TAS5780MDCA [TI]

20W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85;
TAS5780MDCA
型号: TAS5780MDCA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

20W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85

放大器 音频放大器
文件: 总205页 (文件大小:3760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
TAS5780M 采用 96kHz 处理架构的数字输入、闭环 D 类放大器  
1 特性  
2 应用  
1
灵活的音频 I/O 配置  
液晶显示屏 (LCD)、发光二极管 (LED) TV 和多用  
途监视器  
支持 I2STDMLJ RJ 数字输入  
条形音箱、扩展坞和 PC 音频  
无线低音炮、蓝牙扬声器和有源扬声器  
支持采样速率  
立体声桥接负载 (BTL) 或单声道并行桥接负载  
(PBTL) 运行  
3 说明  
1SPW 放大器调制  
TAS5780M 器件是一款高性能、立体声闭环 D 类放大  
器,集成采用 96kHz 架构的音频处理器。为实现数模  
转换,该器件采用了应用 Burr-Brown™技术的高性能  
数模转换器 (DAC) 该器件仅需两个电源:一个是用于  
低压电路的 DVDD,另一个是用于高压电路的  
PVDD。它采用标准的 I2C 通信软件控制端口实现控  
制。  
支持三线制数字音频接口(无需 MCLK)  
高性能闭环架构(PVDD = 12VRSPK  
8ΩSPK_GAIN = 20dB)  
=
空闲声道噪声 = 62μVRMS (A-Wtd)  
总谐波失真 + 噪声 (THD+N) = 0.2% (1W/1kHz)  
信噪比 (SNR) = 100dB A-Wtd(以THD+N =  
1% 为基准)  
固定功能处理 特性  
输出金属氧化物半导体场效应晶体管 (MOSFET) 的  
90mΩ rDS(on) 兼顾散热性能与器件成本,二者相得益  
彰。此外,该器件采用耐热增强型 48 引脚薄型小外形  
尺寸 (TSSOP),在现代消费类电子器件的较高工作环  
境温度下展现出优异的性能。  
12 BiQuad  
12 BiQuad 实现快速变换的内部存储区切  
双波段高级动态范围压缩 (DRC) + 自动增益限  
(AGL)  
器件信息(1)  
动态参数均衡 (DPEQ)  
采样速率转换器 (SRC) 支持的频率包括  
32kHz44.1kHz48kHz88.2kHz96kHz  
器件型号  
TAS5780M  
封装  
封装尺寸(标称值)  
TSSOP (48)  
12.50mm x 6.10mm  
96kHz 处理器采样  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
通信 特性  
通过 I2C 端口实现软件模式控制  
两个地址选择引脚 多达 4 个器件  
兼具稳定性 和可靠性  
时钟误差和短路保护  
过热和过流保护  
简化框图  
10% THD+N 时的功率与 PVDD 间的关系 (1)  
DVDD  
PVDD  
80  
High Voltage  
Supply Domain  
8 W Load Peak  
6 W Load Peak  
4 W Load Peak  
6 W Load Continous  
4 W Load Continous  
Low-Voltage Supply Domain  
Fixed-Function  
Processing  
High Performance  
Stereo DAC  
Closed Loop Stereo  
Class D Amplifier  
60  
40  
20  
0
Serial  
Audio In  
001100  
1101  
Analog  
Audio Out  
PWM  
Modulator  
Power  
Stage  
Serial Audio  
Out  
µCDSP Core  
TI  
Burr-Brown Audio  
Hardware  
Control Port  
Software Control Port  
I²C Communication  
GPIO/Status  
Copyright © 2016, Texas Instruments Incorporated  
5
10  
15  
Supply Voltage (V)  
20  
24  
D002  
(1) TAS5780MEVM 电路板中进行了测试。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEG7  
 
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 32  
9.4 Device Functional Modes........................................ 54  
9.5 Programming........................................................... 55  
10 Application and Implementation........................ 67  
10.1 Application Information.......................................... 67  
10.2 Typical Applications ............................................. 69  
11 Power Supply Recommendations ..................... 78  
11.1 Power Supplies ..................................................... 78  
12 Layout................................................................... 80  
12.1 Layout Guidelines ................................................. 80  
12.2 Layout Example .................................................... 82  
13 Register Maps...................................................... 88  
13.1 Registers - Page 0 ................................................ 88  
13.2 Registers - Page 1 .............................................. 149  
13.3 Registers - Page 253 .......................................... 156  
13.4 DSP Memory Map............................................... 189  
14 器件和文档支持 ................................................... 198  
14.1 器件支持.............................................................. 198  
14.2 接收文档更新通知 ............................................... 198  
14.3 社区资源.............................................................. 199  
14.4 ..................................................................... 199  
14.5 静电放电警告....................................................... 199  
14.6 Glossary.............................................................. 199  
15 机械、封装和可订购信息..................................... 199  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
6.1 Internal Pin Configurations........................................ 5  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions....................... 9  
7.4 Thermal Information.................................................. 9  
7.5 Electrical Characteristics......................................... 10  
7.6 Power Dissipation Characteristics .......................... 14  
7.7 MCLK Timing ......................................................... 19  
7.8 Serial Audio Port Timing – Slave Mode.................. 19  
7.9 Serial Audio Port Timing – Master Mode................ 20  
7.10 I2C Bus Timing – Standard ................................... 20  
7.11 I2C Bus Timing – Fast........................................... 20  
7.12 SPK_MUTE Timing .............................................. 21  
7.13 Typical Characteristics.......................................... 23  
Parametric Measurement Information ............... 30  
Detailed Description ............................................ 31  
9.1 Overview ................................................................. 31  
9.2 Functional Block Diagram ....................................... 31  
7
8
9
4 修订历史记录  
日期  
修订版本  
注释  
2016 12 月  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
5 Device Comparison Table  
DEVICE NAME  
MODULATION STYLE  
PROCESSING TYPE  
TAS5780MDCA  
1SPW (Ternary)  
100 MIPs, Fixed-Function (Uses single ROM image of process flow)  
50 MIPs, HybridFlow (Uses mixture of RAM and ROM components to  
create several process flows)  
TAS5754MDCA  
TAS5756MDCA  
1SPW (Ternary)  
50 MIPs, HybridFlow (Uses mixture of RAM and ROM components to  
create several process flows)  
BD Modulation  
6 Pin Configuration and Functions  
DCA Package  
48-Pin TSSOP with PowerPAD™  
Top View  
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
BSTRPA–  
SPK_OUTA–  
PGND  
BSTRPB–  
SPK_OUTB–  
PGND  
SPK_OUTA+  
BSTRPA+  
PVDD  
SPK_OUTB+  
BSTRPB+  
PVDD  
PVDD  
PVDD  
GVDD_REG  
SPK_GAIN/FREQ  
AGND  
PVDD  
SPK_FAULT  
PGND  
10  
11  
12  
13  
14  
15  
16  
17  
SPK_INA–  
SPK_INA+  
DAC_OUTA  
AVDD  
SPK_INB–  
SPK_INB+  
DAC_OUTB  
CPVSS  
AGND  
CN  
SDA  
GND  
SCL  
CP  
PowerPADTM  
18  
19  
GPIO0  
CPVDD  
DVDD  
RESET  
20  
21  
22  
23  
24  
29  
28  
27  
26  
25  
ADR1  
DGND  
GPIO2  
DVDD_REG  
SPK_MUTE  
ADR0  
MCLK  
SCLK  
SDIN  
LRCK/FS  
Pin Functions  
PIN  
INTERNAL  
TERMINATION  
TYPE(1)  
DESCRIPTION  
NAME  
ADR0  
ADR1  
NO.  
26  
20  
10  
15  
14  
Sets the LSB of the I2C address to 0 if pulled to GND, to 1 if pulled to DVDD  
DI  
DI  
Sets the second LSB of the I2C address to 0 if pulled to GND, to 1 if pulled to DVDD  
AGND  
AVDD  
G
P
Ground reference for analog circuitry(2)  
Power supply for internal analog circuitry  
Figure 2  
(1) AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P =  
Power, G = Ground (0 V)  
(2) This pin should be connected to the system ground.  
Copyright © 2016, Texas Instruments Incorporated  
3
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
INTERNAL  
TERMINATION  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Connection point for the SPK_OUTA– bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTA–  
BSTRPA–  
1
P
P
P
P
Connection point for the SPK_OUTA+ bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTA+  
BSTRPA+  
BSTRPB–  
BSTRPB+  
5
Figure 3  
Connection point for the SPK_OUTB– bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTB–  
48  
44  
Connection point for the SPK_OUTB+ bootstrap capacitor which is used to create a power supply for  
the high-side gate drive for SPK_OUTB+  
CN  
34  
32  
31  
35  
13  
36  
29  
30  
P
P
Figure 14  
Figure 13  
Figure 2  
Negative pin for capacitor connection used in the line-driver charge pump  
Positive pin for capacitor connection used in the line-driver charge pump  
Power supply for charge pump circuitry  
CP  
CPVDD  
CPVSS  
DAC_OUTA  
DAC_OUTB  
DGND  
P
P
Figure 14  
–3.3-V supply generated by charge pump for the DAC  
Single-ended output for Channel A of the DAC  
AO  
AO  
G
Figure 8  
Single-ended output for Channel B of the DAC  
Ground reference for digital circuitry. Connect this pin to the system ground.  
Power supply for the internal digital circuitry  
DVDD  
P
Figure 2  
Voltage regulator derived from DVDD supply for use for internal digital circuitry. This pin is provided  
as a connection point for filtering capacitors for this supply and must not be used to power any  
external circuitry.  
DVDD_REG  
28  
P
Figure 15  
GND  
33  
18  
21  
G
Ground pin for device. This pin should be connected to the system ground.  
GPIO0  
GPIO2  
DI/O  
General purpose input/output pins (GPIOx). Refer to GPIO registers for configuration.  
Voltage regulator derived from PVDD supply to generate the voltage required for the gate drive of  
output MOSFETs. This pin is provided as a connection point for filtering capacitors for this supply and  
must not be used to power any external circuitry.  
GVDD_REG  
8
P
Figure 5  
Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ, and  
RJ, this corresponds to the left channel and right channel boundary. In TDM mode, this corresponds  
to the frame sync boundary.  
LRCK/FS  
MCLK  
25  
DI/O  
DI  
Figure 11  
22  
3
Master clock used for internal clock tree and sub-circuit and state machine clocking  
PGND  
39  
46  
6
G
Ground reference for power device circuitry. Connect this pin to the system ground.  
7
PVDD  
41  
42  
43  
19  
17  
23  
16  
24  
11  
12  
38  
37  
40  
P
Figure 1  
Power supply for internal power circuitry  
RESET  
DI  
DI  
Figure 17  
Figure 10  
Figure 11  
Figure 9  
Device reset input. Pull down to reset, pull up to activate device.  
I2C serial control port clock  
SCL  
SCLK  
DI/O  
DI/O  
D1  
AI  
Bit clock for the digital signal that is active on the input data line of the serial data port  
I2C serial control port data  
SDA  
SDIN  
Figure 11  
Data line to the serial data port  
SPK_INA–  
SPK_INA+  
SPK_INB–  
SPK_INB+  
SPK_FAULT  
Negative pin for differential speaker amplifier input A  
Positive pin for differential speaker amplifier input A  
Negative pin for differential speaker amplifier input B  
Positive pin for differential speaker amplifier input B  
Fault pin which is pulled low when an overcurrent or overtemperature fault occurs  
AI  
Figure 7  
AI  
AI  
DO  
Figure 16  
Figure 6  
SPK_GAIN/F  
REQ  
9
AI  
Sets the gain and switching frequency of the speaker amplifier, latched in upon start-up of the device.  
SPK_OUTA–  
SPK_OUTA+  
SPK_OUTB–  
SPK_OUTB+  
2
4
AO  
AO  
AO  
AO  
Negative pin for differential speaker amplifier output A  
Positive pin for differential speaker amplifier output A  
Negative pin for differential speaker amplifier output B  
Positive pin for differential speaker amplifier output B  
Figure 4  
47  
45  
4
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Pin Functions (continued)  
PIN  
INTERNAL  
TERMINATION  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Speaker amplifier mute which must be pulled low (connected to DGND) to mute the device and  
pulled high (connected to DVDD) to unmute the device.  
SPK_MUTE  
PowerPAD  
27  
I
Figure 12  
Provides both electrical and thermal connection from the device to the board. A matching ground pad  
must be provided on the PCB and the device connected to it through solder. For proper electrical  
operation, this ground pad must be connected to the system ground.  
G
6.1 Internal Pin Configurations  
DVDD  
PVDD  
3.3 V ESD  
30 V ESD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 1. PVDD Pins  
Figure 2. AVDD, DVDD and CPVDD Pins  
PVDD  
GVDD  
PVDD  
BSTRPxx  
7 V ESD  
SPK_OUTxx  
SPK_OUTxx  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 3. BSTRPxx Pins  
Figure 4. SPK_OUTxx Pins  
Copyright © 2016, Texas Instruments Incorporated  
5
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Internal Pin Configurations (continued)  
GVDD  
PVDD  
10 Ω  
GVDD  
10 kΩ  
SPK_GAIN/FREQ  
7 V ESD  
7 V ESD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 5. GVDD_REG Pin  
Figure 6. SPK_GAIN/FREQ Pin  
AVDD  
SPK_INxx  
7 V ESD  
Gain Switch  
CPVSS  
DAC_OUTA  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 7. SPK_INxx Pins  
Figure 8. DAC_OUTx Pins  
DVDD  
SDA  
DVDD  
SCL  
3.3 V  
ESD  
3.3 V  
ESD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 9. SDA Pin  
Figure 10. SCL Pin  
6
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Internal Pin Configurations (continued)  
DVDD  
DVDD  
MCLK  
SCLK  
SPK_MUTE  
3.3 V  
ESD  
SDIN  
3.3 V  
ESD  
LRCK/FS  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 11. SCLK, BCLK, SDIN, and LRCK/FS Pins  
Figure 12. SPK_MUTE Pin  
CVPDD  
GND  
CN  
3.3 V  
ESD  
CP  
3.3 V  
ESD  
CPVSS  
3.3 V  
ESD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 13. CP Pin  
Figure 14. CN and CPVSS Pins  
DVDD  
100 Ω  
SPK_FAULT  
DVDD_REG  
28 V  
ESD  
1.8 V  
ESD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 15. DVDD_REG Pin  
Figure 16. SPK_FAULT Pin  
Copyright © 2016, Texas Instruments Incorporated  
7
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Internal Pin Configurations (continued)  
DVDD  
RESET  
3.3 V  
ESD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 17. RESET Pin  
7 Specifications  
7.1 Absolute Maximum Ratings  
Free-air room temperature 25°C (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
DVDD, AVDD,  
Low-voltage digital, analog, charge pump supply  
CPVDD  
–0.3  
3.9  
V
PVDD  
PVDD supply  
–0.3  
–0.3  
–0.5  
–0.3  
–0.3  
–25  
–40  
–40  
–40  
30  
V
V
VI(AmpCtrl)  
VI(DigIn)  
VI(SPK_INxx)  
VI(SPK_OUTxx)  
Input voltage for SPK_GAIN/FREQ and SPK_FAULT pins  
DVDD referenced digital inputs(2)  
VGVDD + 0.3  
VDVDD + 0.5  
V
Analog input into speaker amplifier  
Voltage at speaker output pins  
6.3  
32  
V
V
Ambient operating temperature, TA  
Operating junction temperature, digital die  
Operating junction temperature, power die  
Storage temperature  
85  
°C  
°C  
°C  
°C  
125  
165  
125  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK, RESET, SCL, SCLK, SDA, SDIN, and  
SPK_MUTE.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.  
8
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
7.3 Recommended Operating Conditions  
Free-air room temperature 25°C (unless otherwise noted)  
MIN  
NOM  
MAX  
3.63  
26.4  
UNIT  
DVDD, AVDD, CPVDD  
2.9  
V(POWER)  
Power supply inputs  
V
PVDD  
4.5  
BTL Mode  
PBTL Mode  
3
2
Ω
Ω
V
V
RSPK  
Minimum speaker load  
VIH(DigIn)  
VIL(DigIn)  
Input logic high for DVDD referenced digital inputs(1)(2)  
Input logic low for DVDD referenced digital inputs(1)(3)  
0.9 × VDVDD  
VDVDD  
VDVDD  
0
0.1 × VDVDD  
Minimum inductor value in LC filter under short-circuit  
condition  
LOUT  
1
4.7  
µH  
(1) DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK, RESET, SCL, SCLK, SDA, SDIN, and  
SPK_MUTE.  
(2) The best practice for driving the input pins of the TAS5780M device is to power the drive circuit or pullup resistor from the same supply  
which provides the DVDD power supply.  
(3) The best practice for driving the input pins of the TAS5780M device low is to pull them down, either actively or through pulldown  
resistors to the system ground.  
7.4 Thermal Information  
TAS5780M  
DCA (TSSOP)  
48 PINS  
THERMAL METRIC(1)  
UNIT  
JEDEC  
STANDARD  
2-LAYER PCB  
JEDEC  
STANDARD  
4-LAYER PCB  
TAS5780MEVM  
4-LAYER PCB  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
41.8  
14.4  
9.4  
27.6  
14.4  
9.4  
19.4  
14.4  
9.4  
2
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
0.6  
ψJB  
8.1  
9.3  
4.8  
N/A  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
9
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
7.5 Electrical Characteristics  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5780MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL I/O  
Input logic high current level  
for DVDD referenced digital  
input pins(1)  
|IIH|1  
VIN(DigIn) = VDVDD  
10  
µA  
µA  
Input logic low current level  
for DVDD referenced digital  
input pins(1)  
|IIL|1  
VIH1  
VIL1  
VIN(DigIn) = 0 V  
–10  
Input logic high threshold for  
DVDD referenced digital  
inputs(1)  
70%  
80%  
VDVDD  
Input logic low threshold for  
DVDD referenced digital  
inputs(1)  
30%  
VDVDD  
Output logic high voltage  
level(1)  
VOH(DigOut)  
VOL(DigOut)  
IOH = 4 mA  
VDVDD  
VDVDD  
Output logic low voltage  
level(1)  
IOH = –4 mA  
22%  
0.8  
Output logic low voltage level  
for SPK_FAULT  
VOL(SPK_FAULT)  
GVDD_REG  
With 100-kΩ pullup resistor  
V
V
GVDD regulator voltage  
7
I2C CONTROL PORT  
Allowable load capacitance  
for each I2C Line  
CL(I2C)  
400  
pF  
fSCL(fast)  
fSCL(slow)  
Support SCL frequency  
Support SCL frequency  
No wait states, fast mode  
No wait states, slow mode  
400  
100  
kHz  
kHz  
Noise margin at High level for  
each connected device  
(including hysteresis)  
VNH  
0.2 × VDD  
V
MCLK AND PLL SPECIFICATIONS  
DMCLK Allowable MCLK duty cycle  
fMCLK Supported MCLK frequencies Up to 50 MHz  
40%  
128  
60%  
512  
(2)  
fS  
Clock divider uses fractional divide  
D > 0, P = 1  
6.7  
1
20  
20  
fPLL  
PLL input frequency  
MHz  
Clock divider uses integer divide  
D = 0, P = 1  
SERIAL AUDIO PORT  
Required LRCK/FS to SCLK  
rising edge delay  
tDLY  
5
ns  
DSCLK  
fS  
fSCLK  
fSCLK  
Allowable SCLK duty cycle  
Supported input sample rates  
Supported SCLK frequencies  
SCLK frequency  
40%  
8
60%  
96  
kHz  
(2)  
32  
64  
fS  
Either master mode or slave mode  
24.576  
MHz  
SPEAKER AMPLIFIER (ALL OUTPUT CONFIGURATIONS)  
SPK_GAIN/FREQ voltage < 3 V,  
see Adjustable Amplifier Gain and Switching  
20  
Frequency Selection  
AV(SPK_AMP)  
Speaker amplifier gain  
dBV  
dBV  
SPK_GAIN/FREQ voltage > 3.3 V,  
see Adjustable Amplifier Gain and Switching  
Frequency Selection  
26  
±1  
Typical variation of speaker  
amplifier gain  
ΔAV(SPK_AMP)  
(1) DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK,RESET, SCL, SCLK, SDA, SDIN, and  
SPK_MUTE.  
(2) A unit of fS indicates that the specification is the value listed in the table multiplied by the sample rate of the audio used in the  
TAS5780M device.  
10  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5780MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Switching frequency depends on voltage  
presented at SPK_GAIN/FREQ pin and the  
clocking arrangement, including the incoming  
sample rate, see Adjustable Amplifier Gain and  
Switching Frequency Selection  
Switching frequency of the  
speaker amplifier  
fSPK_AMP  
176.4  
768  
kHz  
Injected Noise = 50 Hz to 60 Hz, 200 mVP-P, Gain  
= 26 dB, input audio signal = digital zero  
KSVR  
Power supply rejection ratio  
60  
dB  
VPVDD = 24 V, I(SPK_OUT) = 500 mA, TJ = 25°C,  
includes PVDD/PGND pins, leadframe, bondwires  
and metallization layers.  
Drain-to-source on resistance  
of the individual output  
MOSFETs  
120  
rDS(on)  
mΩ  
VPVDD = 24 V, I(SPK_OUT) = 500 mA, TJ = 25°C  
90  
SPK_OUTxx overcurrent  
error threshold  
OCETHRES  
OTETHRES  
7.5  
A
Overtemperature error  
threshold  
165  
1.3  
°C  
Time required to clear  
overcurrent error after error  
condition is removed.  
OCECLRTIME  
s
s
Time required to clear  
overtemperature error after  
error condition is removed.  
OTECLRTIME  
1.3  
PVDD overvoltage error  
threshold  
OVETHRES(PVDD)  
UVETHRES(PVDD)  
27  
V
V
PVDD undervoltage error  
threshold  
4.3  
SPEAKER AMPLIFIER (STEREO BTL)  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 20 dB gain,  
VPVDD = 12 V  
2
5
|VOS  
|
Amplifier offset voltage  
mV  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 26 dB gain,  
VPVDD = 24 V  
15  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted  
49  
59  
81  
82  
14  
8
VPVDD = 15 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted  
ICN(SPK)  
Idle channel noise  
µVRMS  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
23  
13  
34  
20  
40  
33  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
PO(SPK)  
Output Power (Per Channel)  
W
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
Copyright © 2016, Texas Instruments Incorporated  
11  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5780MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
103  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
102  
103  
Signal-to-noise ratio  
(referenced to 0 dBFS input  
signal)  
SNR  
dB  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
105  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
0.021%  
0.022%  
0.02%  
0.037%  
0021%  
0.028%  
0.027%  
0.038%  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
Total harmonic distortion and  
noise  
THD+NSPK  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
1-kHz Sine, across f(S)  
–90  
–102  
–93  
VPVDD = 15 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
1-kHz Sine, across f(S)  
Cross-talk (worst case  
between left-to-right and  
right-to-left coupling)  
X-talkSPK  
dB  
VPVDD = 19 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
1-kHz Sine, across f(S)  
VPVDD = 24 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω,  
Input Signal 250 mVrms,  
–93  
1-kHz Sine, across f(S)  
SPEAKER AMPLIFIER (MONO PBTL)  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 20 dB gain,  
VPVDD = 12 V  
0.7  
4
|VOS  
|
Amplifier offset voltage  
mV  
Measured differentially with zero input data,  
SPK_GAIN/FREQ pin configured for 26 dB gain,  
VPVDD = 24 V  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted  
48  
49  
83  
82  
VPVDD = 15 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
A-Weighted  
ICN  
Idle channel noise  
µVRMS  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
A-Weighted  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted  
12  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5780MEVM board and Audio  
Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to  
768 kHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
30  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
16  
9
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
44  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
22  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
13  
PO  
Output power (per channel)  
W
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
50  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
36  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
20  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
THD+N = 0.1%, Unless otherwise noted  
40  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
THD+N = 0.1%, Unless otherwise noted  
61  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
THD+N = 0.1%  
34  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
105  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
104  
Signal-to-noise ratio  
(referenced to 0 dBFS input  
signal)  
SNR  
dB  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
105  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-  
Weighted, –120 dBFS Input  
107  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 2 Ω,  
PO = 1 W, f = 1kHz  
0.014%  
0.011%  
0.014%  
0.015%  
0.013%  
0.015%  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
Total harmonic distortion and  
noise  
THD+N  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
0.018%  
0.012%  
0.020%  
PO = 1 W, f = 1kHz  
V, RSPK = 4 Ω, PO = 1 W, f = 1kHz  
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 2 Ω,  
PO = 1 W, f = 1kHz  
0.028%  
0.02%  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω,  
PO = 1 W, f = 1kHz  
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω,  
PO = 1 W, f = 1kHz  
0.027%  
Copyright © 2016, Texas Instruments Incorporated  
13  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
7.6 Power Dissipation Characteristics  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
21.30  
21.33  
21.30  
21.33  
21.34  
21.36  
2.08  
(mA)  
59.70  
59.68  
59.70  
58.82  
58.81  
58.81  
12.41  
12.41  
12.41  
0.730  
0.740  
0.740  
59.7  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.355  
0.355  
0.355  
0.352  
0.352  
0.352  
0.056  
0.057  
0.057  
0.017  
0.018  
0.018  
0.400  
0.401  
0.378  
0.398  
0.398  
0.398  
0.056  
0.056  
0.057  
0.018  
0.018  
0.018  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
2.11  
2.17  
2.03  
2.04  
2.06  
7.4  
20  
27.48  
27.49  
24.46  
27.50  
27.51  
27.52  
2.04  
59.73  
59.72  
58.8  
Mute  
58.8  
58.81  
12.41  
12.41  
12.41  
0.73  
768  
Standby  
Powerdown  
2.08  
2.11  
2.06  
2.07  
0.74  
2.08  
0.74  
(1) Mute: B0-P0-R3-D0,D4 = 1  
(2) Standby: B0-P0-R2-D4 = 1  
(3) Power down: B0-P0-R2-D0 = 1  
(4) IPVDD refers to all current that flows through the PVDD supply for the DUT. Any other current sinks not directly related to the DUT current  
draw were removed.  
