TAS5768MDCA [TI]

具有 1SPW 的 50W 立体声、100W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85;
TAS5768MDCA
型号: TAS5768MDCA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1SPW 的 50W 立体声、100W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85

放大器 光电二极管 商用集成电路 音频放大器
文件: 总87页 (文件大小:3185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
TAS576xM 2x50-W/4-Ω PurePath™智能放大器  
1 特性  
2 应用  
1
PurePath 智能放大器:  
音频接口盒  
条形音箱  
优化和保护动圈式扬声器  
笔记本电脑  
一体化计算机  
数字电视  
低音 Q 补偿和频率扩展:音量更高、低音增  
强、清晰度更佳且保真度更高。  
热量和偏移限制。  
立体声 D 类放大器:  
3 说明  
宽电源范围:4.5V 26.4V  
宽负载范围:2Ω 8Ω  
TAS576xM PurePath 智能放大器不仅可增强低音效果  
和音质保真度,还可提供更高的音量,同时将扬声器驱  
动至其热限值和机械限值。  
高输出电流:2x 7.5A  
峰值输出功率 2x 50W/4Ω  
连续功率:2x 20W(不使用散热器)  
电源、静音和待机开/关时无喀哒声和噼啪声  
TAS576xM 包含两个桥接负载 (BTL) D 类放大器,峰  
值功率高达 2x50W/4Ω。在热保护方面,该放大器针对  
典型扬声器而设计,可处理扬声器音圈升温期间的高温  
峰值,然后将其平均功率降至安全限值。  
低输出噪声:<60µVrms12V 供电时);  
<90µVrms24V 供电时)  
低总谐波失真和噪声 (THD+N)< 0.02%  
1W/4Ω1kHz 时)  
该器件具有 4.5V 26.4V 宽电源范围,支持从双节锂  
离子电池到固定 24V 电源各类不同的电源选项。  
热保护、过流保护和短路保护  
可配置的数字音频处理器。  
降频混频和具有 10 BiQuad 的定制 EQ  
数字音频接口:I2S 或时分复用 (TDM) 输入  
凭借德州仪器 (TI) PurePath Smart Amp 技术,可  
更多地以峰值功率(而非平均额定功率)来驱动扬声  
器,且不必担心因偏移或热过载而损坏扬声器。  
44.1kHz 48kHz 快速 (FS)  
器件信息(1)  
可配置的数字输出  
器件编号  
TAS5766M  
TAS5768M  
封装  
封装尺寸(标称值)  
多段数模转换器 (DAC),去抖动性能出色  
集成高性能音频锁相环 (PLL)  
I2C 控制  
HTSSOP (48)  
12.50mm x 6.10mm  
VQFN (48)  
7.00mm x 5.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
48 引脚 PowerPAD™散热薄型小外形尺寸  
(HTSSOP) 或超薄型四方扁平无引线 (VQFN) 封装  
智能放大器概览  
Smart SOA  
System Inputs  
Smart Sense  
Sensor Inputs  
Smart Amp  
Adaptive Control Algorithm  
Smart Enhance  
Smart Bass, Smart  
DRP  
Volume  
EQ  
Smart Protection  
Thermal, Excursion  
DIN  
AMP  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLAS965  
 
 
 
 
 
