DCLK cycles  
Maximum negative delay, –32 × 4 DCLK cycles  
Reserved  
0
1
1
1
1
1
1
0
0
0
0
0
0
0
SUBADDRESS  
0x11  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
D0 Delay = (value) × 4 DCLKs  
(1)  
(1)  
(1)  
(1)  
Default value for channel 1  
Default value for channel 2  
Default value for channel 1  
Default value for channel 2  
0x12  
0
1
0
1
0
1
0x13  
1
0
1
0
1
1
0x14  
0
1
0
1
0
1
(1) Default values are in bold.  
ICD settings have high impact on audio performance (e.g., dynamic range, THD, crosstalk, etc.) Therefore,  
appropriate ICD settings must be used. By default, the device has ICD settings for the AD mode. If used in BD  
mode, then update these registers before coming out of all-channel shutdown.  
MODE  
0x11  
0x12  
0x13  
0x14  
AD MODE  
BD MODE  
AC  
54  
B8  
60  
A0  
48  
AC  
54  
7.7.2.12 PWM Shutdown Group Register (0x19)  
Settings of this register determine which PWM channels are active. The functionality of this register is tied to the  
state of bit D5 in the system control register.  
This register defines which channels belong to the shutdown group. If a 1 is set in the shutdown group register,  
that particular channel is not started following an exit out of all-channel shutdown command (if bit D5 is set to 0  
in system control register 2, 0x05).  
42  
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Table 16. PWM Shutdown Group Register (0x19)  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
0
1
D2  
0
1
D1  
0
1
D0  
0
1
FUNCTION  
(1)  
(1)  
(1)  
(1)  
Reserved  
Reserved  
Reserved  
Reserved  
(1)  
(1)  
(1)  
(1)  
PWM channel 4 does not belong to shutdown group.  
PWM channel 4 belongs to shutdown group.  
PWM channel 3 does not belong to shutdown group.  
PWM channel 3 belongs to shutdown group.  
PWM channel 2 does not belong to shutdown group.  
PWM channel 2 belongs to shutdown group.  
PWM channel 1 does not belong to shutdown group.  
PWM channel 1 belongs to shutdown group.  
(1) Default values are in bold.  
7.7.2.13 Start/Stop Period Register (0x1A)  
This register is used to control the soft-start and soft-stop period following an enter/exit all-channel shutdown  
command or change in the PDN state. This helps reduce pops and clicks at start-up and shutdown. The times  
are only approximate and vary depending on device activity level and I2S clock stability.  
Table 17. Start/Stop Period Register (0x1A)  
D7 D6 D5 D4 D3  
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
FUNCTION  
(1)  
0
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
SSTIMER enabled  
SSTIMER disabled  
(1)  
Reserved  
No 50% duty cycle start/stop period  
16.5-ms 50% duty cycle start/stop period  
23.9-ms 50% duty cycle start/stop period  
31.4-ms 50% duty cycle start/stop period  
40.4-ms 50% duty cycle start/stop period  
53.9-ms 50% duty cycle start/stop period  
70.3-ms 50% duty cycle start/stop period  
94.2-ms 50% duty cycle start/stop period  
125.7-ms 50% duty cycle start/stop period(1)  
164.6-ms 50% duty cycle start/stop period  
239.4-ms 50% duty cycle start/stop period  
314.2-ms 50% duty cycle start/stop period  
403.9-ms 50% duty cycle start/stop period  
538.6-ms 50% duty cycle start/stop period  
703.1-ms 50% duty cycle start/stop period  
942.5-ms 50% duty cycle start/stop period  
1256.6-ms 50% duty cycle start/stop period  
1728.1-ms 50% duty cycle start/stop period  
2513.6-ms 50% duty cycle start/stop period  
3299.1-ms 50% duty cycle start/stop period  
4241.7-ms 50% duty cycle start/stop period  
5655.6-ms 50% duty cycle start/stop period  
7383.7-ms 50% duty cycle start/stop period  
(1) Default values are in bold.  