(5) IDVDD refers to all current that flows through the DVDD (3.3-V) supply for the DUT. Any other current sinks not directly related to the  
DUT current draw were removed.  
14  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
24.33  
24.32  
24.36  
24.36  
24.32  
24.37  
3.58  
(mA)  
59.74  
59.74  
59.70  
58.81  
58.82  
58.84  
12.40  
12.41  
12.42  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.467  
0.467  
0.467  
0.464  
0.464  
0.465  
0.081  
0.081  
0.081  
0.042  
0.042  
0.042  
0.538  
0.537  
0.537  
0.528  
0.535  
0.535  
0.080  
0.080  
0.081  
0.042  
0.042  
0.042  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
3.57  
3.58  
3.52  
3.52  
0.74  
3.54  
0.74  
11.1  
20  
30.70  
30.65  
30.67  
3.072  
30.69  
30.69  
3.54  
59.70  
59.72  
59.71  
58.80  
58.81  
58.81  
12.40  
12.41  
12.42  
0.74  
Mute  
768  
Standby  
Powerdown  
3.54  
3.58  
3.53  
3.53  
0.74  
3.55  
0.74  
Copyright © 2016, Texas Instruments Incorporated  
15  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
25.07  
25.08  
25.10  
25.12  
25.08  
25.11  
3.92  
(mA)  
59.72  
59.73  
59.71  
58.84  
58.82  
58.82  
12.40  
12.41  
12.41  
0.75  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.498  
0.498  
0.498  
0.496  
0.495  
0.495  
0.088  
0.088  
0.088  
0.049  
0.049  
0.049  
0.573  
0.573  
0.573  
0.570  
0.570  
0.570  
0.087  
0.088  
0.088  
0.049  
0.049  
0.049  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
3.93  
3.94  
3.87  
3.85  
0.74  
3.87  
0.75  
12  
20  
31.31  
31.29  
31.31  
31.31  
31.33  
31.32  
3.88  
59.72  
59.71  
59.74  
58.80  
58.81  
58.81  
12.40  
12.41  
12.41  
0.75  
Mute  
768  
Standby  
Powerdown  
3.90  
3.91  
3.89  
3.91  
0.74  
3.88  
0.75  
16  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
27.94  
27.91  
27.75  
27.98  
27.94  
27.88  
5.09  
(mA)  
59.73  
59.75  
59.69  
58.84  
58.87  
58.85  
12.41  
12.41  
12.41  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.616  
0.616  
0.613  
0.614  
0.613  
0.612  
0.117  
0.118  
0.119  
0.078  
0.078  
0.080  
0.693  
0.693  
0.693  
0.690  
0.690  
0.690  
0.117  
0.117  
0.118  
0.078  
0.078  
0.079  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
5.12  
5.19  
5.02  
5.06  
0.74  
5.14  
0.74  
15  
26  
33.05  
33.03  
33.08  
33.03  
33.04  
33.05  
5.07  
59.7  
59.72  
59.68  
58.81  
58.81  
58.80  
12.41  
12.41  
12.41  
0.74  
Mute  
768  
Standby  
Powerdown  
5.09  
5.14  
5.02  
5.04  
0.74  
5.09  
0.74  
Copyright © 2016, Texas Instruments Incorporated  
17  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
32.27  
32.19  
32.08  
32.27  
32.24  
32.22  
6.95  
(mA)  
59.77  
59.76  
59.75  
58.85  
58.87  
58.86  
12.40  
12.42  
12.41  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
0.830  
0.828  
0.826  
0.827  
0.826  
0.826  
0.177  
0.177  
0.178  
0.137  
0.138  
0.139  
0.883  
0.882  
0.882  
0.879  
0.880  
0.879  
0.177  
0.177  
0.178  
0.137  
0.137  
0.138  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
6.93  
7.00  
6.89  
6.90  
0.74  
6.96  
0.73  
19.6  
26  
34.99  
34.95  
34.97  
34.96  
34.98  
34.96  
6.93  
59.74  
59.74  
59.71  
58.85  
58.83  
58.81  
12.40  
12.42  
12.41  
0.74  
Mute  
768  
Standby  
Powerdown  
6.93  
6.98  
6.84  
6.89  
0.74  
6.90  
0.73  
18  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Power Dissipation Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
(4)  
(5)  
VPVDD  
(V)  
SPK_GAIN(1)(2)(3)  
(dBV)  
fSPK_AMP  
(kHz)  
STATE OF  
OPERATION  
RSPK  
(Ω)  
IPVDD  
IDVDD  
PDISS  
(W)  
(mA)  
36.93  
36.87  
36.77  
36.94  
36.89  
36.85  
8.73  
(mA)  
59.80  
59.81  
59.76  
58.91  
58.89  
58.90  
12.40  
12.40  
12.40  
0.74  
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
4
6
8
1.084  
1.082  
1.080  
1.081  
1.080  
1.079  
0.250  
0.250  
0.250  
0.210  
0.210  
0.211  
1.081  
1.082  
1.081  
1.079  
1.078  
1.078  
0.249  
0.249  
0.250  
0.210  
0.210  
0.210  
Idle  
Mute  
384  
Standby  
Powerdown  
Idle  
8.72  
8.71  
8.64  
8.66  
0.74  
8.69  
0.73  
24  
26  
36.84  
36.86  
36.83  
36.85  
36.84  
36.82  
8.66  
59.73  
59.76  
59.78  
58.85  
58.84  
58.83  
12.40  
12.40  
12.40  
0.74  
Mute  
768  
Standby  
Powerdown  
8.68  
8.71  
8.63  
8.64  
0.74  
8.65  
0.73  
7.7 MCLK Timing  
See Figure 18.  
MIN  
20  
9
NOM  
MAX  
UNIT  
tMCLK  
tMCLKH MCLK pulse width, high  
tMCLKL MCLK pulse width, low  
MCLK period  
1000  
ns  
ns  
ns  
9
7.8 Serial Audio Port Timing – Slave Mode  
See Figure 19.  
MIN  
1.024  
40  
16  
16  
8
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSCLK  
tSCLKL  
tSCLKH  
tSL  
SCLK frequency  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
SCLK rising to LRCK/FS edge  
LRCK/FS Edge to SCLK rising edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
ns  
tLS  
8
ns  
tSU  
8
ns  
tDH  
8
ns  
tDFS  
15  
ns  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
7.9 Serial Audio Port Timing – Master Mode  
See Figure 20.  
MIN NOM  
MAX  
UNIT  
ns  
tSCLK  
tSCLKL  
tSCLKH  
tLRD  
SCLK period  
40  
16  
16  
–10  
8
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
LRCK/FS delay time from to SCLK falling edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
20  
15  
ns  
tSU  
ns  
tDH  
8
ns  
tDFS  
ns  
7.10 I2C Bus Timing – Standard  
MIN  
MAX  
UNIT  
kHz  
µs  
fSCL  
SCL clock frequency  
100  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
4.7  
tLOW  
4.7  
µs  
tHI  
High period of the SCL clock  
4
4.7  
µs  
tRS-SU  
tS-HD  
tD-SU  
tD-HD  
tSCL-R  
tSCL-R1  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
µs  
4
µs  
250  
ns  
Data hold time  
0
900  
1000  
1000  
1000  
1000  
1000  
ns  
Rise time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4
ns  
Rise time of SCL signal after a repeated START condition and after an acknowledge bit  
Fall time of SCL signal  
ns  
ns  
Rise time of SDA signal  
ns  
Fall time of SDA signal  
ns  
Setup time for STOP condition  
µs  
7.11 I2C Bus Timing – Fast  
See Figure 21.  
MIN  
MAX  
UNIT  
kHz  
µs  
µs  
ns  
fSCL  
SCL clock frequency  
400  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
1.3  
1.3  
tLOW  
tHI  
High period of the SCL clock  
600  
tRS-SU  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
tSCL-R1  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
tSP  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
600  
ns  
600  
ns  
100  
ns  
Data hold time  
0
900  
300  
300  
300  
300  
300  
ns  
Rise time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
600  
ns  
Rise time of SCL signal after a repeated START condition and after an acknowledge bit  
Fall time of SCL signal  
ns  
ns  
Rise time of SDA signal  
ns  
Fall time of SDA signal  
ns  
Setup time for STOP condition  
Pulse width of spike suppressed  
ns  
50  
ns  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
7.12 SPK_MUTE Timing  
See Figure 22.  
MIN  
MAX  
20  
UNIT  
ns  
tr  
tf  
Rise time  
Fall time  
20  
ns  
t
MCLKH  
"H"  
0.7 × V  
DVDD  
0.3 × V  
DVDD  
"L"  
t
t
MCLKL  
MCLK  
Figure 18. Timing Requirements for MCLK Input  
LRCK/FS  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
SCLKL  
SCLKH  
t
LS  
SCLK  
(Input)  
t
t
SL  
SCLK  
DATA  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
DH  
SU  
t
DFS  
DATA  
(Output)  
Figure 19. MCLK Timing Diagram in Slave Mode  
Copyright © 2016, Texas Instruments Incorporated  
21  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
t
BCL  
t
SCLK.  
SCLK  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
LRD  
SCLK  
LRCK/FS  
(Input)  
t
DFS  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
SU  
DATA  
(Output)  
0.5 × DVDD  
Figure 20. MCLK Timing Diagram in Master Mode  
Repeated  
START  
START  
STOP  
t
t
t
t
P-SU  
t
D-SU  
D-HD  
SDA-F  
SDA-R  
t
BUF.  
SDA  
t
t
t
SP  
SCL-R.  
RS-HD  
t
LOW.  
SCL  
t
HI.  
t
RS-SU  
t
t
SCL-F.  
S-HD.  
Figure 21. I2C Communication Port Timing Diagram  
0.9 × DV  
0.1 × DV  
DD  
DD  
SPK_MUTE  
t
r
t
f
< 20 ns  
< 20 ns  
Figure 22. SPK_MUTE Timing Diagram for Soft Mute Operation via Hardware Pin  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
7.13 Typical Characteristics  
All performance plots were taken using the TAS5780MEVM Board at room temperature, unless otherwise noted.  
The term "traditional LC filter" refers to the output filter that is present by default on the TAS5780MEVM Board.  
Table 1. Quick Reference Table  
OUTPUT  
CONFIGURATIONS  
PLOT TITLE  
FIGURE NUMBER  
Frequency Response  
Figure 34  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Efficiency vs Output Power  
Bridge Tied Load (BTL)  
Configuration Curves  
Efficiency vs Output Power  
Efficiency vs Output Power  
Idle Current Draw (Filterless) vs PVDD  
Crosstalk vs. Frequency  
PVDD PSRR vs Frequency  
DVDD PSRR vs Frequency  
AVDD PSRR vs Frequency  
CPVDD PSRR vs Frequency  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Efficiency vs Output Power  
Parallel Bridge Tied  
Load (PBTL)  
Configuration  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
7.13.1 Bridge Tied Load (BTL) Configuration Curves  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5780MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 40-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, unless  
otherwise noted. For both the BTL plots and the PBTL plots, the LC filter used was 4.7 µH / 0.68 µF. Return to  
Quick Reference Table.  
80  
60  
40  
20  
0
10  
8 W Load Peak  
4 W Load  
6 W Load  
8 W Load  
6 W Load Peak  
4 W Load Peak  
6 W Load Continous  
4 W Load Continous  
1
0.1  
0.01  
0.001  
5
10  
15  
20  
24  
20  
100  
1k  
10k  
40k  
Supply Voltage (V)  
Frequency (Hz)  
D002  
D003  
AV(SPK_AMP) = 26 dBV  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 12 V  
Figure 23. Output Power vs PVDD – BTL  
Figure 24. THD+N vs Frequency – BTL  
10  
1
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency (Hz)  
D004  
D005  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 15 V  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 18 V  
Figure 25. THD+N vs Frequency – BTL  
Figure 26. THD+N vs Frequency – BTL  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
10  
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
20  
0.001  
100  
1k  
10k  
40k  
10m  
100m  
1
10  
30  
Frequency (Hz)  
Output Power (W)  
D006  
D007  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 24 V  
AV(SPK_AMP) = 20 dBV  
VPVDD = 12 V  
Figure 27. THD+N vs Frequency – BTL  
Figure 28. THD+N vs Power – BTL  
10  
1
10  
1
4 W Load  
6 W Load  
8 W Load  
4 W Load  
6 W Load  
8 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
10  
40  
10m  
100m  
1
10  
50  
Output Power (W)  
Output Power (W)  
D008  
D009  
AV(SPK_AMP) = 20  
dBV  
VPVDD = 15 V  
AV(SPK_AMP) = 26  
dBV  
VPVDD =  
18 V  
Figure 29. THD+N vs Power – BTL  
Figure 30. THD+N vs Power – BTL  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4 W Load  
6 W Load  
8 W Load  
1
0.1  
0.01  
Gain = 20 dB, PWM Freq = 384 kHz  
Gain = 26 dB, PWM Freq = 384 kHz  
Gain = 20 dB, PWM Freq = 768 kHz  
Gain = 26 dB, PWM Freq = 768 kHz  
0.001  
10m  
100m  
1
10  
50  
10  
15  
20  
Output Power (W)  
Supply Voltage (V)  
D010  
D011  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
RSPK = 4 Ω  
Figure 31. THD+N vs Power – BTL  
Figure 32. Idle Channel Noise vs PVDD – BTL  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
Output Power (W)  
Output Power (W)  
D012  
D013  
RSPK = 4 Ω  
RSPK = 6 Ω  
Figure 33. Efficiency vs Output Power – BTL  
Figure 34. Efficiency vs Output Power – BTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0
20  
40  
60  
80  
5
10  
15  
20  
25  
Output Power (W)  
Supply Voltage (V)  
D014  
D015  
RSPK = 8 Ω  
fSPK_AMP = 768 kHz  
RSPK = 8 Ω  
Figure 35. Efficiency vs Output Power – BTL  
Figure 36. Idle Current Draw (Filterless) vs VPVDD – BTL  
0
0
Ch 1 to Ch 2  
Ch 2 to Ch 1  
Left Channel  
Right Channel  
-20  
-40  
-20  
-40  
-60  
-80  
-60  
-80  
-100  
-120  
-100  
20  
20  
100  
1k  
10k  
40k  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency  
D016  
D017  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V + 250 mVac  
Figure 37. Crosstalk vs Frequency – BTL  
Figure 38. PVDD PSRR vs Frequency – BTL  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
0
0
-20  
Left Channel  
Right Channel  
Left Channel  
Right Channel  
-20  
-40  
-60  
-80  
-40  
-60  
-80  
-100  
20  
-100  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency  
Frequency  
D018  
D019  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
VDVDD = 3.3 V + 250 mVac  
VAVDD = 3.3 V + 250 mVac  
Figure 39. DVDD PSRR vs Frequency – BTL  
Figure 40. AVDD PSRR vs Frequency – BTL  
0
-20  
28  
24  
20  
16  
12  
Left Channel  
Right Channel  
-40  
-60  
-80  
-100  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency  
Frequency (Hz)  
D020  
D001  
AV(SPK_AMP) = 26 dBV  
VPVDD = 24 V  
AV(SPK_AMP) = 20 dB  
PVDD = 12 V  
VCPVDD = 3.3 V + 250 mVac  
Figure 41. CPVDD PSRR vs Frequency – BTL  
Figure 42. Frequency Response  
Copyright © 2016, Texas Instruments Incorporated  
27  
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
7.13.2 Parallel Bridge Tied Load (PBTL) Configuration  
Return to Quick Reference Table.  
160  
10  
1
4 W Load Peak  
2 W Load  
3 W Load  
4 W Load  
3 W Load Peak  
140  
120  
100  
80  
2 W Load Peak  
3 W Load Continous  
2 W Load Continous  
0.1  
60  
40  
0.01  
20  
0
0.001  
5
10  
15  
Supply Voltage (V)  
20  
24  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
D021  
D022  
AV(SPK_AMP) = 26 dBV  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 12 V  
Figure 43. Output Power vs PVDD – PBTL  
Figure 44. THD+N vs Frequency – PBTL  
10  
1
10  
1
2 W Load  
3 W Load  
4 W Load  
2 W Load  
3 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency (Hz)  
D023  
D024  
AV(SPK_AMP) = 20 dBV  
PO = 1 W  
VPVDD = 15 V  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 18 V  
Figure 45. THD+N vs Frequency – PBTL  
Figure 46. THD+N vs Frequency – PBTL  
10  
1
10  
1
2 W Load  
3 W Load  
4 W Load  
2 W Load  
3 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
40k  
10m  
100m  
1
10  
50  
Frequency (Hz)  
Output Power (W)  
D025  
D026  
AV(SPK_AMP) = 26 dBV  
PO = 1 W  
VPVDD = 24 V  
AV(SPK_AMP) = 20 dBV  
VPVDD = 12 V  
Figure 47. THD+N vs Frequency – PBTL  
Figure 48. THD+N vs Power – PBTL  
28  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
10  
10  
1
2 W Load  
3 W Load  
4 W Load  
2 W Load  
3 W Load  
4 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
10m  
0.001  
100m  
1
10  
80  
10m  
100m  
1
10  
100  
Output Power (W)  
Output Power (W)  
D027  
D028  
AV(SPK_AMP) = 20 dBV  
VPVDD = 15 V  
AV(SPK_AMP) = 26 dBV  
VPVDD = 18 V  
Figure 49. THD+N vs Power – PBTL  
Figure 50. THD+N vs Power – PBTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
2 W Load  
3 W Load  
4 W Load  
0.1  
0.01  
Gain = 20 dB, PWM Freq = 384 kHz  
Gain = 26 dB, PWM Freq = 384 kHz  
Gain = 20 dB, PWM Freq = 768 kHz  
Gain = 26 dB, PWM Freq = 768 kHz  
0.001  
10m  
100m  
1
10  
150  
5
10  
15  
20  
25  
Output Power (W)  
Supply Voltage (V)  
D029  
D030  
AV(SPK_AMP) = 20 dBV  
VPVDD = 24 V  
RSPK = 4 Ω  
Figure 51. THD+N vs Power – PBTL  
Figure 52. Idle Channel Noise vs PVDD – PBTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Output Power (W)  
Output Power (W)  
D031  
D032  
AV(SPK_AMP) = 26  
dBV  
RSPK = 2 Ω  
AV(SPK_AMP) = 20  
dBV  
RSPK = 3 Ω  
Figure 53. Efficiency vs Output Power – PBTL  
Figure 54. Efficiency vs Output Power  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 15 V  
PVDD = 18 V  
PVDD = 24 V  
0
20  
40  
60  
80  
Output Power (W)  
D033  
AV(SPK_AMP) = 20 dBV  
RSPK = 4 Ω  
Figure 55. Efficiency vs Output Power  
8 Parametric Measurement Information  
PARAMETER  
Stereo BTL  
Mono PBTL  
FIGURE  
84  
85  
30  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
9 Detailed Description  
9.1 Overview  
The TAS5780M device integrates 4 main building blocks together into a single cohesive device that maximizes  
sound quality, flexibility, and ease of use. The 4 main building blocks are listed below:  
A stereo audio DAC, boasting a strong Burr-Brown heritage with a highly flexible serial audio port.  
A µCDSP audio processing core, with a pre-programmed ROM image.  
A flexible closed-loop amplifier capable of operating in stereo or mono, at several different switching  
frequencies, and with a variety of output voltages and loads.  
An I2C control port for communication with the device  
The device requires only two power supplies for proper operation. A DVDD supply is required to power the low-  
voltage digital and analog circuitry. Another supply, called PVDD, is required to provide power to the output stage  
of the audio amplifier. The operating range for these supplies is shown in the Recommended Operating  
Conditions table.  
Communication with the device is accomplished through the I2C control port. A speaker amplifier fault line is also  
provided to notify a system controller of the occurrence of an overtemperature, overcurrent, overvoltage, or  
undervoltage. Two digital GPIO pins are available for use. In the fixed function ROM image of the TAS5780M,  
the GPIO2 pin is used as an SDOUT terminal. The other GPIO is unused.  
The µCDSP audio processing core is pre-programmed with a configurable DSP program. The RD GUI provides a  
means by which to manipulate the controls associated with that Process Flow.  
9.2 Functional Block Diagram  
Internal  
Voltage  
Supplies  
Charge  
Pump  
Internal Gate  
Drive Regulator  
1.8-V  
Regulator  
Internal Voltage  
Supplies  
Closed Loop Class D Amplifier  
Gate  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
Full Bridge  
Power  
Stage A  
µCDSP  
Output  
Current  
Monitoring  
and  
Analog  
to  
Drives  
MCLK  
SCLK  
Fixed-  
Function  
ROMProcess  
Flow  
PWM  
Modulator  
Full Bridge  
Power  
Stage B  
Gate  
Drives  
Protection  
DAC  
Serial  
Audio  
Port  
LRCK/FS  
SDIN  
Clock Monitoring  
and Error Protection  
Die Temperature  
Monitoring and Protection  
Error Reporting  
SDOUT  
Internal Control Registers and State Machines  
GPIO0 RESET GPIO2  
SPK_GAIN/FREQ  
SCL  
SDA  
ADR0  
ADR1  
SPK_MUTE  
SPK_SD SPK_FAULT  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Copyright © 2016, Texas Instruments Incorporated  
31  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Power-on-Reset (POR) Function  
The TAS5780M device has a power-on reset function. The power-on reset feature resets all of the registers to  
their default configuration as the device is powering up. When the low-voltage power supply used to power  
DVDD, AVDD, and CPVDD exceeds the POR threshold, the device sets all of the internal registers to their  
default values and holds them there until the device receives valid MCLK, SCLK, and LRCK/FS toggling for a  
period of approximately 4 ms. After the toggling period has passed, the internal reset of the registers is removed  
and the registers can be programmed via the I2C Control Port.  
9.3.2 Device Clocking  
The TAS5780M devices have flexible systems for clocking. Internally, the device requires a number of clocks,  
mostly at related clock rates to function correctly. All of these clocks can be derived from the Serial Audio  
Interface in one form or another.  
fS  
(24-bit)  
16 fS  
(24-bit)  
128 fS  
(~8-bit)  
Serial Audio  
Interface  
(Input)  
µCDSP  
(including  
interpolator)  
Delta  
Sigma  
Modulator  
I to V  
Line  
Driver  
Current  
Segments  
+
Audio  
In  
Audio  
Out  
Charge Pump  
CPCK  
DSPCK  
OSRCK  
DACCK  
LRCK/FS  
Figure 56. Audio Flow with Respective Clocks  
Figure 56 shows the basic data flow at basic sample rate (fS). When the data is brought into the serial audio  
interface, the data is processed, interpolated and modulated to 128 × fS before arriving at the current segments  
for the final digital to analog conversion.  