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 36  
7.6 Register Maps......................................................... 38  
Applications and Implementation ...................... 39  
8.1 Application Information............................................ 39  
8.2 Typical Applications ................................................ 40  
Power Supply Recommendations...................... 47  
9.1 AVDD, DVDD, CPVDD Supply ............................... 47  
9.2 GVDD Supply.......................................................... 47  
9.3 PVCC, AVCC Power Supply................................... 47  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings ............................................................ 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 DC Electrical Characteristics .................................... 7  
6.6 AC Electrical Characteristics..................................... 8  
6.7 Electrical Characteristics........................................... 9  
6.8 Timing Requirements - I2C Bus Timing .................. 10  
6.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 20  
8
9
10 Layout................................................................... 48  
10.1 Layout Guidelines ................................................. 48  
10.2 Layout Examples................................................... 49  
11 Register Map Information................................... 51  
11.1 Detailed Register Map Descriptions...................... 51  
12 器件和文档支持 ..................................................... 75  
12.1 相关链接................................................................ 75  
12.2 ....................................................................... 75  
12.3 静电放电警告......................................................... 75  
12.4 术语表 ................................................................... 75  
13 机械、封装和可订购信息....................................... 75  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (September 2014) to Revision D  
Page  
Added paragraph to clarify the 3-wire mode of I2S operation.............................................................................................. 41  
Changes from Revision B (September 2014) to Revision C  
Page  
Added NOTE and additional descriptive text to Applications and Implementation section. ................................................ 39  
Moved Detailed Register Map Descriptions section ............................................................................................................ 51  
Changes from Revision A (June 2014) to Revision B  
Page  
Added descriptions for CDST[5] through CDST[0] in Register 94 (Hex 0x5E); and changed Bit 6 description from  
CDST[6:0] to CDST[6]. ......................................................................................................................................................... 69  
Changes from Original (September 2013) to Revision A  
Page  
将数据表更改为最新格式;将器件信息表添加到了第一页。 .................................................................................................. 1  
添加了 TAS5768M 器件.......................................................................................................................................................... 1  
添加了 RMT 封装选项............................................................................................................................................................. 1  
2
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
RMT Package  
48-Pin VQFN  
Top View  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND 25  
PVCC 26  
GVDD 27  
GAIN/FSW 28  
GND 29  
14  
13  
12  
11  
10  
9
GND  
PVCC  
AVCC  
FAULT  
GND  
INNR 30  
INNL  
Thermal PAD  
Connect to GND  
INPR 31  
8
INPL  
DACR 32  
AVDD 33  
GND 34  
7
DACL  
VNEG  
CAPM  
GND  
6
5
SDA 35  
4
SCL 36  
3
CAPP  
CPVDD  
DVDD  
GPIO1 37  
GPIO2 38  
2
1
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Copyright © 2013–2018, Texas Instruments Incorporated  
3
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
DCA Package  
48-Pin HTSSOP  
Top View  
BSNR  
OUTNR  
GND  
1
2
3
4
5
6
7
8
9
48  
BSNL  
47 OUTNL  
46 GND  
OUTPR  
BSPR  
45 OUTPL  
44 BSPL  
43 PVCC  
42 PVCC  
41 AVCC  
PVCC  
PVCC  
GVDD  
GAIN/FSW  
40  
39  
FAULT  
GND  
GND 10  
11  
12  
13  
14  
38 INNL  
37 INPL  
36 DACL  
35 VNEG  
34 CAPM  
33 GND  
INNR  
INPR  
Thermal  
PAD  
DACR  
AVDD  
Connect  
to GND  
GND 15  
SDA 16  
SCL 17  
32  
CAPP  
GPIO1 18  
GPIO2 19  
ADR2 20  
GPIO3 21  
SCLK 22  
BCLK 23  
DIN 24  
31 CPVDD  
30 DVDD  
29 GND  
28 LDOO  
27 XSMT/UVP  
26 ADR1  
25 LRCLK  
4
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
SYMBOL  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Pin Functions  
HTTSOP  
PIN No.  
VQFN  
PIN No.  
TYPE(1)  
DESCRIPTION  
ADR1  
ADR2  
AVCC  
AVDD  
BCLK  
26  
20  
41  
14  
23  
45  
39  
12  
33  
42  
I
I
LSB address select bit for I2C  
2nd LSB address select bit for I2C  
Analog Supply – connect to PVCC  
Analog Supply  
PI  
PI  
I
Audio data bit clock input  
Boot strap negative Left channel output, connect to 220 nF X7R ceramic cap to  
OUTNL  
BSNL  
BSNR  
BSPL  
BSPR  
48  
1
19  
20  
17  
22  
BST  
BST  
BST  
BST  
Boot strap negative Right channel output, connect to 220 nF X7R ceramic cap to  
OUTNR  
Boot strap positive Left channel output, connect to 220 nF X7R ceramic cap to  
OUTPL  
44  
5
Boot strap positive Right channel output, connect to 220 nF X7R ceramic cap to  
OUTPR  
CAPM  
CAPP  
34  
5
Charge pump flying capacitor pin for negative rail  
Charge pump flying capacitor pin for positive rail  
Charge pump power supply, 3.3 V  
32  
3
CPVDD  
DACL  
31  
2
PI  
O
O
I
36  
7
Analog output from DAC left channel, ground centered  
Analog output from DAC Right channel, ground centered  
Audio data input  
DACR  
DIN  
13  
32  
24  
43  
DVDD  
FAULT  
GAIN/FSW  
30  
1
PI  
OD  
I
Digital power supply, 3. 3 V  
40  
9
11  
28  
General fault reporting, Open Drain, High = normal operation, Low = fault condition  
Sets power stage Gain and selects output switching frequency  
3, 10, 15,  
4, 10, 14, 15,  
GND  
29, 33, 39, 24, 25, 29, 34,  
G
Ground  
46  
18  
19  
21  
8
48  
37  
38  
40  
27  
9
GPIO1  
GPIO2  
GPIO3  
GVDD  
INNL  
I/O  
I/O  
I/O  
PBY  
I
General purpose digital input and output port  
General purpose digital input and output port  
General purpose digital input and output port  
Internal Gate drive supply, connect 1uF to GND  
Negative audio input for Left channel. Internally biased at 3 V  
Negative audio input for Right channel. Internally biased at 3 V  
Positive audio input for Left channel. Internally biased at 3 V  
Positive audio input for Right channel. Internally biased at 3 V  
Internal logic supply rail pin for decoupling, 1.8 V, connect 1 µF to GND  
Audio data word clock input  
38  
11  
37  
12  
28  
25  
47  
2
INNR  
30  
8
I
INPL  
I
INPR  
31  
47  
44  
18  
21  
16  
23  
I
LDOO  
LRCLK  
OUTNL  
OUTNR  
OUTPL  
OUTPR  
PBY  
I
PO  
PO  
PO  
PO  
Negative Left channel output  
Negative Right channel output  
45  
4
Positive Left channel output  
Positive Right channel output  
6, 7, 42,  
43  
PVCC  
13, 26  
PI  
4.5-V to 26.4-V Power supply  
SCL  
17  
22  
16  
36  
41  
35  
I
Input clock for I2C  
SCLK  
SDA  
I
System clock input (also referred to as master clock input)  
Input data for I2C  
I/O  
Thermal  
pad  
49  
49  
G
Connect Thermal Pad to Ground  
VNEG  
35  
27  
6
PO  
I
Negative charge pump rail pin for decoupling –3.3 V  
Soft mute control : Soft mute (Low) / soft un-mute (High)  
XSMT/UVP  
46  
(1) TYPE: BST=Boot Strap, PO=Power Output, G = General Ground, I= Input, O= Output, I/O = Input or Output, , PBY=Power Bypass, ,  
PI=Power Input,.  
Copyright © 2013–2018, Texas Instruments Incorporated  
5
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
Supply Voltage: PVCC, AVCC  
30  
3.9  
6.3  
VCC  
AVDD, DVDD, CPVDD  
V
Input Voltage: INPL, INNL, INPR, INNR  
V
VI  
Input Voltage: GAIN/FSW, FAULT  
Digital Input Voltage: DVDD=3.3V  
Operating free-air temperature  
–0.3 GVDD+0.3  
V
–0.3  
–40  
–40  
–40  
–40  
3.9  
85  
V
TA  
TJ  
°C  
°C  
°C  
°C  
Operating Junction temperature, digital die  
Operating Junction temperature, power die  
125  
150  
125  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001, all pins(2)  
±2000  
Electrostatic  
discharge  
(1)  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(3)  
±500  
(1) Electrostatic discharge (ESD) measures device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
3
TYP  
MAX  
26.4  
3.6  
UNIT  
Vcc  
Vdd  
VIH  
PVCC, AVCC  
Supply Voltage  
V
AVDD, DVDD, CPVDD  
3.3  
High level input voltage  
Low level input voltage  
Low level output voltage  
2
V
V
V
VIL  
0.8  
0.8  
VOL  
FAULT, Rpullup = 100 kΩ, PVCC = 26 V  
PVCC = 24 V  
3.2  
2.5  
1.8  
0.9  
1.8  
1.4  
1.0  
0.5  
1
4
3
PVCC = 18 V  
RL  
Minimum load impedance  
PVCC = 12 V  
2
PVCC = 6 V  
1
PVCC = 24 V  
2.2  
1.6  
1.2  
0.6  
4.7  
PVCC = 18 V  
PBTL Minimum load  
impedance  
RL_PBTL  
PVCC = 12 V  
PVCC = 6 V  
Lo  
Output filter inductance  
Minimum output filter inductance under short-circuit condition  
µH  
6
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
6.4 Thermal Information  
TAS576xM  
RMT (48 PINS)  
DCA (48 PINS)  
THERMAL METRIC(1)  
UNIT  
2 LAYER  
PCB(3)  
4 LAYER PCB(2)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
30  
15  
6
30  
14  
RθJC(top)  
RθJB  
13  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
6
0.6  
13  
ψJB  
RθJC(bot)  
1.9  
0.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) For the PCB layout see the TAS576xMRMTEVM User Guide. A 4 layer 60x60mm 1oc PCB was used  
(3) For the PCB layout see the TAS576xMDCAEVM User Guide. A 2 layer 60x60mm 1oc PCB was used  
6.5 DC Electrical Characteristics  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3 V, fS = 48 kHz, system clock = 512 fS and 24-bit data, VCC  
=
12 V to 24 V, RL = 4 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Class-D output offset voltage (measured  
differentially)  
Input is Bipolar Zero data  
PVCC = 12 V, gain set to 14 dB  
1
10  
mV  
| VOS |  
PVCC = 24 V, gain set to 20 dB  
1.5  
15  
mV  
Drain-source on-state resistance, measured  
pin to pin  
RDS(on)  
G
VCC = 24 V, Iout = 500 mA, TJ = 25°C  
120  
m  
Gain pin voltage < 3 V  
Gain pin voltage > 3.3 V  
XSMT = 2 V  
13  
19  
14  
20  
15  
21  
dB  
dB  
ms  
ms  
V
Analog Gain from INxx to OUTxx  
ton  
Turn-on time  
1.5  
0.8  
6.9  
tOFF  
GVDD  
Turn-off time  
XSMT = 0.8 V  
Gate Drive Supply Voltage  
IGVDD 200 µA  
Copyright © 2013–2018, Texas Instruments Incorporated  
7
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
6.6 AC Electrical Characteristics  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512fS and 24-bit data, VCC  
=
12V to 24V, RL = 4 unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 mVPP ripple at 1 kHz, gain = 20 dB, zero input  
signal  
KSVR  
Power supply ripple rejection  
–60  
dB  
THD+N = 10%, 1 kHz, 24-V supply, 8-Ω load  
THD+N = 10%, 1 kHz, 24-V supply, 4-Ω load  
Ra = 100 k, Rb = open  
30  
50  
W
W
PO  
Peak output power  
8
Ra = 20 k, Rb = 100 kΩ  
10  
Output switch frequency multiple of FS Gain  
set to 14 dB  
Fsw  
Ra = 39 k, Rb = 100 kΩ  
12  
Ra = 47 k, Rb = 75 kΩ  
16  
Ra = 51 k, Rb = 51 kΩ  
8
Ra = 75 k, Rb = 47 kΩ  
10  
Output switch frequency multiple of FS Gain  
set to 20 dB  
Fsw  
Ra = 100 k, Rb = 39 kΩ  
12  
Ra = 100k, Rb = 20 kΩ  
16  
1W, 1 kHz, 4R load, 12 V supply  
1W, 1 kHz, 8R load, 24 V supply  
20-22 kHz, A-weighted, 14 dB gain, 12 V supply  
20-22 kHz, A-weighted, 20 dB gain, 24 V supply  
20-22 kHz, A-weighted, 14 dB gain, 12 V supply  
20-22 kHz, A-weighted, 20 dB gain, 24 V supply  
VO = 1 Vrms, 20 dB gain, 1 kHz, 4-Ω load  
1 kHz, 10 ms, 3-Ω load, 24-V supply  
0.05%  
0.05%  
60  
THD+N  
VN  
Total Harmonic Distortion + Noise  
Output integrated noise  
µV  
µV  
dB  
dB  
dB  
A
85  
103  
106  
–90  
7.5  
SNR  
Signal to Noise Ratio  
Crosstalk  
IP  
Peak output current  
8
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
6.7 Electrical Characteristics  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3 V, fS = 48 kHz, system clock = 512 fS and 24-bit data, VCC  
=
12 V to 24 V, RL = 4 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution  
16  
24  
32  
Bits  
DATA FORMAT (PCM MODE)  
I2S, left justified, right justified  
and TDM  
Audio data interface format  
Audio data bit length  
Audio data format  
16, 24, 32-bit acceptable  
MSB First, 2s Complement  
fS  
Sampling frequency  
8
48  
kHz  
CLOCKS  
64, 128, 192, 256, 384, 512,  
768, 1024, 1152, 1536, 2048, or  
3072 FSCLK, up to 50MHz  
System clock frequency  
Clock divider uses fractional divide D>0, P=1  
Clock divider uses integer divide D=0, P=1  
6.7  
1
20  
20  
MHz  
MHz  
PLL input frequency /SCL Clock  
Frequency 400kHz)  
DIGITAL INPUT/OUTPUT  
Logic Family: 3.3V LVCMOS compatible  
VIH  
High level input voltage  
0.7xDVDD  
V
V
0.3 x  
DVDD  
VIL  
low level input voltage  
IIH  
High level input current  
low level input current  
High level output voltage  
VIN = VDD  
VIN = 0 V  
10  
µA  
µA  
V
IIL  
–10  
VOH  
IOH = –4 mA  
0.8xDVDD  
0.22 x  
DVDD  
VOL  
low level output voltage  
IOL = 4 mA  
V
DAC DYNAMIC PERFORMANCE, MEASURED ON DACL and DACR  
THD+N at –1dB  
Dynamic range  
–90  
109  
109  
109  
dB  
dB  
dB  
dB  
Signal to noise ratio  
Channel separation  
DAC ANALOG OUTPUT, MEASURED ON DACL and DACR  
Output voltage  
2.1  
2%  
Vrms  
mV  
Gain error  
| % | of FSR  
6%  
6%  
5
Gain mismatch, channel to channel | % | of FSR  
1/2%  
1
Bipolar zero error  
|At bipolar zero|  
POWER SUPPLY REQUIREMENTS  
DVDD  
AVDD  
Digital Supply Voltage  
3
3
3
3.3  
3.3  
3.3  
12  
12  
0.5  
11  
24  
0.2  
20  
32  
30  
50  
3.6  
3.6  
3.6  
15  
V
Analog Supply Voltage  
Charge-pump supply voltage  
V
V
fs = 48 kHz, Input is Bipolar Zero data  
fs = 48 kHz, Input is 1 kHz -1 dBFS data  
fs = N/A, power Down Mode  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
IDD  
DVDD supply current at 3.3V  
15  
0.8  
16  
fs = 48 kHz, Input is Bipolar Zero data  
fs = 48 kHz, Input is 1kHz -1 dBFS data  
fs = N/A, power Down Mode  
AVDD/ CPVDD supply current at  
3.3V  
32  
ICC  
0.4  
35  
XSMT = 2 V, no load, PVCC = 12 V  
XSMT = 2 V, no load, PVCC = 24 V  
XSMT = 0.8 V, no load, PVCC = 12 V  
XSMT = 0.8 V, no load, PVCC = 24 V  
PVCC Quiescent supply current  
50  
PVCC Quiescent supply current in  
shutdown mode  
ICC(SD)  
400  
Copyright © 2013–2018, Texas Instruments Incorporated  
9
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
MAX UNIT  
6.8 Timing Requirements - I2C Bus Timing  
MIN  
Standard  
Fast  
100  
kHz  
400  
tSCL  
tBUF  
tLOW  
tHI  
SCL clock frequency  
Standard  
Fast  
4.7  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of th eSCL clock  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
µs  
µs  
µs  
µs  
µs  
µs  
1.3  
Standard  
Fast  
4.7  
1.3  
Standard  
Fast  
4
0.6  
Standard  
Fast  
4.7  
tRS-SU  
0.6  
tS-HD  
Standard  
Fast  
4
tRS-HD  
0.6  
Standard  
Fast  
0.25  
tD-SU  
0.1  
Standard  
Fast  
0
0.9  
µs  
tD-HD  
Data hold time  
0
0.9  
Standard  
Fast  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
20+ 0.1CB  
4
1
µs  
tSCL-R  
tSCL-R1  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
Rise time of SCL signal  
0.3  
Standard  
Fast  
1
µs  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
0.3  
Standard  
Fast  
1
µs  
Fall time of SCL signal  
0.3  
Standard  
Fast  
1
µs  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
0.3  
Standard  
Fast  
1
µs  
0.3  
Standard  
Fast  
µs  
0.6  
CB  
tSP  
Capacitive load for SDA and SCL line  
Pulse width of spike suppressed  
400  
50  
pF  
ns  
Fast  
Noise margin at high level for each connected device (including  
hysteresis)  
VNH  
0.2 VDD  
V
Figure 1. Register Access Timing  
10  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
6.9 Typical Characteristics  
All measurements taken at 1kHz, unless otherwise noted. Measurements were made using the TAS5766MDCA EVM.  
10  
10  
Analog Gain =14dB  
PO = 0.5W  
PO = 1W  
PO = 2.5W  
Analog Gain =14dB  
PO = 1W  
PO = 2.5W  
P
O = 5W  
DAC Gain = −6dB  
PVCC = 6V  
TA = 25°C  
DAC Gain = 0dB  
PVCC = 12V  
TA = 25°C  
RL = 4Ω  
RL = 4Ω  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
G002  
G003  
Figure 2. Total Harmonic Distortion + Noise vs Frequency  
Figure 3. Total Harmonic Distortion + Noise vs Frequency  
10  
10  
Analog Gain =20dB  
PO = 1W  
PO = 5W  
PO = 10W  
Analog Gain =20dB  
PO = 1W  
PO = 5W  
PO = 10W  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
RL = 4Ω  
RL = 8Ω  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
G004  
G005  
Figure 4. Total Harmonic Distortion + Noise vs Frequency  
Figure 5. Total Harmonic Distortion + Noise vs Frequency  
10  
10  
Analog Gain = 14dB  
Analog Gain = 14dB  
DAC Gain = −6dB  
PVCC = 6V  
TA = 25°C  
DAC Gain = 0dB  
PVCC = 12V  
TA = 25°C  
RL = 4Ω  
RL = 4Ω  
1
1
fs = 384kHz  
fs = 384kHz  
0.1  
0.1  
0.01  
0.01  
f = 20Hz  
f = 1kHz  
f = 6kHz  
f = 20Hz  
f = 1kHz  
f = 6kHz  
0.001  
0.001  
0.01  
0.1  
Output Power (W)  
1
10  
0.01  
0.1  
1
10  
30  
Output Power (W)  
G006  
G007  
Figure 6. Total Harmonic Distortion + Noise vs Power  
Figure 7. Total Harmonic Distortion + Noise vs Power  
Copyright © 2013–2018, Texas Instruments Incorporated  
11  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
All measurements taken at 1kHz, unless otherwise noted. Measurements were made using the TAS5766MDCA EVM.  
10  
10  
Analog Gain = 20dB  
Analog Gain = 20dB  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
DAC Gain = 0dB  
PVCC = 12V  
TA = 25°C  
RL = 4Ω  
RL = 8Ω  
1
1
fs = 384kHz  
fs = 384kHz  
0.1  
0.1  
0.01  
0.01  
f = 20Hz  
f = 1kHz  
f = 6kHz  
f = 20Hz  
f = 1kHz  
f = 6kHz  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
30  
Output Power (W)  
Output Power (W)  
G008  
G009  
Figure 8. Total Harmonic Distortion + Noise vs Power  
Figure 9. Total Harmonic Distortion + Noise vs Power  
10  
10  
Analog Gain = 14dB  
Analog Gain = 14dB  
DAC Gain = −6dB  
PVCC = 6V  
TA = 25°C  
DAC Gain = 0dB  
PVCC = 12V  
TA = 25°C  
RL = 4Ω  
RL = 4Ω  
1
1
fs = 768kHz  
fs = 768kHz  
0.1  
0.1  
0.01  
0.01  
f = 20Hz  
f = 1kHz  
f = 6kHz  
f = 20Hz  
f = 1kHz  
f = 6kHz  
0.001  
0.001  
0.01  
0.1  
Output Power (W)  
1
10  
0.01  
0.1  
1
10  
30  
Output Power (W)  
G010  
G011  
Figure 10. Total Harmonic Distortion + Noise vs Power  
Figure 11. Total Harmonic Distortion + Noise vs Power  
10  
10  
Analog Gain = 20dB  
Analog Gain = 20dB  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
DAC Gain = 0dB  
PVCC = 12V  
TA = 25°C  
RL = 4Ω  
RL = 8Ω  
1
1
fs = 768kHz  
fs = 768kHz  
0.1  
0.1  
0.01  
0.01  
f = 20Hz  
f = 1kHz  
f = 6kHz  
f = 20Hz  
f = 1kHz  
f = 6kHz  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
30  
Output Power (W)  
Output Power (W)  
G012  
G013  
Figure 12. Total Harmonic Distortion + Noise vs Power  
Figure 13. Total Harmonic Distortion + Noise vs Power  
12  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Typical Characteristics (continued)  
All measurements taken at 1kHz, unless otherwise noted. Measurements were made using the TAS5766MDCA EVM.  
30  
360  
300  
240  
180  
120  
60  
30  
360  
300  
240  
180  
120  
60  
Amplitude  
Phase  
Amplitude  
Phase  
25  
25  
20  
20  
15  
15  
10  
10  
5
5
0
0
0
0
−5  
−60  
−120  
−180  
−240  
−300  
−360  
−5  
−60  
−120  
−180  
−240  
−300  
−360  
−10  
−15  
−20  
−25  
−30  
−10  
−15  
−20  
−25  
−30  
Analog Gain =20dB  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
RL = 4  
LCFILTER =680nF + 10 µH  
fs=384kHz  
Analog Gain =20dB  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
RL = 4  
LCFILTER =330nF + 4.7 µH  
fs=768kHz  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
G014  
G015  
Figure 14. Gain/Phase vs Frequency  
Figure 15. Gain/Phase vs Frequency  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Analog Gain =20dB  
Analog Gain =20dB  
DAC Gain = 3dB  
TA = 25°C  
RL = 8Ω  
DAC Gain = 3dB  
TA = 25°C  
RL = 4Ω  
THD+N = 1%  
THD+N = 10%  
THD+N = 1%  
THD+N = 10%  
0
0
5
7
9
11 13 15 17 19 21 23 25 26  
Supply Voltage (V)  
5
7
9
11 13 15 17 19 21 23 25 26  
Supply Voltage (V)  
G016  
G017  
Thermally limited for dashed lines  
Thermally limited for dashed lines  
Figure 16. Maximum Output Power vs Supply Voltage  
Figure 17. Maximum Output Power vs Supply Voltage  
100  
100  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 8  
fs = 384kHz  
20  
10  
0
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 4  
fs = 384kHz  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Power (W)  
Output Power (W)  
G018  
G019  
Figure 18. Power Efficiency vs Output Power  
Figure 19. Power Efficiency vs Output Power  
Copyright © 2013–2018, Texas Instruments Incorporated  
13  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
All measurements taken at 1kHz, unless otherwise noted. Measurements were made using the TAS5766MDCA EVM.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 8  
fs = 768kHz  
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 4  
fs = 768kHz  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Power (W)  
Output Power (W)  
G020  
G021  
Figure 20. Power Efficiency vs Output Power  
Figure 21. Power Efficiency vs Output Power  
0
0
Analog Gain =20dB  
Analog Gain =20dB  
−10  
DAC Gain = 0dB  
PVCC = 24V  
DAC Gain = 0dB  
−10  
PVCC = 12VDC+100mVp−p  
TA = 25°C  
RL = 8Ω  
−20  
TA = 25°C  
RL = 4Ω  
−20  
−30  
−40  
−30  
−40  
−50  
−60  
−70  
−80  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
−90  
Right to Left  
Left to Right  
Left Channel  
Right Channel  
−100  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
G022  
G023  
Figure 22. Crosstalk vs Frequency  
Figure 23. Supply Ripple Rejection vs Frequency  
120  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Analog Gain =20dB  
115  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
DAC Gain = 3dB  
TA = 25°C  
RL =3Ω  
Analog Gain = 20dB  
DAC Gain = 0dB  
PVCC = 6  
TA = 25°C  
RL = 2Ω  
PVCC =12V  
PVCC = 24V  
THD+N = 1%  
THD+N = 10%  
fs = 384kHz  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
7
9
11 13 15 17 19 21 23 25 26  
Supply Voltage (V)  
Output Power (W)  
G024  
G025  
Thermally limited for dashed lines  
Figure 24. Power Efficiency (PBTL) vs Output Power  
Figure 25. Maximum Output Power vs Supply Voltage  
14  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Typical Characteristics (continued)  
All measurements taken at 1kHz, unless otherwise noted. Measurements were made using the TAS5766MDCA EVM.  
10  
10  
Analog Gain =14dB  
PO = 1W  
PO = 5W  
PO =10W  
Analog Gain =24dB  
PO = 1W  
PO = 10W  
PO =25W  
DAC Gain = 0dB  
PVCC =12V  
TA = 25°C  
DAC Gain = 0dB  
PVCC =24V  
TA = 25°C  
RL = 2Ω  
RL = 4Ω  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
G027  
G028  
Figure 26. Total Harmonic Distortion + Noise (PBTL)  
vs Frequency  
Figure 27. Total Harmonic Distortion + Noise (PBTL)  
vs Frequency  
10  
10  
Analog Gain = 14dB  
Analog Gain = 20dB  
DAC Gain = 0dB  
PVCC = 12V  
TA = 25°C  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
RL = 2Ω  
1
RL =4Ω  
1
0.1  
0.1  
0.01  
0.01  
f = 20Hz  
f = 1kHz  
f = 6kHz  
f = 20Hz  
f = 1kHz  
f = 6kHz  
0.001  
0.001  
0.01  
0.1  
1
10  
50  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
G029  
G030  
Figure 28. Total Harmonic Distortion + Noise (PBTL)  
vs Power  
Figure 29. Total Harmonic Distortion + Noise (PBTL)  
vs Power  
Copyright © 2013–2018, Texas Instruments Incorporated  
15  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TAS576xM PurePath Smart Amp enhance the bass, sound fidelity and increased loudness by driving the  
speaker to its thermal and mechanical limits.  
The TAS576xM contains two BTL class-D amplifiers that supply up to 2 x 50W peak power into 4 Ω. The  
amplifier is thermally designed to match the typical speaker so it can withstand high peaks for the time it takes  
the speaker voice-coil to heat up; it then lowers the average power to safe operating limits.  
The wide supply range of 4.5 V to 26.4 V enables the use of different power supply options from 2-cell Li-Ion  
batteries to fixed 24-V supply.  
The Smart Amp is available with two different class-D amplifier modulations: BD-mode in the TAS5766M; and,  
1SPW-mode in the TAS5768M.  
TI's PurePath Smart Amp technology allows speakers to be driven with more peak power than their average-  
power rating, without damage to the speaker by voice coil over excursion or thermal overload.  
Sophisticated speaker models (electro-mechanical-thermal) are used as a foundation for the protection and  
enhancement of the system. This is done by modeling the loudspeaker in the on-chip miniDSP and running an  
adaptive algorithm that modifies the output based on the modeled conditions of the speaker.  
TI provides a PurePath Console (PPC) GUI, including a TI learning board that measures the loudspeaker  
parameters. The PPC GUI generates the code for download to the device on boot-up.  
Smart Amp technology in the TAS576xM uses information from the SOA (Safe Operating Area) characterization  
details for the loudspeaker, as well as real-world temperature, and uses this data in an adaptive control algorithm  
in order to control Smart Bass and Smart DRP (Dynamic Range Preservation). The protection side of the  
algorithm is also used for thermal protection and mechanical voice coil excursion protection.  
7.2 Functional Block Diagram  
DVDD 3.3V  
PVCC 4.5 to 26V  
DOUT  
(GPIO3)  
OUTPR  
OUTNR  
Current  
Segment  
DAC  
Closed  
Loop  
AMP  
DIN  
LRCLK  
BCLK  
I²S  
Volume  
&
Gain  
EQ:  
Serial  
Audio  
Port  
10x  
BiQuad  
Mute & SD-Control  
Control  
Speaker  
( SCLK )  
Optional  
High/Low-  
pass  
&
Mono  
OUTNL  
OUTPL  
Enhancement  
&
Protection  
Current  
Segment  
DAC  
Closed  
Loop  
AMP  
mixer  
Fully  
Integrated PLL  
Amplifier Gain & SW Freq adjust  
Fault reporting  
I²C  
Adress  
Mute  
GPIO‘s  
GAIN/  
FAULT  
FSW  
SCL  
SDA ADR1 ADR2  
GPIO1 GPIO2  
XSMT  
/UVP  
16  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
7.3 Feature Description  
7.3.1 Smart SOA  
The "Safe Operating Area" (SOA) for a loudspeaker is based on its electro-mechanical-thermal model.  
Depending on a speaker's inefficiency, some of the power is dissipated as heat rather than mechanical/acoustic  
energy. By understanding the characteristics of the speaker, Smart Amp is able to drive the speaker harder,  
without causing the speaker to thermally overload; or, suffer voice coil over-exclusion and fail. SMART SOA are  
parameters that are differentiated by a PPC GUI into coefficients that the algorithm uses.  
7.3.2 Smart BASS  
Smart Bass is an intelligent True Bass Alignment algorithm. Smart Bass uses the combination of the speaker  
model and a desired target response selected by the user to equalize the speaker in the bass region. This target  
response is critical for the sound character and the user can apply the same target response to very different  
speakers and get the same sound.  
In conventional adaptive Bass Boost Algorithms, designers need to vary the amount of bass boost whenever the  
output volume is changed. This approach is very much an "open loop" process. Smart Bass is a new proprietary  
algorithm that combines: True bass extension (in bandwidth and amplitude) and Psycho-acoustic bass extension,  
with a smart adaptive control.  
Smart Bass varies the mix of True Bass extension and Psycho-acoustic bass extension in real time, depending  
on the loudspeakers position in its SOA.  
Smart Bass dynamically switches between True Bass and Psycho-acoustic extension based on a number of  
parameters such as:  
Capabilities and properties of the speaker, including Q compensation  
Music type  
Volume setting  
Temperature  
User preferences  
Designer preferences  
7.3.3 Smart Protection  
The two main failure mechanisms for loudspeakers are over temperature and over excursion. By modeling the  
current state of the speaker, Smart Protection adaptively changes various settings in Smart Amplifier to avoid  
over temperature and over excursion. Design engineers must first provide details of the loudspeaker (driver and  
enclosure) into the GUI. From there the appropriate coefficients are generated for the algorithm.  
7.3.4 Implementing a Real World Design  
Traditionally, system developers and hardware engineers use graphic equalizers in trial-and-error fashion to  
boost the bass for each new speaker until the sound is right (or "good enough" in many cases). However, this  
typically results in a strange combined response with too much phase shift. This process must be repeated every  
time a new speaker is selected. The Smart Bass concept uses the GUI to select a desired target response takes  
the speaker out of the equation. By this approach users can obtain a target response with minimum phase warp  
and time domain ringing which gives a speedy and tight bass. Conversely, users can select a target response  
that has lots of ringing to give a classical heavy ‘oomph’ bass.  
Copyright © 2013–2018, Texas Instruments Incorporated  
17  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (continued)  
7.3.5 Modulation Schemes  
7.3.5.1 BD-Modulation  
The TAS5766M uses this modulation, it is a modulation scheme that allows operation without the classic LC  
reconstruction filter when the amp is driving an inductive load with short speaker wires. Each output is switching  
from 0 volts to the supply voltage. The OUTPx and OUTNx are in phase with each other with no input so that  
there is little or no current in the speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than  
50% for positive output voltages. The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for  
negative output voltages. The voltage across the load sits at 0 V throughout most of the switching period,  
reducing the switching current, which reduces any I2R losses in the load.  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
-
OUTP OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
Figure 30. BD-Modulation  
18  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Feature Description (continued)  
7.3.5.2 1SPW-Modulation  
The TAS5768M uses this modulation, the 1SPW mode alters the normal modulation scheme in order to achieve  
higher efficiency with a slight penalty in THD degradation and more attention required in the output filter  
selection. In 1SPW mode the outputs operate at ~15% modulation during idle conditions. When an audio signal  
is applied one output will decrease and one will increase. The decreasing output signal will quickly rail to GND at  
which point all the audio modulation takes place through the rising output. The result is that only one output is  
switching during a majority of the audio cycle. Efficiency is improved in this mode due to the reduction of  
switching losses. The THD penalty in 1SPW mode is minimized by the high performance feedback loop. The  
resulting audio signal at each half output has a discontinuity each time the output rails to GND. This can cause  
ringing in the audio reconstruction filter unless care is taken in the selection of the filter components and type of  
filter used.  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
OUTP-OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
-PVCC  
OUTP  
-OUTN  
0
A
Speaker  
Current  
Figure 31. 1SPW-Modulation  
Copyright © 2013–2018, Texas Instruments Incorporated  
19  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Device Protection System  
The TAS576xM contains a complete set of protection circuits carefully designed to make system design efficient  
as well as to protect the device against any kind of permanent failures due to short circuits, overload, over  
temperature, and under-voltage. If an error is detected, the FAULT pin signals according to Table 1.  
Table 1. TAS576xM Device Protections  
TRIGGERING CONDITION  
(TYPICAL VALUE)  
LATCHED/  
SELF-CLEARING  
FAULT  
FAULT  
ACTION  
Over Current  
Output short or short to PVCC or GND  
TJ > 150°C  
Low  
Low  
Low  
High  
High  
Output high impedance  
Output high impedance  
Output high impedance  
Output high impedance  
Output high impedance  
Self-clearing  
Self-clearing  
Self-clearing  
Self-clearing  
Self-clearing  
Over Temperature  
Too High DC offset  
Under Voltage on PVCC  
Over voltage on PVCC  
DC output voltage  
PVCC < 4.5 V  
PVCC > 27 V  
7.4.1.1 Over Current Protection  
The TAS576xM has protection from over current conditions caused by a short circuit or over load on the output  
stage. The fault is reported on the FAULT pin as a low state. The amplifier outputs are switched to a high  
impedance state when the over current is detected. The outputs are automatically re-engaged after a 1.3s off  
time.  
7.4.1.2 Thermal Protection  
Thermal protection on the TAS576xM prevents damage to the device when the internal die temperature exceeds  
150°C. There is a 15°C hysteresis on this trip point. When the die temperature exceeds the thermal trip point, the  
device enters into the shutdown state and the outputs are put in high impedance mode. The outputs are  
automatically re-engaged after a 1.3s off time if the temperature is below the trip point.  
7.4.1.3 DC Protection  
DC protection on the TAS576xM prevents damage to the attached speaker when the output DC voltage exceeds  
20% of supply voltage. When the voltage exceeds the trip point, the device enters into the shutdown state and  
the outputs are put in high impedance mode. The outputs are automatically re-engaged after a 0.65 s off time if  
the voltage is below the trip point.  
7.4.2 Reset and System Clock Functions  
7.4.2.1 Power-On Reset Function  
The TAS576xM includes a power-on reset function shown in Figure 32. With DVDD > 2.8 V, the power-on reset  
function is enabled. After the initialization period, the TAS576xM is set to its default reset state.  
Figure 32. Power-On Reset Timing, DVDD = 3.3V  
20  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
7.4.2.2 System Clock Input  
The TAS576xM requires a system clock to operate the digital interpolation filters and advanced segment DAC  
modulators. The system clock is applied at the SCLK input (pin 12) and supports up to 50MHz. The TAS576xM  
system-clock detection circuit automatically senses the system-clock frequency. The Smart AMP processing  
block only supports 44.1 kHz and 48kHz sampling rates even though the hardware supports all the common  
audio sampling frequencies in the bands of 8 kHz, 16 kHz, (32 kHz–44.1 kHz–48kHz), (88.2 kHz–96 kHz), (176.4  
kHz–192 kHz), and 384 kHz with ±4% tolerance.  
Values in the parentheses are "grouped" when detected, e.g. 88.2 kHZ and 96 kHz are detected as "double  
rate", 32 kHz, 44.1 kHz and 48 kHz will be detected as "single rate". The sampling frequency detector sets the  
clock for the digital filter, Delta Sigma Modulator (DSM) and the Negative Charge Pump (NCP) automatically.  
Table 2 shows examples of system clock frequencies for common audio sampling rates.  
SCLK rates that are not common to standard audio clocks, between 1 MHz and 50 MHz, are only supported in  
software mode by configuring various PLL and clock-divider registers. This programmability allows the device to  
become a clock master and drive the host serial port with LRCLK and BCLK, from a non-audio related clock (for  
example, using 12 MHz to generate 44.1 kHz (LRCLK) and 2.8224 MHz (BCLK) )  
Figure 33 shows the timing requirements for the system clock input. For optimal performance, use a clock source  
with low phase jitter and noise.  
Table 2. System Master Clock Inputs for Audio Related Clocks  
SYSTEM CLOCK FREQUENCY (fSCLK) (MHz)  
SAMPLING FREQUENCY  
128 fs  
5.6488  
6.1440  
192 fs  
8.4672  
9.2160  
256 fs  
11.2896  
12.2880  
384 fs  
16.9344  
18.4320  
512 fs  
22.5792  
24.5760  
768 fs  
33.8688  
36.8640  
1024 fs  
45.1584  
49.1520  
44.1 kHz  
48 kHz  
Figure 33. Timing Requirement for SCLK Input  
Table 3. Timing Requirements for SCLK Input  
MIN  
MAX  
UNIT  
ns  
tSCY  
System clock pulse cycle time  
20  
8
1000  
tSCLK System clock pulse width, High  
H
ns  
tSCLK System clock pulse width, Low  
9
ns  
L
7.4.3 System Clock PLL Mode  
The system clock PLL mode allows designers to use a simple 3-wire I2S audio source when driving the output.  
The 3-wire source reduces the need for a high frequency SCLK, making PCB layout easier, and reduces high  
frequency electromagnetic interference.  
The user must set all the PLL registers and clock divider registers for referencing BCLK. See Clock Generation  
and PLL for more information.  
Copyright © 2013–2018, Texas Instruments Incorporated  
21  
 