Copyright © 2016, Texas Instruments Incorporated  
43  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Table 17. Start/Stop Period Register (0x1A) (continued)  
D7 D6 D5 D4 D3  
D2  
1
D1  
1
D0  
0
FUNCTION  
9897.3-ms 50% duty cycle start/stop period  
13,196.4-ms 50% duty cycle start/stop period  
1
1
1
1
1
1
1
7.7.2.14 Oscillator Trim Register (0x1B)  
The TAS5733L PWM processor contains an internal oscillator to support autodetect of I2S clock rates. This  
reduces system cost because an external reference is not required. A reference resistor must be connected  
between pin 16 and 17, as shown in Table 18.  
Writing 0x00 to register 0x1B enables the trim that was programmed at the factory.  
Note that trim must always be run following reset of the device.  
Table 18. Oscillator Trim Register (0x1B)  
D7  
1
D6  
D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
(1)  
0
0
0
Reserved  
(1)  
0
Oscillator trim not done (read-only)  
1
Oscillator trim done (read only)  
(1)  
0
Reserved  
0
Select factory trim (Write a 0 to select factory trim; default is 1.)  
(1)  
1
Factory trim disabled  
(1)  
0
Reserved  
(1) Default values are in bold.  
7.7.2.15 BKND_ERR Register (0x1C)  
When a back-end error signal is received from the internal power stage, the power stage is reset, stopping all  
PWM activity. Subsequently, the modulator waits approximately for the time listed in Table 19 before attempting  
to re-start the power stage.  
Table 19. BKND_ERR Register (0x1C)(1)  
D7 D6 D5 D4 D3  
D2  
x
D1  
x
D0  
X
0
FUNCTION  
0
1
0
1
x
0
0
0
0
0
0
1
1
1
1
Reserved  
0
1
Set back-end reset period to 299 ms(2)  
Set back-end reset period to 449 ms  
Set back-end reset period to 598 ms  
Set back-end reset period to 748 ms  
Set back-end reset period to 898 ms  
Set back-end reset period to 1047 ms  
Set back-end reset period to 1197 ms  
Set back-end reset period to 1346 ms  
Set back-end reset period to 1496 ms  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
0
0
0
0
0
1
0
1
X
X
1
1
Set back-end reset period to 1496 ms  
(1) This register can be written only with a non-reserved value. The RSTz pin must be toggled between subsequent writes to this register.  
(2) Default values are in bold.  
44  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
7.7.2.16 Input Multiplexer Register (0x20)  
This register controls the modulation scheme (AD or BD mode) as well as the routing of I2S audio to the internal  
channels.  
Table 20. Input Multiplexer Register (0x20)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
(1)  
Reserved  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
(1)  
Channel-1 AD mode  
Channel-1 BD mode  
SDIN-L to channel 1  
SDIN-R to channel 1  
Reserved  
1
(1)  
0
0
0
0
0
1
0
1
0
0
1
1
Reserved  
1
0
0
Reserved  
1
0
1
Reserved  
1
1
0
Ground (0) to channel 1  
1
1
1
Reserved  
(1)  
0
Channel 2 AD mode  
1
Channel 2 BD mode  
SDIN-L to channel 2  
0
0
0
(1)  
0
0
1
SDIN-R to channel 2  
0
1
0
Reserved  
0
1
1
Reserved  
1
0
0
Reserved  
1
0
1
Reserved  
1
1
0
Ground (0) to channel 2  
Reserved  
1
1
1
D15  
0
D14  
1
D13  
1
D12  
1
D11  
0
D10  
1
D9  
1
D8  
1
FUNCTION  
(1)  
(1)  
Reserved  
Reserved  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
0
D2  
0
D1  
1
D0  
0
FUNCTION  
(1) Default values are in bold.  
7.7.2.17 PWM Output MUX Register (0x25)  
This DAP output mux selects which internal PWM channel is output to the external pins. Any channel can be  
output to any external output pin.  
Bits D21–D20:  
Bits D17–D16:  
Bits D13–D12:  
Bits D09–D08:  
Selects which PWM channel is output to AMP_OUT_A  
Selects which PWM channel is output to AMP_OUT_B  
Selects which PWM channel is output to AMP_OUT_C  
Selects which PWM channel is output to AMP_OUT_D  
Note that channels are encoded so that channel 1 = 0x00, channel 2 = 0x01, …, channel 4 = 0x03.  