Figure 57 shows the clock tree.  
32  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Feature Description (continued)  
PLLEN  
(P0-R4)  
MCLK  
SREF  
Divider  
(P0-R13)  
DDSP (P0-R27)  
SCLK  
GPIO  
MCLK  
SDAC  
(P0-R14)  
PLL  
K × R/P  
PLLCKIN  
PLLCK  
K = J.D  
J = 1,2,3,..,62,63  
D= 0000,0001,.,9998,9999  
R= 1,2,3,4,.,15,16  
DACCK (DAC Clock )  
MCLK  
GPIO  
Divider  
CPCK (Charge Pump Clock )  
DNCP (P0-R29)  
P= 1,2,.,127,128  
DDAC  
(P0-R28)  
Divider  
OSRCK  
(Oversampling  
Ratio Clock )  
Divider  
MUX  
DOSR  
(P0-R30)  
Divide  
by 2  
I16E (P0-R34)  
Figure 57. TAS5780M Clock Distribution Tree  
The Serial Audio Interface typically has 4 connection pins which are listed as follows:  
MCLK (System Master Clock)  
SCLK (Bit Clock)  
LRCK/FS (Left Right Word Clock and Frame Sync)  
SDIN (Input Data)  
The output data, SDOUT, is presented on one of the GPIO pins.  
See the GPIO Port and Hardware Control Pins section)  
The device has an internal PLL that is used to take either MCLK or SCLK and create the higher rate clocks  
required by the DSP and the DAC clock.  
In situations where the highest audio performance is required, bringing MCLK to the device along with SCLK and  
LRCK/FS is recommended. The device should be configured so that the PLL is only providing a clock source to  
the DSP. All other clocks are then a division of the incoming MCLK. To enable the MCLK as the main source  
clock, with all others being created as divisions of the incoming MCLK, set the DAC CLK source Mux (SDAC in  
Figure 57) to use MCLK as a source, rather than the output of the MCLK/PLL Mux.  
9.3.3 Serial Audio Port  
9.3.3.1 Clock Master Mode from Audio Rate Master Clock  
In Master Mode, the device generates bit clock and left-right and frame sync clock and outputs them on the  
appropriate pins. To configure the device in master mode, first put the device into reset, then use registers  
SCLKO and LRKO (P0-R9). Then reset the LRCK/FS and SCLK divider counters using bits RSCLK and RLRK  
(P0-R12). Finally, exit reset.  
Figure 58 shows a simplified serial port clock tree for the device in master mode.  
Copyright © 2016, Texas Instruments Incorporated  
33  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
Audio Related System Clock (MCLK)  
MCLK  
SCLK  
SCLKO (Bit Clock Output In Master Mode)  
Divider  
Q1 = 1...128  
LRCK/FS (LR Clock or Frame Sync Output In  
Master Mode  
Divider  
LRCK/FS  
Q1 = 1...128  
Figure 58. Simplified Clock Tree for MCLK Sourced Master Mode  
In master mode, MCLK is an input and SCLK and LRCK/FS are outputs. SCLK and LRCK/FS are integer  
divisions of MCLK. Master mode with a non-audio rate master clock source requires external GPIO’s to use the  
PLL in standalone mode. The PLL should be configured to ensure that the on-chip processor can be driven at  
the maximum clock rate. The master mode of operation is described in the Clock Master from a Non-Audio Rate  
Master Clock section.  
When used with audio rate master clocks, the register changes that should be done include switching the device  
into master mode, and setting the divider ratio. An example of the master mode of operations is using 24.576  
MHz MCLK as a master clock source and driving the SCLK and LRCK/FS with integer dividers to create 48 kHz  
sample rate clock output. In master mode, the DAC section of the device is also running from the PLL output.  
The TAS5780M device is able to meet the specified audio performance while using the internal PLL. However,  
using the MCLK CMOS oscillator source will have less jitter than the PLL.  
To switch the DAC clocks (SDAC in the Figure 57) the following registers should be modified  
Clock Tree Flex Mode (P253-R63 and P253-R64)  
DAC and OSR Source Clock Register (P0-R14). Set to 0x30 (MCLK input, and OSR is set to whatever the  
DAC source is)  
The DAC clock divider should be 16 fS.  
16 × 48 kHz = 768 kHz  
24.576 MHz (MCLK in) / 768 kHz = 32  
Therefore, the divide ratio for register DDAC (P0-R28) should be set to 32. The register mapping gives  
0x00 = 1, therefore 32 must be converter to 0x1F (31dec).  
9.3.3.2 Clock Master from a Non-Audio Rate Master Clock  
The classic example here is running a 96-kHz sampling system. Given the clock tree for the device (shown in  
Figure 57), a non-audio clock rate cannot be brought into the MCLK to the PLL in master mode. Therefore, the  
PLL source must be configured to be a GPIO pin, and the output brought back into another GPIO pin.  
34  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Feature Description (continued)  
Non-Audio MCLK  
GPOIx  
PLL  
GPOIy  
New  
Audio  
MCLK  
MCLK  
Master Mode  
SLCK Integer  
Divider  
SCLK  
Out  
SCLK  
Master Mode  
LRCK/FS  
Integer Divider  
LRCK/FS  
Out  
LRCK/FS  
Figure 59. Generating Audio Clocks Using Non-Audio Clock Sources  
The clock flow through the system is shown in Figure 59. The newly generated MCLK must be brought out of the  
device on a GPIO pin, then brought into the MCLK pin for integer division to create SCLK and LRCK/FS outputs.  
NOTE  
Pull-up resistors should be used on SCLK and LRCK/FS in master mode to ensure the  
device remains out of sleep mode.  
9.3.3.3 Clock Slave Mode with 4-Wire Operation (SCLK, MCLK, LRCK/FS, SDIN)  
The TAS5780M device requires a system clock to operate the digital interpolation filters and advanced segment  
DAC modulators. The system clock is applied at the MCLK input and supports up to 50 MHz. The TAS5780M  
device system-clock detection circuit automatically senses the system-clock frequency. Common audio sampling  
frequencies in the bands of 32 kHz, (44.1 – 48 kHz), (88.2 – 96 kHz) are supported.  
NOTE  
Values in the parentheses are grouped when detected, for example, 88.2 kHz and 96 kHz  
are detected as double rate, 32 kHz, 44.1 kHz and 48 kHz are detected as single rate and  
so on.  
In the presence of a valid bit MCLK, SCLK and LRCK/FS, the device automatically configures the clock tree and  
PLL to drive the µCDSP as required.  
The sampling frequency detector sets the clock for the digital filter, Delta Sigma Modulator (DSM) and the  
Negative Charge Pump (NCP) automatically. Table 2 shows examples of system clock frequencies for common  
audio sampling rates.  
MCLK rates that are not common to standard audio clocks, between 1 MHz and 50 MHz, are supported by  
configuring various PLL and clock-divider registers directly. In slave mode, auto clock mode should be disabled  
using P0-R37. Additionally, the user can be required to ignore clock error detection if external clocks are not  
available for some time during configuration or if the clocks presented on the pins of the device are invalid. The  
extended programmability allows the device to operate in an advanced mode in which the device becomes a  
clock master and drive the host serial port with LRCK/FS and SCLK, from a non-audio related clock (for  
example, using a setting of 12 MHz to generate 44.1 kHz [LRCK/FS] and 2.8224 MHz [SCLK]).  
Copyright © 2016, Texas Instruments Incorporated  
35  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
Table 2 shows the timing requirements for the system clock input. For optimal performance, use a clock source  
with low phase jitter and noise. For MCLK timing requirements, refer to the Serial Audio Port Timing – Master  
Mode section.  
Table 2. System Master Clock Inputs for Audio Related Clocks  
SYSTEM CLOCK FREQUENCY (fMCLK) (MHz)  
SAMPLING  
FREQUENCY  
64 fS  
128 fS  
1.024(2)  
2.048(2)  
4.096(2)  
5.6488(2)  
6.144(2)  
11.2896(2)  
12.288(2)  
192 fS  
1.536(2)  
3.072(2)  
6.144(2)  
8.4672(2)  
9.216(2)  
16.9344  
18.432  
256 fS  
2.048  
384 fS  
3.072  
512 fS  
4.096  
8 kHz  
16 kHz  
32 kHz  
44.1 kHz  
48 kHz  
88.2 kHz  
96 kHz  
4.096  
6.144  
8.192  
8.192  
12.288  
16.9344  
18.432  
33.8688  
36.864  
16.384  
22.5792  
24.576  
45.1584  
49.152  
See(1)  
11.2896  
12.288  
22.5792  
24.576  
(1) This system clock rate is not supported for the given sampling frequency.  
(2) This system clock rate is supported by PLL mode.  
9.3.3.4 Clock Slave Mode with SCLK PLL to Generate Internal Clocks (3-Wire PCM)  
9.3.3.4.1 Clock Generation using the PLL  
The TAS5780M device supports a wide range of options to generate the required clocks as shown in Figure 57.  
The clocks for the PLL require a source reference clock. This clock is sourced as the incoming SCLK or MCLK, a  
GPIO can also be used.  
The source reference clock for the PLL reference clock is selected by programming the SRCREF value on P0-  
R13, D[6:4]. The TAS5780M device provides several programmable clock dividers to achieve a variety of  
sampling rates. See Figure 57.  
If PLL functionality is not required, set the PLLEN value on P0-R4, D[0] to 0. In this situation, an external master  
clock is required.  
Table 3. PLL Configuration Registers  
CLOCK MULTIPLEXER  
REGISTER  
SREF  
FUNCTION  
PLL Reference  
BITS  
B0-P0-R13-D[6:4]  
DDSP  
Clock divider  
B0-P0-R27-D[6:0]  
B0-P0-R32-D[6:0]  
B0-P0-R33-D[7:0]  
DSCLK  
DLRK  
External SCLK Div  
External LRCK/FS Div  
36  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
9.3.3.4.2 PLL Calculation  
The TAS5780M device has an on-chip PLL with fractional multiplication to generate the clock frequency required  
by the Digital Signal Processing blocks. The programmability of the PLL allows operation from a wide variety of  
clocks that may be available in the system. The PLL input (PLLCKIN) supports clock frequencies from 1 MHz to  
50 MHz and is register programmable to enable generation of required sampling rates with fine precision.  
The PLL is enabled by default. The PLL can be enabled by writing to P0-R4, D[0]. When the PLL is enabled, the  
PLL output clock PLLCK is given by Equation 1:  
PLLCKIN x R x J.D  
P
PLLCKIN x R x K  
P
PLLCK =  
or PLLCK =  
where  
R = 1, 2, 3,4, ... , 15, 16  
J = 4,5,6, . . . 63, and D = 0000, 0001, 0002, . . . 9999  
K = [J value].[D value]  
P = 1, 2, 3, ... 15  
(1)  
R, J, D, and P are programmable. J is the integer portion of K (the numbers to the left of the decimal point), while  
D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of precision).  
9.3.3.4.2.1 Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
If K = 6.0004, then J = 6, D = 0004  
When the PLL is enabled and D = 0000, the following conditions must be satisfied:  
1 MHz ( PLLCKIN / P ) 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
1 J 63  
When the PLL is enabled and D 0000, the following conditions must be satisfied:  
6.667 MHz PLLCLKIN / P 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
4 J 11  
R = 1  
When the PLL is enabled,  
fS = (PLLCLKIN × K × R) / (2048 × P)  
The value of N is selected so that fS × N = PLLCLKIN x K x R / P is in the allowable range.  
Example: MCLK = 12 MHz and fS = 44.1 kHz, (N=2048)  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
Example: MCLK = 12 MHz and fS = 48.0 kHz, (N=2048)  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
Values are written to the registers in Table 4.  
Table 4. PLL Registers  
DIVIDER  
PLLE  
FUNCTION  
PLL enable  
PLL P  
BITS  
P0-R4, D[0]  
PPDV  
PJDV  
P0-R20, D[3:0]  
P0-R21, D[5:0]  
P0-R22, D[5:0]  
P0-R23, D[7:0]  
P0-R24, D[3:0]  
PLL J  
PDDV  
PRDV  
PLL D  
PLL R  
Copyright © 2016, Texas Instruments Incorporated  
37  
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 5. PLL Configuration Recommendations  
EQUATIONS  
fS (kHz)  
DESCRIPTION  
Sampling frequency  
RMCLK  
Ratio between sampling frequency and MCLK frequency (MCLK frequency = RMCLK x sampling frequency)  
System master clock frequency at MCLK input (pin 20)  
MCLK (MHz)  
PLL VCO (MHz) PLL VCO frequency as PLLCK in Figure 57  
One of the PLL coefficients in Equation 1  
PLL REF (MHz) Internal reference clock frequency which is produced by MCLK / P  
P
M = K × R  
K = J.D  
R
The final PLL multiplication factor computed from K and R as described in Equation 1  
One of the PLL coefficients in Equation 1  
One of the PLL coefficients in Equation 1  
PLL fS  
DSP fS  
NMAC  
Ratio between fS and PLL VCO frequency (PLL VCO / fS)  
Ratio between operating clock rate and fS (PLL fS / NMAC)  
The clock divider value in Table 3  
DSP CLK (MHz) The operating frequency as DSPCK in Figure 57  
MOD fS  
Ratio between DAC operating clock frequency and fS (PLL fS / NDAC)  
MOD f (kHz)  
NDAC  
DAC operating frequency as DACCK in  
DAC clock divider value in Table 3  
OSR clock divider value in Table 3 for generating OSRCK in Figure 57. DOSR must be chosen so that MOD fS / DOSR =  
16 for correct operation.  
DOSR  
NCP  
CP f  
NCP (negative charge pump) clock divider value in Table 3  
Negative charge pump clock frequency (fS × MOD fS / NCP)  
Percentage of error between PLL VCO / PLL fS and fS (mismatch error).  
% Error  
This value is typically zero but can be non-zero especially when K is not an integer (D is not zero).  
This value can be non-zero only when the TAS5780M device acts as a master.  
The previous equations explain how to calculate all necessary coefficients and controls to configure the PLL.  
Table 6 provides for easy reference to the recommended clock divider settings for the PLL as a Master Clock.  
38  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 6. Recommended Clock Divider Settings for PLL as Master Clock  
fS  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
(kHz)  
RMCLK  
(kHz)  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
128  
192  
256  
384  
512  
1.024  
1.536  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
3
3
3
9
9
9
9
1
3
1
3
3
3
3
9
9
9
9
1
1
1
1
3
3
3
3
3
9
9
9
1.024  
1.536  
2.048  
1.024  
1.365  
2.048  
2.731  
1.024  
1.365  
1.82  
96  
64  
48  
96  
72  
48  
36  
96  
72  
54  
36  
64  
128  
32  
64  
48  
32  
24  
64  
48  
36  
24  
96  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
48  
32  
48  
48  
36  
48  
36  
48  
36  
54  
36  
32  
32  
32  
32  
48  
32  
24  
32  
48  
36  
24  
48  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
2
2
1
2
2
1
1
2
2
1
1
2
4
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
8.192  
8.192  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
2.048  
8.192  
6144  
1536  
3.072  
8.192  
6144  
1536  
4.096  
8.192  
6144  
1536  
8
768  
1024  
1152  
1536  
2048  
3072  
128  
6.144  
8.192  
6144  
1536  
8.192  
8.192  
6144  
1536  
9.216  
8.192  
6144  
1536  
12.288  
16.384  
24.576  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
12.7008  
16.9344  
22.5792  
33.8688  
1.024  
8.192  
6144  
1536  
8.192  
6144  
1536  
2.731  
1.411  
0.706  
2.822  
1.411  
1.882  
2.822  
3.763  
1.411  
1.882  
2.509  
3.763  
1.024  
2.048  
3.072  
4.096  
2.048  
2.731  
4.096  
5.461  
6.144  
2.731  
3.641  
5.461  
8.192  
6144  
1536  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
6144  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1536  
192  
8
256  
8
384  
8
512  
8
11.025  
768  
8
1024  
1152  
1536  
2048  
3072  
64  
8
8
8
8
8
6
128  
2.048  
6
6144  
1536  
192  
3.072  
6
6144  
1536  
256  
4.096  
6
6144  
1536  
384  
6.144  
6
6144  
1536  
512  
8.192  
6
6144  
1536  
16  
768  
12.288  
16.384  
18.432  
24.576  
32.768  
49.152  
6
6144  
1536  
1024  
1152  
1536  
2048  
3072  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
Copyright © 2016, Texas Instruments Incorporated  
39  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 6. Recommended Clock Divider Settings for PLL as Master Clock (continued)  
fS  
(kHz)  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
RMCLK  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
(kHz)  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1536  
64  
128  
192  
256  
384  
512  
768  
1024  
1152  
1536  
2048  
32  
1.4112  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
25.4016  
33.8688  
45.1584  
1.024  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
98.304  
1
1
3
1
3
3
3
3
9
9
9
1
1
1
1
3
2
3
3
3
3
9
6
1
1
1
3
2
3
3
3
3
1.411  
2.822  
1.411  
5.645  
2.822  
3.763  
5.645  
7.526  
2.822  
3.763  
5.018  
1.024  
1.536  
2.048  
4.096  
2.048  
4.096  
4.096  
5.461  
8.192  
10.923  
4.096  
8.192  
1.411  
2.822  
5.645  
2.822  
5.645  
5.645  
7.526  
11.29  
15.053  
64  
32  
64  
16  
32  
24  
16  
12  
32  
24  
18  
96  
64  
48  
24  
48  
24  
24  
18  
12  
9
32  
32  
32  
16  
32  
24  
16  
12  
32  
24  
18  
48  
16  
24  
24  
48  
24  
24  
18  
12  
9
2
1
2
1
1
1
1
1
1
1
1
2
4
2
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
32.768  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
128  
128  
128  
128  
128  
128  
128  
128  
128  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
22.05  
48  
1.536  
98.304  
32.768  
6144  
1536  
64  
2.048  
98.304  
32.768  
6144  
1536  
128  
192  
256  
384  
512  
768  
1024  
1152  
1536  
32  
4.096  
98.304  
32.768  
6144  
1536  
6.144  
98.304  
32.768  
6144  
1536  
8.192  
98.304  
32.768  
6144  
1536  
32  
12.288  
16.384  
24.576  
32.768  
36.864  
49.152  
1.4112  
2.8224  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
33.8688  
45.1584  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
24  
12  
64  
32  
16  
32  
16  
16  
12  
8
24  
12  
32  
16  
16  
32  
16  
16  
12  
8
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
64  
8
128  
192  
256  
384  
512  
768  
1024  
8
8
44.1  
8
8
8
8
6
6
8
40  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 6. Recommended Clock Divider Settings for PLL as Master Clock (continued)  
fS  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
RMCLK  
(kHz)  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
(kHz)  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
32  
64  
1.536  
3.072  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
2
3
3
3
3
1
3
1
2
3
4
6
8
1.536  
3.072  
6.144  
3.072  
6.144  
6.144  
8.192  
12.288  
16.384  
3.072  
1.536  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
64  
32  
16  
32  
16  
16  
12  
8
32  
16  
16  
32  
16  
16  
12  
8
2
2
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
512  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
128  
128  
128  
128  
128  
128  
128  
128  
128  
64  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
128  
192  
6.144  
9.216  
48  
256  
384  
512  
768  
1024  
32  
12.288  
18.432  
24.576  
36.864  
49.152  
3.072  
6
6
32  
64  
16  
16  
16  
16  
16  
16  
16  
32  
8
48  
4.608  
512  
64  
64  
6.144  
512  
64  
128  
192  
256  
384  
512  
12.288  
18.432  
24.576  
36.864  
49.152  
16  
16  
16  
16  
16  
512  
64  
96  
512  
64  
512  
64  
512  
64  
512  
64  
Copyright © 2016, Texas Instruments Incorporated  
41  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
9.3.3.5 Serial Audio Port – Data Formats and Bit Depths  
The serial audio interface port is a 3-wire serial port with the signals LRCK/FS (pin 25), SCLK (pin 23), and SDIN  
(pin 24). SCLK is the serial audio bit clock, used to clock the serial data present on SDIN into the serial shift  
register of the audio interface. Serial data is clocked into the TAS5780M device on the rising edge of SCLK. The  
LRCK/FS pin is the serial audio left/right word clock or frame sync when the device is operated in TDM Mode.  
Table 7. TAS5780M Audio Data Formats, Bit Depths and Clock Rates  
MAXIMUM LRCK/FS  
FREQUENCY (kHz)  
FORMAT  
DATA BITS  
MCLK RATE (fS)  
SCLK RATE (fS)  
I2S/LJ/RJ  
32, 24, 20, 16  
Up to 96  
128 to 3072 (50 MHz)  
128 to 3072  
64, 48, 32  
125, 256  
125, 256  
Up to 48  
TDM  
32, 24, 20, 16  
96  
128 to 512  
The TAS5780M device requires the synchronization of LRCK/FS and system clock, but does not require a  
specific phase relation between LRCK/FS and system clock.  
If the relationship between LRCK/FS and system clock changes more than ±5 MCLK, internal operation is  
initialized within one sample period and analog outputs are forced to the bipolar zero level until re-  
synchronization between LRCK/FS and system clock is completed.  
If the relationship between LRCK/FS and SCLK are invalid more than 4 LRCK/FS periods, internal operation is  
initialized within one sample period and analog outputs are forced to the bipolar zero level until re-  
synchronization between LRCK/FS and SCLK is completed.  
9.3.3.5.1 Data Formats and Master/Slave Modes of Operation  
The TAS5780M device supports industry-standard audio data formats, including standard I2S and left-justified.  
Data formats are selected via Register (P0-R40). All formats require binary two's complement, MSB-first audio  
data; up to 32-bit audio data is accepted. The data formats are detailed in Figure 60 through Figure 65.  
The TAS5780M device also supports right-justified, and TDM data. I2S, LJ, RJ, and TDM are selected using  
Register (P0-R40). All formats require binary 2s complement, MSB-first audio data. Up to 32 bits are accepted.  
Default setting is I2S and 24 bit word length. The I2S slave timing is shown in Figure 20.  
shows a detailed timing diagram for the serial audio interface.  
In addition to acting as a I2S slave, the TAS5780M device can act as an I2S master, by generating SCLK and  
LRCK/FS as outputs from the MCLK input. Table 8 lists the registers used to place the device into Master or  
Slave mode. Please refer to the Serial Audio Port Timing – Master Mode section for serial audio Interface timing  
requirements in Master Mode. For Slave Mode timing, please refer to the Serial Audio Port Timing – Slave Mode  
section.  
Table 8. I2S Master Mode Registers  
REGISTER  
FUNCTION  
P0-R9-B0, B4, and B5  
P0-R32-D[6:0]  
I2S Master mode select  
SCLK divider and LRCK/FS divider  
P0-R33-D[7:0]  
42  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
1 tS .  
Right-channel  
Left-channel  
LRCK/FS  
SLCK  
Audio data word = 16-bit, SLCK = 32, 48, 64fS  
1
2
15 16  
1
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SLCK = 48, 64fS  
2
1
2
24  
2
23 24  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 32-bit, SLCK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
Figure 60. Left Justified Audio Data Format  
1 tS .  
LRCK/FS  
SLCK  
Left-channel  
Right-channel  
Audio data word = 16-bit, SLCK = 32, 48, 64fS  
1
2
15 16  
1
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SLCK = 48, 64fS  
2
2
23 24  
1
23 24  
DATA  
LSB  
MSB  
LSB  
MSB  
Audio data word = 32-bit, SLCK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
Figure 61. I2S Audio Data Format  
Copyright © 2016, Texas Instruments Incorporated  
43  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
The following data formats are only available in software mode.  
1 /fS .  