 
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Table 4. BCLK Rates (MHz) by LRCLK Sample Rate for  
PLL Operation  
BCLK (fS)  
Sample f (kHz)  
32  
64  
44.1  
48  
1.4112  
1.536  
2.8224  
3.072  
7.4.4 Clock Generation and PLL  
The TAS576xM supports a wide range of options to generate the required clocks for the DAC section as well as  
interface and other control blocks as shown in Figure 34.  
The clocks for the PLL require a source reference clock. This clock is sourced as the incoming BCLK or SCLK.  
The source reference clock for the PLL reference clock is selected by programming the SRCREF value on Page  
0, Register 13, D(6:4). The PLL reference clock can then be routed through highly-flexible clock dividers shown  
in Table 5 to generate the various clocks required for the DAC, Negative Charge Pump (NCP), Internal modulator  
and sections. The TAS576xM provides several programmable clock dividers to achieve a variety of sampling  
rates for the DAC and clocks for the NCP, OSR, and the OSRCK for OSR must be set at 16fS frequency by  
DOSR on Page0, Register 30, D(6:0).  
If PLL functionality isn’t required, set the PLLEN value on Page 0, Register 4, D(0) to 0. In this situation, an  
external SCLK is required.  
Table 5. PLL Configuration Registers  
CLOCK MULTIPLEXER  
SRCREF  
DIVIDER  
DDSP  
FUNCTION  
PLL Reference  
FUNCTION  
BITS  
Page 0, Register 13, D(6:4)  
BITS  
Clock divider  
Page 0, Register 27, D(6:0)  
Page 0, Register 28, D(6:0)  
Page 0, Register 29, D(6:0)  
Page 0, Register 30, D(6:0)  
Page 0, Register 32, D(6:0)  
Page 0, Register 33, D(7:0)  
DDAC  
DAC clock divider  
NCP clock divider  
OSR clock divider  
External BCLK Div  
External LRCLK Div  
DNCOP  
DOSR  
DBCLK  
DLRK  
22  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Figure 34. PLL Clock Source and Clock Distribution  
7.4.5 PLL Calculation  
The TAS576xM has an on-chip PLL with fractional multiplication to generate the clock frequency needed by the  
audio DAC, Negative Charge Pump, Modulator and Digital Signal Processing blocks. The programmability of the  
PLL allows operation from a wide variety of clocks that may be available in the system. The PLL input (PLLCKIN)  
supports clock frequencies from 512 kHz to 50 MHz and is register programmable to enable generation of  
required sampling rates with fine precision.  
The PLL is enabled by default. The PLL can be turned on by writing to Page 0, Register 4, D(0). When the PLL  
is enabled, the PLL output clock PLLCK is given by Equation 1:  
PLLCKIN´R ´ J.D  
PLLCKIN´R ´K  
PLLCK =  
or PLLCK =  
P
P
(1)  
R = 1, 2, 3,4, … 15, 16  
J = 0 4,5,6, … 63 and D = 0000, 0001, 0002, … 9999  
K = [J value].[D value]  
P 0 1, 2, 3, … 15  
R, J, D and P are programmable. J is the integer portion of K (the number to the left of the decimal point)  
while D is the fraction portion of K (the number to the right of the decimal point, assuming four digits of  
precision).  
Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
Copyright © 2013–2018, Texas Instruments Incorporated  
23  
 
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
If K = 6.0004, then J = 6, D = 0004  
When the PLL is enabled and D = 0000, the following conditions must be satisfied:  
1 MHz ( PLLCKIN / P ) 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
1 J 63  
When the PLL is enabled and D 0000, the following conditions must be satisfied:  
6.667 MHz PLLCLKIN / P 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
4 J 11  
R = 1  
When the PLL is enabled:  
fS = (PLLCLKIN × K × R) / (2048 × P)  
The value of N is selected so that fS × N = PLLCLKIN x K x R / P is in the allowable range.  
Example: MCLK = 12 MHz and fS = 44.1 kHz, (N=2048)  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
Example: MCLK = 12 MHz and fS = 48.0 kHz, (N=2048)  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
Values are written to the registers in Table 6.  
Table 6. PLL Registers  
DIVIDER  
PLLE  
FUNCTION  
PLL enable  
PLL P  
BITS  
Page 0, Register 4, D(0)  
Page 0, Register 20, D(3:0)  
Page 0, Register 21, D(5:0)  
Page 0, Register 22, D(5:0)  
Page 0, Register 23, D(7:0)  
Page 0, Register 24, D(3:0)  
PPDV  
PJDV  
PLL J  
PDDV  
PLL D  
PRDV  
PLL R  
Table 7. PLL Configuration Recommendations  
COLUMN  
fS (kHz)  
DESCRIPTION  
Sampling frequency  
RSCLK  
Ration between sampling frequency and SCLK frequency (SCLK frequency = RSCLK x sampling frequency)  
System master clock frequency at SCLK input (pin 22)  
PLL VCO frequency as PLLCK  
SCLK (MHz)  
PLL VCO (MHz)  
P
One of the PLL coefficients  
PLL REF (MHz)  
M = K × R  
K = J.D  
Internal reference clock frequency which is produced by SCLK / P  
The final PLL multiplication factor computed from K and R as described in Equation 1  
One of the PLL coefficients  
R
One of the PLL coefficients  
PLL fS  
Ratio between fS and PLL VCO frequency (PLL VCO / fS)  
Ratio between operating clock rate and fS (PLL fS / NMAC)  
The clock divider value in Table 4  
DSP fS  
NMAC  
DSP CLK (MHz)  
MOD fS  
The operating frequency as DSPCK in Clock Generation and PLL  
Ratio between DAC operating clock frequency and fS (PLL fS / NDAC)  
DAC operating frequency as DACCK in Clock Generation and PLL  
DAC clock divider value in Table 4  
MOD f(kHz)  
NDAC  
DOSR  
OSR clock divider value in Table DOSR 7 for generating OSRCK in Clock Generation and PLL. DOSR must be  
chosen so that MOD fS / DOSR = 16 for correct operation.  
24  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Table 7. PLL Configuration Recommendations (continued)  
COLUMN  
NCP  
DESCRIPTION  
NCP (negative charge pump) clock divider value in Table 4  
CP f  
Negative charge pump clock frequency (fS × MOD fS / NCP)  
% Error  
Percentage of error between PLL VCO / PLL fS and fS (mismatch error).  
This number is typically zero but can be non-zero especially when K is not an integer (D is % Error not zero).  
This number may be non-zero only when the TAS576xM acts as a master  
Table 8. Recommended Clock Divider Settings for PLL as Master Clock  
44.1 kHz  
RSCLK  
SCLK (MHz)  
PLL VCO (MHz)  
P
32  
1.4112  
90.3168  
1
64  
2.8224  
90.3168  
1
128  
5.6448  
90.3168  
1
192  
8.4672  
90.3168  
3
256  
11.2896  
90.3168  
2
384  
16.9344  
90.3168  
3
512  
22.5792  
90.3168  
3
768  
1024  
33.8688  
45.1584  
90.3168  
90.3168  
3
3
PLL REF (MHz)  
M = K×R  
K = J.D  
1.4112  
64  
2.8224  
32  
5.6448  
16  
2.8224  
32  
5.6448  
16  
5.6448  
16  
7.526  
12  
11.29  
15.053  
8
6
32  
16  
16  
32  
16  
16  
12  
8
1
6
1
R
2
2
1
1
1
1
1
PLL fS  
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
DSP fS  
NMAC  
DSP CLK (MHz)  
MOD fS  
45.1584  
128  
5644.8  
16  
45.1584  
128  
5644.8  
16  
45.1584  
128  
45.1584  
128  
5644.8  
16  
45.1584  
128  
45.1584  
128  
45.1584  
128  
45.1584  
128  
5644.8  
16  
45.1584  
128  
5644.8  
16  
MOD f (kHz)  
NDAC  
5644.8  
16  
5644.8  
16  
5644.8  
16  
5644.8  
16  
DOSR  
8
8
8
8
8
8
8
8
8
% ERROR  
NCP  
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
CP f (kHz)  
1411.2  
1411.2  
1411.2  
1411.2  
48kHz  
192  
9.216  
98.304  
3
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
RSCLK  
SCLK (MHz)  
PLL VCO (MHz)  
P
32  
1.536  
98.304  
1
64  
3.072  
98.304  
1
128  
6.144  
98.304  
1
256  
12.288  
98.304  
2
384  
18.432  
98.304  
3
512  
24.576  
98.304  
3
768  
36.864  
98.304  
3
1024  
49.152  
98.304  
3
PLL REF (MHz)  
M = K×R  
K = J.D  
1.536  
64  
3.072  
32  
6.144  
16  
3.072  
32  
6.144  
16  
6.144  
16  
8.192  
12  
12.288  
8
16.384  
6
32  
16  
16  
32  
16  
16  
12  
8
6
R
2
2
1
1
1
1
1
1
1
PLL fS  
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
2048  
1024  
2
DSP fS  
NMAC  
DSP CLK (MHz)  
MOD fS  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
49.152  
128  
6144  
16  
MOD f (kHz)  
NDAC  
DOSR  
8
8
8
8
8
8
8
8
8
% ERROR  
NCP  
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
CP f (kHz)  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
Copyright © 2013–2018, Texas Instruments Incorporated  
25  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
7.4.6 Audio Data Interface  
7.4.6.1 Audio Serial Interface  
The audio interface port is a 3-wire serial port with the signals LRCLK (pin 15), BCLK (pin 13), and DIN (pin 14).  
BCLK is the serial audio bit clock, used to clock the serial data present on DIN into the serial shift register of the  
audio interface. Serial data is clocked into the TAS576xM on the rising edge of BCLK. LRCLK is the serial audio  
left/right word clock.  
Table 9. TAS576xM Audio Data Formats, Bit Depths and Clock rates  
FORMAT  
I2S/LJ  
DATA BITS  
32, 24, 20, 16  
32, 24, 20, 16  
LRCLK  
SCH RATE  
128–3072  
128–3072  
BCLK RATE  
64, 48, 32  
128, 265  
44.1 or 48 kHz  
44.1 or 48 kHz  
TDM  
The TAS576xM requires the synchronization of LRCLK and system clock, but does not require a specific phase  
relation between LRCLK and system clock.  
If the relationship between LRCLK and system clock changes more than ±5 SCLK, internal operation is initialized  
within one sample period and analog outputs are forced to the bipolar zero level until resynchronization between  
LRCLK and system clock is completed.  
7.4.6.2 PCM Audio Data Formats and Timing  
The TAS576xM supports industry-standard audio data formats, including standard I2S and left-justified. Data  
formats are selected via Register (Pg0Reg40). All formats require binary 2s-complement, MSB-first audio data,  
up to 32-bit audio data is accepted.  
The TAS576xM also supports right-justified and TDM. I2S, LJ, RJ, and TDM are selected using Register  
(Pg0Reg40). All formats require binary 2s complement, MSB-first audio data. Up to 32 bits are accepted. Default  
setting is I2S and 24 bit word length. The I2S slave timing is shown in Figure 35.  
Figure 35. TAS576xM Serial Audio Timing – Slave  
26  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Table 10. Audio Interface Slave Timing  
MIN  
40  
16  
16  
8
MAX  
UNIT  
ns  
tBCY  
tBCL  
tBCH  
tBL  
BCLK pulse Cycle Time  
BCLK pulse Width LOW  
ns  
BCLK pulse Width HIGH  
BCLK Rising Edge to LRCLK Edge  
BCLK frequency at DVDD = 3.3V  
LRCLK Edge to BCLK Rising Edge  
DATA set Up time  
ns  
ns  
tBCLK  
tLB  
24.576  
MHz  
ns  
8
8
8
tDS  
ns  
tDH  
DATA Hold Time  
ns  
tDOD  
DATA delay time from BCLK falling edge  
15  
ns  
The TAS576xM can act as an I2S master, generating BCLK and LRCLK as outputs from the SCLK input.  
Table 11. I2S Master Mode Registers  
REGISTER  
FUNCTION  
Page 0, register 9, D(0), D(4) and D85)  
Register 32, D(6:0)  
I2S master Mode select  
BCLK divider and LRCLK divider  
Register 33, D(7:0)  
The I2S master timing is shown in Figure 36 and Table 12.  
Figure 36. TAS576xM Serial Audio Timing - Master  
Copyright © 2013–2018, Texas Instruments Incorporated  
27  
 