Copyright © 2016, Texas Instruments Incorporated  
45  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Table 21. PWM Output MUX Register (0x25)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
1
FUNCTION  
(1)  
Reserved  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
(1)  
Reserved  
(1)  
0
0
Multiplex channel 1 to AMP_OUT_A  
Multiplex channel 2 to AMP_OUT_A  
Multiplex channel 1 to AMP_OUT_A  
Multiplex channel 2 to AMP_OUT_A  
0
1
1
0
1
1
(1)  
0
0
Reserved  
0
0
Multiplex channel 1 to AMP_OUT_B  
Multiplex channel 2 to AMP_OUT_B  
Multiplex channel 1 to AMP_OUT_B  
Multiplex channel 2 to AMP_OUT_B  
0
1
(1)  
1
0
1
1
D15  
0
D14  
0
D13  
D12  
D11  
D 10  
D9  
D8  
FUNCTION  
(1)  
Reserved  
0
0
Multiplex channel 1 to AMP_OUT_C  
Multiplex channel 2 to AMP_OUT_C  
Multiplex channel 1 to AMP_OUT_C  
Multiplex channel 2 to AMP_OUT_C  
(1)  
0
1
1
0
1
1
(1)  
0
0
Reserved  
0
0
Multiplex channel 1 to AMP_OUT_D  
Multiplex channel 2 to AMP_OUT_D  
Multiplex channel 1 to AMP_OUT_D  
Multiplex channel 2 to AMP_OUT_D  
0
1
1
0
(1)  
1
1
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0
D2  
1
D1  
0
D0  
1
FUNCTION  
(1)  
Reserved  
(1) Default values are in bold.  
46  
Copyright © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
7.7.2.18 AGL Control Register (0x46)  
Table 22. AGL Control Register (0x46)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
(1)  
(1)  
(1)  
(1)  
Reserved  
Reserved  
Reserved  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
1
D4  
0
D3  
0
1
D2  
0
1
D1  
0
1
D0  
0
1
Reserved  
Reserved  
Reserved  
Reserved  
(1)  
(1)  
(1)  
(1)  
(1)  
AGL4 turned OFF  
AGL4 turned ON  
AGL3 turned OFF  
AGL3 turned ON  
AGL2 turned OFF  
AGL2 turned ON  
AGL1 turned OFF  
AGL1 turned ON  
(1) Default values are in bold.  
7.7.2.19 PWM Switching Rate Control Register (0x4F)  
PWM switching rate should be selected through the register 0x4F before coming out of all-channnel shutdown.  
Table 23. PWM Switching Rate Control Register (0x4F)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
(1)  
(1)  
(1)  
Reserved  
Reserved  
Reserved  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
D6  
D5  
0
D4  
0
D3  
D2  
D1  
D0  
Reserved(1)  
SRC = 6  
0
1
1
0
0
1
1
1
SRC = 7  
1
0
0
0
SRC = 8(1)  
1
0
0
1
SRC = 9  
1
0
1
0
Reserved  
Reserved  
1
1
(1) Default values are in bold.  
Copyright © 2016, Texas Instruments Incorporated  
47  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
7.7.2.20 Bank Switch and EQ Control (0x50)  
Table 24. Bank Switching Command (0x50)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
1
D26  
1
D25  
1
D24  
1
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
(1)  
(1)  
(1)  
Reserved  
Reserved  
Reserved  
D23  
0
D22  
1
D21  
1
D20  
1
D19  
0
D18  
0
D17  
0
D16  
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(1)  
EQ ON  
1
0
0
1
EQ OFF (bypass BQ 1–11 of channels 1 and 2)  
(1)  
Reserved  
(1)  
Ignore bank-mapping in bits D31–D8. Use default mapping.  
Use bank-mapping in bits D31–D8.  
(1)  
0
L and R can be written independently.  