Right-channel  
Left-channel  
LRCK/FS  
SLCK  
Audio data word = 16-bit, SLCK = 32, 48, 64fS  
DATA  
1
2
15 16  
1
2
15 16  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SLCK = 48, 64fS  
2
1
2
24  
1
2
23 24  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32-bit, SLCK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
Right Justified Data Format; L-channel = HIGH, R-channel = LOW  
Figure 62. Right Justified Audio Data Format  
1 /fS .  
LRCK/FS  
SLCK  
Audio data word = 16-bit, Offset = 0  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
LSB  
MSB  
Audio data word = 24-bit, Offset = 0  
-
,
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 0  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
MSB  
TDM Data Format with OFFSET = 0  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 63. TDM 1 Audio Data Format  
44  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
1 /fS .  
OFFSET = 1  
LRCK/FS  
SLCK  
Audio data word = 16-bit, Offset = 1  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = 1  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 1  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
TDM Data Format with OFFSET = 1  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 64. TDM 2 Audio Data Format  
1 /fS .  
OFFSET = n  
LRCK/FS  
SLCK  
Audio data word = 16-bit, Offset = n  
1
2
15 16  
1
2
15 16  
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = n  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = n  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
MSB  
TDM Data Format with OFFSET = N  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 65. TDM 3 Audio Data Format  
Copyright © 2016, Texas Instruments Incorporated  
45  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
9.3.3.6 Input Signal Sensing (Power-Save Mode)  
The TAS5780M device has a zero-detect function. The zero-detect function can be applied to both channels of  
data as an AND function or an OR function, via controls provided in the control port in P0-R65-D[2:1].Continuous  
Zero data cycles are counted by LRCK/FS, and the threshold of decision for analog mute can be set by P0-R59,  
D[6:4] for the data which is clocked in on the left frame of an I2S signal or Slot 1 of a TDM signal and P0-R59,  
D[2:0] for the data which is clocked in on the right frame of an I2S signal or Slot 2 of a TDM signal as shown in  
Table 10. Default values are 0 for both channels.  
In Hardware mode, the device uses default values.  
Table 9. Zero Detection Mode  
ATMUTECTL  
VALUE  
FUNCTION  
Zero data triggers for the two channels for zero detection are  
ORed together.  
0
Bit : 2  
Zero data triggers for the two channels for zero detection are  
ANDed together.  
1 (Default)  
0
Zero detection and analog mute are disabled for the data  
clocked in on the right frame of an I2S signal or Slot 2 of a  
TDM signal.  
Bit : 1  
Bit : 0  
Zero detection analog mute are enabled for the data clocked in  
on the right frame of an I2S signal or Slot 2 of a TDM signal.  
1 (Default)  
0
Zero detection analog mute are disabled for the data clocked  
in on the left frame of an I2S signal or Slot 1 of a TDM signal.  
Zero detection analog mute are enabled for the data clocked in  
on the left frame of an I2S signal or Slot 1 of a TDM signal.  
1 (Default)  
Table 10. Zero Data Detection Time  
ATMUTETIML OR ATMA  
NUMBER OF LRCK/FS CYCLES  
TIME at 48 kHz  
21 ms  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1024  
5120  
106 ms  
10240  
25600  
51200  
102400  
256000  
512000  
213 ms  
533 ms  
1.066 secs  
2.133 secs  
5.333 secs  
10.66 secs  
9.3.4 Enable Device  
To play audio after the device is powered up or reset the device must be enabled by writing book 0x00, page  
0x00, register 0x02 to 0x00.  
9.3.4.1 Example  
The following is a sample script for enabling the device:  
#Enable DUT  
w 90 00 00 #Go to page 0  
w 90 7f 00 #Go to book 0  
w 90 02 00 #Enable device  
46  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
9.3.5 Volume Control  
9.3.5.1 DAC Digital Gain Control  
A basic DAC digital gain control with range between 24 dB and –103 dB and mute is available on each channels  
by P0-R61-D[7:0] for SPK_OUTB± and P0-R62-D[7:0] for SPK_OUTA±. These volume controls all have 0.5 dB  
step programmability over most gain and attenuation ranges. Table 11 lists the detailed gain versus programmed  
setting for the basic volume control. Volume can be changed for both SPK_OUTB± and SPK_OUTA± at the  
same time or independently by P0-R61-D[1:0] . When D[1:0] set 00 (default), independent control is selected.  
When D[1:0] set 01, SPK_OUTA± accords with SPK_OUTB± volume. When D[1:0] set 10, SPK_OUTA± volume  
controls the volume for both channels. To set D[1:0] to 11 is prohibited.  
Table 11. DAC Digital Gain Control Settings  
GAIN  
SETTING  
GAIN  
(dB)  
BINARY DATA  
COMMENTS  
0
1
0000-0000  
0000-0001  
24.0  
23.5  
Positive maximum  
.
.
.
.
.
.
.
.
.
46  
47  
48  
49  
50  
51  
0010-1110  
0010-1111  
0011-0000  
0011-0001  
0011-0010  
0011-0011  
1.0  
0.5  
0.0  
No attenuation (default)  
–0.5  
–1.0  
–1.5  
.
.
.
.
.
.
.
.
.
253  
254  
255  
1111-1101  
1111-1110  
1111-1111  
–102.5  
–103  
Negative maximum  
Negative infinite (Mute)  
Ramp-up frequency and ramp-down frequency can be controlled by P0-R63, D[7:6] and D[3:2] as shown in  
Table 12. Also ramp-up step and ramp-down step can be controlled by P0-R63, D[5:4] and D[1:0] as shown in  
Table 13.  
Table 12. Ramp Up or Down Frequency  
RAMP UP  
SPEED  
RAMP DOWN  
FREQUENCY  
EVERY N fS  
COMMENTS  
EVERY N fS  
COMMENTS  
00  
01  
10  
11  
1
Default  
00  
01  
10  
11  
1
Default  
2
2
4
4
Direct change  
Direct change  
Table 13. Ramp Up or Down Step  
RAMP UP  
STEP  
RAMP DOWN  
COMMENTS  
STEP dB  
STEP dB  
COMMENTS  
STEP  
00  
01  
10  
11  
4.0  
2.0  
1.0  
0.5  
00  
01  
–4.0  
–2.0  
–1.0  
–0.5  
Default  
10  
11  
Default  
Copyright © 2016, Texas Instruments Incorporated  
47  
 
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
9.3.5.1.1 Emergency Volume Ramp Down  
Emergency ramp down of the volume is provided for situations such as I2S clock error and power supply failure.  
Ramp-down speed is controlled by P0-R64-D[7:6]. Ramp-down step can be controlled by P0-R64-D[5:4]. Default  
is ramp-down by every fS cycle with –4dB step.  
9.3.6 Adjustable Amplifier Gain and Switching Frequency Selection  
The voltage divider between the GVDD_REG pin and the SPK_GAIN/FREQ pin is used to set the gain and  
switching frequency of the amplifier. Upon start-up of the device, the voltage presented on the SPK_GAIN/FREQ  
pin is digitized and then decoded into a 3-bit word which is interpreted inside the TAS5780M device to  
correspond to a given gain and switching frequency. In order to change the SPK_GAIN or switching frequency of  
the amplifier, the PVDD must be cycled off and on while the new voltage level is present on the  
SPK_GAIN/FREQ pin.  
Because the amplifier adds gain to both the signal and the noise present in the audio signal, the lowest gain  
setting that can meet voltage-limited output power targets should be used. Using the lowest gain setting ensures  
that the power target can be reached while minimizing the idle channel noise of the system. The switching  
frequency selection affects three important operating characteristics of the device. The three affected  
characteristics are the power dissipation in the device, the power dissipation in the inductor, and the target output  
filter for the application.  
Higher switching frequencies typically result in slightly higher power dissipation in the TAS5780M device and  
lower dissipation in the inductor in the system, due to decreased ripple current through the inductor and  
increased charging and discharging current in device and parasitic capacitances. Switching at the higher of the  
available switching frequencies will result in lower overall dissipation in the system and lower operating  
temperature of the inductors. However, the thermally limited power output of the device can be decreased in this  
situation, because some of the TAS5780M device thermal headroom will be absorbed by the higher switching  
frequency. Conversely inductor heating can be reduced by using the higher switching frequency to reduce the  
ripple current.  
Another advantage of increasing the switching frequency is that the higher frequency carrier signal can be filtered  
by an L-C filter with a higher corner frequency, leading to physically smaller components. Use the highest  
switching frequency that continues to meet the thermally limited power targets for the application. If thermal  
constraints require heat reduction in the TAS5780M device, use a lower switching rate.  
The switching frequency of the speaker amplifier is dependent on an internal synchronizing signal, (fSYNC), which  
is synchronous with the sample rate. The rate of the synchronizing signal is also dependent on the sample rate.  
Refer to Table 14 below for details regarding how the sample rates correlate to the synchronizing signal.  
Table 14. Sample Rates vs Synchronization Signal  
SAMPLE RATE  
[kHz]  
fSYNC  
[kHz]  
8
16  
32  
96  
48  
96  
192  
11.025  
22.05  
44.1  
88.2  
88.2  
Table 15 summarizes the de-code of the voltage presented to the SPK_GAIN/FREQ pin. The voltage presented  
to the SPK_GAIN/FREQ pin is latched in upon startup of the device. Subsequent changes require power cycling  
the device. A gain setting of 20 dB is recommended for nominal supply voltages of 13 V and lower, while a gain  
of 26 dB is recommended for supply voltages up to 26.4 V. Table 15 shows the voltage required at the  
SPK_GAIN/FREQ pin for various gain and switching scenarios as well some example resistor values for meeting  
the voltage range requirements.  
48  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 15. Amplifier Switching Mode vs. SPK_GAIN/FREQ Voltage  
VSPK_GAIN/FREQ (V)  
RESISTOR EXAMPLES  
AMPLIFIER  
SWITCHING  
FREQUENCY MODE  
R100 (k): RESISTOR TO  
GROUND  
R101 (k): RESISTOR TO  
GVDD_REG  
GAIN MODE  
MIN  
MAX  
6.61  
5.44  
7
Reserved  
Reserved  
Reserved  
8 × fSYNC  
R100 = 750  
R101 = 150  
6.6  
R100 = 390  
R101 = 150  
4.67  
3.89  
3.11  
2.33  
1.56  
0.78  
0
5.43  
4.66  
3.88  
3.1  
6 × fSYNC  
5 × fSYNC  
4 × fSYNC  
8 × fSYNC  
6 × fSYNC  
5 × fSYNC  
4 × fSYNC  
26 dBV  
R100 = 220  
R101 = 150  
R100 = 150  
R101 = 150  
R100 = 100  
R101 = 150  
R100 = 56  
R101 = 150  
2.32  
1.55  
0.77  
20 dBV  
R100 = 33  
R101 = 150  
R100 = 8.2  
R101 = 150  
9.3.7 Error Handling and Protection Suite  
9.3.7.1 Device Overtemperature Protection  
The TAS5780M device continuously monitors die temperature to ensure the temperature does not exceed the  
OTETHRES level specified in the Recommended Operating Conditions table. If an OTE event occurs, the  
SPK_FAULT line is pulled low and the SPK_OUTxx outputs transition to high impedance, signifying a fault. This  
is a non-latched error and the device will attempt to self clear after OTECLRTIME has passed.  
9.3.7.2 SPK_OUTxx Overcurrent Protection  
The TAS5780M device continuously monitors the output current of each amplifier output to ensure the output  
current does not exceed the OCETHRES level specified in the Recommended Operating Conditions table. If an  
OCE event occurs, the SPK_FAULT line is pulled low and the SPK_OUTxx outputs transition to high impedance,  
signifying a fault. This is a non-latched error and the device will attempt to self clear after OCECLRTIME has  
passed.  
9.3.7.3 Internal VAVDD Undervoltage-Error Protection  
The TAS5780M device internally monitors the AVDD net to protect against the AVDD supply dropping  
unexpectedly. To enable this feature, P1-R5-B0 is used.  
9.3.7.4 Internal VPVDD Undervoltage-Error Protection  
If the voltage presented on the PVDD supply drops below the UVETHRES(PVDD) value listed in the Recommended  
Operating Conditions table, the SPK_OUTxx outputs transition to high impedance. This is a self-clearing error,  
which means that once the PVDD level drops below the level listed in the Recommended Operating Conditions  
table, the device resumes normal operation.  
9.3.7.5 Internal VPVDD Overvoltage-Error Protection  
If the voltage presented on the PVDD supply exceeds the OVETHRES(PVDD) value listed in the Recommended  
Operating Conditions table, the SPK_OUTxx outputs will transition to high impedance. This is a self-clearing  
error, which means that once the PVDD level drops below the level listed in the Recommended Operating  
Conditions table, the device will resume normal operation.  
Copyright © 2016, Texas Instruments Incorporated  
49  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
NOTE  
The voltage presented on the PVDD supply only protects up to the level described in the  
Recommended Operating Conditions table for the PVDD voltage. Exceeding the absolute  
maximum rating may cause damage and possible device failure, because the levels  
exceed that which can be protected by the OVE protection circuit.  
9.3.7.6 External Undervoltage-Error Protection  
The SPK_MUTE pin can also be used to monitor a system voltage, such as a LCD TV backlight, a battery pack  
in portable device, by using a voltage divider created with two resistors (see Figure 66).  
If the SPK_MUTE pin makes a transition from 1 to 0 over 6 ms or more, the device switches into external  
undervoltage protection mode, which uses two trigger levels.  
When the SPK_MUTE pin level reaches 2 V, soft mute process begins.  
When the SPK_MUTE pin level reaches 1.2 V, analog output mute engages, regardless of digital audio level,  
and analog output shutdown begins.  
Figure 67 shows a timing diagram for external undervoltage error protection.  
NOTE  
The SPK_MUTE input pin voltage range is provided in the Recommended Operating  
Conditions table. The ratio of external resistors must produce a voltage within the provided  
input range. Any increase in power supply (such as power supply positive noise or ripple)  
can pull the SPK_MUTE pin higher than the level specified in the Recommended  
Operating Conditions table, potentially causing damage to or failure of the device.  
Therefore, any monitored voltage (including all ripple, power supply variation, resistor  
divider variation, transient spikes, and others) must be scaled by the resistor divider  
network to never drive the voltage on the SPK_MUTE pin higher than the maximum level  
specified in the Recommended Operating Conditions table.  
When the divider is set correctly, any DC voltage can be monitored. Figure 66 shows a 12-V example of how the  
SPK_MUTE is used for external undervoltage error protection.  
VDD  
12 V  
7.25 kΩ  
SPK_MUTE  
2.75 kΩ  
Figure 66. SPK_MUTE Used in External Undervoltage Error Protection  
50  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Digital attenuation followed by analog mute  
Analog mute  
SPK_MUTE  
0.9 × DV  
DD  
2.0 V  
1.2 V  
0.1 × DV  
DD  
t
f
Figure 67. SPK_MUTE Timing for External Undervoltage Error Protection  
9.3.7.7 Internal Clock Error Notification (CLKE)  
When a clock error is detected on the incoming data clock, the TAS5780M device switches to an internal  
oscillator and continues to the drive the DAC, while attenuating the data from the last known value. Once this  
process is complete, the DAC outputs will be hard muted to the ground and the class D PWM output will stop  
switching. The clock error can be monitored at B0-P0-R94 and R95. The clock error status bits are non-latching,  
except for MCLK halted B0-P0-R95-D[4] and CERF B0-P0-R95-D[0] which are cleared when read.  
9.3.8 GPIO Port and Hardware Control Pins  
Internal Data  
(P0-R82)  
GPIOx Output Enable  
P0-R8  
GPIOx Output Inversion  
P0-R87  
GPIOx Output Selection  
P0-R82  
Off (low)  
DSP GPIOx output  
Register GPIOx output (P0-R86)  
Auto mute flag (Both A and B)  
Auto mute flag (Channel B)  
Auto mute flag (Channel A)  
Clock invalid flag  
Mux  
GPIOx  
Mux  
Serial Audio Data Output  
Analog mute flag for B  
Analog mute flag for A  
PLL lock flag  
Charge Pump Clock  
Under voltage flag 1  
Under voltage flag 2  
PLL output/4  
GPIOx Input State  
Monitoring  
(P0-R119)  
To µCDSP  
To Clock Tree  
Figure 68. GPIO Port  
9.3.9 I2C Communication Port  
The TAS5780M device supports the I2C serial bus and the data transmission protocol for standard and fast mode  
as a slave device. Because the TAS5780M register map spans several books and pages, the user must select  
the correct book and page before writing individual register bits or bytes. Changing from book to book is  
accomplished by first changing to page 0x00 by writing 0x00 to register 0x00 and then writing the book number  
to register 0x7f of page 0. Changing from page to page is accomplished via register 0x00 on each page. The  
register value selects the register page, from 0 to 255.  
9.3.9.1 Slave Address  
Copyright © 2016, Texas Instruments Incorporated  
51  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 16. I2C Slave Address  
MSB  
1
LSB  
0
0
1
1
ADR2  
ADR1  
R/ W  
The TAS5780M device has 7 bits for the slave address. The first five bits (MSBs) of the slave address are  
factory preset to 10011 (0x9x). The next two bits of the address byte are the device select bits which can be  
user-defined by the ADR1 and ADR0 terminals. A maximum of four devices can be connected on the same bus  
at one time, which gives a range of 0x90, 0x92, 0x94 and 0x96, as detailed in Table 17. Each TAS5780M device  
responds when it receives the slave address.  
Table 17. I2C Address Configuration via ADR0 and ADR1 Pins  
ADR1  
ADR0  
I2C SLAVE ADDRESS [R/W]  
0
0
1
1
0
1
0
1
0x90  
0x92  
0x94  
0x96  
9.3.9.2 Register Address Auto-Increment Mode  
Auto-increment mode allows multiple sequential register locations to be written to or read back in a single  
operation, and is especially useful for block write and read operations. The TAS5780M device supports auto-  
increment mode automatically. Auto-increment stops at page boundaries.  
9.3.9.3 Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit,  
data if write or acknowledge if read, and stop condition. The TAS5780M device supports only slave receivers and  
slave transmitters.  
SDA  
SCL  
9
1–7  
8
9
1–8  
9
1–8  
9
Sp  
St  
Slave address  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Start  
condition  
Stop  
condition  
R/W: Read operation if 1; otherwise, write operation  
ACK: Acknowledgement of a byte if 0  
DATA: 8 bits (byte)  
Figure 69. Packet Protocol  
Table 18. Write Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
Table 19. Read Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
S
M
S
M
M
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition Sp = Stop Condition  
9.3.9.4 Write Register  
A master can write to any TAS5780M device registers using single or multiple accesses. The master sends a  
TAS5780M device slave address with a write bit, a register address, and the data. If auto-increment is enabled,  
the address is that of the starting register, followed by the data to be transferred. When the data is received  
properly, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next  
value is 0x0. Table 20 shows the write operation.  
52  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 20. Write Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
M
S
S
M
reg  
addr  
write  
data 1  
write  
data 2  
St  
slave addr  
W
ACK  
inc  
ACK  
ACK  
ACK  
ACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition Sp = Stop Condition; W = Write; ACK = Acknowledge  
9.3.9.5 Read Register  
A master can read the TAS5780M device register. The value of the register address is stored in an indirect index  
register in advance. The master sends a TAS5780M device slave address with a read bit after storing the  
register address. Then the TAS5780M device transfers the data which the index register points to. When auto-  
increment is enabled, the index register is incremented by 1 automatically. When the index register reaches  
0x7F, the next value is 0x0. Table 21 lists the read operation.  
Table 21. Read Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
M
M
S
S
M
M
M
slave  
addr  
reg  
addr  
slave  
addr  
St  
W
ACK  
inc  
ACK  
Sr  
R
ACK  
data  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sr = Repeated start condition; Sp = Stop Condition;  
W = Write; R = Read; NACK = Not acknowledge  
9.3.9.6 DSP Book, Page, and Register Update  
The DSP memory is arranged in books, pages, and registers. Each book has several pages and each page has  
several registers.  
9.3.9.6.1 Book and Page Change  
To change the book, the user must be on page 0x00. In register 0x7f on page 0x00 you can change the book.  
On page 0x00 of each book, register 0x7f is used to change the book. Register 0x00 of each page is used to  
change the page. To change a book first write 0x00 to register 0x00 to switch to page 0 then write the book  
number to register 0x7f on page 0. To change between pages in a book, simply write the page number to  
register 0x00.  
9.3.9.6.2 Swap Flag  
The swap flag is used to copy the audio coefficient from the host memory to the DSP memory. The swap flag  
feature is important to maintain the stability of the BQs. A BQ is a closed-loop system with 5 coefficients. To  
avoid instability in the BQ in an update transition between two different filters, update all five parameters within  
one audio sample. The internal swap flag insures all 5 coefficients for each filter are transferred from host  
memory to DSP memory occurs within an audio sample. The swap flag stays high until the full host buffer is  
transferred to DSP memory. Updates to the Host buffer should not be made while the swap flag is high.  
All writes to book 0x8C from page 0x1B and register 0x58 through page 0x22 and register 0x1C require the swap  
flag. The swap flag is located in book 0x8C, page 0x01, and register 0x10 and must be set to 0x00 00 00 01 for  
a swap.  
9.3.9.6.3 Example Use  
The following is a sample script for using the DSP host memory to change the fine volume on the device on I2C  
slave address 0x90 to the default value of 0 dB:  
w 90 00 00 #Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 21 #Go to page 0x21  
w 90 21 48 00 00 00 #Fine volume Left  
w 90 21 4C 00 00 00 #Fine volume Right  
#Run the swap flag for the DSP to work on the new coefficients  
w 90 00 00 #Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 01 #Go to page 0x01  
w 90 10 00 00 00 01 #Swap flag  
Copyright © 2016, Texas Instruments Incorporated  
53  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
9.4 Device Functional Modes  
Because the TAS5780M device is a highly configurable device, numerous modes of operation can exist for the  
device. For the sake of succinct documentation, these modes are divided into two modes:  
Fundamental operating modes  
Secondary usage modes  
Fundamental operating modes are the primary modes of operation that affect the major operational  
characteristics of the device, which are the most basic configurations that are chosen to ensure compatibility with  
the intended application or the other components that interact with the device in the final system. Some  
examples of the operating modes are the communication protocol used by the control port, the output  
configuration of the amplifier, or the Master/Slave clocking configuration.  
The fundamental operating modes are described starting in the Serial Audio Port Operating Modes section.  
Secondary usage modes are best described as modes of operation that are used after the fundamental operating  
modes are chosen to fine tune how the device operates within a given system. These secondary usage modes  
can include selecting between left justified and right justified Serial Audio Port data formats, or enabling some  
slight gain/attenuation within the DAC path. Secondary usage modes are accomplished through manipulation of  
the registers and controls in the I2C control port. Those modes of operation are described in their respective  
register/bit descriptions and, to avoid redundancy, are not included in this section.  
9.4.1 Serial Audio Port Operating Modes  
The serial audio port in the TAS5780M device supports industry-standard audio data formats, including I2S, Time  
Division Multiplexing (TDM), Left-Justified (LJ), and Right-Justified (RJ) formats. To select the data format that  
will be used with the device, controls are provided on P0-R40. The timing diagrams for the serial audio port are  
shown in the Serial Audio Port Timing – Slave Mode section, and the data formats are shown in the Serial Audio  
Port – Data Formats and Bit Depths section.  
9.4.2 Communication Port Operating Modes  
The TAS5780M device is configured via an I2C communication port. The device does not support a hardware  
only mode of operation, nor Serial Peripheral Interface (SPI) communication. The I2C Communication Protocol is  
detailed in the I2C Communication Port section. The I2C timing requirements are described in the I2C Bus  
Timing – Standard and I2C Bus Timing – Fast sections.  
9.4.3 Speaker Amplifier Operating Modes  
The TAS5780M device can be used in two different amplifier configurations:  
Stereo Mode  
Mono Mode  
9.4.3.1 Stereo Mode  
The familiar stereo mode of operation uses the TAS5780M device to amplify two independent signals, which  
represent the left and right portions of a stereo signal. These amplified left and right audio signals are presented  
on differential output pairs shown as SPK_OUTA± and SPK_OUTB±. The routing of the audio data which is  
presented on the SPK_OUTxx outputs can be changed according to the Audio Process Flow which is used and  
the configuration of registers P0-R42-D[5:4] and P0-R42-D[1:0]. The familiar stereo mode of operation is shown  
in .  