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Table 12. Audio Interface Master Timing  
MIN  
40  
16  
16  
8
MAX  
UNIT  
ns  
tBCY  
tBCL  
tBCH  
tBL  
BCLK pulse Cycle Time  
BCLK pulse Width LOW  
BCLK pulse Width HIGH  
BCLK Rising Edge to LRCLK Edge  
BCLK frequency at DVDD = 3.3V  
LRCLK Edge to BCLK Rising Edge  
DATA set Up time  
ns  
ns  
ns  
tBCLK  
tLB  
24.576  
MHz  
ns  
8
8
8
tDS  
ns  
tDH  
DATA Hold Time  
ns  
tDOD  
DATA delay time from BCLK falling edge  
15  
ns  
Figure 37. Left Justified Audio Data Format  
28  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Figure 38. I2S Audio Data Format  
Figure 39. Right Justified Audio Data Format  
Copyright © 2013–2018, Texas Instruments Incorporated  
29  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Figure 40. TDM Audio Data Format  
Figure 41. TDM 2 Audio Data Format  
30  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Figure 42. TDM 3 Audio Data Format  
7.4.7 TAS576xM Audio Processing Options  
7.4.7.1 Overview  
The TAS576xM features a configurable miniDSP core. The algorithms for the miniDSP are loaded into the device  
after power up. The miniDSP has direct access to the digital stereo audio stream, offering the possibility for  
advanced DSP algorithms with very low group delay. The miniDSP can run up to 1024 instructions on every  
audio sample at a 48 kHz sample rate.  
The TAS576xM Smart Amplifier uses a mix of code sources. ROM based process flow and RAM based process  
flow. In the program, different algorithms are called from ROM – such as EQ, DRC and Zero Crossing volume  
control enabling a faster program load.  
7.4.7.2 miniDSP Instruction Register  
Registers on Register Pages 152-169 are 25-bit instructions for the miniDSP engine. For details, see Table 21.  
Seven (7) bits of Instr(32:25) in Base register +0 are reserved bits. 1 bit of Instr(24) – (LSB) in Base register +0 is  
MSB bit of 25-bit instruction. These instructions control miniDSP operation. When the fully programmable  
miniDSP mode is enabled and the DAC channel is powered up, the read and write access to these registers is  
disabled  
7.4.7.3 Digital Output  
The TAS576xM supports an SDOUT output. This can be selected within the process flow, and driven out of a  
GPIO pin selected in the register map (e.g. Page 0 / Register 80). The I2S output can be fed back to the signal  
host and used for echo cancellation.  
7.4.7.4 Software  
Software selection for the TAS576xM is supported through TI's comprehensive PurePath Console Development  
Environment; a powerful, easy-to-use tool designed specifically to simplify development on the TAS576xM  
platform. Visit the TAS576xM product folder on www.ti.com to learn more about PurePath Console and the latest  
status on available, ready-to-use DSP algorithms.  
Copyright © 2013–2018, Texas Instruments Incorporated  
31  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
7.4.7.5 Process Flow  
An example of the default Process Flow available for the TAS576xM in the PurePath Console target is shown  
below:  
I2S  
Input  
DACL  
Stereo  
Volume  
Control  
Mono  
Bass  
Mix  
Left/Right  
DAC  
Analog Output  
DIN  
10  
BiQuads  
Smart  
Amp  
DACR  
GPIO3  
(SDOUT)  
I2S  
Output  
Left  
Right  
Figure 43. Example Process Flow  
This process flow has from input to output:  
• Volume block, from -110 db to +6 dB with 0.5 dB steps, including a fixed gain block of 0dB to 12 dB gain  
• monobass mixer – mixes the bass into mono below the set frequency, useful for systems where left and right  
speaker shares the same cabinet volume, bypassed when not needed.  
• 10 Biquads for filtering and EQ. The PPC GUI have an advanced biquad control where various filter and eq  
options can be set and controlled.  
• SmartAmp block, containing all the blocks for bass Q compensation, bass alignment, excursion control and  
power limited  
• Digital monitor output enabled on GPIO3  
7.4.7.6 Zero Data Detect  
The TAS576xM has a zero-detect function. When the device detects the continuous zero data for both L-ch and  
R-cn, or separate L-cn and R-ch, Analog mutes are set to both OUTL and OUTR, or separate OUTL and OUTR.  
These are controlled by Page0, Register 65, D(2:1) as shown in Table 13.  
Continuous Zero data cycles are counted by LRCLK, and the threshold of decision for analog mute can be set by  
Page 0, Register 59, D(6:4) for L-ch, and D(2:0) for Rch as shown in Table 14. Default values are 0 for both  
channels.  
Table 13. Zero Detection Mode  
ATMUTECTL  
VALUE  
FUNCTION  
Independently L-ch or R-ch are zero data for zero detection  
Both L-ch and R-ch have to be zero data for zero detection  
Zero detection and analog mute are disabled for R-ch  
Zero detection and analog mute are enabled for R-ch  
Zero detection and analog mute are disabled for L-ch  
Zero detection and analog mute are enabled for L-ch  
0
Bit:2  
1 (Default)  
0
Bit:1  
Bit:0  
1 (Default)  
0
1 (Default)  
Table 14. Zero Data Detection Time  
ATMUTETIML /ATMUTETIMR  
NUMBER of LRCLKs  
1024  
TIME at 48 kHz  
21 ms  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
5120  
106 ms  
10240  
213 ms  
25600  
533 ms  
51200  
1.07 sec  
2.13 sec  
5.33 sec  
10.66 sec  
102400  
256000  
512000  
32  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
7.4.7.7 Power Save Modes  
The TAS576xM offers two power-save modes; standby and power-down.  
When a clock error (SCLK, BCLK, and LRCLK) or clock halt is detected, the TAS576xM automatically enters  
standby mode. The DAC and power amplifier are also powered down. The device can also be placed in standby  
mode via software command.  
When BCLK and LRCLK remain at a low level for more than 1 second, the TAS576xM automatically enters  
power-down mode. Power-down mode disables the negative charge pump and bias/reference circuit, in addition  
to those disabled in standby mode. The device can also be placed in power-down mode via I2C command.  
When expected Audio clocks (SCLK, BCLK, LRCLK) are applied to the TAS576xM, the device starts its power-  
up sequence automatically.  
Table 15. Power Save Parameter Programming  
REGISTER  
Page 0, register 2, D(4)  
DESCRIPTION  
I2C standby-mode command  
I2C power-down command  
Page 0, register 2, D(0)  
Page 0, register 2, D(4) and D(0)  
Page 0, register 44, D(2:0)  
I2C power-up sequence command (required after I2C standby or power-down command)  
Detection time of BCLK and LRCLK halt  
7.4.7.8 XSMT Pin (Soft Mute/Soft Un-Mute)  
An external digital host controls the TAS576xM soft mute function by driving the XSMT pin with a specific  
minimum rise time (tr) and fall time (tf) for soft mute and soft un-mute. The TAS576xM requires tr and tf times of  
less than 20ns. In the majority of applications, this is no problem, however, traces with high capacitance may  
have issues.  
When the XSMT pin is shifted from high to low (3.3V to 0V), a soft digital attenuation ramp begins. –1dB  
attenuation is then applied every sample time from 0dBFS to –104dBFS.  
When the XSMT pin is shifted from low to high (0V to 3.3V), a soft digital “un-mute” is started. 1dB gain steps are  
applied every sample time from –104dBFS to 0dBFS.  
Figure 44. XSMT Timing for Soft Mute and Soft Un-Mute  
Copyright © 2013–2018, Texas Instruments Incorporated  
33  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
7.4.7.9 External Power Sense Undervoltage Protection Mode  
The XSMT pin can also be used to monitor a system voltage, such as the 24-VDC LCD TV back light, or 12-VDC  
system supply using a voltage divider created with two resistors. See Figure 45.  
* If the XSMT pin makes a transition from “1” to “0” over 6ms or more, the  
device switches into external undervoltage protection mode. This mode uses  
two trigger levels.  
* When the XSMT pin level reaches 2 V, soft mute process begins.  
* When the XSMT pin level reaches 1.2 V, analog mute engages, regardless  
of digital audio level, and analog shutdown begins. (DAC and related  
circuitry powers down).  
Figure 45. External Power  
Sense  
A timing diagram describing this is shown in Figure 46.  
NOTE  
The XSMT input pin voltage range is from –0.3 V to DVDD + 0.3 V.The ratio of external  
resistors must produce a voltage within this input range. Any increase in power supply  
(such as power supply positive noise or ripple) can pull the XSMT pin higher than DVDD  
+0.3V.  
For example, if the TAS576xM is monitoring a 12 V input, and dividing the voltage by 4, then the voltage at  
XSMT during ideal power supply conditions is 3 V. A voltage spike higher than 14.4 V causes a voltage greater  
than 3.6 V (DVDD+0.3) on the XSMT pin, potentially damaging the device. Providing the divider is set  
appropriately, any DC voltage can be monitored.  
Figure 46. XSMT Timing for Undervoltage Protection  
7.4.7.10 Recommended Power Down Sequence  
With inadequate system design, the TAS576xM can exhibit pop on power down. Pops are caused by the device  
not having enough time to detect power loss and start the muting process.  
The TAS576xM evaluation board avoids audible pop with an electrolytic decoupling capacitor. This capacitor  
provides enough time between data loss from USB or S/PDIF and power supply loss for the muting process to  
take place.  
The TAS576xM has two auto-mute functions to mute the device upon power loss (intentional or unintentional).  
34  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
7.4.7.10.1 XSMT = 0  
When the XSMT pin is pulled low, the incoming PCM data is attenuated to 0, then closely followed by a hard  
analog mute. This process takes 150 sample times (ts) + 0.2 mS.  
7.4.7.10.2 Clock Error Detect  
When clock error is detected on the incoming data clock, the TAS576xM family switches to an internal oscillator,  
and continues to the drive the output, while attenuating the data from the last known value. Once this process is  
complete, the TAS576xM outputs are pulled to ground with 30kΩ.  
7.4.7.10.3 Planned Shutdown  
These auto-muting processes can be manipulated by system designs to mute before power loss in the following  
ways: Assert XSMT low 150ts + 0.2 ms before power is removed, shown in Figure 47.  
Figure 47. Assert XSMT Low Example  
Stop I2S clocks (SCLK, BCLK, LRCLK) 3ms before power down as shown in Figure 48 below:  
Figure 48. Stop I2S Clocks Example  
Copyright © 2013–2018, Texas Instruments Incorporated  
35  
 
 
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C Interface and Slave Address  
The TAS576xM supports the I2C serial bus and the data transmission protocol for standard and fast mode as a  
slave device.  
Table 16. I2C pins and Functions  
SIGNAL  
SDA  
PIN  
16  
17  
20  
26  
I/O  
DESCRIPTION  
I2C data  
I/O  
SCL  
I
I
I
I2C clock  
ADR2  
ADR1  
I2C address 2  
I2C address 1  
7.5.2 Slave Address  
Table 17. I2C Slave Address  
Address  
0x98  
D7  
D6  
D5  
D4  
D3  
ADR2  
ADR1  
R/W  
0
0
1
1
0
1
0
1
0x9A  
1
0
0
1
1
x
0x9C  
0x9E  
The TAS576xM has 7 bits for its own slave address. The first five bits (MSBs) of the slave address are factory  
preset to 10011 (0x9x). The next two bits of the address byte are the device select bits which can be user  
defined by the ADR1 and ADR0 pins. A maximum of four TAS576xMs can be connected on the same bus at one  
time. This gives a range of 0x98, 0x9A, 0x9C and 0x9E. Each TAS576xM responds when it receives its own  
slave address.  
7.5.3 Register Address Auto-Increment Mode  
Auto-increment mode allows multiple sequential register locations to be written to or read back in a single  
operation, and is especially useful for block write and read operations.  
Figure 49. Auto Increment Mode  
7.5.4 Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit,  
data if write or acknowledge if read, and stop condition. The TAS5766M supports only slave receivers and slave  
transmitters.  
36  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Figure 50. Packet Protocol  
Table 18. Read / Write Operation – Basic I2C Framework  
Transmitter  
Write  
M
St  
M
St  
M
M
W/  
M
S
M
S
M
S
S
ACK  
M
M
Sp  
S
Data Type  
Slave  
address  
ACK  
S
DATA  
S
ACK  
M
DATA  
S
ACK  
M
Transmitter  
Read  
M
Data Type  
Slave  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
NACK  
Sp  
address  
M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition  
7.5.5 Write Register  
A master can write to any TAS576xM registers using single or multiple accesses. The master sends a  
TAS576xM slave address with a write bit, a register address with auto-increment bit, and the data. If auto-  
increment is enabled, the address is that of the starting register, followed by the data to be transferred. When the  
data is received properly, the index register is incremented by 1 automatically. When the index register reaches  
0x7F, the next value is 0x0. The following table shows the write operation.  
Table 19. Write Operation  
Transmitter  
M
M
M
S
M
S
M
S
M
S
S
M
Data Type  
St  
Slave  
addr  
W
ACK  
inc  
reg  
addr  
ACK  
Write  
data1  
ACK  
Write  
data2  
ACK  
ACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition; W = Write; ACK = Acknowledge  
7.5.5.1 Read Register  
A master can read the TAS576xM register. The value of the register address is stored in a indirect index register  
in advance. The master sends a TAS576xM slave address with a read bit after storing the register address. Then  
the TAS576xM transferes the data which the index points to. When auto-increment is enabled, the index register  
is incremented by 1 automatically. When the index register reaches 0x7F, the next value is 0x0. The following  
table shows the read operation.  
Table 20. Read Operation  
Transmitter  
M
M
M
S
M
S
M
M
M
S
S
M
M
M
Data Type St Slave  
addr  
W
ACK inc  
reg  
addr  
ACK  
Sr  
Slave  
addr  
R
ACK  
data  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sr = Repeated start condition; Sp = Stop Condition; W = Write; R 0 read;  
NACK = Acknowledge  
Copyright © 2013–2018, Texas Instruments Incorporated  
37  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
7.6 Register Maps  
In any page, register 0 is the Page Select Register. The register value selects the Register Page from 0 to 255  
for next read or write command.  
Table 21. Register Map Summary(1)  
Register  
Description  
Register No  
Description  
No  
Page 0  
0
44  
Clock missing detection period  
Auto mute time  
Reserved  
Page Select register  
Analog control register  
Standby, Powerdown requests  
Mute  
59  
1
60-64  
65-66  
67-82  
83-85  
86,87  
88,89  
90  
2
Auto mute enable and delay  
Reserved  
3
4
PLL Lock Flag, PLL enable  
Reserved  
GPIOn output selection  
GPIO control  
5
6
Reserved  
Reserved  
7
De-emphasis enable, SDOUT select  
GPIO enables & Mute Control  
BCLK, LRCLK configuration  
DSP GPIO Input  
DSP overflow  
8
91-94  
95-107  
108  
Sample rate status  
Reserved  
9
10  
Analog mute monitor  
Reserved  
11  
Reserved  
109-118  
119  
12  
Master Mode BCLK, LRCLK reset  
PLL clock source select  
Reserved  
GPIO input  
13  
120  
Auto mute flags  
Reserved  
14-19  
20-24  
25,26  
27  
121-125  
Page 1  
1
PLL dividers  
Reserved  
Reserved  
DSP clock divider  
DAC clock divider  
NCP clock divider  
OSR clock divider  
Reserved  
2
Analog gain control  
Reserved  
28  
3,4  
29  
5
Undervoltage protection  
Analog mute control  
Analog gain boost  
REF BG Fast  
30  
6
31  
7
32,33  
34  
Master mode dividers  
FS speed mode  
8
9-15  
Page 44  
Reserved  
35,36  
IDAC number of DSP clock cycles available in one  
audio frame)  
37  
Ignore various errors  
Reserved  
1
Coefficient memory (CRAM) control  
38,39  
40,41  
42  
Pages 44-52  
Pages 62-70  
Coefficient buffer – A (256 coeffs x 24 bits)  
Coefficient buffer – B (256 coeffs x 24 bits)  
I2S configuration  
DAC data path  
Pages 152-186 Instruction buffer (1024 instruction x 24 bits),  
I512 – I1023 are reserved  
43  
Reserved  
Pages 187-255 Reserved  
(1) See Detailed Register Map Descriptions.  
38  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
One of the most significant benefits of the TAS5766M device is the ability to be used in a variety of applications.  
This section details the information needed to configure the device for several popular configurations and  
provides guidance on integrating the TAS5766M device into the larger system.  
8.1.1 External Component Selection Criteria  
The Supporting Component Requirements table in each application description section lists the details of the  
supporting required components in each of the System Application Schematics.  
Where possible, the supporting component requirements have been consolidated to minimize the number of  
unique components which are used in the design. Component list consolidation is a method to reduce the  
number of unique part numbers in a design, to ease inventory management, and reduce the manufacturing steps  
during board assembly. For this reason, some capacitors are specified at a higher voltage than what would  
normally be required. An example of this is a 50-V capacitor may be used for decoupling of a 3.3-V power supply  
net.  
In this example, a higher voltage capacitor can be used even on the lower voltage net to consolidate all caps of  
that value into a single component type. Similarly, a several unique resistors, having all the same size and value  
but with different power ratings can be consolidated by using the highest rated power resistor for each instance  
of that resistor value.  
While this consolidation may seem excessive, the benefits of having fewer components in the design may far  
outweigh the trivial cost of a higher voltage capacitor. If lower voltage capacitors are already available elsewhere  
in the design, they can be used instead of the higher voltage capacitors. In all situations, the voltage rating of the  
capacitors must be at least 1.45 times the voltage of the voltage which appears across them. The power rating of  
the capacitors should be 1.5 times to 1.75 times the power dissipated in it during normal use case.  
8.1.2 Component Selection Impact on Board Layout, Component Placement, and Trace Routing  
Because the layout is important to the overall performance of the circuit, the package size of the components  
shown in the component list were intentionally chosen to allow for proper board layout, component placement,  
and trace routing. In some cases, traces are passed in between two surface mount pads or ground plane  
extends from the TAS5766M device between two pads of a surface mount component and into to the  
surrounding copper for increased heat-sinking of the device. While components may be offered in smaller or  
larger package sizes, it is highly recommended that the package size remain identical to that used in the  
application circuit as shown. This consistency ensures that the layout and routing can be matched very closely,  
optimizing thermal, electromagnetic, and audio performance of the TAS5766M device in circuit in the final  
system.  
8.1.3 Amplifier Output Filtering  
The TAS5766M device is often used with a low-pass filter, which is used to filter out the carrier frequency of the  
PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter.  
Copyright © 2013–2018, Texas Instruments Incorporated  
39  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Application Information (continued)  
The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current  
waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several  
system level constraints. In some low-power use cases that do not have other circuits which are sensitive to EMI,  
a simple ferrite bead or ferrite bead and capacitor can replace the traditional large inductor and capacitor that are  
commonly used. In other high-power applications, large toroid inductors are required for maximum power and  
film capacitors may be preferred due to audio characteristics. Refer to the application report SLOA119 for a  
detailed description on proper component selection and design of an L-C filter based upon the desired load and  
response.  
8.2 Typical Applications  
8.2.1 Stereo Application  
+
SDA  
1 mF  
470 nF  
4R  
-
SCL  
20k  
Rb  
Ra  
3.3V  
10mH  
SCLK  
BCLK  
DIN  
470 nF  
220 nF  
100k  
PVCC  
10mH  
220 nF  
RIGHT  
1 mF  
LRCLK  
1 mF  
1 mF 1 mF  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Power Pad œ Connect to GND  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
220 nF  
1 mF  
10k  
1 mF  
1 mF 1 mF  
1 mF  
1 mF  
1 mF  
LEFT  
220 nF  
3.3V  
10mH  
3.3V  
10k  
FAULT  
-
PVCC  
10mH  
4R  
+
4.5V-26.5V  
470 nF  
470 nF  
470 mF  
Figure 51. Typical Stereo Application  
40  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
The device is configured to have 20 dB analog gain and switch at 768kHz, by the resistor network on the  
GAIN/FSW pin 9.  
I2C slave address is set to default 0x98, as a result of the two address pins (ADR1, pin 26 and ADR2, pin 20) set  
to ground.  
In this setup a master clock is supplied to the device on pin 22 (SCLK). the device can also run with 3-wire I2S  
by setting the PLL registers as shown in the Clock Generation and PLL section.  
When the device is configured to operate in 3-wire mode of operation where BCLK is used as reference to PLL  
(NO SCLK), TI recommends shorting PIN23 (BCLK) and PIN22 (SCLK) and configuring the device to use SCLK  
as PLL reference.  
8.2.1.2 Detailed Design Procedure  
For the stereo (BTL) PCB layout, see examples in the Layout section.  
A 2.0 system generally refers to a system in which there are two full range speakers without a separate amplifier  
path for the speakers which reproduce the low-frequency content. In this system, two channels are presented to  
the amplifier via the digital input signal. These two channels are amplified and then sent to two separate  
speakers. In some cases, the amplified signal is further separated based upon frequency by a passive crossover  
network after the L-C filter. Even so, the application is considered 2.0.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While certainly the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
It is important to note that the SmartAmp Flows which have been developed for specifically for stereo  
applications will apply the same equalizer curves to the left channel and the right channel. This minimizes the  
needed RAM capabilities of the SmartAmp.  
When two signals that are not two separate signals, but instead are derived from a single signal which is  
separated into low frequency and high frequency by the signal processor, the application is commonly referred to  
as 1.1 or Bi-Amped systems. The 2.0 (Stereo BTL) System application is shown in Figure 51.  
8.2.1.2.1 Gain Setting and Output Switch Frequency  
The analog class-D amplifier gain of the TAS576xM is set by the voltage divider connected to the GAIN/FSW  
control pin. Output Stage switch frequency multiplication is also controlled by the same pin, giving a ratio of 8,  
10, 12 or 16x the I2S input sample rate. An internal ADC is used to detect the 8 input states. The first four stages  
sets the GAIN to 14 dB, while the next four stages sets the GAIN to 20 dB.  
A gain setting of 14 dB is recommended for supply voltages of 12V and lower, while a gain of 20 dB is  
recommended for supply voltages up to 26.4 V. Table 22 shows the recommended resistor values and the state  
and gain:  
Table 22. Gain and FSW  
Ra  
(to GND)  
Rb  
(to GVDD)  
INPUT  
IMPEDANCE  
FSW –  
RATIO TO LRCLK  
FSW w.  
44.1 kHz  
FSW w.  
48 kHz  
GAIN  
10 0kΩ  
20 kΩ  
38 kΩ  
47 kΩ  
51 kΩ  
75 kΩ  
100 kΩ  
100 kΩ  
OPEN  
100 kΩ  
100 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
39 kΩ  
20 kΩ  
120 kΩ  
120 kΩ  
120 kΩ  
120 kΩ  
60 kΩ  
14 dB  
14 dB  
14 dB  
14 dB  
20 dB  
20 dB  
20 dB  
20 dB  
8
353 kHz  
441 kHz  
529 kHz  
706 kHz  
353 kHz  
441 kHz  
529 kHz  
706 kHz  
384 kHz  
480 kHz  
576 kHz  
768 kHz  
384 kHz  
480 kHz  
576 kHz  
768 kHz  
10  
12  
16  
8
60 kΩ  
10  
12  
16  
60 kΩ  
60 kΩ  
Copyright © 2013–2018, Texas Instruments Incorporated  
41  
 