L and R are ganged for EQ biquads; a write to the left-channel  
biquad is also written to the right-channel biquad. (0x29–0x2F is  
ganged to 0x30–0x36. Also, 0x58–0x5B is ganged to 0x5C–0x5F.  
1
(1)  
0
0
0
0
1
0
0
1
X
0
1
X
X
Reserved  
(1)  
No bank switching. All updates to DAP  
Configure bank 1 (32 kHz by default)  
Reserved  
Reserved  
(1) Default values are in bold.  
48  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
As mentioned previously, the TAS5733L device can be used in stereo and mono mode. This section describes  
the information required to configure the device for several popular configurations and for integrating the  
TAS5733L device into the larger system.  
8.1.1 External Component Selection Criteria  
The Supporting Component Requirements table in each application description section lists the details of the  
supporting required components in each of the System Application Schematics. Where possible, the supporting  
component requirements have been consolidated to minimize the number of unique components which are used  
in the design. Component list consolidation is a method to reduce the number of unique part numbers in a  
design. Consolidation is done to ease inventory management and reduce the manufacturing steps during board  
assembly. For this reason, some capacitors are specified at a higher voltage than what would normally be  
required. An example of this is a 50-V capacitor can be used for decoupling of a 3.3-V power supply net.  
In this example, a higher voltage capacitor can be used even on the lower voltage net to consolidate all caps of  
that value into a single component type. Similarly, several unique resistors, all having the same size and value  
but different power ratings can be consolidated by using the highest rated power resistor for each instance of that  
resistor value.  
While this consolidation can seem excessive, the benefits of having fewer components in the design can far  
outweigh the trivial cost of a higher voltage capacitor. If lower voltage capacitors are already available elsewhere  
in the design, they can be used instead of the higher voltage capacitors. In all situations, the voltage rating of the  
capacitors must be at least 1.45 times the voltage of the voltage which appears across them. The power rating of  
the capacitors should be 1.5 times to 1.75 times the power dissipated in the capacitors during normal use case.  
8.1.1.1 Component Selection Impact on Board Layout, Component Placement, and Trace Routing  
Because the layout is important to the overall performance of the circuit, the package size of the components  
shown in the component list were intentionally chosen to allow for proper board layout, component placement,  
and trace routing. In some cases, traces are passed in between two surface mount pads or ground plane  
extends from the TAS5733L device between two pads of a surface mount component and into to the surrounding  
copper for increased heat-sinking of the device. While components can be offered in smaller or larger package  
sizes, the package size should remain identical to that used in the application circuit as shown. This consistency  
ensures that the layout and routing can be matched very closely, optimizing thermal, electromagnetic, and audio  
performance of the TAS5733L device in circuit in the final system.  
8.1.1.2 Amplifier Output Filtering  
The TAS5733L device is often used with a low-pass filter, which is used to filter out the carrier frequency of the  
PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter. The L-C filter removes the carrier frequency,  
reducing electromagnetic emissions and smoothing the current waveform which is drawn from the power supply.  
The presence and size of the L-C filter is determined by several system level constraints. In some low-power use  
cases that do not have other circuits which are sensitive to EMI, a simple ferrite bead or ferrite bead and  
capacitor can replace the traditional large inductor and capacitor that are commonly used. In other high-power  
applications, large toroid inductors are required for maximum power and film capacitors can be preferred due to  
audio characteristics. Refer to the application report Class-D Filter Design (SLOA119) for a detailed description  
of proper component selection and design of an L-C filter based upon the desired load and response.  
版权 © 2016, Texas Instruments Incorporated  
49  
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2 Typical Applications  
These typical connection diagrams highlight the required external components and system level connections for  
proper operation of the device in several popular use cases. Each of these configurations can be realized using  
the Evaluation Module (EVM) for the device. These flexible modules allow full evaluation of the device in the  
most common modes of operation. Any design variation can be supported by TI through schematic and layout  
reviews. Visit http://e2e.ti.com for design assistance and join the audio amplifier discussion forum for additional  
information.  