By default, the TAS5780M device is configured to output the Right frame of a I2S input on the Channel A output  
and the left frame on the Channel B output.  
9.4.3.2 Mono Mode  
The mono mode of operation is used to describe operation in which the two outputs of the device are placed in  
parallel with one another to increase the power sourcing capabilities of the audio output channel. This is also  
known as Parallel Bridge Tied Load (PBTL).  
54  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Device Functional Modes (continued)  
On the output side of the TAS5780M device, the summation of the devices can be done before the filter in a  
configuration called Pre-Filter PBTL. However, the two outputs may be required to merge together after the  
inductor portion of the output filter. Doing so does require two additional inductors, but allows smaller, less  
expensive inductors to be used because the current is divided between the two inductors. This process is called  
Post-Filter PBTL. Both variants of mono operation are shown in Figure 70 and Figure 71.  
[
CL[Ç  
[
{tY_hÜÇ!+  
CL[Ç  
{tY_hÜÇ!+  
/
CL[Ç  
/
CL[Ç  
{tY_hÜÇ!-  
[
CL[Ç  
{tY_hÜÇ!-  
/
CL[Ç  
{tY_hÜÇ.+  
/
CL[Ç  
[
CL[Ç  
{tY_hÜÇ.-  
/
CL[Ç  
/opyrigꢀꢁ © 2016, Çexas Lnsꢁrumenꢁs Lncorporaꢁed  
{tY_hÜÇ.+  
[
CL[Ç  
[
CL[Ç  
{tY_hÜÇ.-  
/
CL[Ç  
/opyrigꢀꢁ © 2016, Çexas Lnsꢁrumenꢁs Lncorporaꢁed  
Figure 70. Pre-Filter PBTL  
Figure 71. Post-Filter PBTL  
On the input side of the TAS5780M device, the input signal to the mono amplifier can be selected from the any  
slot in a TDM stream or the left or right frame from an I2S, LJ, or RJ signal. The TAS5780M device can also be  
configured to amplify some mixture of two signals, as in the case of a subwoofer channel which mixes the left  
and right channel together and sends the mixture through a low-pass filter to create a mono, low-frequency  
signal.  
The mono mode of operation is shown in the Mono (PBTL) Systems section.  
9.4.3.3 Master and Slave Mode Clocking for Digital Serial Audio Port  
The digital audio serial port in the TAS5780M device can be configured to receive clocks from another device as  
a serial audio slave device. The slave mode of operation is described in the Clock Slave Mode with SCLK PLL to  
Generate Internal Clocks (3-Wire PCM) section. If no system processor is available to provide the audio clocks,  
the TAS5780M device can be placed into Master Mode. In master mode, the TAS5780M device provides the  
clocks to the other audio devices in the system. For more details regarding the Master and Slave mode operation  
within the TAS5780M device, see the Serial Audio Port Operating Modes section.  
9.5 Programming  
9.5.1 Audio Processing Features  
The TAS5780M device includes audio processing to optimize the audio performance of the audio system into  
which they are integrated. The TAS5780M device has 12 Biquad Filters for speaker response tuning, One dual  
band DPEQ to dynamically adjust the equalization curve that is applied to low-level signal and the curve that is  
applied to high level signals. A 2-band advanced DRC + AGL structure limits the output power of the amplifier for  
two regions while controlling the peaking that can occur in the crossover region during compression. A fine  
volume control is provided to finely adjust the output level of the amplifier based upon the system level  
considerations faced by the product development engineer.  
The TAS5780M device has two signal monitoring options available, the level meter and the serial data out signal.  
The level meter monitors the signal level through an alpha filter and presents the signal in an I²C register. The  
level meter signal is taken before the 4x interpolation which occurs before the digital-to-analog conversion.  
The SDOUT signal can be presented on any one of the GPIOx pins. Customarily, as is the case in all of the TI  
evaluation hardware for the TAS5780M device, GPIO2 is used.  
The details of the audio processing flow, including the I²C control port registers associated with each block, are  
shown in .  
Copyright © 2016, Texas Instruments Incorporated  
55  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Programming (continued)  
Audio Path  
32 Bit Data Path & Coefficients  
High level  
BQ  
Band-Split  
High (1BQ)  
Input Scale  
& Mix  
SRC  
Main EQ  
12 BQs  
Adv.  
DRC  
Gain  
Analog  
DAC w/  
Audio Input  
from Serial  
Port  
1.31  
32/48k  
to  
96kHz  
1.31  
5.27  
Gain  
Scale  
DPEQ  
Control  
THD  
Boost  
Fine  
Volume  
4x  
Int.  
Sense  
BQ  
Out to  
Amp  
AGL  
L&R or  
L+R  
2
Gain Cntrl  
+
+
Dual bank  
Log.  
Style  
Band-Split  
Low (1BQ)  
Gain  
Low level  
BQ  
I²C  
Register  
Level  
Meter  
Bypass  
Mux  
Mux  
Audio Out to  
Serial Port  
Figure 72. Fixed-Function Process Flow found in the TAS5780M  
9.5.2 Processing Block Description  
The processing block shown in the above is comprised of the following major blocks:  
Input scale and mixer  
Sample Rate Converter (SRC)  
Parametric Equalizers (PEQs)  
BQs Gain Scale  
Dynamic Parametric Equalizer (DPEQ)  
Two-Band Dynamic Ranger Control (DRC)  
Automatic Gain Limiter (AGL)  
Fine Volume  
Level Meter  
THD Management  
9.5.2.1 Input Scale and Mixer  
The input mixer can be used to mix the left and right channel input signals as shown in Figure 73. The input  
mixer has four coefficients, which control the mixing and gains of the input signals. When mixing and scaling the  
input signals, ensure that at maximum input level the input mixer outputs don't exceed 0 dBFS, which will  
overdrive the SRC inputs.  
L2L  
Gain  
Audio left in  
Audio left out  
+
L2R  
Gain  
R2L  
Gain  
R2R  
Gain  
Audio right in  
Audio right out  
+
Figure 73. Input Scale and Mixer  
56  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Programming (continued)  
9.5.2.1.1 Example  
The following is a sample script for setting up the both left and right channels for (½L + ½R) or (L + R) / 2:  
w 90 00 00 # Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 21 #Go to page 0x21  
w 90 50 00 40 26 E7 #Input mixer left in to left out gain  
w 90 54 00 40 26 E7 #Input mixer right in to left out gain  
w 90 58 00 40 26 E7 #Input mixer left in to right out gain  
w 90 5C 00 40 26 E7 #Input mixer right in to right out gain  
#Run the swap flag for the DSP to work on the new coefficients  
w 90 00 00 #Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 01 #Go to page 0x05  
w 90 10 00 00 00 01 #Swap flag  
9.5.2.2 Sample Rate Converter  
The sample rate converter supports 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz and 96 kHz input sample rates. These  
input sample rates are converted to 88.2 or 96 kHz sample rate. The sample rate detection doesn’t distinguish  
between sample rates from 32 to 48 kHz. These sample rates are treated as 48 kHz by the sample rate  
converter. The detected sample rate can be read at book 0x78 page 0x0C register 0x5C. The input sample rate  
is 88.2 or 96 kHz at register 0x5C which reads 0x00 00 00 01. The input sample rate is 32 to 48 kHz at register  
0x5C which reads 0x00 00 00 02. Input sample rate 32 kHz requires changing the interpolation setting from 2x to  
3x by writing B0-P0-R37-D7 to 1. The device must be placed in standby mode for this change to take effect.  
Table 22. Sample Rate Detection  
SAMPLING RATE (KHZ)  
B0-P0-R91-D[6:4]  
8
001  
010  
011  
100  
16  
32 – 48  
88.2 – 96  
Even though the sample rate converter supports 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz and 96 kHz input sample  
rates, the TAS5780M device supports all input sample rates shown in Table 22 in 1x interpolation mode, base  
rate processing.  
The SRC input should not be overdriven. Making the maximum signal level into the SRC –0.5dBFs is  
recommended to prevent overdriving the SRC and causing audio artifacts. The input scale and mixer can be  
used to attenuate or boost the maximum input signal to –0.5dBFs. The processing block has several blocks after  
the SRC where the signal can be compensate for any gain attenuation done in the input mixer and scale block to  
prevent over driving the SRC.  
9.5.2.3 Parametric Equalizers (PEQ)  
The device supports 12 individual tuned PEQs for left channel and 12 individual tuned PEQs for the right  
channel. The PEQs are implemented using cascaded “direct form 1” BQs structures as shown in Figure 74.  
Copyright © 2016, Texas Instruments Incorporated  
57  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Inst1_B0  
Inst2_B0  
X
Inst3_B0  
BIQUADIN_D  
X
X
+
+
+
2*Inst1_B1  
2*Inst1_A1  
2*Inst2_B1  
X
2*Inst2_A1  
2*Inst3_B1  
z-1  
z-1  
z-1  
X
X
X
X
z-1  
z-1  
z-1  
Inst1_B2  
Inst1_A2  
Inst2_B2  
X
Inst2_A2  
Inst3_B2  
X
X
X
X
Instance 1  
Instance 2  
Figure 74. Cascaded BQ Structure  
Instance 3  
b0 + b Z-1 + b2Z-2  
a0 + a1Z-1 + a2Z-2  
1
H(z) =  
(2)  
All BQ coefficients are normalized with a0 to insure that a0 is equal to 1. The structure requires 5 BQ coefficients  
as shown in Table x. Any BQ with coefficients greater than 1 undergoes gain scaling as described in BQ Gain  
Scale.  
Table 23. BQ Coefficients Normalization  
BQ COEFFICIENT FOR TAS5780M  
COEFFICIENT CALCULATION  
B0_DSP  
B1_DSP  
B2_DSP  
A1_DSP  
A2_DSP  
b0 / a0  
b1 / (a0 × 2)  
b2 / a0  
–a1 / (a0 × 2)  
–a2 / a0  
9.5.2.4 BQ Gain Scale  
Main EQ  
12 BQs  
Gain  
Scale  
Figure 75. PEQs and BQs Gain Scale Block  
The BQ coefficients format is as follows: The first BQ has B0 = 5.x, B1 = 6.x, B2 = 5.x, A1 = 2.x, and A2 = 1.x.  
The rest of the BQ have this format: B0 = 1.x, B1 = 2.x, B2 = 1.x, A1 = 2.x, and A2 = 1.x. This formatting  
maintains the highest possible resolution and noise performance. The 1.31 format restricts the ability to do high  
gains within the BQs and as a result requires gain compensation for the restriction. When generating BQ  
coefficients, ensure none of the BQ coefficients is greater than 1 by implementing gain compensation. The Gain  
compensation reduces the BQ coefficients gain to ensure all BQ coefficients are less than 1. The reduced gain is  
then reapplied in the subsequent gain scale block.  
Gain compensation takes the maximum value of B0_DSP, B1_DSP, and B2_DSP after the BQ normalization  
shown in Table 23 is implemented. All the B coefficients are divided by maximum B coefficient value then  
multiplied by 0.999999999534339 (the nearest two’s complement 32-bit number to 1). The following calculations  
are done for each BQ in the PEQ block:  
Max _ k = max(B0 _ DSP, B1_ DSP, B2 _ DSP)  
(3)  
58  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
k _ BQX = Max _ k  
B0 _ DSP  
(4)  
(5)  
(6)  
(7)  
B0 _ DSP =  
B1_ DSP =  
B2 _ DSP =  
k _ BQX  
B1_ DSP  
k _ BQX  
B2 _ DSP  
k _ BQX  
The calculations above insure all DSP BQ coefficients are in a 1.31 format. The reduced gains in the BQ 1.31  
format is compensation for in the gain scale block. The following calculation is done for each channel.  
k_BQ = k_BQ1 × k_BQ2 × k_BQ3 × k_BQ4 × k_BQ5 × k_BQ6 × k_BQ7 × k_BQ8 × k_BQ9 × k_BQ10 × k_BQ11 ×  
k_BQ12  
(8)  
The calculated k_BQ compensation value is then applied to the BQ gain scale in an 8.24 format. The BQ gain  
scale can also be used for volume control before the DRCs. The block can be considered as BQ gain scale and  
volume gain block. When the BQ gain scale block is used for volume control the coefficient value must be  
calculated as follows:  
Volume  
20  
Gain _ BQ _V =10  
´k _ BQ  
where  
Volume is in dB  
(9)  
The BQ gain scale coefficients are located in book 0x8C, page 0x1F register 0x58 for left and register 0x5C for  
right.  
The Bypass EQ Mux allows the user to bypass all processing. The Bypass EQ mux is at Page 0x21, Register  
0x64. The Gang Left / Right mux forces the left processing to be the same as the right processing. The Gang  
Left / Right Mux is located at Page 0x21, Register 0x68.  
9.5.2.5 Dynamic Parametric Equalizer (DPEQ)  
The dynamic parametric equalizer mixes the audio signals routed through two paths containing one BQ each  
based upon the signal level detected by the sense path, as shown in Figure 76. The sense path contains one  
BQ, which can be used to focus the DPEQ sensing on a specific frequency bandwidth. An alpha filter structure is  
used to sense the energy in the sense path and setting the dynamic mixing ratios.  
High level  
BQ  
DPEQ  
Sense  
Control  
+
BQ  
Low level  
BQ  
Figure 76. DPEQ Signal Path  
The dynamic mixing is controlled by offset, gain, and alpha coefficients in a 1.31 format. The alpha coefficient  
controls the average time constant in ms of the signal data in the sense path. The offset and gain coefficients  
control the dynamic mixing thresholds shown in Figure 77.  
Copyright © 2016, Texas Instruments Incorporated  
59  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
GAIN  
Low Path Mix  
1
0
High Path Mix  
T1  
T2  
FS  
SENSE LEVEL  
Figure 77. Dynamic Mixing  
The offset, gain and alpha coefficients are calculated as follows:  
T1  
T1_ Linear =1020  
(10)  
(11)  
T 2-6  
20  
T2 _ Linear =10  
where  
T2 –20 dB  
T 2  
T2 _ Linear =1020  
where  
T2 < –20 dB  
(12)  
(13)  
Offset = -T1_ Linear  
1
Gain =  
32(T2 _ Linear -T1_ Linear)  
-1000  
(14)  
Alpha =1- etime constant´Fs  
where  
T1 and T2 are in dB  
The time constant is in ms  
(15)  
The DPEQ control coefficients are located in book 0x8C, page0x20. Register 0x58 is alpha coefficient, register  
0x5C is gain coefficient and register 0x60 is offset coefficient.  
The high level path BQ, low level path BQ, and sense path BQ coefficients use a 1.31 format as shown in  
Table 25. The DPEQ BQs don't have a gain scale to compensate for any BQ gain reduction due to the  
requirements of the 1.31 format. During tuning, the reduced gain can be compensated by using the BQ gain  
scale or the DRC offset coefficient.  
The DPEQ sense gain scale is located in the sensing path. The DPEQ sense gain scale can be used to shift the  
dynamic mixing thresholds by changing the signal level in the sensing path. A positive dB gain shifts the dynamic  
mixing thresholds down by the gain amount and a negative dB gain shifts the dynamic mixing thresholds up by  
the gain amount.  
60  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
9.5.2.6 Two-Band Dynamic Range Control  
The Dynamic Range Control (DRC) is a feed-forward mechanism that can be used to automatically control the  
audio signal amplitude or the dynamic range within specified limits. The dynamic range control is done by  
sensing the audio signal level using an estimate of the alpha filter energy then adjusting the gain based on the  
region and slope parameters that are defined. The Dynamic Range Control is shown in Figure 78.  
Adv.  
DRC  
Mixer  
gain  
Band-Split  
High (1BQ)  
+
Log.  
Style  
Band-Split  
Low (1BQ)  
Mixer  
gain  
Figure 78. Dynamic Range Control  
The DRCs have seven programmable transfer function parameters each: k0, k1, k2, T1, T2, OFF1, and OFF2.  
The T1 and T2 parameters specify thresholds or boundaries of the three compression or expansion regions in  
terms of input level. The Parameters k0, k1, and k2 define the gains or slopes of curves for each of the three  
regions. The parameters OFF1 and OFF2 specify the offset shift relative 1:1 transfer function curve at the  
thresholds T1 and T2 respectively shown in Figure 79.  
0
OFF2  
-25  
K2  
K1  
OFF1  
-50  
K0  
-75  
-100  
T1  
T2  
-125  
-100  
-75  
-50  
-25  
0
Input (dB)  
Figure 79. DRC Transfer Function Example Plot  
The two-band dynamic range control is comprised of two DRCs that can be spilt into two bands using the BQ at  
the input of each band. The frequency where the two bands are spilt is referred to as the crossover frequency.  
The crossover frequency is the cut off frequency for the low pass filter used to create the low band and the cut  
off frequency for the high pass filter used to create the high band.  
Copyright © 2016, Texas Instruments Incorporated  
61  
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Attack  
time  
Decay  
time  
Gain  
t1  
t2  
Time  
Figure 80. DRC Attack and Decay  
The DRC in each band is equipped with individual energy, attack, and decay time constants. The DRC time  
constants control the transition time of changes and decisions in the DRC gain during compression or expansion.  
The energy, attack, and decay time constants affect the sensitivity level of the DRC. The shorter the time  
constant, the more aggressive the DRC response and vice versa.  
9.5.2.7 Automatic Gain Limiter  
The Automatic Gain Limiter (AGL) is a feedback mechanism that can be used to automatically control the audio  
signal amplitude or dynamic range within specified limits. The automatic gain limiting is done by sensing the  
audio signal level using an alpha filter energy structure shown in Figure 82 at the output of the AGL then  
adjusting the gain based on the whether the signal level is above or below the defined threshold. Three decisions  
made by the AGL are engage, disengage, or do nothing. The rate at which the AGL engages or disengages  
depends on the attack and release settings, respectively.  
1:1 Transfer Function  
Implemented Transfer Function  
T
Input Level (dB)  
M0091-04  
Figure 81. AGL Transfer Function Example Plot  
62  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Alpha Filter Structure  
S
α
–1  
ω
Z
Figure 82. AGL Alpha Filter Structure  
9.5.2.7.1 Softening Filter Alpha (AEA)  
AEA = 1 – e–1000 / (fs × User_AE)  
e 2.718281828  
Fs = sampling frequency  
User_AE = user input step size  
9.5.2.7.2 Softening Filter Omega (AEO)  
AEO = 1 – AEA  
9.5.2.7.3 Attack Rate  
Attack rate = 2 (AA + Release rate)  
AA = 1000 × User_Ad / Fs  
User_Ad = user input attack step size  
9.5.2.7.4 Release Rate  
Release rate = 1000 × User_Rd / Fs  
User_Rd = user input release step size  
NOTE  
The release duration (User_Rd) should be longer than the attack duration (User_Ad).  
9.5.2.7.5 Attack Threshold  
Attack Threshold = user input level in dB  
Copyright © 2016, Texas Instruments Incorporated  
63  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Threshold  
INPUT  
Threshold  
OUTPUT  
Attack Rate  
Release Rate  
W0003-01  
Figure 83. AGL Attack and Release  
The Attack Threshold AGL coefficients are shown in .  
9.5.2.8 Fine Volume  
The fine volume block after the AGL can be used to provide additional fine volume steps from –192 dB to 6 dB in  
a 2.30 format. The Fine Coefficients are shown in .  
9.5.2.9 THD Boost  
A boost scalar and fine volume together can be used for clipping. The THD boost block allows the user to  
programmatically increase the THD by clipping at an operating point earlier than that defined by the supply rails.  
9.5.2.10 Level Meter  
The level meter uses an energy estimator with a programmable time constant to adjust the sensitivity level based  
on signal frequency and desired accuracy level. The level meter outputs of both left and right channels are  
written to a 32-bit sub address location in a 1.31 format as shown in . The BypassToLevelMeter Bit in Book 8C,  
Page 0x21, Register 0x70 can be used to switch the input to the Level Meter from the audio before processing to  
audio post-processing.  
9.5.3 Other Processing Block Features  
9.5.3.1 Number Format  
The data processing path is 32 bits with 32-bit coefficients. The coefficients use the two’s complement digital  
number format.  
64  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 24. Two’s Complement Format  
BITS  
TWO'S COMPLEMENT VALUE  
0111 1111  
0111 1110  
0000 0010  
0000 0001  
0000 0000  
1111 1111  
1111 1110  
1000 0010  
1000 0001  
1000 0000  
127  
126  
2
1
0
–1  
–2  
–126  
–127  
–128  
9.5.3.1.1 Coefficient Format Conversion  
The device uses 32 bit two’s complement number formats. The calculated 4 byte register values are shown  
below in an 8 digit hex value.  
Table 25. Sample Calculations for 1.31 Format  
dB  
0
Linear  
1
Decimal  
Hex (1.31 Format)  
7FFFFFFF  
2147483648  
1073741824  
214748364  
–6  
–20  
0.5  
40000000  
0.1  
0CCCCCCC  
D = 231 × L, D < 231  
x
L = 10(x/20)  
Dec2Hex(D, 8)(1)  
D = 231, D 231  
(1) Dec2Hex(D, 8), where 8 represents 8 nibbles or 38 bits.  
Please note that for a 1.31 format the linear value cannot be greater than 1 or decimal value 232.  
Table 26. Sample Calculations for B.A Format  
dB  
Linear  
Decimal  
Hex (1.31 Format)  
D = 2A × L, D < 2(B + A - 1)  
x
L = 10(x/20)  
Dec2Hex(D, 8)  
D = 2(B + A - 1), D 2(B + A - 1)  
9.5.4 Checksum  
The TAS5780M device supports two different check sum schemes, a cyclic redundancy check (CRC) checksum  
and an Exclusive (XOR) checksum. Both checksums work on every register write, except for book switch register  
and page switching register, 0x7F and 0x00, respectively. Register reads do not change checksum, but writes to  
even nonexistent registers will change the checksum. Both checksums are 8-bit checksums and both are  
available together simultaneously. The checksums can be reset by writing a starting value (eg. 0x 00 00 00 00)  
to their respective 4-byte register locations.  
9.5.4.1 Cyclic Redundancy Check (CRC) Checksum  
The 8-bit CRC checksum used is the 0x7 polynomial (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell  
delineation, (1 + x1 + x2 + x8). A major advantage of the CRC checksum is that it is input order sensitive.  
The CRC supports all I2C transactions, excluding book and page switching. The CRC checksum is read from  
register 0x7E on any page of book 0x00 (B0_Page x_Reg 126). If the book isn’t Book 0, the CRC checksum is  
only valid on page 0x00 register 0x7E (Page 0_Reg 126). The CRC checksum can be reset by writing 0x00 00  
00 00 to the same register locations where the CRC checksum is valid.  
Copyright © 2016, Texas Instruments Incorporated  
65  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
9.5.4.2 Exclusive or (XOR) Checksum  
The Xor checksum is a simpler checksum scheme. It performs sequential XOR of each register byte write with  
the previous 8-bit checksum register value. XOR supports only YMEM, which is located in Book 0x8C and  
excludes page switching and all registers in Page 0x00 of Book 0x8C. XOR checksum is read from location  
register 0x7D on page 0x00 of book 0x8C (B140_Page 0_Reg 125). The XOR Checksum can be reset by writing  
0x00 00 00 00 to the same register location where it is read.  
Table 27. XOR Truth Table  
INPUT  
OUTPUT  
A
0
0
1
1
B
0
1
0
1
0
1
1
0
66  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
This section details the information required to configure the device for several popular configurations and  
provides guidance on integrating the TAS5780M device into the larger system.  
10.1.1 External Component Selection Criteria  
The Supporting Component Requirements table in each application description section lists the details of the  
supporting required components in each of the System Application Schematics.  
Where possible, the supporting component requirements have been consolidated to minimize the number of  
unique components which are used in the design. Component list consolidation is a method to reduce the  
number of unique part numbers in a design, to ease inventory management, and to reduce the manufacturing  
steps during board assembly. For this reason, some capacitors are specified at a higher voltage than what would  
normally be required. An example of this is a 50-V capacitor may be used for decoupling of a 3.3-V power supply  
net.  