 
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
8.2.1.2.2 Gain Setting and Supply Voltage  
If the TAS576xM is to be used in systems operating below 6 V it is recommended to change the maximum DAC  
output voltage from the nominal 2 Vrms FS(0 dB) to 1 Vrms FS (–6 dB), by setting register 2 on page 1 D4(Lch) /  
D0(Rch), Table 23.  
Table 23. GAIN and Supply Voltage  
SUPPLY VOLTAGE RANGE  
4.5 V – 6 V  
GAIN (via GAIN/FSW pin)  
DAC OUTPUT at FS  
1 Vrms  
Page 1 / Register 2  
00010001  
default  
14 dB  
14 dB  
20 dB  
6 V – 12 V  
2 Vrms  
12 V – 26 V  
2 Vrms  
default  
8.2.1.2.3 DAC to AMP AC Coupling  
The TAS576xM uses an external ac-coupling capacitor between DACx output and AMP INPx input and a  
capacitor from INNx to ground for minimum dc-offset and click & pop during power on/off. Shown as C13, C14,  
C19 & C20 in the drawing here.  
The AMP INNPx and INNMx input stage is a fully differential input stage and the input impedance changes with  
the gain setting from 120 kat 14 dB gain to 60 kat 20 dB gain. The tolerance of the input resistor value is  
±20%.  
The input ac-coupling capacitor together with the input impedance forms a high-pass filter with the following cut-  
off frequency:  
C13  
C14  
13 12 11  
Current  
Segment  
DAC  
-
AMP  
+
Current  
Segment  
DAC  
+
-
AMP  
36 37 38  
C19  
C20  
Figure 52. DAC to AMP AC Coupling  
If a flat bass response is required down to 20Hz the recommended cut-off frequency is a tenth of that, 2 Hz.  
Table 24 lists the recommended ac-coupling capacitors for the two gain step over a range of desired system high  
pass filter frequency.  
42  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Table 24. F3dB Versus Input AC-Coupling Capacitors  
GAIN  
14 dB  
20 dB  
INPUT IMPEDANCE  
120 kΩ  
0.1 µF  
13 Hz  
26 Hz  
0.22 µF  
6 Hz  
0.33 µF  
4 Hz  
0.47 µF  
3 Hz  
1 µF  
2.2 µF  
0.6 Hz  
1.2 Hz  
1.3 Hz  
2.7 Hz  
60 kΩ  
12 Hz  
8 Hz  
6 Hz  
The input capacitors used should be a type with low leakage, like film or quality ceramic X5R or X7R with high  
voltage rating. If a polarized type is used the negative connection should face the DACx output pins. INPx and  
INMx are biased at 3Vdc.  
8.2.1.2.4 Bootstrap Capacitors  
The full H-bridge output stages use only NMOS transistors. Therefore, they require bootstrap capacitors for the  
high side of each output to turn on correctly. A 220-nF ceramic capacitor, rated for at least 16 V, must be  
connected from each output to its corresponding bootstrap input. See the application circuit diagram in 智能放大  
器概览.  
The bootstrap capacitors connected between the BSxx pins and corresponding output function as a floating  
power supply for the high-side N-channel power MOSFET gate drive circuitry. During each high-side switching  
cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side MOSFETs  
turned on.  
8.2.1.3 BTL Application Curves  
The following graphs shows the frequency response with different output filter configurations: Figure 53: 4-Ω load  
with 680 nF and 10-µH output filter, Figure 54: 4-Ω load with 330 nF and 4.7-µH inductor. Both setups are using  
220 nF for the DAC-to-amp AC coupling capacitor.  
30  
25  
360  
300  
240  
180  
120  
60  
30  
25  
360  
300  
240  
180  
120  
60  
Amplitude  
Phase  
Amplitude  
Phase  
20  
20  
15  
15  
10  
10  
5
5
0
0
0
0
−5  
−60  
−120  
−180  
−240  
−300  
−360  
−5  
−60  
−120  
−180  
−240  
−300  
−360  
−10  
−15  
−20  
−25  
−30  
−10  
−15  
−20  
−25  
−30  
Analog Gain =20dB  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
RL = 4Ω  
LCFILTER =680nF + 10 µH  
fs=384kHz  
Analog Gain =20dB  
DAC Gain = 0dB  
PVCC = 24V  
TA = 25°C  
RL = 4Ω  
LCFILTER =330nF + 4.7 µH  
fs=768kHz  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
G014  
G015  
Figure 53. Gain/Phase vs Frequency  
Figure 54. Gain/Phase vs Frequency  
Copyright © 2013–2018, Texas Instruments Incorporated  
43  
 