8.2.1 Stereo Bridge Tied Load Application  
A stereo system generally refers to a system inside which are two full range speakers without a separate  
amplifier path for the speakers that reproduce the low-frequency content. In this system, two channels are  
presented to the amplifier via the digital input signal. These two channels are amplified and then sent to two  
separate speakers.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
The Stereo BTL Configuration is shown in 49.  
49. Stereo Bridge Tied Load Application  
50  
版权 © 2016, Texas Instruments Incorporated  
 
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
Typical Applications (接下页)  
8.2.1.1 Design Requirements  
The design requirements for the Stereo Bridge Tied Load Application of the TAS5733L device is found in 25  
25. Design Requirements for Stereo Bridge Tied Load Application  
PARAMETER  
EXAMPLE  
Low Power Supply  
High Power Supply  
3.3 V  
8 V to 15 V  
I²S Compliant Master  
I²C Compliant Master  
GPIO Control  
Digital  
(1)  
Output Filters  
Speaker  
Inductor-Capacitor Low Pass Filter  
4 Ω minimum.  
(1) Refer to SLOA119 for a detailed description on the filter design.  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Component Selection and Hardware Connections  
The typical connections required for proper operation of the device can be found on the TAS5733L User’s Guide.  
The device was tested with this list of components, deviation from this typical application components unless  
recommended by this document can produce unwanted results, which could range from degradation of audio  
performance to destructive failure of the device. The application report Class-D Filter Design (SLOA119) offers a  
detailed description of proper component selection and design of the output filter based upon the modulation  
used, desired load and response.  
8.2.1.2.2 Control and Software Integration  
The TAS5733L device has a bidirectional I²C used to program the registers of the device and to read device  
status. The TAS5733LEVM and the PurePath Console GUI are powerful tools that allow the TAS5733L  
evaluation, control and configuration. The Register Dump feature of the PurePath Console software can be used  
to generate a custom configuration file for any end-system operating mode. Prior approval is required to  
download PurePath Console GUI. Please request access at http://www.ti.com/tool/purepathconsole.  
8.2.1.2.3 I²C Pullup Resistors  
Customary pullup resistors are required on the SCL and SDA signal lines. They are not shown in the Typical  
Application Circuits, because they are shared by all of the devices on the I²C bus and are considered to be part  
of the associated passive components for the System Processor. These resistor values should be chosen per the  
guidance provided in the I²C Specification.  
8.2.1.2.4 Digital I/O Connectivity  
The digital I/O lines of the TAS5733L are described in previous sections. As discussed, whenever a static digital  
pin (that is a pin that is hardwired to be HIGH or LOW) is required to be pulled HIGH, it should be connected to  
DVDD through a pull-up resistor to control the slew rate of the voltage presented to the digital I/O pins. However,  
having a separate pull-up resistor for each static digital I/O line is not necessary. Instead, a single resistor can be  
used to tie all static I/O lines HIGH to reduce BOM count.  
版权 © 2016, Texas Instruments Incorporated  
51  
 
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2.1.2.5 Recommended Startup and Shutdown Procedures  
Initialization  
Normal Operation  
Shutdown  
Power Down  
3 V  
3 V  
AVDD/DVDD  
0 µs  
8 V  
8 V  
6 V  
PVDD  
100 µs  
6 V  
2 µs  
AMP  
Config  
Exit  
SD  
Volume and Mute  
Commands  
Enter  
SD  
10 µs  
Trim  
I2C  
2 µs  
13.5 ms  
I2S  
1 ms + 1.3 tSTART  
50 ms  
1 ms + 1.3 tSTOP  
RST  
PDN  
100 µs  
tPLL  
2 µs  
tPLL has to be greater than 240 ms + 1.3 tSTART, after the first trim command following AVDD/DVDD power-up. It does not apply to trim commands following subsequent resets.  
tSTART/tSTOP = PWM start/stop time as defined in register 0x1A  
50. Recommended Start-Up and Shutdown Sequence  
8.2.1.2.5.1 Start-Up Sequence  
Use the following sequence to power up and initialize the device:  
1. Hold all digital inputs low and ramp up AVDD/DVDD to at least 3 V.  
2. Initialize digital inputs and PVDD supply as follows:  
Drive RST = 0, PDN = 1, and other digital inputs to their desired state. Wait at least 100 µs, drive RST  
high  
Wait 13.5 ms.  