In this example, a higher voltage capacitor can be used even on the lower voltage net to consolidate all caps of  
that value into a single component type. Similarly, several unique resistors that have all the same size and value  
but different power ratings can be consolidated by using the highest rated power resistor for each instance of that  
resistor value.  
While this consolidation can seem excessive, the benefits of having fewer components in the design can far  
outweigh the trivial cost of a higher voltage capacitor. If lower voltage capacitors are already available elsewhere  
in the design, they can be used instead of the higher voltage capacitors. In all situations, the voltage rating of the  
capacitors must be at least 1.45 times the voltage of the voltage which appears across them. The power rating of  
the capacitors should be 1.5 times to 1.75 times the power dissipated in it during normal use case.  
10.1.2 Component Selection Impact on Board Layout, Component Placement, and Trace Routing  
Because the layout is important to the overall performance of the circuit, the package size of the components  
shown in the component list was intentionally chosen to allow for proper board layout, component placement,  
and trace routing. In some cases, traces are passed in between two surface mount pads or ground plane  
extensions from the TAS5780M device and into to the surrounding copper for increased heat-sinking of the  
device. While components may be offered in smaller or larger package sizes, it is highly recommended that the  
package size remain identical to the size used in the application circuit as shown. This consistency ensures that  
the layout and routing can be matched very closely, which optimizes thermal, electromagnetic, and audio  
performance of the TAS5780M device in circuit in the final system.  
10.1.3 Amplifier Output Filtering  
The TAS5780M device is often used with a low-pass filter, which is used to filter out the carrier frequency of the  
PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter.  
The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current  
waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several  
system level constraints. In some low-power use cases that have no other circuits which are sensitive to EMI, a  
simple ferrite bead or a ferrite bead plus a capacitor can replace the traditional large inductor and capacitor that  
are commonly used. In other high-power applications, large toroid inductors are required for maximum power and  
film capacitors can be used due to audio characteristics. Refer to the application report Class-D LC Filter Design  
(SLOA119) for a detailed description on the proper component selection and design of an L-C filter based upon  
the desired load and response.  
版权 © 2016, Texas Instruments Incorporated  
67  
 
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Application Information (接下页)  
10.1.4 Programming the TAS5780M  
The TAS5780M device includes an I2C compatible control port to configure the internal registers of the  
TAS5780M device. The control console software provided by TI is required to configure the device. More details  
regarding programming steps, and a few important notes are available below and also in the design examples  
that follow.  
10.1.4.1 Resetting the TAS5780M Registers and Modules  
The TAS5780M device has several methods by which the device can reset the register, interpolation filters, and  
DAC modules. The registers offer the flexibility to do these in or out of shutdown as well as in or out of standby.  
However, there can be issues if the reset bits are toggled in certain illegal operation modes.  
Any of the following routines can be used with no issue:  
Reset Routine 1  
Place device in Standby  
Reset modules  
Reset Routine 2  
Place device in Standby + Power Down  
Reset registers  
Reset Routine 3  
Place device in Power Down  
Reset registers  
Reset Routine 4  
Place device in Standby  
Reset registers  
Reset Routine 5  
Place device in Standby + Power Down  
Reset modules + Reset registers  
Reset Routine 6  
Place device in Power Down  
Reset modules + Reset registers  
Reset Routine 7  
Place device in Standby  
Reset modules + Reset registers  
Two reset routines are not supported and should be avoided. If used, they can cause the device to become  
unresponsive. These unsupported routines are shown below.  
Unsupported Reset Routine 1 (do not use)  
Place device in Standby + Power Down  
Reset modules  
Unsupported Reset Routine 2 (do not use)  
Place device in Power Down  
Reset modules  
68  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
10.2 Typical Applications  
10.2.1 2.0 (Stereo BTL) System  
For the stereo (BTL) PCB layout, see 89.  
A 2.0 system refers to a system in which there are two full range speakers without a separate amplifier path for  
the speakers which reproduce the low-frequency content. In this system, two channels are presented to the  
amplifier via the digital input signal. These two channels are amplified and then sent to two separate speakers. In  
some cases, the amplified signal is further separated based upon frequency by a passive crossover network after  
the L-C filter. Even so, the application is considered 2.0.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While certainly the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
84 shows the 2.0 (Stereo BTL) system application.  
PVDD  
R100  
750k  
R101  
150k  
C103  
1µF  
C100  
0.1µF  
C101  
22µF  
C102  
22µF  
GND  
GND  
GND  
GND  
GND  
C104  
To System Processor  
3.3V  
0.22µF  
L100  
L101  
2.0-SDA  
2.0-SCL  
2.0-SPK_OUTA+  
2.0-GPIO0  
2.0_RESET  
2.0-SDOUT  
2.0-MCLK  
2.0-SCLK  
2.0-SDIN  
2.0-OUTA+  
2.0-OUTA-  
C105  
1µF  
C106  
2.2µF  
C107  
2.2µF  
3.3V  
2.0-SPK_OUTA-  
C108  
C109  
0.1µF  
C110  
0.1µF  
0.22µF  
GND  
U100  
TAS5780M  
GND  
GND  
PAD  
GND  
C111  
2.0-LRCK/FS  
0.22µF  
L102  
L103  
GND  
GND  
GND  
GND  
GND  
2.0-SPK_OUTB-  
2.0-OUTB-  
2.0-OUTB+  
C112  
1µF  
C113  
2.2µF  
C114  
2.2µF  
3.3V  
2.0-SPK_OUTB+  
C115  
C116  
0.1µF  
C117  
0.1µF  
C118  
1µF  
C119  
1µF  
C120  
1µF  
GND  
PVDD  
0.22µF  
GND  
GND  
2.0-SPK_MUTE  
2.0-SPK_FAULT  
GND  
GND  
GND  
C121  
0.1µF  
C122  
22µF  
C123  
22µF  
GND  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
84. 2.0 (Stereo BTL) System Application Schematic  
10.2.1.1 Design Requirements  
Power supplies:  
3.3-V supply  
5-V to 24-V supply  
Communication: host processor serving as I2C compliant master  
External memory (such as EEPROM and flash) used for coefficients  
The requirements for the supporting components for the TAS5780M device in a Stereo 2.0 (BTL) system is  
provided in 28.  
版权 © 2016, Texas Instruments Incorporated  
69  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
28. Supporting Component Requirements for Stereo 2.0 (BTL) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
U100  
TAS5780M  
48 Pin TSSOP  
0402  
Digital-input, closed-loop class-D amplifier  
1%, 0.063 W  
R100  
See the Adjustable  
Amplifier Gain and  
Switching Frequency  
Selection section  
R101  
0402  
1%, 0.063 W  
L100, L101, L102,  
L103  
See the Amplifier Output Filtering section  
Ceramic, 0.1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C100, C121  
0.1 µF  
0.22 µF  
0.68 µF  
0402  
0603  
C104, C108, C111,  
C115  
Ceramic, 0.22 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C109, C110, C116,  
C117  
Ceramic, 0.68 µF, ±10%, X7R  
Voltage rating must be > 1.8 × VPVDD  
0805  
0603  
(this body size  
chosen to aid in trace Voltage rating must be > 16 V  
routing)  
Ceramic, 1 µF, ±10%, X7R  
C103  
1 µF  
1 µF  
C105, C118, C119,  
C120  
0402  
Ceramic, 1 µF, 6.3V, ±10%, X5R  
Ceramic, 2.2 µF, ±10%, X5R  
At a minimum, voltage rating must be > 10V, however higher  
voltage caps have been shown to have better stability under DC  
bias. Refer to the guidance provided in the TAS5780M for  
suggested values.  
C106, C107, C113,  
C114  
2.2 µF  
22 µF  
0402  
0805  
C101, C102, C122,  
C123  
Ceramic, 22 µF, ±20%, X5R  
Voltage rating must be > 1.45 × VPVDD  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Step One: Hardware Integration  
Using the Typical Application Schematic as a guide, integrate the hardware into the system schematic.  
Following the recommended component placement, board layout, and routing given in the example layout  
above, integrate the device and its supporting components into the system PCB file.  
The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the  
high-frequency signals, all of which go to the serial audio port. Constructing these signals to ensure they  
are given precedent as design trade-offs are made is recommended.  
For questions and support go to the E2E forums (e2e.ti.com). If deviating from the recommended layout is  
necessary, go to the E2E forum to request a layout review.  
10.2.1.2.2 Step Two: System Level Tuning  
Use the TAS5780MEVM evaluation module and the PPC3 app to configure the desired device settings.  
Tune the end equipment by following the instructions in SLAU694  
10.2.1.2.3 Step Three: Software Integration  
Use the End System Integration feature of the PPC3 app to generate a baseline configuration file.  
Generate additional configuration files based upon operating modes of the end-equipment and integrate static  
configuration information into initialization files.  
Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the  
main system program.  
70  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
10.2.1.3 Application Curves  
29 shows the application specific performance plots for Stereo 2.0 (BTL) systems.  
29. Relevant Performance Plots  
PLOT TITLE  
Output Power vs PVDD  
FIGURE NUMBER  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 39  
Figure 40  
Figure 41  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Efficiency vs Output Power  
DVDD PSRR vs. Frequency  
AVDD PSRR vs. Frequency  
CPVDD PSRR vs. Frequency  
10.2.2 Mono (PBTL) Systems  
For the mono (PBTL) PCB layout, see 91.  
A mono system refers to a system in which the amplifier is used to drive a single loudspeaker. Parallel Bridge  
Tied Load (PBTL) indicates that the two full-bridge channels of the device are placed in parallel and drive the  
loudspeaker simultaneously using an identical audio signal. The primary benefit of operating the TAS5780M  
device in PBTL operation is to reduce the power dissipation and increase the current sourcing capabilities of the  
amplifier output. In this mode of operation, the current limit of the audio amplifier is approximately doubled while  
the on-resistance is approximately halved.  
The loudspeaker can be a full-range transducer or one that only reproduces the low-frequency content of an  
audio signal, as in the case of a powered subwoofer. Often in this use case, two stereo signals are mixed  
together and sent through a low-pass filter to create a single audio signal which contains the low frequency  
information of the two channels. Conversely, advanced digital signal processing can create a low-frequency  
signal for a multichannel system, with audio processing which is specifically targeted on low-frequency effects.  
Because low-frequency signals are not perceived as having a direction (at least to the extent of high-frequency  
signals) it is common to reproduce the low-frequency content of a stereo signal that is sent to two separate  
channels. This configuration pairs one device in Mono PBTL configuration and another device in Stereo BTL  
configuration in a single system called a 2.1 system. The Mono PBTL configuration is detailed in the 2.1 (Stereo  
BTL + External Mono Amplifier) Systems section. shows the Mono (PBTL) system application  
版权 © 2016, Texas Instruments Incorporated  
71  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
PVDD  
R200  
750k  
R201  
150k  
C204  
390µF  
C200  
1µF  
C201  
0.1µF  
C202  
1µF  
C203  
22µF  
GND  
GND  
GND  
GND  
GND  
GND  
To System Processor  
3.3V  
MONO-SDA  
MONO-SCL  
C208  
MONO-GPIO0  
MONO_RESET  
MONO-SDOUT  
MONO-MCLK  
MONO-SCLK  
MONO-SDIN  
0.22µF  
L200  
C205  
1µF  
C206  
2.2µF  
C207  
2.2µF  
MONO-SPK_OUTA  
C209  
MONO_OUT+  
C220  
0.1µF  
0.22µF  
GND  
U200  
TAS5780M  
GND  
PAD  
GND  
C214  
MONO-LRCK/FS  
0.22µF  
L201  
GND  
GND  
GND  
GND  
GND  
MONO-SPK_OUTB  
C215  
MONO_OUT-  
C210  
1µF  
R202  
49.9k  
C221  
0.1µF  
3.3V  
0.22µF PVDD  
C211  
1µF  
C212  
1µF  
C213  
1µF  
GND  
C219  
390µF  
C216  
0.1µF  
C217  
1µF  
C218  
22µF  
MONO-SPK_MUTE  
MONO-SPK_FAULT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
85. Mono (PBTL) System Application Schematic  
10.2.2.1 Design Requirements  
Power supplies:  
3.3-V supply  
5-V to 24-V supply  
Communication: Host processor serving as I2C compliant master  
External memory (EEPROM, flash, and others) used for coefficients.  
The requirements for the supporting components for the TAS5780M device in a Mono (PBTL) system is provided  
in 30.  
30. Supporting Component Requirements for Mono (PBTL) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
U200  
TAS5780M  
48 Pin TSSOP  
0402  
Digital-input, closed-loop class-D amplifier with 96kHz processing  
R200  
See the Adjustable  
Amplifier Gain and  
Switching Frequency  
Selection section  
1%, 0.063 W  
1%, 0.063 W  
1%, 0.063 W  
R201  
0402  
R202  
0402  
L200, L201  
See theAmplifier Output Filtering section  
Ceramic, 0.1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C216, C201  
0.1 µF  
0.22 µF  
0.68 µF  
0402  
0603  
0805  
C208, C209, C214,  
C215  
Ceramic, 0.22 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
Ceramic, 0.68 µF, ±10%, X7R  
Voltage rating must be > 1.8 × VPVDD  
C220, C221  
72  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
30. Supporting Component Requirements for Mono (PBTL) Systems (接下页)  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
0603  
(this body size  
chosen to aid in trace Voltage rating must be > 16 V  
routing)  
Ceramic, 1 µF, ±10%, X7R  
C200  
1 µF  
C205, C211, C213,  
C212  
1 µF  
0402  
Ceramic, 1 µF, 6.3 V, ±10%, X5R  
0805  
C202, C217, C352,  
C367  
(this body size  
Ceramic, 1 µF, ±10%, X5R  
1 µF  
chosen to aid in trace Voltage rating must be > 1.45 × VPVDD  
routing)  
Ceramic, 2.2 µF, ±10%, X5R  
At a minimum, voltage rating must be > 10V, however higher  
C206, C207  
C203, C218  
2.2 µF  
0402  
voltage caps have been shown to have better stability under DC  
bias please follow the guidance provided in the TAS5780M for  
suggested values.  
22 µF  
0805  
Ceramic, 22 µF, ±20%, X5R  
Voltage rating must be > 1.45 × VPVDD  
390 µF  
10 × 10  
Aluminum, 390 µF, ±20%, 0.08-Ω  
Voltage rating must be > 1.45 × VPVDD Anticipating that this  
application circuit would be followed for higher power subwoofer  
applications, these capacitors are added to provide local current  
sources for low-frequency content. These capacitors can be  
reduced or even removed based upon final system testing, including  
critical listening tests when evaluating low-frequency designs.  
C204, C219  
10.2.2.2 Detailed Design Procedure  
10.2.2.2.1 Step One: Hardware Integration  
Using the Typical Application Schematic as a guide, integrate the hardware into the system schematic.  
Following the recommended component placement, board layout, and routing given in the example layout  
above, integrate the device and its supporting components into the system PCB file.  
The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the  
high-frequency signals, all of which go to the serial audio port. Constructing these signals to ensure they  
are given precedent as design trade-offs are made is recommended.  
For questions and support go to the E2E forums (e2e.ti.com). If deviating from the recommended layout is  
necessary, go to the E2E forum to request a layout review.  
10.2.2.2.2 Step Two: System Level Tuning  
Use the TAS5780MEVM evaluation module and the PPC3 app to configure the desired device settings.  
10.2.2.2.3 Step Three: Software Integration  
Use the End System Integration feature of the PPC3 app to generate a baseline configuration file.  
Generate additional configuration files based upon operating modes of the end-equipment and integrate static  
configuration information into initialization files.  
Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the  
main system program.  
版权 © 2016, Texas Instruments Incorporated  
73  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
10.2.2.3 Application Specific Performance Plots for Mono (PBTL) Systems  
31 shows the application specific performance plots for Mono (PBTL) Systems  
31. Relevant Performance Plots  
PLOT TITLE  
Output Power vs PVDD  
FIGURE NUMBER  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
Efficiency vs Output Power  
10.2.3 2.1 (Stereo BTL + External Mono Amplifier) Systems  
93 shows the PCB Layout for the 2.1 System.  
To increase the low-frequency output capabilities of an audio system, a single subwoofer can be added to the  
system. Because the spatial clues for audio are predominately higher frequency than that reproduced by the  
subwoofer, often a single subwoofer can be used to reproduce the low frequency content of several other  
channels in the system. This is frequently referred to as a dot one system. A stereo system with a subwoofer is  
referred to as a 2.1 (two-dot-one), a 3 channel system with subwoofer is referred to as a 3.1 (three-dot-one), a  
popular surround system with five speakers and one subwoofer is referred to as a 5.1, and so on.  
10.2.3.1 Advanced 2.1 System (Two TAS5780M devices)  
In higher performance systems, the subwoofer output can be enhanced using digital audio processing as was  
done in the high-frequency channels. To accomplish this, two TAS5780M devices are used — one for the high  
frequency left and right speakers and one for the mono subwoofer speaker. In this system, the audio signal can  
be sent from the TAS5780M device through the SDOUT pin. Alternatively, the subwoofer amplifier can accept  
the same digital input as the stereo, which might come from a central systems processor. 86 shows the 2.1  
(Stereo BTL + External Mono Amplifier) system application.  
74  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
PVDD  
R300  
750k  
R301  
150k  
C303  
1µF  
C300  
0.1µF  
C301  
22µF  
C302  
22µF  
GND  
GND  
GND  
GND  
GND  
C304  
To System Processor  
3.3V  
0.22µF  
L300  
L301  
2.1-SDA  
2.1-SCL  
2.1-SPK_OUT1A+  
2.1-GPIO0_HF  
2.1_RESET  
2.1-HF_OUTA+  
2.1-HF_OUTA-  
C305  
1µF  
C306  
2.2µF  
C307  
2.2µF  
2.1-MCLK  
2.1-SCLK  
2.1-SDIN  
3.3V  
2.1-SPK_OUT1A-  
C308  
C309  
0.1µF  
C310  
0.1µF  
0.22µF  
GND  
U300  
TAS5780M  
GND  
GND  
PAD  
GND  
C311  
2.1-LRCK/FS  
0.22µF  
L302  
GND  
GND  
GND  
GND  
GND  
2.1-SPK_OUT1B-  
2.1-HF_OUTB-  
2.1-HF_OUTB+  
L303  
C312  
1µF  
C313  
2.2µF  
C314  
2.2µF  
3.3V  
2.1-SPK_OUT1B+  
C315  
C316  
0.1µF  
C317  
0.1µF  
C318  
1µF  
C319  
1µF  
C320  
1µF  
GND  
PVDD  
0.22µF  
GND  
GND  
2.1-SPK_MUTE  
2.1-SPK_FAULT  
GND  
GND  
GND  
C321  
0.1µF  
C322  
22µF  
C323  
22µF  
GND  
GND  
GND  
PVDD  
R350  
750k  
R351  
150k  
C354  
390µF  
C350  
1µF  
C351  
0.1µF  
C352  
1µF  
C353  
22µF  
GND  
GND  
GND  
GND  
GND  
GND  
3.3V  
C358  
2.1-GPIO0_LF  
2.1_RESET  
2.1-SDOUT_LF  
0.22µF  
L350  
C355  
1µF  
C356  
2.2µF  
C357  
2.2µF  
2.1-SPK_OUT2A  
C359  
2.1_LF+  
C370  
0.1µF  
0.22µF  
GND  
U301  
TAS5780M  
GND  
PAD  
GND  
C364  
0.22µF  
2.1-SPK_OUT2B  
C365  
L351  
GND  
GND  
GND  
GND  
GND  
2.1_LF-  
C360  
1µF  
R352  
49.9k  
C371  
0.1µF  
3.3V  
0.22µF PVDD  
C361  
1µF  
C362  
1µF  
C363  
1µF  
GND  
C369  
390µF  
C366  
0.1µF  
C367  
1µF  
C368  
22µF  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
86. 2.1 (Stereo BTL + External Mono Amplifier) Application Schematic  
10.2.3.2 Design Requirements  
Power supplies:  
3.3-V supply  
5-V to 24-V supply  
Communication: Host processor serving as I2C compliant master  
External memory (EEPROM, flash, and others) used for coefficients.  
The requirements for the supporting components for the TAS5780M device in a 2.1 (Stereo BTL + External Mono  
Amplifier) system is provided in 32.  
版权 © 2016, Texas Instruments Incorporated  
75  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
32. Supporting Component Requirements for 2.1 (Stereo BTL + External Mono Amplifier) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
U300  
TAS5780M  
48 Pin TSSOP  
0402  
Digital-input, closed-loop class-D amplifier 96kHz Processing  
R300, R350  
R301, R351  
R352  
See the Adjustable  
Amplifier Gain and  
Switching Frequency  
Selection section  
1%, 0.063 W  
1%, 0.063 W  
1%, 0.063 W  
0402  
0402  
L300, L301, L302,  
L303  
See the Amplifier Output Filtering section  
L350, L351  
C394, C395, C396,  
C397, C398, C399  
0.01 µF  
0.1 µF  
0603  
0402  
Ceramic, 0.01 µF, 50 V, +/-10%, X7R  
C300, C321, C351,  
C366  
Ceramic, 0.1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C304, C308, C311,  
C315, C358, C359,  
C364, C365  
Ceramic, 0.22 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
0.22 µF  
0603  
C309, C310, C316,  
C317, C370, C371  
Ceramic, 0.68 µF, ±10%, X7R  
Voltage rating must be > 1.8 × VPVDD  
0.68 µF  
1 µF  
0805  
0603  
C303, C350, C312,  
C360  
Ceramic, 1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C305, C318, C319,  
C320, C355, C361,  
C363, C312, C362  
1 µF  
0402  
Ceramic, 1 µF, 6.3V, ±10%, X5R  
Ceramic, 1 µF, ±10%, X7R  
Voltage rating must be > 1.45 × VPVDD  
C352, C367  
1 µF  
2.2 µF  
22 µF  
390 µF  
0805  
0402  
0805  
C306, C307, C313,  
C314, C356, C357,  
Ceramic, 2.2 µF, ±10%, X5R  
Voltage rating must be > 1.45 × VPVDD  
C301, C302, C322,  
C323, C353, C368  
Ceramic, 22 µF, ±20%, X5R  
Voltage rating must be > 1.45 × VPVDD  
Aluminum, 390 µF, ±20%, 0.08 Ω  
Voltage rating must be > 1.45 × VPVDD  
C354, C369  
10 × 10  
76  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
10.2.3.3 Application Specific Performance Plots for 2.1 (Stereo BTL + External Mono Amplifier) Systems  
33 shows the application specific performance plots for 2.1 (Stereo BTL + External Mono Amplifier) Systems  
33. Relevant Performance Plots  
DEVICE  
PLOT TITLE  
FIGURE NUMBER  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 38  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 39  
Figure 40  
Figure 41  
Figure 43  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
U300  
Efficiency vs Output Power  
PVDD PSRR vs Frequency  
Output Power vs PVDD  
THD+N vs Frequency, VPVDD = 12 V  
THD+N vs Frequency, VPVDD = 15 V  
THD+N vs Frequency, VPVDD = 18 V  
THD+N vs Frequency, VPVDD = 24 V  
THD+N vs Power, VPVDD = 12 V  
THD+N vs Power, VPVDD = 15 V  
THD+N vs Power, VPVDD = 18 V  
THD+N vs Power, VPVDD = 24 V  
Idle Channel Noise vs PVDD  
U301  
Efficiency vs Output Power  
DVDD PSRR vs. Frequency  
U300  
and  
U301  
AVDD PSRR vs. Frequency  
CPVDD PSRR vs. Frequency  
Powerdown Current Draw vs. PVDD  
版权 © 2016, Texas Instruments Incorporated  
77  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supplies  
The TAS5780M device requires two power supplies for proper operation. A high-voltage supply called PVDD is  
required to power the output stage of the speaker amplifier and its associated circuitry. Additionally, one low-  
voltage power supply which is called DVDD is required to power the various low-power portions of the device.  
The allowable voltage range for both the PVDD and the DVDD supply are listed in the Recommended Operating  
Conditions table. The two power supplies do not have a required powerup sequence. The power supplies can be  
powered on in any order. TI recommends waiting 100 ms to 240 ms for the DVDD power supplies to stabilize  
before starting I2C communication and providing stable I2S clock before enabling the device outputs.  