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 8Ω  
fs = 384kHz  
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 4Ω  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
fs = 384kHz  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Power (W)  
Output Power (W)  
G018  
G019  
Figure 55. Power Efficiency vs Output Power  
Figure 56. Power Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 8Ω  
fs = 768kHz  
20  
10  
0
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 4Ω  
fs = 768kHz  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Power (W)  
Output Power (W)  
G020  
G021  
Figure 57. Power Efficiency vs Output Power  
Figure 58. Power Efficiency vs Output Power  
8.2.2 Mono/PBTL Application  
The TAS576xM can be configured in MONO mode enabling up to 100 W peak output power into 2-speaker.  
This is done by:  
Connect INPL and INNL directly to GND (without capacitors) this sets the device in Mono mode during power  
up.  
Connect OUTNR and OUTPR together for the positive speaker terminal and OUTPL and OUTNL together for  
the negative terminal  
In mono mode the right DAC channel, DACR, is used as input for the speaker amplifier, INPR. The left channel  
DACL can be used for a external AMP if more channels and power is needed.  
The combined output can source up to 15A – so be careful to select inductors that can handle that level of  
current, if inductors with that high saturation current is not available, the PBTL connection can be made after the  
inductors, this setup is shown in the PBTL application section.  
44  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
SDA  
SCL  
1 mF  
Positive Output  
20k  
Rb  
Ra  
3.3V  
10mH  
SCLK  
BCLK  
DIN  
1 mF  
100k  
PVCC  
10mH  
220 nF  
1 mF  
LRCLK  
1 mF  
220 nF  
1 mF 1 mF  
Optional  
single  
inductor  
connection  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
+
2R  
Power Pad œ Connect to GND  
-
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
220 nF  
Optional  
single  
1 mF  
10k  
1 mF  
1 mF 1 mF  
1 mF  
inductor  
connection  
220 nF  
3.3V  
3.3V  
10k  
10mH  
10mH  
FAULT  
PVCC  
Negative output  
DAC_L  
4.5V-26.5V  
1 mF  
470 mF  
DAC Left output  
for optional  
external AMP  
Figure 59. Mono/PBTL Application  
8.2.2.1 Design Requirements  
See Stereo Application Design Requirements.  
8.2.2.2 PBTL Application Curves  
Figure 60 shows power efficiency of the TAS5766MDCAEVM configured in PBTL mode as described in section  
Mono/PBTL Application.  
Copyright © 2013–2018, Texas Instruments Incorporated  
45  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Analog Gain = 20dB  
DAC Gain = 0dB  
TA = 25°C  
RL = 2Ω  
PVCC = 6  
PVCC =12V  
PVCC = 24V  
fs = 384kHz  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Power (W)  
G024  
Figure 60. Power Efficiency (PBTL) vs Output Power  
8.2.3 QFN BTL Application Diagram  
1 mF  
20k Rb  
3.3V  
SDA  
SCL  
100k  
Ra  
PVCC  
1 mF  
GPIO1  
GPIO2  
1 mF  
1 mF 1 mF  
30  
36  
35  
29  
26  
25  
38  
37  
34  
33  
32  
31  
28  
27  
RIGHT  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
GND 24  
OUTPR 23  
BSPR 22  
OUTNR 21  
BSNR 20  
BSNL 19  
OUTNL 18  
BSPL 17  
ADR2  
10mH  
GPIO3  
GPIO3  
SCK  
470 nF  
+
4R  
-
SCLK  
BCLK  
DIN  
220 nF  
10mH  
BCK  
470 nF  
DIN  
Thermal PAD  
Connect to GND  
220 nF  
220 nF  
LRCLK  
LRCLK  
ADR1  
XSMT/UVP  
LDOO  
GND  
10mH  
+
4R  
-
10k  
220 nF  
470 nF  
OUTPL 16  
GND 15  
10mH  
470 nF  
1 mF  
LEFT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
3.3V  
3.3V  
PVCC  
4.5V-26.5V  
1 mF  
1 mF 1 mF  
1 mF  
1 mF  
10k  
470 mF  
1 mF  
FAULT  
Figure 61. QFN BTL Application  
46  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
8.2.3.1 Design Requirements  
See the Stereo Design Requirements section.  
9 Power Supply Recommendations  
The TAS576xM requires two power supplies; a low voltage 3.3 V nominal for the pins, AVDD, DVDD and  
CPVDD and a high power supply, 4.5 V to 26.5 V for the pins PVCC and AVCC.  
There is no requirement for sequencing of DVDD and PVCC, either supplies can ramp first.  
9.1 AVDD, DVDD, CPVDD Supply  
The AVDD Supply is used to power the DAC analog output stage, and needs a well regulated and filtered 3.3-V  
supply voltage. The DVDD Supply is used to power the digital circuitry for I2S input, I2C input, GPIO blocks and  
the audio DSP. DVDD needs a well regulated and filtered 3.3-V supply voltage.  
9.2 GVDD Supply  
The GVDD Supply is used to power the gates of the output full bridge transistors. It is also used to supply the  
GAIN/FSW voltage divider. Decouple GVDD with a X7R ceramic 1-µF capacitor to GND. The GVDD supply is  
not intended to be used for external supply. It is recommended to limit the current consumption by using resistor  
voltage dividers for GAIN/FSW of 100 kor more.  
9.3 PVCC, AVCC Power Supply  
The TAS576xM high performance class-D audio system requires adequate power supply decoupling to ensure  
the output total harmonic distortion (THD) and noise is as low as possible.  
Optimum decoupling is achieved by placing a good quality low equivalent-series-resistance (ESR) ceramic  
capacitor larger than 220nF as close to the device PVCC pins and system ground plane as possible.  
For filtering lower frequency signals and handling the switching ripple current, a larger aluminum electrolytic  
capacitor of 470μF or greater placed near the audio power amplifier is recommended. The 470-μF capacitor also  
serves as a local storage capacitor for supplying current during large signal transients on the amplifier outputs.  
Copyright © 2013–2018, Texas Instruments Incorporated  
47  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The TAS576xM can be used with a small, inexpensive ferrite bead output filter when speaker are placed with  
short internal wires and supply voltages are 12 V or lower, for systems with longer wires or higher than 12V  
supply voltage LC filtering is recommended.  
Class-D switching edges are fast and swithced currents are high so it is necessary to take care when planning  
the layout of the printed circuit board. The following suggestions will help to meet audio, thermal and EMC  
requirements  
TAS576xM uses the PCB for heatsinking therefore the powerPad need to be soldered to the PCB and  
adquate cobber area and cobber via's connecting the top, bottom and internal layers should be used.  
Decoupling capacitors — The high-frequency decoupling capacitors should be placed as close to the PVDD  
and AVCC pins as possible, on the TAS576xM a 1-µF high-quality ceramic capacitor is used. Large (470 μF  
or greater) bulk power supply decoupling capacitors should be placed near the TAS576xM on the PVDD  
supplies. Local, high-frequency bypass capacitors should be placed as close to the DVDD, AVDD and  
CPVDD pins as possible.  
Keep the current loop from each of the outputs through the output inductor and the small filter cap and back  
to GND as small and tight as possible. The size of this current loop determines its effectiveness as an  
antenna.  
Grounding — A big common GND plane is recommended. The PVDD decoupling capacitors should connect  
to GND. The TAS576xM power pad should be connected to GND  
Output filter — remember to select inductors that can handle the high short circuit current of the device. The  
LC filter should be placed close to the outputs. The capacitors used in both the ferrite and LC filters should be  
grounded  
The EVM user guide available on www.ti.com shows both schematic, bill of material and more detailed layout  
plots including gerber files.  
48  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
10.2 Layout Examples  
TOP Layer  
Supply Decoupling:  
Bulk Capacitor for good audio  
decoupling  
Thermal considerations:  
Wide open areas for  
thermal flow  
1uF ceramic SMD caps close  
to PVCC pins  
Lots of via‘s to connect  
Top and bottom layer  
Short trace loop on boot strap  
capacitors  
No wires cutting the GND  
layer and obstructing  
the thermal flow  
Direct low impedance traces  
for PVCC and output traces  
Ceramic SMD caps close to  
GVDD, DVDD, CPVDD  
Traces are star routed  
away from the device  
leading to better thermal  
design  
Bottom Layer  
EMI considerations:  
Top layer is filled with GND  
Solid GND plane for low  
impedance return path  
Lots of via‘s to connect  
top and bottom layer  
C-RC snubber circuits  
directly the connector pads  
Via‘s along the PCB egde  
Figure 62. HTTSOP PCB Layout Example  
Copyright © 2013–2018, Texas Instruments Incorporated  
49  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Layout Examples (continued)  
TOP Layer  
Supply Decoupling:  
Bulk Capacitor for good audio  
decoupling  
Thermal considerations:  
Connect thermal pad to top  
GND plane at the corners  
Short trace loop on boot strap  
capacitors  
Traces are star routed  
away from the device  
leading to better thermal  
design  
1uF ceramic SMD caps close  
to PVCC pins  
Direct low impedance traces  
for PVCC and output traces  
Ceramic SMD caps close to  
GVDD, DVDD, CPVDD  
Bottom Layer  
Thermal considerations:  
EMI considerations:  
Wide open areas for  
thermal flow  
C-RC snubber circuits  
directly the connector pads  
Lots of via‘s to connect  
Top layer is filled with GND  
Top and bottom layer  
Solid GND plane for low  
impedance return path  
No wires cutting the GND  
layer and obstructing  
the thermal flow  
Lots of via‘s to connect  
top and bottom layer  
Via‘s along the PCB egde  
Figure 63. VQFN PCB Layout Example  
50  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
11 Register Map Information  
11.1 Detailed Register Map Descriptions  
Register Map Summary  
Page 0  
Dec  
1
Hex  
0x01  
0x02  
0x03  
0x04  
0x07  
0x08  
0x09  
0x0A  
0x0C  
0x0D  
0x14  
0x15  
0x16  
0x17  
0x18  
0x1B  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x3B  
0x41  
0x42  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x6C  
0x76  
0x77  
0x78  
0x79  
b7  
RSV  
b6  
RSV  
b5  
RSV  
b4  
RSTM  
RQST  
RQML  
PLCK  
b3  
RSV  
b2  
RSV  
b1  
RSV  
b0  
RSTR  
2
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RQPD  
3
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RQMR  
PLLE  
4
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
7
RSV  
RSV  
RSV  
DEMP  
MUTEOE  
BCKO  
DSPG4  
RSV  
RSV  
RSV  
RSV  
SDSL  
8
RSV  
RSV  
G3OE  
BCKP  
DSPG5  
RSV  
G1OE  
RSV  
G2OE  
RSV  
RSV  
RSV  
9
RSV  
RSV  
RSV  
LRKO  
10  
12  
13  
20  
21  
22  
23  
24  
27  
28  
29  
30  
32  
33  
34  
35  
36  
37  
40  
41  
42  
43  
44  
59  
65  
66  
82  
83  
84  
85  
86  
87  
90  
91  
92  
93  
94  
95  
108  
118  
119  
120  
121  
DSPG7  
RSV  
DSPG6  
RSV  
DSPG3  
RSV  
DSPG2  
RSV  
DSPG1  
RBCK  
RSV  
DSPG0  
RLRK  
RSV  
RSV  
RSV  
SREF  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PPDV3  
PJDV3  
PDDV3  
PDDV3  
PRDV3  
DDSP3  
DDAC3  
DNCP3  
DOSR3  
DBCK3  
DLRK3  
RSV  
PPDV2  
PJDV2  
PDDV2  
PDDV2  
PRDV2  
DDSP2  
DDAC2  
DNCP2  
DOSR2  
DBCK2  
DLRK2  
RSV  
PPDV1  
PJDV1  
PDDV1  
PDDV1  
PRDV1  
DDSP1  
DDAC1  
DNCP1  
DOSR1  
DBCK1  
DLRK1  
FSSP1  
IDAC_MSB1  
IDAC_LSB1  
DCAS  
ALEN1  
AOFS1  
AUPR1  
PSEL1  
CMDP1  
AMTR1  
AMLE  
PPDV0  
PJDV0  
PDDV0  
PDDV0  
PRDV0  
DDSP0  
DDAC0  
DNCP0  
DOSR0  
DBCK0  
DLRK0  
FSSP0  
IDAC_MSB0  
IDAC_LSB0  
IPLK  
RSV  
RSV  
PJDV5  
PDDV5  
PDDV5  
RSV  
PJDV4  
PDDV4  
PDDV4  
RSV  
RSV  
RSV  
PDDV7  
RSV  
PDDV6  
RSV  
RSV  
DDSP6  
DDAC6  
DNCP6  
DOSR6  
DBCK6  
DLRK6  
RSV  
DDSP5  
DDAC5  
DNCP5  
DOSR5  
DBCK5  
DLRK5  
RSV  
DDSP4  
DDAC4  
DNCP4  
DOSR4  
DBCK4  
DLRK4  
I16E  
RSV  
RSV  
RSV  
RSV  
DLRK7  
RSV  
IDAC_MSB7  
IDAC_LSB7  
RSV  
IDAC_MSB6  
IDAC_LSB6  
IDFS  
IDAC_MSB5  
IDAC_LSB5  
IDBK  
IDAC_MSB4  
IDAC_LSB4  
IDSK  
IDAC_MSB3  
IDAC_LSB3  
IDCH  
IDAC_MSB2  
IDAC_LSB2  
IDCM  
RSV  
RSV  
AFMT1  
AOFS5  
AUPL1  
RSV  
AFMT0  
AOFS4  
AUPL0  
PSEL4  
RSV  
RSV  
RSV  
ALEN0  
AOFS0  
AUPR0  
PSEL0  
CMDP0  
AMTR0  
AMRE  
AOFS7  
RSV  
AOFS6  
RSV  
AOFS3  
RSV  
AOFS2  
RSV  
RSV  
RSV  
PSEL3  
RSV  
PSEL2  
CMDP2  
AMTR2  
ACTL  
RSV  
RSV  
RSV  
RSV  
AMTL2  
RSV  
AMTL1  
RSV  
AMTL0  
RSV  
RSV  
RSV  
RSV  
ADLY7  
RSV  
ADLY6  
RSV  
ADLY5  
RSV  
ADLY4  
RSV  
ADLY3  
G2SL3  
G1SL3  
MTSL3  
G3SL3  
GOUT3  
GINV3  
R1OV  
DTSR3  
RSV  
ADLY2  
G2SL2  
G1SL2  
MTSL2  
G3SL2  
GOUT2  
GINV2  
L2OV  
ADLY1  
G2SL1  
G1SL1  
MTSL1  
G3SL1  
RSV  
ADLY0  
G2SL0  
G1SL0  
MTSL0  
G3SL0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
GOUT5  
GINV5  
RSV  
GOUT4  
GINV4  
L1OV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
R2OV  
SFOV  
RSV  
DTFS2  
RSV  
DTFS1  
RSV  
DTFS0  
RSV  
DTSR2  
RSV  
DTSR1  
RSV  
DTSR0  
DTBR_MSB  
DTBR_LSB0  
CDST0  
CERF  
RSV  
DTBR_LSB7  
RSV  
DTBR_LSB6  
CDST6  
RSV  
DTBR_LSB5  
CDST5  
RSV  
DTBR_LSB4  
CDST4  
LTSH  
DTBR_LSB3  
CDST3  
RSV  
DTBR_LSB2  
CDST2  
CKMF  
RSV  
DTBR_LSB1  
CDST1  
CSRF  
RSV  
RSV  
RSV  
ADLM  
RSV  
ADRM  
RSV  
RSV  
AMLM  
PSTM1  
RSV  
AMRM  
PSTM0  
RSV  
BOTM  
RSV  
RSV  
PSTM3  
3
PSTM2  
2
RSV  
GPIN5  
RSV  
RSV  
RSV  
RSV  
AMFL  
RSV  
RSV  
RSV  
AMFR  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
DAMD  
Copyright © 2013–2018, Texas Instruments Incorporated  
51  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Detailed Register Map Descriptions (continued)  
Register Map Summary (continued)  
Page 1  
Dec  
Hex  
0x02  
0x05  
0x06  
0x07  
0x08  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
RSV  
UEPD  
RSV  
RSV  
RSV  
b0  
2
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
LAGN  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RAGN  
UIPD  
AMCT  
AGBR  
RSV  
5
6
RSV  
7
AGBL  
RBGF  
8
Page 44  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
1
0x01  
RSV  
RSV  
RSV  
RSV  
ACRM  
AMDC  
ACRS  
ACSW  
11.1.1 Page 0 Registers  
Page 0 / Register 1 (Hex 0x01)  
Dec  
Hex  
b7  
b6  
b5  
b4  
RSTM  
0
b3  
b2  
b1  
b0  
RSTR  
0
1
0x01  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
RSTM  
Reset Modules  
This bit resets the interpolation filter and the DAC modules. Since the DSP is also reset, the coeffient RAM  
content will also be cleared by the DSP. This bit is auto cleared and can be set only in standby mode.  
Default value: 0  
0: Normal  
1: Reset modules  
Reset Registers  
RSTR  
This bit resets the mode registers back to their initial values. The RAM content is not cleared, but the execution  
source will be back to ROM. This bit is auto cleared and must be set only when the DAC is in standby mode  
(resetting registers when the DAC is running is prohibited and not supported).  
Default value: 0  
0: Normal  
1: Reset mode registers  
52  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Page 0 / Register 2 (Hex 0x02)  
Dec  
Hex  
b7  
b6  
b5  
b4  
RQST  
0
b3  
b2  
b1  
b0  
RQPD  
0
2
0x02  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
RQST  
Standby Request  
When this bit is set, the DAC will be forced into a system standby mode, which is also the mode the system  
enters in the case of clock errors. In this mode, most subsystems will be powered down but the charge pump  
and digital power supply.  
Default value: 0  
0: Normal operation  
1: Standby mode  
RQPD  
Powerdown Request  
When this bit is set, the DAC will be forced into powerdown mode, in which the power consumption would be  
minimum as the charge pump is also powered down. However, it will take longer to restart from this mode. This  
mode has higher precedence than the standby mode, i.e. setting this bit along with bit 4 for standby mode will  
result in the DAC going into powerdown mode.  
Default value: 0  
0: Normal operation  
1: Powerdown mode  
Page 0 / Register 3 (Hex 0x03)  
Dec  
Hex  
b7  
b6  
b5  
b4  
RQML  
0
b3  
b2  
b1  
b0  
RQMR  
0
3
0x03  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
RQML  
Mute Left Channel  
This bit issues soft mute request for the left channel. The volume will be smoothly ramped down/up to avoid  
pop/click noise.  
Default value: 0  
0: Normal volume  
1: Mute  
RQMR  
Mute Right Channel  
This bit issues soft mute request for the right channel. The volume will be smoothly ramped down/up to avoid  
pop/click noise.  
Default value: 0  
0: Normal volume  
1: Mute  
Page 0 / Register 4 (Hex 0x04)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PLLE  
1
4
0x04  
RSV  
RSV  
RSV  
PLCK  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PLCK  
PLL Lock Flag (Read Only)  
This bit indicates whether the PLL is locked or not. When the PLL is disabled this bit always shows that the  
PLL is not locked.  
Copyright © 2013–2018, Texas Instruments Incorporated  
53  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
0: The PLL is locked  
1: The PLL is not locked  
PLLE  
PLL Enable  
This bit enables or disables the internal PLL. When PLL is disabled, the master clock will be switched to the  
SCK.  
Default value: 1  
0: Disable PLL  
1: Enable PLL  
Page 0 / Register 7 (Hex 0x07)  
Dec  
Hex  
b7  
b6  
b5  
b4  
DEMP  
0
b3  
b2  
b1  
b0  
SDSL  
0
7
0x07  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DEMP  
De-Emphasis Enable  
This bit enables or disables the de-emphasis filter. The default coefficients are for 44.1kHz sampling rate, but  
can be changed by reprogramming the appropriate coeffients in RAM.  
Default value: 0  
0: De-emphasis filter is disabled  
1: De-emphasis filter is enabled  
SDOUT Select  
SDSL  
This bit selects what is being output as SDOUT via GPIO pins.  
Default value: 0  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
Page 0 / Register 8 (Hex 0x08)  
Dec  
Hex  
b7  
b6  
b5  
G3OE  
0
b4  
MUTEOE  
0
b3  
G1OE  
0
b2  
G2OE  
0
b1  
b0  
8
0x08  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G3OE  
GPIO3 Output Enable  
This bit sets the direction of the GPIO3 pin  
Default value: 0  
0: GPIO3 is input  
1: GPIO3 is output  
MUTEOE  
MUTE Control Enable  
This bit enables MUTE of speaker amplifier  
Default value: 0  
0: MUTE control disable  
1: MUTE control enable  
GPIO1 Output Enable  
This bit sets the direction of the GPIO1 pin  
Default value: 0  
G1OE  
0: GPIO1 is input  
1: GPIO1 is output  
G2OE  
GPIO2 Output Enable  
54  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
This bit sets the direction of the GPIO2 pin  
Default value: 0  
0: GPIO2 is input  
1: GPIO2 is output  
Page 0 / Register 9 (Hex 0x09)  
Dec  
Hex  
b7  
b6  
b5  
BCKP  
0
b4  
BCKO  
0
b3  
b2  
b1  
b0  
LRKO  
0
9
0x09  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
BCKP  
BCK Polarity  
This bit sets the inverted BCK mode. In inverted BCK mode, the DAC assumes that the LRCK and DIN edges  
are aligned to the rising edge of the BCK. Normally they are assumed to be aligned to the falling edge of the  
BCK.  
Default value: 0  
0: Normal BCK mode  
1: Inverted BCK mode  
BCK Output Enable  
BCKO  
This bit sets the BCK pin direction to output for I2S master mode operation. In I2S master mode the device  
outputs the reference BCK and LRCK, and the external source device provides the DIN according to these  
clocks. Use Page 0 / Register 32 to program the division factor of the SCK to yield the desired BCK rate  
(normally 64FS)  
Default value: 0  
0: BCK is input (I2S slave mode)  
1: BCK is output (I2S master mode)  
LRCLK Output Enable  
LRKO  
This bit sets the LRCK pin direction to output for I2S master mode operation. In I2S master mode the device  
outputs the reference BCK and LRCK, and the external source device provides the DIN according to these  
clocks. Use Page 0 / Register 33 to program the division factor of the BCK to yield 1FS for LRCK.  