Ramp up PVDD to at least 8 V while ensuring that it remains below 6 V for at least 100 µs after  
AVDD/DVDD reaches 3 V.  
Wait 10 µs.  
3. Trim oscillator (write 0x00 to register 0x1B) and wait at least 50 ms.  
4. Configure the Digital Audio Processor of the Amplifier via I²C, refer to Section 8.5 Register Maps for more  
information.  
5. Configure remaining registers.  
6. Exit shutdown (sequence defined in Shutdown Sequence).  
8.2.1.2.5.2 Normal Operation  
The following are the only events supported during normal operation:  
1. Writes to master/channel volume registers.  
2. Writes to soft-mute register.  
3. Enter and exit shutdown (sequence defined in Shutdown Sequence).  
Event 3 is not supported for 240 ms + 1.3 × tstart after trim following AVDD/DVDD power-  
up ramp (where tstart is specified by register 0x1A).  
52  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
8.2.1.2.5.3 Shutdown Sequence  
Enter:  
1. Write 0x40 to register 0x05.  
2. Wait at least 1 ms + 1.3 × tstop (where tstop is specified by register 0x1A).  
3. If desired, reconfigure by returning to step 4 of initialization sequence.  
Exit:  
1. Write 0x00 to register 0x05 (exit shutdown command can not be serviced for as much as 240 ms after trim  
following AVDD/DVDD power-up ramp).  
2. Wait at least 1 ms + 1.3 × tstart (where tstart is specified by register 0x1A).  
3. Proceed with normal operation.  
8.2.1.2.5.4 Power-Down Sequence  
Use the following sequence to power down the device and its supplies:  
1. If time permits, enter shutdown (sequence defined in Shutdown Sequence); else, in case of sudden power  
loss, assert PDN = 0 and wait at least 2 ms.  
2. Assert RST = 0.  
3. Drive digital inputs low and ramp down PVDD supply as follows:  
Drive all digital inputs low after RST has been low for at least 2 µs.  
Ramp down PVDD while ensuring that it remains above 8 V until RST has been low for at least 2 µs.  
4. Ramp down AVDD/DVDD while ensuring that it remains above 3 V until PVDD is below 6 V.  
8.2.1.3 Application Performance Plots  
CURVE TITLE  
Output Power Vs Supply Voltage Stereo BTL Mode  
FIGURE  
5  
Total Harmonic Distortion + Noise Vs Output Power Stereo BTL Mode  
Total Harmonic Distortion + Noise Vs Frequency Stereo BTL Mode  
Power Efficiency Vs Output Power Stereo BTL Mode  
Crosstalk Vs Frequency Stereo BTL Mode  
10  
7  
13  
15  
8.2.2 Mono Parallel Bridge Tied Load Application  
A mono system refers to a system in which the amplifier is used to drive a single loudspeaker. Parallel Bridge  
Tied Load (PBTL) indicates that the two full-bridge channels of the device are placed in parallel and drive the  
loudspeaker simultaneously using an identical audio signal. The primary benefit of operating this device in PBTL  
operation is to reduce the power dissipation and increase the current sourcing capabilities of the amplifier output.  
In this mode of operation, the current limit of the audio amplifier is approximately doubled while the on-resistance  
is approximately halved.  
The loudspeaker can be a full-range transducer or one that only reproduces the low-frequency content of an  
audio signal, as in the case of a powered subwoofer. Often in this use case, two stereo signals are mixed  
together and sent through a low-pass filter to create a single audio signal which contains the low-frequency  
information of the two channels.  
The Mono PBTL Configuration is shown in 51.  