AVDD  
Internal Analog Circuitry  
Internal Mixed  
Signal Circuitry  
Internal Digital  
Circuitry  
+
DVDD  
DVDD  
DVDD_REG  
External Filtering/Decoupling  
œ
LDO  
CPVDD  
CPVSS  
External Filtering/Decoupling  
Charge  
Pump  
DAC Output Stage  
(Positive)  
DAC Output Stage  
(Negative)  
Output Stage  
Power Supply  
Gate Drive  
Voltage  
PVDD  
GVDD_REG  
External Filtering/Decoupling  
Linear  
Regulator  
+
PVDD  
œ
87. Power Supply Functional Block Diagram  
11.1.1 DVDD Supply  
The DVDD supply that is required from the system is used to power several portions of the device. As shown in  
87, it provides power to the DVDD pin, the CPVDD pin, and the AVDD pin. Proper connection, routing, and  
decoupling techniques are highlighted in the Application and Implementation section and the Layout Example  
section) and must be followed as closely as possible for proper operation and performance. Deviation from the  
guidance offered in the TAS5780M device Application and Implementation section can result in reduced  
performance, errant functionality, or even damage to the TAS5780M device.  
Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply.  
To simplify the power supply requirements for the system, the TAS5780M device includes an integrated low-  
dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD  
supply and its output is presented on the DVDD_REG pin, providing a connection point for an external bypass  
capacitor. It is important to note that the linear regulator integrated in the device has only been designed to  
support the current requirements of the internal circuitry, and should not be used to power any additional external  
circuitry. Additional loading on this pin could cause the voltage to sag, negatively affecting the performance and  
operation of the device.  
78  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Power Supplies (接下页)  
The outputs of the high-performance DACs used in the TAS5780M device are ground centered, requiring both a  
positive low-voltage supply and a negative low-voltage supply. The positive power supply for the DAC output  
stage is taken from the AVDD pin, which is connected to the DVDD supply provided by the system. A charge  
pump is integrated in the TAS5780M device to generate the negative low-voltage supply. The power supply input  
for the charge pump is the CPVDD pin. The CPVSS pin is provided to allow the connection of a filter capacitor  
on the negative low-voltage supply. As is the case with the other supplies, the component selection, placement,  
and routing of the external components for these low voltage supplies are shown in the TAS5780M and should  
be followed as closely as possible to ensure proper operation of the device.  
11.1.2 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques are  
highlighted in the TAS5780MEVM and must be followed as closely as possible for proper operation and  
performance. Due to the high-voltage switching of the output stage, it is particularly important to properly  
decouple the output power stages in the manner described in the TAS5780M deviceApplication and  
Implementation . Lack of proper decoupling, like that shown in the Application and Implementation , results in  
voltage spikes which can damage the device.  
A separate power supply is required to drive the gates of the MOSFETs used in the output stage of the speaker  
amplifier. This power supply is derived from the PVDD supply via an integrated linear regulator. A GVDD_REG  
pin is provided for the attachment of decoupling capacitor for the gate drive voltage regulator. It is important to  
note that the linear regulator integrated in the device has only been designed to support the current requirements  
of the internal circuitry, and should not be used to power any additional external circuitry. Additional loading on  
this pin could cause the voltage to sag, negatively affecting the performance and operation of the device.  
版权 © 2016, Texas Instruments Incorporated  
79  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
12.1.1 General Guidelines for Audio Amplifiers  
Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and  
the layout of the supporting components used around them. The system level performance metrics, including  
thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all  
affected by the device and supporting component layout.  
Ideally, the guidance provided in the applications section with regard to device and component selection can be  
followed by precise adherence to the layout guidance shown in Layout Example. These examples represent  
exemplary baseline balance of the engineering trade-offs involved with laying out the device. These designs can  
be modified slightly as needed to meet the needs of a given application. In some applications, for instance,  
solution size can be compromised to improve thermal performance through the use of additional contiguous  
copper near the device. Conversely, EMI performance can be prioritized over thermal performance by routing on  
internal traces and incorporating a via picket-fence and additional filtering components. In all cases, it is  
recommended to start from the guidance shown in the Layout Example section and work with TI field application  
engineers or through the E2E community to modify it based upon the application specific goals.  
12.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network  
Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This  
applies to DVDD, AVDD, CPVDD, and PVDD. However, the capacitors on the PVDD net for the TAS5780M  
device deserve special attention.  
The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as  
possible. Not only does placing these devices far away from the pins increase the electromagnetic interference in  
the system, but doing so can also negatively affect the reliability of the device. Placement of these components  
too far from the TAS5780M device can cause ringing on the output pins that can cause the voltage on the output  
pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging the  
device. For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD  
pins than what is shown in the example layouts in the Layout Example section  
12.1.3 Optimizing Thermal Performance  
Follow the layout examples shown in the Layout Example section of this document to achieve the best balance  
of solution size, thermal, audio, and electromagnetic performance. In some cases, deviation from this guidance  
can be required due to design constraints which cannot be avoided. In these instances, the system designer  
should ensure that the heat can get out of the device and into the ambient air surrounding the device.  
Fortunately, the heat created in the device naturally travels away from the device and into the lower temperature  
structures around the device.  
12.1.3.1 Device, Copper, and Component Layout  
Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures.  
These tips should be followed to achieve that goal:  
Avoid placing other heat producing components or structures near the amplifier (including above or below in  
the end equipment).  
If possible, use a higher layer count PCB to provide more heat sinking capability for the TAS5780M device  
and to prevent traces and copper signal and power planes from breaking up the contiguous copper on the top  
and bottom layer.  
Place the TAS5780M device away from the edge of the PCB when possible to ensure that heat can travel  
away from the device on all four sides.  
Avoid cutting off the flow of heat from the TAS5780M device to the surrounding areas with traces or via  
strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular  
to the device.  
Unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads, orient it so that the narrow end of the passive component is facing the TAS5780M  
device.  
80  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Layout Guidelines (接下页)  
Because the ground pins are the best conductors of heat in the package, maintain a contiguous ground plane  
from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible.  
12.1.3.2 Stencil Pattern  
The recommended drawings for the TAS5780M device PCB foot print and associated stencil pattern are shown  
at the end of this document in the package addendum. Additionally, baseline recommendations for the via  
arrangement under and around the device are given as a starting point for the PCB design. This guidance is  
provided to suit the majority of manufacturing capabilities in the industry and prioritizes manufacturability over all  
other performance criteria. In elevated ambient temperatures or under high-power dissipation use-cases, this  
guidance may be too conservative and advanced PCB design techniques may be used to improve thermal  
performance of the system.  
The customer must verify that deviation from the guidance shown in the package  
addendum, including the deviation explained in this section, meets the customer’s quality,  
reliability, and manufacturability goals.  
12.1.3.2.1 PCB footprint and Via Arrangement  
The PCB footprint (also known as a symbol or land pattern) communicates to the PCB fabrication vendor the  
shape and position of the copper patterns to which the TAS5780M device will be soldered. This footprint can be  
followed directly from the guidance in the package addendum at the end of this data sheet. It is important to  
make sure that the thermal pad, which connects electrically and thermally to the PowerPAD of the TAS5780M  
device, be made no smaller than what is specified in the package addendum. This ensures that the TAS5780M  
device has the largest interface possible to move heat from the device to the board.  
The via pattern shown in the package addendum provides an improved interface to carry the heat from the  
device through to the layers of the PCB, because small diameter plated vias (with minimally-sized annular rings)  
present a low thermal-impedance path from the device into the PCB. Once into the PCB, the heat travels away  
from the device and into the surrounding structures and air. By increasing the number of vias, as shown in the  
Layout Example section, this interface can benefit from improved thermal performance.  
Vias can obstruct heat flow if they are not constructed properly.  
More notes on the construction and placement of vias as as follows:  
Remove thermal reliefs on thermal vias, because they impede the flow of heat through the via.  
Vias filled with thermally conductive material are best, but a simple plated via can be used to avoid the  
additional cost of filled vias.  
The diameter of the drull must be 8 mm or less. Also, the distance between the via barrel and the surrounding  
planes should be minimized to help heat flow from the via into the surrounding copper material. In all cases,  
minimum spacing should be determined by the voltages present on the planes surrounding the via and  
minimized wherever possible.  
Vias should be arranged in columns, which extend in a line radially from the heat source to the surrounding  
area. This arrangement is shown in the Layout Example section.  
Ensure that vias do not cut off power current flow from the power supply through the planes on internal  
layers. If needed, remove some vias that are farthest from the TAS5780M device to open up the current path  
to and from the device.  
12.1.3.2.1.1 Solder Stencil  
During the PCB assembly process, a piece of metal called a stencil on top of the PCB and deposits solder paste  
on the PCB wherever there is an opening (called an aperture) in the stencil. The stencil determines the quantity  
and the location of solder paste that is applied to the PCB in the electronic manufacturing process. In most  
cases, the aperture for each of the component pads is almost the same size as the pad itself.  
版权 © 2016, Texas Instruments Incorporated  
81  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Layout Guidelines (接下页)  
However, the thermal pad on the PCB is large and depositing a large, single deposition of solder paste would  
lead to manufacturing issues. Instead, the solder is applied to the board in multiple apertures, to allow the solder  
paste to outgas during the assembly process and reduce the risk of solder bridging under the device. This  
structure is called an aperture array, and is shown in the Layout Example section. It is important that the total  
area of the aperture array (the area of all of the small apertures combined) covers between 70% and 80% of the  
area of the thermal pad itself.  
12.2 Layout Example  
12.2.1 2.0 (Stereo BTL) System  
88. 2.0 (Stereo BTL) 3-D View  
82  
版权 © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Layout Example (接下页)  
89. 2.0 (Stereo BTL) Top Copper View  
版权 © 2016, Texas Instruments Incorporated  
83  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Layout Example (接下页)  
12.2.2 Mono (PBTL) System  
90. Mono (PBTL) 3-D View  
84  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Layout Example (接下页)  
91. Mono (PBTL) Top Copper View  
版权 © 2016, Texas Instruments Incorporated  
85  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Layout Example (接下页)  
12.2.3 2.1 (Stereo BTL + Mono PBTL) Systems  
92. 2.1 (Stereo BTL + Mono PBTL) 3-D View  
86  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Layout Example (接下页)  
93. 2.1 (Stereo BTL + Mono PBTL) Top Copper View  
版权 © 2016, Texas Instruments Incorporated  
87  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13 Register Maps  
13.1 Registers - Page 0  
13.1.1 Register 1 (0x01)  
Figure 94. Register 1 (0x01)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RSTM  
R/W  
Reserved  
R/W  
RSTR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. Register 1 (0x01) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
Reserved  
RSTM  
Reserved  
R/W  
0
Reset Modules – This bit resets the interpolation filter and the DAC modules. Since the  
DSP is also reset, the coeffient RAM content will also be cleared by the DSP. This bit  
is auto cleared and can be set only in standby mode.  
0: Normal  
1: Reset modules  
3-1  
0
Reserved  
RSTR  
Reserved  
R/W  
0
Reset Registers – This bit resets the mode registers back to their initial values. The  
RAM content is not cleared, but the execution source will be back to ROM. This bit is  
auto cleared and must be set only when the DAC is in standby mode (resetting  
registers when the DAC is running is prohibited and not supported).  
0: Normal  
1: Reset mode registers  
13.1.2 Register 2 (0x02)  
Figure 95. Register 2 (0x02)  
7
6
5
4
3
2
1
0
DSPR  
R/W  
Reserved  
R/W  
RQST  
R/W  
Reserved  
R/W  
RQPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. Register 2 (0x02) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DSPR  
R/W  
1
DSP reset – When the bit is made 0, DSP will start powering up and send out data.  
This needs to be made 0 only after all the input clocks are (ASI,MCLK,PLLCLK) are  
settled so that DMA channels do not go out of sync.  
0: Normal operation  
1: Reset the DSP  
6-5  
4
Reserved  
RQST  
R/W  
R/W  
Reserved  
0
Standby Request – When this bit is set, the DAC will be forced into a system standby  
mode, which is also the mode the system enters in the case of clock errors. In this  
mode, most subsystems will be powered down but the charge pump and digital power  
supply.  
0: Normal operation  
1: Standby mode  
3-1  
Reserved  
R/W  
Reserved  
88  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 35. Register 2 (0x02) Field Descriptions (continued)  
Bit  
Field  
RQPD  
Type  
Reset  
Description  
0
R/W  
0
Powerdown Request – When this bit is set, the DAC will be forced into powerdown  
mode, in which the power consumption would be minimum as the charge pump is also  
powered down. However, it will take longer to restart from this mode. This mode has  
higher precedence than the standby mode, i.e. setting this bit along with bit 4 for  
standby mode will result in the DAC going into powerdown mode.  
0: Normal operation  
1: Powerdown mode  
13.1.3 Register 3 (0x03)  
Figure 96. Register 3 (0x03)  
7
6
5
4
3
2
1
0
SYNC  
RO  
SDZE  
RO  
SDZS  
RO  
RQML  
R/W  
Reserved  
R/W  
RQMR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. Register 3 (0x03) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SYNC  
RO  
sync_sig_to_dig – This is the clock signal to BackEnd. The clock frequency when  
device is running is 98.304 Mhz/1024 = 96 ksps  
6
5
4
SDZE  
SDZS  
RQML  
RO  
RO  
R/W  
sdz_oe_to_dig – Backend IO buffer tristate signal. Will be asserted when LDO input  
and LDO output PORs are both detected  
0: SYNC and SDZ buffers are tristated  
1: SYNC and SDZ buffers are enabled  
sdz_sig_to_dig – Backend Power up signal. Will be asserted when AVDD & CPVDD  
PORs are detected and Line amplifiers are unmuted  
0: BackEnd is shutdown  
1: BackEnd is powered up  
0
0
Mute Left Channel – This bit issues soft mute request for the left channel. The volume  
will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
3-1  
0
Reserved  
RQMR  
R/W  
R/W  
Reserved  
Mute Right Channel – This bit issues soft mute request for the right channel. The  
volume will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
13.1.4 Register 4 (0x04)  
Figure 97. Register 4 (0x04)  
7
6
5
4
PLCK  
R
3
2
1
0
PLLE  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. Register 4 (0x04) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PLCK  
Reserved  
0
PLL Lock Flag – This bit indicates whether the PLL is locked or not. When the PLL is  
disabled this bit always shows that the PLL is not locked.  
0: The PLL is locked  
1: The PLL is not locked  
Copyright © 2016, Texas Instruments Incorporated  
89  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 37. Register 4 (0x04) Field Descriptions (continued)  
Bit  
3-1  
0
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PLLE  
Reserved  
1
PLL Enable – This bit enables or disables the internal PLL. When PLL is disabled, the  
master clock will be switched to the MCLK.  
0: Disable PLL  
1: Enable PLL  
13.1.5 Register 5 (0x05)  
Figure 98. Register 5 (0x05)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
OSSL  
RO  
OSPD  
RO  
Reserved  
R/W  
OSAD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. Register 5 (0x05) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
RO  
Reset  
Description  
Reserved  
OSSL  
Reserved  
Oscillator Clock Selected – This bit, when set, indicates that the internal oscillator is  
being selected as the master clock and that the system is in emergency state where  
the normal system clock is not available/reliable.  
0: Oscillator clock is not selected  
1: Oscillator clock is being selected  
4
OSPD  
RO  
Oscillator Powerdown Status – This bit, when set, indicates that the oscillator is being  
powered down, as a result of setting the oscillator to auto disable mode and the  
oscillator clock is not needed/selected.  
0: Oscillator is active  
1: Oscillator is powered down  
3-1  
0
Reserved  
OSAD  
R/W  
R/W  
Reserved  
1
Oscillator Auto Disable – This bit sets the oscillator to auto disable mode, in which the  
oscillator is powered down when it is not needed anymore. By disabling the oscillator,  
both power consumption and potential interference is reduced.  
0: Oscillator is always active  
1: Oscillator is auto disabled (Powered down when not in use)  
13.1.6 Register 6 (0x06)  
Figure 99. Register 6 (0x06)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
OI2C  
R/W  
DBPG  
R/W  
FRMD  
R/W  
FSMI  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. Register 6 (0x06) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
Reserved  
OI2C  
Reserved  
R/W  
0
old_i2c_mode_reg_r – In Hans, I2C is always in auto increment mode. In old device  
MSB during control word decides whether is auto-increment mode or not. Writing this  
bit as 1 enables the older mode.  
0: Register Auto increment enabled by default  
1: Register auto increment mode enabled based on the MSB value sent during address  
portion of I2C protocol  
90  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 39. Register 6 (0x06) Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
DBPG  
R/W  
0
Page auto increment disable – Disable page auto increment mode. for non -zero  
books. When end of page is reached it goes back to 8th address location of next page  
when this bit is 0. When this bit is 1 it goes to 0 th location of current page itself like in  
older part.  
0: Enable Page auto increment  
1: Disable Page auto increment  
2
FRMD  
R/W  
0
SPI register read frame delay – When reading non-zero memory locations there is 1  
frame delay between address and actual data. Which is read. By making this bit even  
for book0 register read there will be 1 frame delay to make it consistent across all  
books  
0: No frame delay for SPI read for Book0 registers.  
1: 1 frame delay for SPI read for Book0 registers.  
1
0
FSMI  
R/W  
R/W  
0
0
SPI MISO function sel:  
00: SPI_MISO  
01: GPIO3 Others: Reserved (Do not set)  
Reserved  
These bits select the function of the SPI_MISO pin when in SPI mode. If the pin is set  
as GPIO, register readout via SPI is not possible.  
13.1.7 Register 7 (0x07)  
Figure 100. Register 7 (0x07)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DEMP  
R/W  
Reserved  
R/W  
SDSL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. Register 7 (0x07) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DEMP  
Reserved  
0
De-Emphasis Enable – This bit enables or disables the de-emphasis filter. The default  
coefficients are for 44.1 kHz sampling rate, but can be changed by reprogramming the  
appropriate coeffients in RAM.  
0: De-emphasis filter is disabled  
1: De-emphasis filter is enabled  
3-1  
0
Reserved  
SDSL  
R/W  
R/W  
Reserved  
0
SDOUT Select – This bit selects what is being output as SDOUT via GPIO pins.  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
13.1.8 Register 8 (0x08)  
Figure 101. Register 8 (0x08)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G2OE  
R/W  
MUTEOE  
R/W  
G0OE  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016, Texas Instruments Incorporated  
91  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 41. Register 8 (0x08) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G2OE  
Reserved  
0
GPIO2 Output Enable – This bit sets the direction of the GPIO2  
pin  
0: GPIO2 is input  
1: GPIO2 is output  
4
3
MUTEOE  
G0OE  
R/W  
R/W  
0
0
MUTE Control Enable – This bit sets an enable of MUTE control  
from PCM to TPA  
0: MUTE control disable  
1: MUTE control enable  
GPIO0 Output Enable – This bit sets the direction of the GPIO0  
pin  
0: GPIO0 is input  
1: GPIO0 is output  
Reserved  
2
Reserved  
Reserved  
R/W  
R/W  
0
0
1-0  
Reserved  
13.1.9 Register 9 (0x09)  
Figure 102. Register 9 (0x09)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SCLKP  
R/W  
SCLKO  
R/W  
Reserved  
R/W  
LRCLKFSO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 42. Register 9 (0x09) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
Reserved  
SCLKP  
Reserved  
R/W  
0
SCLK Polarity – This bit sets the inverted SCLK mode. In inverted SCLK mode, the  
DAC assumes that the LRCLK and DIN edges are aligned to the rising edge of the  
SCLK. Normally they are assumed to be aligned to the falling edge of the SCLK.  
0: Normal SCLK mode  
1: Inverted SCLK mode  
4
SCLKO  
R/W  
0
SCLK Output Enable – This bit sets the SCLK pin direction to output for I2S master  
mode operation. In I2S master mode the PCM51xx outputs the reference SCLK and  
LRCLK, and the external source device provides the DIN according to these clocks.  
Use P0-R32 to program the division factor of the MCLK to yield the desired SCLK rate  
(normally 64 FS)  
0: SCLK is input (I2S slave mode)  
1: SCLK is output (I2S master mode)  
3-1  
0
Reserved  
LRKO  
Reserved  
R/W  
0
LRCLK Output Enable – This bit sets the LRCLK pin direction to output for I2S master  
mode operation. In I2S master mode the PCM51xx outputs the reference SCLK and  
LRCLK, and the external source device provides the DIN according to these clocks.  
Use P0-R33 to program the division factor of the SCLK to yield 1 FS for LRCLK.  
0: LRCLK is input (I2S slave mode)  
1: LRCLK is output (I2S master mode)  
13.1.10 Register 10 (0x0A)  
92  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Figure 103. Register 10 (0x0A)  
7
6
5
4
3
2
1
0
DSPG  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 43. Register 10 (0x0A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DSPG  
R/W  
0
DSP GPIO Input – this 8 bit bus reaches the DSP input port.  
DSP s/w can access these bits for getting any direct  
control/input from host ny means of this register write  
6-0  
Reserved  
R/W  
0
Reserved  
13.1.11 Register 12 (0x0C)  
Figure 104. Register 12 (0x0C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RDSP  
R/W  
RDAC  
R/W  
RNCP  
R/W  
ROSR  
R/W  
RSYN  
R/W  
RSCLK  
R/W  
RLRK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 44. Register 12 (0x0C) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
RDSP  
Reserved  
6
1
RST uCDSP clock – This bit, when set to 0 will reset the DSP clock divider and thus,  
halt the DSP clock.  
0: DSP clock divider is reset  
1: DSP clock divider is functional  
5
4
3
RDAC  
RNCP  
ROSR  
R/W  
R/W  
R/W  
1
1
1
RST DAC clock – This bit, when set to 0 will reset the DAC clock divider and thus, halt  
the DAC clock and its derivatives.  
0: DAC clock divider is reset  
1: DAC clock divider is functional  
RST NCP clock – This bit, when set to 0 will reset the OSR clock divider and thus, halt  
the OSR clock.  
0: OSR clock divider is reset  
1: OSR clock divider is functional  
RSTOSR clock – This bit, when set to 0 will reset the clock synchronizer and thus, halt  
the DAC clock and its derivatives. When this bit is set to 1, the dividers un-reset will  
take place synchronized to the beginning of audio frame.  
0: DAC clock and its derivatives are stopped asynchronously  
1: DAC clock and its derivatives started synchronized to the beginning of audio frame  
2
1
0
RSYN  
RSCLK  
RLRK  
R/W  
R/W  
R/W  
1
0
1
RST clock sync – This bit, when set to 0 will reset the clock synchronizer and thus, halt  
the DAC clock and its derivatives. When this bit is set to 1, the dividers un-reset will  
take place synchronized to the beginning of audio frame.  
0: DAC clock and its derivatives are stopped asynchronously  
1: DAC clock and its derivatives started synchronized to the beginning of audio frame  
Master Mode SCLK Divider Reset – This bit, when set to 0, will reset the MCLK divider  
to generate SCLK clock for I2S master mode. To use I2S master mode, the divider  
must be enabled and programmed properly.  
0: Master mode SCLK clock divider is reset  
1: Master mode SCLK clock divider is functional  
Master Mode LRCLK Divider Reset – This bit, when set to 0, will reset the SCLK  
divider to generate LRCLK clock for I2S master mode. To use I2S master mode, the  
divider must be enabled and programmed properly.  
0: Master mode LRCLK clock divider is reset  
1: Master mode LRCLK clock divider is functional  
Copyright © 2016, Texas Instruments Incorporated  
93  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.12 Register 13 (0x0D)  
Figure 105. Register 13 (0x0D)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SREF  
R/W  
SREF  
R/W  
Reserved  
R/W  
SDSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 45. Register 13 (0x0D) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
SREF  
6-5  
4
0
0
PLL Reference:  
SREF  
DSP clock source – This bit select the source clock for internal PLL. This bit is ignored  
and overriden in clock auto set mode.  
0: The PLL reference clock is MCLK  
1: The PLL reference clock is SCLK  
010: The PLL reference clock is oscillator clock  
011: The PLL reference clock is GPIO (selected using P0-R18)  
Others: Reserved (PLL reference is muted)  
3
Reserved  
SDSP  
R/W  
R/W  
Reserved  
2-0  
0
DAC clock source – These bits select the source clock for DSP clock divider.  