Default value: 0  
0: LRCK is input (I2S slave mode)  
1: LRCK is output (I2S master mode)  
Page 0 / Register 10 (Hex 0x0A)  
Dec  
Hex  
b7  
DSPG7  
0
b6  
DSPG6  
0
b5  
DSPG5  
0
b4  
DSPG4  
0
b3  
DSPG3  
0
b2  
DSPG2  
0
b1  
DSPG1  
0
b0  
DSPG0  
0
10  
0x0A  
Reset Value  
DSPG[7:0]  
DSP GPIO Input  
The DSP accepts a 24-bit external control signals input. The value set in this register will go to bit 16:8 of this  
external input.  
Default value: 00000000  
Page 0 / Register 12 (Hex 0x0C)  
Dec  
Hex  
0x0C  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
RBCK  
0
b0  
RLRK  
0
12  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
Copyright © 2013–2018, Texas Instruments Incorporated  
55  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
Master Mode BCK Divider Reset  
RBCK  
This bit, when set to 0, will reset the SCK divider to generate BCK clock for I2S master mode. To use I2S  
master mode, the divider must be enabled and programmed properly.  
Default value: 0  
0: Master mode BCK clock divider is reset  
1: Master mode BCK clock divider is functional  
Master Mode LRCK Divider Reset  
RLRK  
This bit, when set to 0, will reset the BCK divider to generate LRCK clock for I2S master mode. To use I2S  
master mode, the divider must be enabled and programmed properly.  
Default value: 0  
0: Master mode LRCK clock divider is reset  
1: Master mode LRCK clock divider is functional  
Page 0 / Register 13 (Hex 0x0D)  
Dec  
Hex  
b7  
b6  
b5  
b4  
SREF  
0
b3  
b2  
b1  
b0  
13  
0x0D  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
SREF  
PLL Reference  
This bit select the source clock for internal PLL. This bit is ignored and overriden in clock auto set mode.  
Default value: 0  
0: The PLL reference clock is SCK  
1: The PLL reference clock is BCK  
Page 0 / Register 20 (Hex 0x14)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
PPDV3  
0
b2  
PPDV2  
0
b1  
PPDV1  
0
b0  
PPDV0  
0
20  
0x14  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PPDV[3:0]  
PLL P  
These bits set the PLL divider P factor. These bits are ignored in clock auto set mode.  
Default value: 0000  
0000: P=1  
0001: P=2  
...  
1110: P=15  
1111: Prohibited (do not set this value)  
Page 0 / Register 21 (Hex 0x15)  
Dec  
Hex  
0x15  
b7  
b6  
b5  
PJDV5  
0
b4  
PJDV4  
0
b3  
PJDV3  
0
b2  
PJDV2  
0
b1  
PJDV1  
0
b0  
PJDV0  
0
21  
RSV  
RSV  
Reset Value  
56  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
RSV  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Reserved  
Reserved. Do not access.  
PLL J  
PJDV[5:0]  
These bits set the J part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set  
mode.  
Default value: 000000  
000000: Prohibited (do not set this value)  
000001: J=1  
000010: J=2  
...  
111111: J=63  
Page 0 / Register 22 (Hex 0x16)  
Dec  
Hex  
b7  
b6  
b5  
PDDV5  
0
b4  
PDDV4  
0
b3  
PDDV3  
0
b2  
PDDV2  
0
b1  
PDDV1  
0
b0  
PDDV0  
0
22  
0x16  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PDDV[5:0]  
PLL D (MSB)  
Most-significant 6 bits to set the D part of the overall PLL multiplication factor J.D * R These bits are ignored in  
clock auto set mode.  
Default value: 000000  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
others: Prohibited (do not set)  
Page 0 / Register 23 (Hex 0x17)  
Dec  
Hex  
0x17  
b7  
PDDV7  
0
b6  
PDDV6  
0
b5  
PDDV5  
0
b4  
PDDV4  
0
b3  
PDDV3  
0
b2  
PDDV2  
0
b1  
PDDV1  
0
b0  
PDDV0  
0
23  
Reset Value  
PDDV[7:0]  
PLL D (LSB)  
Least-significant 8 bits to set the D part of the overall PLL multiplication factor J.D * R.  
Default value: 00000000  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
others: Prohibited (do not set)  
Page 0 / Register 24 (Hex 0x18)  
Dec  
Hex  
0x18  
b7  
b6  
b5  
b4  
b3  
PRDV3  
0
b2  
PRDV2  
0
b1  
PRDV1  
0
b0  
PRDV0  
0
24  
RSV  
RSV  
RSV  
RSV  
Reset Value  
Copyright © 2013–2018, Texas Instruments Incorporated  
57  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
PLL R  
PRDV[3:0]  
These bits set the R part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto  
set mode.  
Default value: 0000  
0000: R=1  
0001: R=2  
...  
1111: R=16  
Page 0 / Register 27 (Hex 0x1B)  
Dec  
Hex  
0x1B  
b7  
b6  
DDSP6  
0
b5  
DDSP5  
0
b4  
DDSP4  
0
b3  
DDSP3  
0
b2  
DDSP2  
0
b1  
DDSP1  
0
b0  
DDSP0  
0
27  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DDSP[6:0]  
DSP Clock Divider  
These bits set the source clock divider value for the DSP clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Page 0 / Register 28 (Hex 0x1C)  
Dec  
Hex  
0x1C  
b7  
b6  
DDAC6  
0
b5  
DDAC5  
0
b4  
DDAC4  
0
b3  
DDAC3  
0
b2  
DDAC2  
0
b1  
DDAC1  
0
b0  
DDAC0  
0
28  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DDAC[6:0]  
DAC Clock Divider  
These bits set the source clock divider value for the DAC clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Page 0 / Register 29 (Hex 0x1D)  
Dec  
Hex  
0x1D  
b7  
b6  
DNCP6  
0
b5  
DNCP5  
0
b4  
DNCP4  
0
b3  
DNCP3  
0
b2  
DNCP2  
0
b1  
DNCP1  
0
b0  
DNCP0  
0
29  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DNCP[6:0]  
NCP Clock Divider  
These bits set the source clock divider value for the CP clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
58  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Page 0 / Register 30 (Hex 0x1E)  
Dec  
Hex  
b7  
b6  
DOSR6  
0
b5  
DOSR5  
0
b4  
DOSR4  
0
b3  
DOSR3  
0
b2  
DOSR2  
0
b1  
DOSR1  
0
b0  
DOSR0  
0
30  
0x1E  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DOSR[6:0]  
OSR Clock Divider  
These bits set the source clock divider value for the OSR clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Page 0 / Register 32 (Hex 0x20)  
Dec  
Hex  
0x20  
b7  
b6  
DBCK6  
0
b5  
DBCK5  
0
b4  
DBCK4  
0
b3  
DBCK3  
0
b2  
DBCK2  
0
b1  
DBCK1  
0
b0  
DBCK0  
0
32  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DBCK[6:0]  
Master Mode BCK Divider  
These bits set the SCK divider value to generate I2S master BCK clock.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Page 0 / Register 33 (Hex 0x21)  
Dec  
Hex  
0x21  
b7  
DLRK7  
0
b6  
DLRK6  
0
b5  
DLRK5  
0
b4  
DLRK4  
0
b3  
DLRK3  
0
b2  
DLRK2  
0
b1  
DLRK1  
0
b0  
DLRK0  
0
33  
Reset Value  
DLRK[7:0]  
Master Mode LRCK Divider  
These bits set the I2S master BCK clock divider value to generate I2S master LRCK clock.  
Default value: 00000000  
00000000: Divide by 1  
00000001: Divide by 2  
...  
11111111: Divide by 256  
Copyright © 2013–2018, Texas Instruments Incorporated  
59  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
Page 0 / Register 34 (Hex 0x22)  
Dec  
Hex  
b7  
b6  
b5  
b4  
I16E  
0
b3  
b2  
b1  
FSSP1  
0
b0  
FSSP0  
0
34  
0x22  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
I16E  
Reserved  
Reserved. Do not access.  
16x Interpolation  
This bit enables or disables the 16x interpolation mode  
Default value: 0  
0: 8x interpolation  
1: 16x interpolation  
FSSP[1:0]  
FS Speed Mode  
These bits select the FS operation mode, which must be set according to the current audio sampling rate.  
These bits are ignored in clock auto set mode.  
Default value: 00  
00: Single speed (FS 48 kHz)  
01: Double speed (48 kHz < FS 96 kHz)  
10: Quad speed (96 kHz < FS 192 kHz)  
11: Octal speed (192 kHz < FS 384 kHz)  
Page 0 / Register 35 (Hex 0x23)  
Dec  
Hex  
0x23  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
35  
IDAC_MSB7  
0
IDAC_MSB6  
0
IDAC_MSB5  
0
IDAC_MSB4  
0
IDAC_MSB3  
0
IDAC_MSB2  
0
IDAC_MSB1  
0
IDAC_MSB0  
1
Reset Value  
IDAC_MSB[7:0]  
IDAC (MSB)  
Most-significant 8 bits to specify the number of DSP clock cycles available in one audio frame. The value  
should match the DSP clock FS ratio. These bits are ignored in clock auto set mode.  
Default value: 00000001  
Page 0 / Register 36 (Hex 0x24)  
Dec  
Hex  
b7  
IDAC_LSB7  
0
b6  
IDAC_LSB6  
0
b5  
IDAC_LSB5  
0
b4  
IDAC_LSB4  
0
b3  
IDAC_LSB3  
0
b2  
IDAC_LSB2  
0
b1  
IDAC_LSB1  
0
b0  
IDAC_LSB0  
0
36  
0x24  
Reset Value  
IDAC_LSB[7:0]  
IDAC (LSB)  
Least-significant 8 bits to specify the number of DSP clock cycles available in one audio frame.  
Default value: 00000000  
Page 0 / Register 37 (Hex 0x25)  
Dec  
Hex  
b7  
b6  
IDFS  
0
b5  
IDBK  
0
b4  
IDSK  
0
b3  
IDCH  
0
b2  
IDCM  
0
b1  
DCAS  
0
b0  
IPLK  
0
37  
0x25  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
IDFS  
Ignore FS Detection  
This bit controls whether to ignore the FS detection. When ignored, FS error will not cause a clock error.  
Default value: 0  
0: Regard FS detection  
60  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
IDBK  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
1: Ignore FS detection  
Ignore BCK Detection  
This bit controls whether to ignore the BCK detection against LRCK. The BCK must be stable between 32FS  
and 256FS inclusive or an error will be reported. When ignored, a BCK error will not cause a clock error.  
Default value: 0  
0: Regard BCK detection  
1: Ignore BCK detection  
Ignore SCK Detection  
IDSK  
IDCH  
IDCM  
This bit controls whether to ignore the SCK detection against LRCK. Only some certain SCK ratios within some  
error margin are allowed. When ignored, an SCK error will not cause a clock error.  
Default value: 0  
0: Regard SCK detection  
1: Ignore SCK detection  
Ignore Clock Halt Detection  
This bit controls whether to ignore the SCK halt (static or frequency is lower than acceptable) detection. When  
ignored an SCK halt will not cause a clock error.  
Default value: 0  
0: Regard SCK halt detection  
1: Ignore SCK halt detection  
Ignore LRCK/BCK Missing Detection  
This bit controls whether to ignore the LRCK/BCK missing detection. The LRCK/BCK need to be in low state  
(not only static) to be deemed missing. When ignored an LRCK/BCK missing will not cause the DAC go into  
powerdown mode.  
Default value: 0  
0: Regard LRCK/BCK missing detection  
1: Ignore LRCK/BCK missing detection  
Disable Clock Divider Autoset  
DCAS  
This bit enables or disables the clock auto set mode. When dealing with uncommon audio clock configuration,  
the auto set mode must be disabled and all clock dividers must be set manually. Addtionally, some clock  
detectors might also need to be disabled.  
Default value: 0  
0: Enable clock auto set  
1: Disable clock auto set  
Ignore PLL Lock Detection  
IPLK  
This bit controls whether to ignore the PLL lock detection. When ignored, PLL unlocks will not cause a clock  
error. The PLL lock flag at Page 0 / Register 4, bit 4 is always correct regardless of this bit.  
Default value: 0  
0: PLL unlocks raise clock error  
1: PLL unlocks are ignored  
Page 0 / Register 40 (Hex 0x28)  
Dec  
Hex  
b7  
b6  
b5  
AFMT1  
0
b4  
AFMT0  
0
b3  
b2  
b1  
ALEN1  
1
b0  
ALEN0  
0
40  
0x28  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AFMT[1:0]  
I2S Data Format  
These bits control both input and output audio interface formats for DAC operation.  
Default value: 00  
00: I2S  
01: DSP  
Copyright © 2013–2018, Texas Instruments Incorporated  
61  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
10: RTJ  
11: LTJ  
ALEN[1:0]  
I2S Word Length  
These bits control both input and output audio interface sample word lengths for DAC operation.  
Default value: 10  
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
Page 0 / Register 41 (Hex 0x29)  
Dec  
Hex  
0x29  
b7  
AOFS7  
0
b6  
AOFS6  
0
b5  
AOFS5  
0
b4  
AOFS4  
0
b3  
AOFS3  
0
b2  
AOFS2  
0
b1  
AOFS1  
0
b0  
AOFS0  
0
41  
Reset Value  
AOFS[7:0]  
I2S Shift  
These bits control the offset of audio data in the audio frame for both input and output. The offset is defined as  
the number of BCK from the starting (MSB) of audio frame to the starting of the desired audio sample.  
Default value: 00000000  
00000000: offset = 0 BCK (no offset)  
00000001: ofsset = 1 BCK  
00000010: offset = 2 BCKs  
...  
11111111: offset = 256 BCKs  
Page 0 / Register 42 (Hex 0x2A)  
Dec  
Hex  
0x2A  
b7  
b6  
b5  
AUPL1  
0
b4  
AUPL0  
1
b3  
b2  
b1  
AUPR1  
0
b0  
AUPR0  
1
42  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AUPL[1:0]  
Left DAC Data Path  
These bits control the left channel audio data path connection.  
Default value: 01  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
Right DAC Data Path  
AUPR[1:0]  
These bits control the right channel audio data path connection.  
Default value: 01  
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
Page 0 / Register 43 (Hex 0x2B)  
Dec  
Hex  
0x2B  
b7  
b6  
b5  
b4  
PSEL4  
0
b3  
PSEL3  
0
b2  
PSEL2  
0
b1  
PSEL1  
0
b0  
PSEL0  
1
43  
RSV  
RSV  
RSV  
Reset Value  
62  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
RSV  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Reserved  
Reserved. Do not access.  
DSP Program Selection  
PSEL[4:0]  
These bits select the DSP program to use for audio processing.  
Default value: 00001  
00000: Reserved (do not set)  
00001: 8x/4x/2x FIR interpolation filter with de-emphasis  
00010: Reserved (do not set)  
00011: Reserved (do not set)  
00100: Reserved (do not set)  
00101: Reserved (do not set)  
00110: Reserved (do not set)  
00111: Reserved (do not set)  
01000: Reserved (do not set)  
11111: User program in RAM  
others: Reserved (do not set)  
Page 0 / Register 44 (Hex 0x2C)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
CMDP2  
0
b1  
CMDP1  
0
b0  
CMDP0  
0
44  
0x2C  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
CMDP[2:0]  
Clock Missing Detection Period  
These bits set how long both BCK and LRCK keep low before the audio clocks deemed missing and the DAC  
transitions to powerdown mode.  
Default value: 000  
000: about 1 second  
001: about 2 seconds  
010: about 3 seconds  
...  
111: about 8 seconds  
Page 0 / Register 59 (Hex 0x3B)  
Dec  
Hex  
0x3B  
b7  
b6  
AMTL2  
0
b5  
AMTL1  
0
b4  
AMTL0  
0
b3  
b2  
AMTR2  
0
b1  
AMTR1  
0
b0  
AMTR0  
0
59  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AMTL[2:0]  
Auto Mute Time for Left Channel  
These bits specify the length of consecutive zero samples at left channel before the channel can be auto  
muted. The times shown are for 48 kHz sampling rate and will scale with other rates.  
Default value: 000  
000: 21 ms  
001: 106 ms  
010: 213 ms  
011: 533 ms  
100: 1.07 sec  
101: 2.13 sec  
Copyright © 2013–2018, Texas Instruments Incorporated  
63  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
110: 5.33 sec  
111: 10.66 sec  
AMTR[2:0]  
Auto Mute Time for Right Channel  
These bits specify the length of consecutive zero samples at right channel before the channel can be auto  
muted. The times shown are for 48 kHz sampling rate and will scale with other rates.  
Default value: 000  
000: 21 ms  
001: 106 ms  
010: 213 ms  
011: 533 ms  
100: 1.07 sec  
101: 2.13 sec  
110: 5.33 sec  
111: 10.66 sec  
Page 0 / Register 65 (Hex 0x41)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
ACTL  
1
b1  
AMLE  
0
b0  
AMRE  
0
65  
0x41  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
ACTL  
Auto Mute Control  
This bit controls the behavior of the auto mute upon zero sample detection. The time length for zero detection  
is set with Page 0 / Register 59.  
Default value: 1  
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are about to be auto muted.  
Auto Mute Left Channel  
AMLE  
AMRE  
This bit enables or disables auto mute on right channel. Note that when right channel auto mute is disabled and  
the Page 0 / Register 65, bit 2 is set to 1, the left channel will also never be auto muted.  
Default value: 0  
0: Disable right channel auto mute  
1: Enable right channel auto mute  
Auto Mute Right Channel  
This bit enables or disables auto mute on left channel. Note that when left channel auto mute is disabled and  
the Page 0 / Register 65, bit 2 is set to 1, the right channel will also never be auto muted.  
Default value: 0  
0: Disable left channel auto mute  
1: Enable left channel auto mute  
Page 0 / Register 66 (Hex 0x42)  
Dec  
Hex  
b7  
ADLY7  
0
b6  
ADLY6  
0
b5  
ADLY5  
0
b4  
ADLY4  
1
b3  
ADLY3  
0
b2  
ADLY2  
1
b1  
ADLY1  
0
b0  
ADLY0  
0
66  
0x42  
Reset Value  
ADLY[7:0]  
AMUTE Delay  
These bits control the delay before the complete digital mute to the assertion of analog mute. This is to allow  
the non-mute audio samples to completely flow out through analog parts before the assertion of the analog  
mute.  
Default value: 00010100  
00000000: No delay  
64  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
00000001: 1 LRCK delay  
00000010: 2 LRCK delay  
...  
11111111: 255 LRCK delay  
Page 0 / Register 82 (Hex 0x52)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
G2SL3  
0
b2  
G2SL2  
0
b1  
G2SL1  
0
b0  
G2SL0  
0
82  
0x52  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G2SL[3:0]  
GPIO2 Output Selection  
These bits select the signal to output to GPIO2. To actually output the selected signal, the GPIO2 must be set  
to output mode at Page 0 / Register 8.  
Default value: 0000  
0000: off (low)  
0001: DSP GPIO2 output  
0010: Register GPIO2 output (Page 0 / Register 86, bit 2)  
0011: Auto mute flag (asserted when both L and R channels are auto muted)  
0100: Auto mute flag for left channel  
0101: Auto mute flag for right channel  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
0111: Serial audio interface data output (SDOUT)  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active)  
1010: PLL lock flag  
1011: Charge pump clock  
1100: DAC clock  
1101: MiniDSP clock/4  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
Page 0 / Register 83 (Hex 0x53)  
Dec  
Hex  
0x53  
b7  
b6  
b5  
b4  
b3  
G1SL3  
0
b2  
G1SL2  
0
b1  
G1SL1  
0
b0  
G1SL0  
0
83  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G1SL[3:0]  
GPIO1 Output Selection  
These bits select the signal to output to GPIO1. To actually output the selected signal, the GPIO1 must be set  
to output mode at Page 0 / Register 8.  
Default value: 0000  
0000: off (low)  
0001: DSP GPIO1 output  
0010: Register GPIO1 output (Page 0 / Register 86, bit 3)  
0011: Auto mute flag (asserted when both L and R channels are auto muted)  
0100: Auto mute flag for left channel  
0101: Auto mute flag for right channel  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
Copyright © 2013–2018, Texas Instruments Incorporated  
65  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
0111: Serial audio interface data output (SDOUT)  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active)  
1010: PLL lock flag  
1011: Charge pump clock  
1100: DAC clock  
1101: MiniDSP clock/4  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
Page 0 / Register 84 (Hex 0x54)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
MTSL3  
0
b2  
MTSL2  
0
b1  
MTSL1  
0
b0  
MTSL0  
0
84  
0x54  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
MTSL[3:0]  
MUTE Output Selection  
These bits select the signal to output to MUTE. To actually output the selected signal, the MUTE must be set to  
output mode at Page 0 / Register 8.  
Default value: 0000  
0000: off (low)  
0001: DSP MUTE output  
0010: Register MUTE output (Page 0 / Register 86, bit 4)  
0011: Auto mute flag (asserted when both L and R channels are auto muted)  
0100: Auto mute flag for left channel  
0101: Auto mute flag for right channel  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
Page 0 / Register 85 (Hex 0x55)  
Dec  
Hex  
0x55  
b7  
b6  
b5  
b4  
b3  
G3SL3  
0
b2  
G3SL2  
0
b1  
G3SL1  
0
b0  
G3SL0  
0
85  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G3SL[3:0]  
GPIO3 Output Selection  