版权 © 2016, Texas Instruments Incorporated  
53  
 
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
51. Mono Parallel Bridge Tied Load Application  
8.2.2.1 Design Requirements  
The design requirements for the Mono Parallel Bridge Tied Load Appliction of the TAS5733L device is found in  
26  
26. Design Requirements for Mono Parallel Bridge Tied Load Application  
PARAMETER  
EXAMPLE  
Low Power Supply  
High Power Supply  
3.3 V  
8 V to 15 V  
I²S Compliant Master  
I²C Compliant Master  
GPIO Control  
Digital  
(1)  
Output Filters  
Speaker  
Inductor-Capacitor Low Pass Filter  
2 Ω minimum.  
(1) Refer to the application report Class-D Filter Design (SLOA119) for a detailed description on the filter design.  
8.2.2.2 Detailed Design Procedure  
Refer to the Detailed Design Procedure section.  
54  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
8.2.2.3 Application Performance Plots  
CURVE TITLE  
FIGURE  
23  
Output Power Vs Supply Voltage Mono PBTL Mode  
Total Harmonic Distortion + Noise Vs Output Power Mono PBTL Mode  
Total Harmonic Distortion + Noise Vs Frequency Mono PBTL Mode  
Power Efficiency Vs Output Power Mono PBTL Mode  
20  
17  
24  
9 Power Supply Recommendations  
To facilitate system design, the TAS5733L device requires only a 3.3-V supply in addition to the PVDD power-  
stage supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuitry.  
Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive, is accommodated by  
built-in bootstrap circuitry requiring only a few external capacitors.  
To provide good electrical and acoustical characteristics, the PWM signal path for the output stage is designed  
as identical, independent half-bridges. For this reason, each half-bridge has separate bootstrap pins (BSTRP_x),  
and power-stage supply pins (PVDD). The gate-drive voltage (GVDD_REG) is derived from the PVDD voltage.  
Place all decoupling capacitors as close to their associated pins as possible. In addition, avoid inductance  
between the power-supply pins and the decoupling capacitors.  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BSTRP_x) to the power-stage output pin (AMP_OUT_X). When the power-stage output is low, the bootstrap  
capacitor is charged through an internal diode connected between the gate-drive regulator output pin  
(GVDD_REG) and the bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is  
shifted above the output potential and thus provides a suitable voltage supply for the high-side gate driver. The  
capacitors shown in Typical Applications ensure sufficient energy storage, even during minimal PWM duty  
cycles, to keep the high-side power-stage FET (LDMOS) fully turned on during the remaining part of the PWM  
cycle.  
Special attention should be paid to the power-stage power supply; this includes component selection, PCB  
placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD). For  
optimal electrical performance, EMI compliance, and system reliability, each PVDD pin should be decoupled with  
a 100-nF, X7R ceramic capacitor placed as close as possible to each supply pin.  
The TAS5733L device is fully protected against erroneous power-stage turn-on due to parasitic gate charging.  
版权 © 2016, Texas Instruments Incorporated  
55  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and  
the layout of the supporting components used around them. The system level performance metrics, including  
thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all  
affected by the device and supporting component layout. Ideally, the guidance provided in the Application  
Information section with regard to device and component selection can be followed by precise adherence to the  
layout guidance shown in 52. The examples represent exemplary baseline balance of the engineering trade-  
offs involved with laying out the device. The designs can be modified slightly as needed to meet the needs of a  
given application. For example, in some applications, solution size can be compromised to improve thermal  
performance through the use of additional contiguous copper near the device. Conversely, EMI performance can  
be prioritized over thermal performance by routing on internal traces and incorporating a via picket-fence and  
additional filtering components.  
10.1.1 Decoupling Capacitors  
Placing the bypassing and decoupling capacitors close to supply has been long understood in the industry. The  
placement of the capacitors applies to AVDD and PVDD. However, the capacitors on the PVDD net for the  
TAS5733L device deserve special attention. The small bypass capacitors on the PVDD lines of the DUT must be  
placed as close the PVDD pins as possible. Not only does placing these devices far away from the pins increase  
the electromagnetic interference in the system, but doing so can also negatively affect the reliability of the device.  
Placement of these components too far from the TAS5733L device may cause ringing on the output pins that can  
cause the voltage on the output pin to exceed the maximum allowable ratings shown in the Absolute Maximum  
Ratings table, damaging the device. For that reason, the capacitors on the PVDD net must be no further away  
from their associated PVDD pins than what is shown in the example layouts in the Layout Example section.  
10.1.2 Thermal Performance and Grounding  
Follow the layout examples shown in the Layout Example section of this document to achieve the best balance  
of solution size, thermal, audio, and electromagnetic performance. In some cases, deviation from this guidance  
may be required due to design constraints which cannot be avoided. In these instances, the system designer  
should ensure that the heat can get out of the device and into the ambient air surrounding the device.  
Fortunately, the heat created in the device naturally travels away from the device and into the lower temperature  
structures around the device.  
Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures.  
These tips should be followed to achieve that goal:  
Avoid placing other heat-producing components or structures near the amplifier (including above or below in  
the end equipment).  
Use a higher layer count PCB if possible to provide more heat sinking capability for the TAS5733L device and  
to prevent traces of copper signal and power planes from breaking up the contiguous copper on the top and  
bottom layer.  
Place the TAS5733L device away from the edge of the PCB when possible to ensure that heat can travel  
away from the device on all four sides.  
Avoid cutting off the flow of heat from the TAS5733L device to the surrounding areas with traces or via  
strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular  
to the device.  
Unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads, orient it so that the narrow end of the passive component is facing the TAS5733L  
device. Because the ground pins are the best conductors of heat in the package, maintain a contiguous  
ground plane from the ground pins to the PCB area surrounding the device for as many of the ground pins as  
possible.  
56  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
10.2 Layout Example  
52. Layout Example (Stereo) - Top View Composite  
53. Layout Example (Stereo) - Top Layer  
54. Layout Example (Stereo) - Bottom Layer  
版权 © 2016, Texas Instruments Incorporated  
57  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Layout Example (接下页)  
55. Layout Example (Mono) - Top View Composite  
56. Layout Example (Mono) - Top Layer  
57. Layout Example (Mono) - Bottom Layer  
58  
版权 © 2016, Texas Instruments Incorporated  
TAS5733L  
www.ti.com.cn  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
11 器件和文档支持  
11.1 商标  
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016, Texas Instruments Incorporated  
59  
TAS5733L  
ZHCSEX0A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
60  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5733LDCA  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
DCA  
DCA  
48  
48  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
0 to 85  
0 to 85  
TAS5733L  
TAS5733L  
TAS5733LDCAR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5733LDCAR  
HTSSOP DCA  
48  
2000  
330.0  
24.4  
8.6  
13.0  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DCA 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TAS5733LDCAR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DCA HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TAS5733LDCA  
48  
40  
530  
11.89  
3600  
4.9  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DCA 48  
12.5 x 6.1, 0.5 mm pitch  
HTSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224608/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TAS5751M

带 EQ 和 AGL 功能的 25W 立体声、40W 单声道、8V 至 26.4V、数字输入、开环 D 类音频放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5751MDCA

带 EQ 和 AGL 功能的 25W 立体声、40W 单声道、8V 至 26.4V、数字输入、开环 D 类音频放大器 | DCA | 48 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5751MDCAR

带 EQ 和 AGL 功能的 25W 立体声、40W 单声道、8V 至 26.4V、数字输入、开环 D 类音频放大器 | DCA | 48 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5753MD

带 AGL 和 HP 的 20W 立体声、39W 单声道、4.5V 至 26.4V、数字输入开环 D 类音频放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5753MDDCA

带 AGL 和 HP 的 20W 立体声、39W 单声道、4.5V 至 26.4V、数字输入开环 D 类音频放大器 | DCA | 48 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5753MDDCAR

带 AGL 和 HP 的 20W 立体声、39W 单声道、4.5V 至 26.4V、数字输入开环 D 类音频放大器 | DCA | 48 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5754M

40W 立体声、61W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5754MDCA

40W 立体声、61W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5754MDCAR

40W 立体声、61W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI

TAS5755M

具有 2.1 声道模式的 50W 立体声、100W 单声道、8V 至 26.4V、数字输入开环 D 类音频放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TI