These bits select the signal to output to GPIO3. To actually output the selected signal, the GPIO3 must be set  
to output mode at Page 0 / Register 8.  
Default value: 0000  
0000: off (low)  
0001: DSP GPIO3 output  
0010: Register GPIO3 output (Page 0 / Register 86, bit 5)  
0011: Auto mute flag (asserted when both L and R channels are auto muted)  
0100: Auto mute flag for left channel  
0101: Auto mute flag for right channel  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
0111: Serial audio interface data output (SDOUT)  
66  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active)  
1010: PLL lock flag  
1011: Charge pump clock  
1100: DAC clock  
1101: MiniDSP clock/4  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
Page 0 / Register 86 (Hex 0x56)  
Dec  
Hex  
b7  
b6  
b5  
GOUT5  
0
b4  
GOUT4  
0
b3  
GOUT3  
0
b2  
GOUT2  
0
b1  
b0  
86  
0x56  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GOUT[5:0]  
GPIO Output Control  
This bit controls the GPIO3 output when the selection at Page 0 / Register 85 is set to 0010 (register output)  
Default value: 000000  
0: Output low  
1: Output high  
Page 0 / Register 87 (Hex 0x57)  
Dec  
Hex  
b7  
b6  
b5  
GINV5  
0
b4  
GINV4  
0
b3  
GINV3  
0
b2  
GINV2  
0
b1  
b0  
87  
0x57  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GINV[5:0]  
GPIO Output Inversion  
This bit controls the polarity of GPIO3 output. When set to 1, the output will be inverted for any signal being  
selected.  
Default value: 000000  
0: Non-inverted  
1: Inverted  
Page 0 / Register 90 (Hex 0x5A)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
90  
0x5A  
RSV  
RSV  
RSV  
L1OV  
R1OV  
L2OV  
R2OV  
SFOV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
L1OV  
Left1 Overflow (Read Only)  
This bit indicates whether the left channel of DSP first output port has overflow. This bit is sticky and is cleared  
when read.  
0: No overflow  
1: Overflow occurred  
R1OV  
Right1 Overflow (Read Only)  
The bit indicates whether the right channel of DSP first output port has overflow. This bit is sticky and is cleared  
when read.  
Copyright © 2013–2018, Texas Instruments Incorporated  
67  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
0: No overflow  
1: Overflow occurred  
Left2 Overflow (Read Only)  
L2OV  
R2OV  
SFOV  
This bit indicates whether the left channel of DSP second output port has overflow. This bit is sticky and is  
cleared when read.  
0: No overflow  
1: Overflow occurred  
Right2 Overflow (Read Only)  
The bit indicates whether the right channel of DSP second output port has overflow. This bit is sticky and is  
cleared when read.  
0: No overflow  
1: Overflow occurred  
Shifter Overflow (Read Only)  
This bit indicates whether overflow occurred in the DSP shifter (possible sample corruption). This bit is sticky  
and is cleared when read.  
0: No overflow  
1: Overflow occurred  
Page 0 / Register 91 (Hex 0x5B)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
91  
0x5B  
RSV  
DTFS2  
DTFS1  
DTFS0  
DTSR3  
DTSR2  
DTSR1  
DTSR0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DTFS[2:0]  
Detected FS (Read Only)  
These bits indicate the currently detected audio sampling rate.  
000: Error (Out of valid range)  
001: 8 kHz  
010: 16 kHz  
011: 32-48 kHz  
100: 88.2-96 kHz  
101: 176.4-192 kHz  
110: 384 kHz  
DTSR[3:0]  
Detected SCK Ratio (Read Only)  
These bits indicate the currently detected SCK ratio. Note that even if the SCK ratio is not indicated as error,  
clock error might still be flagged due to incompatible combination with the sampling rate. Specifically the SCK  
ratio must be high enough to allow enough DSP cycles for minimal audio processing when PLL is disabled. The  
absolute SCK frequency must also be lower than 50 MHz.  
0000: Ratio error (The SCK ratio is not allowed)  
0001: SCK = 32 FS  
0010: SCK = 48 FS  
0011: SCK = 64 FS  
0100: SCK = 128 FS  
0101: SCK = 192 FS  
0110: SCK = 256 FS  
0111: SCK = 384 FS  
1000: SCK = 512 FS  
1001: SCK = 768 FS  
1010: SCK = 1024 FS  
1011: SCK = 1152 FS  
1100: SCK = 1536 FS  
68  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
1101: SCK = 2048 FS  
1110: SCK = 3072 FS  
Page 0 / Register 92 (Hex 0x5C)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
92  
0x5C  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
DTBR_MSB  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Detected BCK Ratio (MSB) (Read Only)  
DTBR_MSB  
Most significant of 9 bits that indicate the currently detected BCK ratio, that is, the number of BCK clocks in one  
audio frame. Note that for extreme case of BCK = 1 FS (which is not usable anyway), the detected ratio will be  
unreliable.  
Page 0 / Register 93 (Hex 0x5D)  
Dec  
Hex  
0x5D  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
93  
DTBR_LSB7  
DTBR_LSB6  
DTBR_LSB5  
DTBR_LSB4  
DTBR_LSB3  
DTBR_LSB2  
DTBR_LSB1  
DTBR_LSB0  
Reset Value  
DTBR_LSB[7:0]  
Detected BCK Ratio (LSB) (Read Only)  
Least significant of 8 bits that indicate the currently detected BCK ratio.  
Page 0 / Register 94 (Hex 0x5E)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
94  
0x5E  
RSV  
CDST6  
CDST5  
CDST4  
CDST3  
CDST2  
CDST1  
CDST0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
CDST[6]  
Clock Detector Status (Read Only)  
This bit indicates whether the SCK clock is present or not.  
0: SCK is present  
1: SCK is missing (halted)  
CDST[5]  
CDST[4]  
CDST[3]  
CDST[2]  
Clock Detector Status (Read Only)  
This bit indicates whether the PLL is locked or not. The PLL will be reported as unlocked when it is disabled.  
0: PLL is locked  
1: PLL is unlocked  
Clock Detector Status (Read Only)  
This bit indicates whether the both LRCK and BCK are missing (tied low) or not.  
0: LRCK and/or BCK is present  
0: LRCK and BCK are missing  
Clock Detector Status (Read Only)  
This bit indicates whether the combination of current sampling rate and SCK ratio is valid for clock auto set.  
0: The combination of FS/SCK ratio is valid  
1: Error (clock auto set is not possible)  
Clock Detector Status (Read Only)  
This bit indicates whether the SCK is valid or not. The SCK ratio must be detectable to be valid. There is a  
limitation with this flag; that is, when the low period of LRCK is less than or equal to 5 BCKs, this flag will be  
asserted (SCK invalid reported).  
0: SCK is valid  
Copyright © 2013–2018, Texas Instruments Incorporated  
69  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
1: SCK is invalid  
Clock Detector Status (Read Only)  
CDST[1]  
CDST[0]  
This bit indicates whether the BCK is valid or not. The BCK ratio must be stable and in the range of 32-256FS  
to be valid.  
0: BCK is valid  
1: BCK is invalid  
Clock Detector Status (Read Only)  
This bit indicates whether the audio sampling rate is valid or not. The sampling rate must be detectable to be  
valid. There is a limitation with this flag; that is, when this flag is asserted and $0/37$ is set to ignore all  
asserted error flags such that the DAC recovers, this flag will be de-asserted (sampling rate invalid not reported  
anymore).  
0: Sampling rate is valid  
1: Sampling rate is invalid  
Page 0 / Register 95 (Hex 0x5F)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
95  
0x5F  
RSV  
RSV  
RSV  
LTSH  
RSV  
CKMF  
CSRF  
CERF  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
LTSH  
Latched Clock Halt (Read Only)  
This bit indicates whether SCK halt has occurred. The bit is cleared when read.  
0: SCK halt has not occurred  
1: SCK halt has occurred since last read  
Clock Missing (Read Only)  
CKMF  
CSRF  
CERF  
This bit indicates whether the LRCK and BCK are missing (tied low).  
0: LRCK and/or BCK is present  
1: LRCK and BCK are missing  
Clock Resync Request (Read Only)  
This bit indicates whether the clock resynchronization is in progress.  
0: Not resynchronizing  
1: Clock resynchronization is in progress  
Clock Error (Read Only)  
This bit indicates whether a clock error is being reported.  
0: Clock is valid  
1: Clock is invalid (Error)  
Page 0 / Register 108 (Hex 0x6C)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
108  
0x6C  
RSV  
RSV  
ADLM  
ADRM  
RSV  
RSV  
AMLM  
AMRM  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AMUTEZ dummy left monitor (Read Only)  
ADLM  
This bit is a monitor for left channel dummy output analog mute status.  
0: Mute  
1: Unmute  
ADRM  
AMUTEZ dummy right monitor (Read Only)  
This bit is a monitor for right channel dummy output analog mute status.  
70  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
AMLM  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
0: Mute  
1: Unmute  
Left Analog Mute Monitor (Read Only)  
This bit is a monitor for left channel analog mute status.  
0: Mute  
1: Unmute  
AMRM  
Right Analog Mute Monitor (Read Only)  
This bit is a monitor for right channel analog mute status.  
0: Mute  
1: Unmute  
Page 0 / Register 118 (Hex 0x76)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
118  
0x76  
BOTM  
RSV  
RSV  
RSV  
PSTM3  
PSTM2  
PSTM1  
PSTM0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
BOTM  
DSP Boot Done Flag (Read Only)  
This bit indicates whether the DSP boot is completed.  
0: DSP is booting  
1: DSP boot completed  
Power State (Read Only)  
These bits indicate the current power state of the DAC.  
0000: Powerdown  
PSTM[3:0]  
0001: Wait for CP voltage valid  
0010: Calibration  
0011: Calibration  
0100: Volume ramp up  
0101: Run (Playing)  
0110: Reserved  
0111: Volume ramp down  
1000: Standby  
Page 0 / Register 119 (Hex 0x77)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
119  
0x77  
RSV  
RSV  
GPIN5  
RSV  
3
2
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GPIN[5:0]  
GPIO Input States (Read Only)  
This bit indicates the logic level at GPIO3 pin.  
0: Low  
1: High  
Page 0 / Register 120 (Hex 0x78)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
120  
0x78  
RSV  
RSV  
RSV  
AMFL  
RSV  
RSV  
RSV  
AMFR  
Reset Value  
Copyright © 2013–2018, Texas Instruments Incorporated  
71  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
AMFL  
Auto Mute Flag for Left Channel (Read Only)  
This bit indicates the auto mute status for left channel.  
0: Not auto muted  
1: Auto muted  
AMFR  
Auto Mute Flag for Right Channel (Read Only)  
This bit indicates the auto mute status for right channel.  
0: Not auto muted  
1: Auto muted  
Page 0 / Register 121 (Hex 0x79)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
DAMD  
0
121  
0x79  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DAC Mode  
DAMD  
This bit controls the DAC mode.  
Default value: 0  
0: Mode1  
1: Mode2  
11.1.2 Page 1 Registers  
Page 1 / Register 2 (Hex 0x02)  
Dec  
Hex  
b7  
b6  
b5  
b4  
LAGN  
0
b3  
b2  
b1  
b0  
RAGN  
0
2
0x02  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
LAGN  
Analog Gain Control for Left Channel  
This bit controls the left channel analog gain.  
Default value: 0  
0: 0 dB  
1:-6 dB  
RAGN  
Analog Gain Control for Right Channel  
This bit controls the right channel analog gain.  
Default value: 0  
0: 0 dB  
1: -6 dB  
Page 1 / Register 5 (Hex 0x05)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
UEPD  
0
b0  
UIPD  
0
5
0x05  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
72  
Copyright © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
RSV  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
Reserved  
Reserved. Do not access.  
External UVP Control  
UEPD  
This bit enables or disables detection of power supply drop via XSMUTE pin (External Under Voltage  
Protection).  
Default value: 0  
0: Enabled  
1: Disabled  
UIPD  
Internal UVP Control  
This bit enables or disables internal detection of AVDD voltage drop (Internal Under Voltage Protection).  
Default value: 0  
0: Enabled  
1: Disabled  
Page 1 / Register 6 (Hex 0x06)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
AMCT  
1
6
0x06  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AMCT  
Analog Mute Control  
This bit enables or disables analog mute following digital mute.  
Default value: 1  
0: Enabled  
1: Disabled  
Page 1 / Register 7 (Hex 0x07)  
Dec  
Hex  
b7  
b6  
b5  
b4  
AGBL  
0
b3  
b2  
b1  
b0  
AGBR  
0
7
0x07  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AGBL  
Analog +10% Gain for Left Channel  
This bit enables or disables amplitude boost mode for left channel.  
Default value: 0  
0: Normal amplitude  
1: +10% (+0.8 dB) boosted amplitude  
Analog +10% Gain for Right Channel  
This bit enables or disables amplitude boost mode for right channel.  
Default value: 0  
AGBR  
0: Normal amplitude  
1: +10% (+0.8 dB) boosted amplitude  
Page 1 / Register 8 (Hex 0x08)  
Dec  
Hex  
b7  
b6  
b5  
b4  
RBGF  
0
b3  
b2  
b1  
b0  
8
0x08  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
Copyright © 2013–2018, Texas Instruments Incorporated  
73  
TAS5766M, TAS5768M  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
REF BG Fast  
RBGF  
This bit controls the bandgap voltage ramp up speed.  
Default value: 0  
0: Normal ramp up, ~50ms with external capacitance = 1uF  
1: Fast ramp up, ~1ms with external capacitance = 1 uF  
11.1.3 Page 44 Registers  
Page 44 / Register 1 (Hex 0x01)  
Dec  
Hex  
b7  
b6  
b5  
b4  
b3  
b2  
AMDC  
0
b1  
b0  
ACSW  
0
1
0x01  
RSV  
RSV  
RSV  
RSV  
ACRM  
ACRS  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
ACRM  
Active CRAM Monitor (Read Only)  
This bit indicates which CRAM is being accessed by the DSP when adaptive mode is disabled. When adaptive  
mode is enabled, this bit has no meaning.  
0: CRAM A is being used by the DSP  
1: CRAM B is being used by the DSP  
Adaptive Mode Control  
AMDC  
This bit controls the DSP adaptive mode. When in adaptive mode, only CRAM A is accessible via serial  
interface when the DSP is disabled (DAC in standby state), while when the DSP is enabled (DAC is run state)  
the CRAM A can only be accessed by the DSP and the CRAM B can only be accessed by the serial interface,  
or vice versa depending on the value of CRAMSTAT. When not in adaptive mode, both CRAM A and B can be  
accessed by the serial interface when the DSP is disabled, but when the DSP is enabled, no CRAM can be  
accessed by serial interface. The DSP can access either CRAM, which can be monitored at SWPMON.  
Default value: 0  
0: Adaptive mode disabled  
1: Adaptive mode enabled  
ACRS  
ACSW  
Active CRAM Selection (Read Only)  
This bit indicates which CRAM currently serves as the active one. The other CRAM serves as an update buffer,  
and can accessed by serial interface (SPI/I2C)  
0: CRAM A is active and being used by the DSP  
1: CRAM B is active and being used by the DSP  
Switch Active CRAM  
This bit is used to request switching roles of the two buffers, i.e. switching the active buffer role between CRAM  
A and CRAM B. This bit is cleared automatically when the switching process completed.  
Default value: 0  
0: No switching requested or switching completed  
1: Switching is being requested  
74  
版权 © 2013–2018, Texas Instruments Incorporated  
TAS5766M, TAS5768M  
www.ti.com.cn  
ZHCSDC1D SEPTEMBER 2013REVISED OCTOBER 2018  
12 器件和文档支持  
12.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
25. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TAS5766M  
TAS5768M  
12.2 商标  
PurePath, PowerPAD are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2013–2018, Texas Instruments Incorporated  
75  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5766MDCA  
TAS5766MDCAR  
TAS5766MRMTR  
TAS5766MRMTT  
TAS5768MDCA  
TAS5768MDCAR  
TAS5768MRMTR  
TAS5768MRMTT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
VQFN  
DCA  
DCA  
RMT  
RMT  
DCA  
DCA  
RMT  
RMT  
48  
48  
48  
48  
48  
48  
48  
48  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
TAS5766M  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TAS5766M  
5766M  
VQFN  
250  
40  
RoHS & Green  
RoHS & Green  
5766M  
HTSSOP  
HTSSOP  
VQFN  
TAS5768M  
TAS5768M  
5768M  
2000 RoHS & Green  
3000 RoHS & Green  
VQFN  
250  
RoHS & Green  
5768M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5766MDCAR  
TAS5766MRMTR  
TAS5766MRMTT  
TAS5768MDCAR  
TAS5768MRMTR  
TAS5768MRMTT  
HTSSOP DCA  
48  
48  
48  
48  
48  
48  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
24.4  
16.4  
16.4  
24.4  
16.4  
16.4  
8.6  
5.25  
5.25  
8.6  
13.0  
7.25  
7.25  
13.0  
7.25  
7.25  
1.8  
1.45  
1.45  
1.8  
12.0  
8.0  
24.0  
16.0  
16.0  
24.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN  
VQFN  
RMT  
RMT  
8.0  
HTSSOP DCA  
2000  
3000  
250  
12.0  
8.0  
VQFN  
VQFN  
RMT  
RMT  
5.25  
5.25  
1.45  
1.45  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS5766MDCAR  
TAS5766MRMTR  
TAS5766MRMTT  
TAS5768MDCAR  
TAS5768MRMTR  
TAS5768MRMTT  
HTSSOP  
VQFN  
DCA  
RMT  
RMT  
DCA  
RMT  
RMT  
48  
48  
48  
48  
48  
48  
2000  
3000  
250  
350.0  
367.0  
210.0  
350.0  
367.0  
210.0  
350.0  
367.0  
185.0  
350.0  
367.0  
185.0  
43.0  
38.0  
35.0  
43.0  
38.0  
35.0  
VQFN  
HTSSOP  
VQFN  
2000  
3000  
250  
VQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TAS5766MDCA  
TAS5768MDCA  
DCA  
DCA  
HTSSOP  
HTSSOP  
48  
48  
40  
40  
530  
530  
11.89  
11.89  
3600  
3600  
4.9  
4.9  
Pack Materials-Page 3  
PACKAGE OUTLINE  
RMT0048A  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.6  
3.5 0.1  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
24  
15  
14  
25  
SYMM  
49  
5.5 0.1  
2X 5.2  
1
38  
0.26  
0.14  
44X 0.4  
48X  
39  
48  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
0.05  
48X  
4224155/A 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMT0048A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.5)  
(1.5) TYP  
(0.6) TYP  
SEE SOLDER MASK  
DETAIL  
39  
48  
48X (0.6)  
48X (0.2)  
1
38  
44X (0.4)  
(2.5) TYP  
(5.5)  
(1.32)  
TYP  
(R0.05) TYP  
SYMM  
(6.8)  
49  
(
0.2) TYP  
VIA  
25  
14  
15  
24  
SYMM  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224155/A 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMT0048A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.2)  
48  
39  
48X (0.6)  
48X (0.2)  
1
38  
44X (0.4)  
(1.32)  
(0.66)  
(6.8)  
49  
SYMM  
(R0.05) TYP  
12X (1.12)  
14  
25  
12X (1)  
15  
24  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 12X  
EXPOSED PAD 49  
70% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224155/A 02/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
DCA 48  
12.5 x 6.1, 0.5 mm pitch  
HTSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224608/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TAS5768MDCAR

具有 1SPW 的 50W 立体声、100W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85
TI

TAS5768MRMTR

具有 1SPW 的 50W 立体声、100W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类智能音频放大器 | RMT | 48 | -25 to 85
TI

TAS5768MRMTT

具有 1SPW 的 50W 立体声、100W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类智能音频放大器 | RMT | 48 | -25 to 85
TI

TAS5770LC0YFFR

具有 I/V 感应扬声器保护的 20W 数字输入 4.5V 至 18V 智能放大器 | YFF | 30 | -40 to 85
TI

TAS5780M

20W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器
TI

TAS5780MDCA

20W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI

TAS5780MDCAR

20W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI

TAS5782M

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器
TI

TAS5782MDCA

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85
TI

TAS5782MDCAR

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85
TI

TAS5805M

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器
TI

TAS5805MPWP

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | PWP | 28 | -25 to 85
TI