000: Master clock (PLL/MCLK and OSC auto-select)  
001: PLL clock  
010: OSC clock  
011: MCLK clock  
100: SCLK clock  
101: GPIO (selected using P0-R16)  
Others: Reserved (muted)  
94  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.13 Register 14 (0x0E)  
Figure 106. Register 14 (0x0E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SDAC  
R/W  
Reserved  
R/W  
SOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 46. Register 14 (0x0E) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SDAC  
0
0
Reserved  
6-4  
DAC clock source – These bits select the source clock for DAC clock divider.  
000: Master clock (PLL/MCLK and OSC auto-select)  
001: PLL clock 010: OSC clock  
011: MCLK clock  
100: SCLK clock  
101: GPIO (selected using P0-R16)  
Others: Reserved (muted)  
3
Reserved  
SOSR  
R/W  
R/W  
0
0
Reserved  
2-0  
OSR clock source – These bits select the source clock for OSR clock divider.  
000: DAC clock  
001: Master clock (PLL/MCLK and OSC auto-select)  
010: PLL clock  
011: OSC clock  
100: MCLK clock  
101: SCLK clock  
110: GPIO (selected using P0-R17)  
Others: Reserved (muted)  
13.1.14 Register 15 (0x0F)  
Figure 107. Register 15 (0x0F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SNCP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 47. Register 15 (0x0F) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SNCP  
Reserved  
0
NCP clock source – These bits select the source clock for CP clock divider.  
000: DAC clock  
001: Master clock (PLL/MCLK and OSC auto-select)  
010: PLL clock  
011: OSC clock  
100: MCLK clock  
101: SCLK clock  
110: GPIO (selected using P0-R17)  
Others: Reserved (muted)  
Copyright © 2016, Texas Instruments Incorporated  
95  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.15 Register 16 (0x10)  
Figure 108. Register 16 (0x10)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GDSP  
R/W  
Reserved  
R/W  
GDAC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 48. Register 16 (0x10) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GDSP  
0
0
Reserved  
6-4  
GPIO Source for uCDSP clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as DSP clock divider source.  
000: N/A  
001: N/A  
010: N/A  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
3
Reserved  
GDAC  
R/W  
R/W  
0
0
Reserved  
2-0  
GPIO Source for DAC clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as DAC clock divider source.  
000: N/A  
001: N/A  
010: N/A  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
96  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.16 Register 17 (0x11)  
Figure 109. Register 17 (0x11)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GNCP  
R/W  
Reserved  
R/W  
GOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 49. Register 17 (0x11) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GNCP  
0
0
Reserved  
6-4  
GPIO Source for NCP clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as CP clock divider source  
000: N/A  
001: N/A  
010: Reserved  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
3
Reserved  
GOSR  
R/W  
R/W  
0
0
Reserved  
2-0  
GPIO Source for OSR clk – These bits select the GPIO pins as clock input source  
when GPIO is selected as OSR clock divider source.  
000: N/A  
001: N/A  
010: Reserved  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
13.1.17 Register 18 (0x12)  
Figure 110. Register 18 (0x12)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GREF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 50. Register 18 (0x12) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GREF  
0
0
Reserved  
GPIO Source for PLL reference clk – These bits select the GPIO pins as clock input  
source when GPIO is selected as the PLL reference clock source.  
000: N/A  
001: N/A  
010: Reserved  
011: GPIO0  
100: N/A  
101: GPIO2  
Others: Reserved (muted)  
Copyright © 2016, Texas Instruments Incorporated  
97  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.18 Register 19 (0x13)  
Figure 111. Register 19 (0x13)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AREN  
R/W  
Reserved  
R/W  
RQSY  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 51. Register 19 (0x13) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
AREN  
Reserved  
1
Auto resync enable – This bits enables or disables the DAC/CP clock auto  
resynchronization with the beginning of audio frame. When enabled, the  
resynchronization is carried out just before the DAC transitions from standby mode to  
normal operation mode.  
0: Auto resynchronization is disabled  
1: Auto resynchronization is enabled  
3-1  
0
Reserved  
RQSY  
R/W  
R/W  
Reserved  
0
This bit, when set to 1 will issue the clock resynchronization by synchronously resets  
the DAC, CP and OSR clocks.  
The actual clock resynchronization takes place when this bit is set back to 0, where the  
DAC, CP and OSR clocks are resumed at the beginning of the audio frame.  
0: Resume DAC, CP and OSR clocks synchronized to the beginning of audio frame  
1: Halt DAC, CP and OSR clocks as the beginning of resynchronization process  
13.1.19 Register 20 (0x14)  
Figure 112. Register 20 (0x14)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PPDV  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 52. Register 20 (0x14) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PPDV  
0
0
Reserved  
6-3  
PLL P – These bits set the PLL divider P factor. These bits are ignored in clock auto  
set mode.  
0000: P=1  
0001: P=2  
...  
1110: P=15  
1111: Prohibited (do not set this value)  
2-1  
0
Reserved  
Reserved  
R/W  
R/W  
0
1
Reserved  
Reserved  
98  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.20 Register 21 (0x15)  
Figure 113. Register 21 (0x15)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PJDV  
R/W  
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 53. Register 21 (0x15) Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
Reserved  
PJDV  
0
0
Reserved  
P/W  
PLL J – These bits set the J part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
000000: Prohibited (do not set this value)  
000001: J=1  
000010: J=2  
...  
111111: J=63  
3
P/W  
P/W  
1
0
Reserved  
Reserved  
2-0  
13.1.21 Register 22 (0x16)  
Figure 114. Register 22 (0x16)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PDDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 54. Register 22 (0x16) Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PDDV  
Reserved  
0
PLL D (MSB) – These bits set the D part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
Others: Prohibited (do not set)  
Copyright © 2016, Texas Instruments Incorporated  
99  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.22 Register 23 (0x17)  
Figure 115. Register 23 (0x17)  
7
6
5
4
3
2
1
0
PDDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 55. Register 23 (0x17) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PDDV  
R/W  
0
PLL D (LSB) – These bits set the D part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
Others: Prohibited (do not set)  
13.1.23 Register 24 (0x18)  
Figure 116. Register 24 (0x18)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PRDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 56. Register 24 (0x18) Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PRDV  
Reserved  
0
PLL R – These bits set the R part of the overall PLL multiplication factor J.D * R. These  
bits are ignored in clock auto set mode.  
0000: R=1  
0001: R=2  
...  
1111: R=16  
100  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.24 Register 25 (0x19)  
Figure 117. Register 25 (0x19)  
7
6
5
4
3
2
1
0
PLCT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 57. Register 25 (0x19) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PLCT  
R/W  
0
PLL Lock Count – These bits set the number of consecutive PLL lock flags counted by  
the feedback clock before PLL is declared locked.  
The count value is updated when addr 26 is written, so it is recommended to update  
addr 25 first and then addr 26.  
13.1.25 Register 26 (0x1A)  
Figure 118. Register 26 (0x1A)  
7
6
5
4
3
2
1
0
PLCT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 58. Register 26 (0x1A) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
PLCT  
1
0
PLL Lock Count – These bits set the number of consecutive PLL lock flags counted by  
the feedback clock before PLL is declared locked.  
6-0  
The count value is updated when addr 26 is written, so it is recommended to update  
addr 25 first and then addr 26.  
13.1.26 Register 27 (0x1B)  
Figure 119. Register 27 (0x1B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DDSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 59. Register 27 (0x1B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DDSP  
Reserved  
6-0  
0
DSP Clock Divider – These bits set the source clock divider value for the DSP clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.27 Register 28 (0x1C)  
Copyright © 2016, Texas Instruments Incorporated  
101  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Figure 120. Register 28 (0x1C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DDAC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 60. Register 28 (0x1C) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DDAC  
Reserved  
6-4  
3-0  
R/W  
R/W  
0
1
DAC Clock Divider – These bits set the source clock divider value for the DAC clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.28 Register 29 (0x1D)  
Figure 121. Register 29 (0x1D)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DNCP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 61. Register 29 (0x1D) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DNCP  
Reserved  
6-2  
1-0  
R/W  
R/W  
0
1
NCP Clock Divider – These bits set the source clock divider value for the CP clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.29 Register 30 (0x1E)  
Figure 122. Register 30 (0x1E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 62. Register 30 (0x1E) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DOSR  
Reserved  
6-4  
5-0  
R/W  
R/W  
0
1
OSR Clock Divider – These bits set the source clock divider value for the OSR clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
102  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.30 Register 31 (0x1F)  
Figure 123. Register 31 (0x1F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DOFS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 63. Register 31 (0x1F) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DOFS  
Reserved  
6-3  
2
R/W  
R/W  
R/W  
0
1
0
Offset calibrator clock div – These bits set the source clock divider value for the offset  
calibrator  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1-0  
1111111: Divide by 128  
13.1.31 Register 32 (0x20)  
Figure 124. Register 32 (0x20)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DSCLK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 64. Register 32 (0x20) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DSCLK  
Reserved  
6-0  
0
Master Mode SCLK Divider – These bits set the MCLK divider value to generate I2S  
master SCLK clock.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.32 Register 33 (0x21)  
Figure 125. Register 33 (0x21)  
7
6
5
4
3
2
1
0
DLRK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 65. Register 33 (0x21) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLRK  
R/W  
0
Master Mode LRCLK Divider – These bits set the I2S master SCLK clock divider value  
to generate I2S master LRCLK clock  
00000000: Divide by 1  
00000001: Divide by 2  
...  
11111111: Divide by 256  
Copyright © 2016, Texas Instruments Incorporated  
103  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.33 Register 34 (0x22)  
Figure 126. Register 34 (0x22)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
I16E  
R/W  
Reserved  
R/W  
FSSP  
R/W  
FSSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 66. Register 34 (0x22) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
I16E  
Reserved  
0
16x Interpolation – This bit enables or disables the 16x interpolation mode  
0: 8x interpolation  
1: 16x interpolation  
3
2
Reserved  
FSSP  
R/W  
R/W  
R/W  
Reserved  
1
0
FS Speed Mode – These bits select the FS operation mode, which must be set  
according to the current audio sampling rate. These bits are ignored in clock auto set  
mode.  
1-0  
000: Reserved  
001: Reserved  
010: Reserved  
011: 48 kHz  
100: 88.2-96 kHz  
101: Reserved  
110: Reserved  
111: 32kHz  
13.1.34 Register 35 (0x23)  
Figure 127. Register 35 (0x23)  
7
6
5
4
3
2
1
0
INTFLAG  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 67. Register 35 (0x23) Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
0
0
Reserved  
Pin interrupt sticky flag – Sticky flag that reflects the pin interrupt value. Once read pin  
interrupt and this register will automatically reset to 0. To mask which all faults/errors  
can generate this interrupt use B0_P0_R45.  
0: interrupt de-asserted  
1: interrupt asserted  
104  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.35 Register 37 (0x25)  
Figure 128. Register 37 (0x25)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
IDFS  
R/W  
IDBK  
R/W  
IDSK  
R/W  
IDCH  
R/W  
IDCM  
R/W  
DCAS  
R/W  
IPLK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 68. Register 37 (0x25) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
IDFS  
Reserved  
6
0
Ignore FS Detection – This bit controls whether to ignore the FS detection. When  
ignored, FS error will not cause a clock error.  
0: Regard FS detection  
1: Ignore FS detection  
5
4
3
2
IDBK  
IDSK  
IDCH  
IDCM  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Ignore SCLK Detection – This bit controls whether to ignore the SCLK detection  
against LRCLK. The SCLK must be stable between 32 FS and 256 FS inclusive or an  
error will be reported. When ignored, a SCLK error will not cause a clock error.  
0: Regard SCLK detection  
1: Ignore SCLK detection  
Ignore MCLK Detection – This bit controls whether to ignore the MCLK detection  
against LRCLK. Only some certain MCLK ratios within some error margin are allowed.  
When ignored, an MCLK error will not cause a clock error.  
0: Regard MCLK detection  
1: Ignore MCLK detection  
Ignore Clock Halt Detection – This bit controls whether to ignore the MCLK halt (static  
or frequency is lower than acceptable) detection. When ignored an MCLK halt will not  
cause a clock error.  
0: Regard MCLK halt detection  
1: Ignore MCLK halt detection  
Ignore LRCLK/SCLK Missing Detection – This bit controls whether to ignore the  
LRCLK/SCLK missing detection. The LRCLK/SCLK need to be in low state (not only  
static) to be deemed missing. When ignored an LRCLK/SCLK missing will not cause  
the DAC go into powerdown mode.  
0: Regard LRCLK/SCLK missing detection  
1: Ignore LRCLK/SCLK missing detection  
1
DCAS  
R/W  
0
Disable Clock Divider Autoset – This bit enables or disables the clock auto set mode.  
When dealing with uncommon audio clock configuration, the auto set mode must be  
disabled and all clock dividers must be set manually.  
Addtionally, some clock detectors might also need to be disabled. The clock autoset  
feature will not work with PLL enabled in VCOM mode. In this case this feature has to  
be disabled and the clock dividers must be set manually.  
0: Enable clock auto set  
1: Disable clock auto set  
0
IPLK  
R/W  
0
Ignore PLL Lock Detection – This bit controls whether to ignore the PLL lock detection.  
When ignored, PLL unlocks will not cause a clock error. The PLL lock flag at P0-R4, bit  
4 is always correct regardless of this bit.  
0: PLL unlocks raise clock error  
1: PLL unlocks are ignored  
Copyright © 2016, Texas Instruments Incorporated  
105  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.36 Register 38 (0x26)  
Figure 129. Register 38 (0x26)  
7
6
5
4
3
2
1
0
BKCG  
R/W  
BKCB  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 69. Register 38 (0x26) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
BKCG  
R/W  
1
BCLK count to good – These bits specify the number of consecutive valid SCLK counts  
in LRCLK until the SCLK is deemed good. To be valid, the SCLK counts in LRCLK  
should be between 32 and 256 inclusive and match the count at previous audio frame.  
0000: One consecutive LRCLK  
0001: Two consecutive LRCLKs  
...  
1111: 16 consecutive LRCLKs  
3-2  
1-0  
BKCB  
R/W  
R/W  
0
1
BCLK count to bad – These bits specify the number of consecutive invalid SCLK  
counts in LRCLK until the SCLK is deemed bad. To be valid, the SCLK counts in  
LRCLK should be between 32 and 256 inclusive and match the count at previous audio  
frame.  
0000: One consecutive LRCLK  
0001: Two consecutive LRCLKs  
...  
1111: 16 consecutive LRCLKs  
13.1.37 Register 39 (0x27)  
Figure 130. Register 39 (0x27)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
MCLKT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 70. Register 39 (0x27) Field Descriptions  
Bit  
7-5  
4-3  
2
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
MCLKT  
Reserved  
0
1
0
MCLK tolerance – These bits specify the tolerance for MCLK counts in LRCLK. When  
the MCLK count in LRCLK matches any valid ratio within this tolerance, it will be  
deemed good  
1-0  
00000: tolerate ± 0 count  
00001: tolerate ± 1 count  
11111: tolerate ± 31 counts  
106  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.38 Register 40 (0x28)  
Figure 131. Register 40 (0x28)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AFMT  
R/W  
Reserved  
R/W  
ALEN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 71. Register 40 (0x28) Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
AFMT  
R/W  
0
I2S Data Format – These bits control both input and output audio interface formats for  
DAC operation.  
00: I2S  
01: DSP  
10: RTJ  
11: LTJ  
3-2  
1
Reserved  
ALEN  
R/W  
R/W  
R/W  
Reserved  
1
0
I2S Word Length – These bits control both input and output audio interface sample  
word lengths for DAC operation.  
0
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
13.1.39 Register 41 (0x29)  
Figure 132. Register 41 (0x29)  
7
6
5
4
3
2
1
0
AOFS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 72. Register 41 (0x29) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
AOFS  
R/W  
0
I2S Shift – These bits control the offset of audio data in the audio frame for both input  
and output. The offset is defined as the number of SCLK from the starting (MSB) of  
audio frame to the starting of the desired audio sample.  
00000000: offset = 0 SCLK (no offset)  
00000001: ofsset = 1 SCLK  
00000010: offset = 2 SCLKs  
11111111: offset = 256 SCLKs  
Copyright © 2016, Texas Instruments Incorporated  
107  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.40 Register 42 (0x2A)  
Figure 133. Register 42 (0x2A)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AUPL  
R/W  
Reserved  
R/W  
AUPR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 73. Register 42 (0x2A) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
AUPL  
Reserved  
0
1
Left DAC Data Path – These bits control the left channel audio data path connection.  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
4
3-2  
1
Reserved  
AUPR  
R/W  
R/W  
R/W  
Reserved  
0
1
Right DAC Data Path – These bits control the right channel audio data path  
connection.  
0
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
13.1.41 Register 43 (0x2B)  
Figure 134. Register 43 (0x2B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PSEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 74. Register 43 (0x2B) Field Descriptions  
Bit  
7-5  
4-1  
0
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
PSEL  
Reserved  
0
1
DSP Program Selection – These bits select the DSP program to use for audio  
processing.  
00000: Reserved  
00001: Rom Mode 1  
00010: Reserved  
00011: Reserved  
108  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.42 Register 44 (0x2C)  
Figure 135. Register 44 (0x2C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CLKM  
R/W  
CMDP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 75. Register 44 (0x2C) Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
Reserved  
CLKM  
Reserved  
R/W  
1
clk_missing_mode_hans_reg_r – Fallback option to change clock missing detection to  
older PCM device. In Hans clock missing is detected whenever either BCLK or LRCLK  
go missing. In older PCM device clock missing is detected whenever LRCLK or BCLK  
are stuck to 1.  
0 : Old mode of ASI clock missing detection  
1: Hans mode of ASI clock missing detect  
2-0  
CMDP  
R/W  
0
Clock Missing Detection Period – These bits set how long both SCLK and LRCLK keep  
low before the audio clocks deemed missing and the DAC transitions to powerdown  
mode.  
000: about 1 second  
001: about 2 seconds  
010: about 3 seconds  
...  
111: about 8 seconds  
13.1.43 Register 45 (0x2D)  
Figure 136. Register 45 (0x2D)  
7
6
5
4
3
2
1
0
MSKP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 76. Register 45 (0x2D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MSKP  
R/W  
1
Mask for Pin interrupt generated by device (?)  
To mask and selectively use the required faults alone to generate the interrupt  
0 : No interrupt generated  
1 : Allow interrupt to be generated  
1 : No interrupt generated  
1 : Allow interrupt to be generated  
2 : No interrupt generated  
1 : Allow interrupt to be generated  
3 : No interrupt generated  
1 : Allow interrupt to be generated  
4 : No interrupt generated  
1 : Allow interrupt to be generated  
5 : No interrupt generated  
1 : Allow interrupt to be generated  
Mask for Pin interrupt generated by device (short-flag)  
6 : No interrupt generated  
1 : Allow interrupt to be generated  
Mask for Pin interrupt generated by device (dsp_interrupt)  
7 : No interrupt generated  
1 : Allow interrupt to be generated  
Copyright © 2016, Texas Instruments Incorporated  
109  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.44 Register 46 (0x2E)  
Figure 137. Register 46 (0x2E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SDZF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 77. Register 46 (0x2E) Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SDZF  
Reserved  
1
Disable Force shutdown of Backend – This controls the Backed device shutdown  
signal. When it is programmed 0 backend devi ce will be shutdown.  
0 : Force shutdown of Backend  
1 : Disable force shutdown of Backend  
13.1.45 Register 47 (0x2F)  
Figure 138. Register 47 (0x2F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DLSH  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 78. Register 47 (0x2F) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DLSH  
Reserved  
0
Disable Last Sample Hold – This bit controls whether to hold the last sample at audio  
interface in the event of clock error. The last known good sample is held to prevent  
errorneous samples to flow through the DAC.  
0: Enable last sample hold  
1: Disable last sample hold  
4-0  
Reserved  
R/W  
Reserved  
110  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.46 Register 48 (0x30)  
Figure 139. Register 48 (0x30)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
EDINT  
R/W  
INTSTAT  
R/W  
INTGPIO  
R/W  
DBCLK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 79. Register 48 (0x30) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
EDINT  
Reserved  
6
R/W  
1
Edge detection of pin interrupt input – this bit controls whether to detect a positive edge  
and send interrupt to dsp or reflect the pin value at the dsp_interrupt port  
0: disable positive edge detect  
1: enable positive edge detect  
5
INTSTAT  
INTGPIO  
R/W  
R/W  
0
0
Enable active low for input pin interrupt – This controls whether input pin interrupt is  
active low or active high.  
0 : input pin interrupt is active high  
1 : input pin interrupt is active low  
4-2  
GPIO for input pin interrupt – these bits control which GPIO to be used as the input pin  
interrupt  
000: pin interrupt disabled  
001: pin interrupt = Input from RESERVED  
010: pin interrupt = Input from RESERVED  
011: Reserved  
100: pin interrupt = Input from GPIO0  
101: pin interrupt = Input from RESERVED  
110: pin interrupt = Input from GPIO2  
111: reserved  
1-0  
DBCLK  
R/W  
0
Pin debounce clock select – selects the clk frequency to be used for deboucing glitches  
on pin before detecting a flip on the pin ( debouncing is done for 4 clock cycles of this  
selected clock)  
00: approx 1 ms clk used for debouncing  
01: approx 500 µs clk used for debouncing  
10: approx 125 µs clk used for debouncing  
11: oscillator clk used for debouncing  
13.1.47 Register 49 (0x31)  
Figure 140. Register 49 (0x31)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GSPGPI2  
R/W  
Reserved  
R/W  
GSPGPI0  
R/W  
GSPGPI1  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 80. Register 49 (0x31) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GSPGPI2  
0
0
Reserved  
6
Enable GPIO2 value to propagate to DSP – Each bit when set high allows the  
corresponding GPIO pin value to propagate to DSP as an input port bus  
0 : GPIO2 value will not propagate to DSP  
1 : GPIO2 value is allowed to propagate to DSP  
5
4
Reserved  
GSPGPI0  
R/W  
R/W  
Reserved  
0
Enable GPIO0 value to propagate to DSP – Each bit when set high allows the  
corresponding GPIO pin value to propagate to DSP as an input port bus  
0 : GPIO0 value will not propagate to DSP  
1 : GPIO0 value is allowed to propagate to DSP  
Copyright © 2016, Texas Instruments Incorporated  
111  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 80. Register 49 (0x31) Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
Reserved  
R/W  
Reserved  
13.1.48 Register 50 (0x32)  
Figure 141. Register 50 (0x32)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DSPMEM  
R/W  
DSPCOEF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 81. Register 50 (0x32) Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DSPMEM  
0
0
Reserved  
DSP boots from IRAM – When set DSP will boot from IRAM instead of IROM  
0: boot DSP from IROM  
1: boot DSP from IRAM  
0
DSPCOEF  
R/W  
Use default coefficients from ZROM – This bit controls whether to use default  
coefficients from ZROM or use the non-default coefficients downloaded to device by  
the Host  
0 : don't use default coefficients from ZROM  
1 : use default coefficents from ZROM  
112  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.49 Register 51 (0x33)  
Figure 142. Register 51 (0x33)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DSPINT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 82. Register 51 (0x33) Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DSPINT  
Reserved  
Interrupt DSP – This bit can be set to generate an interrupt to DSP. Once the DSP  
acknowledges this interrupt this bit will be automatically cleared  
0: normal  
1 : generate interrupt to DSP  
13.1.50 Register 52 (0x34)  
Figure 143. Register 52 (0x34)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DSPRMEM  
R/W  
MEMCRYP  
R/W  
MEMCRC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 83. (Register 52 (0x34) Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DSPRMEM  
0
0
Reserved  
Enable read from IRAM,IROM,ZROM – This bit controls whether to allow reads to  
IRAM, IROM and ZROM . When this bit is zero , read request to these memories will  
give out a 0  
0 : dis-allow read from IRAM,IROM and ZROM  
1 : all reads from IRAM, IROM and ZROM  
2
MEMCRYP  
MEMCRC  
R/W  
R/W  
0
0
Disable decryption – This bit controls whether to disable or enable decryption on the  
content that is downloaded by Host into IRAM  
0 : enable decryption  
1 : disable decryption  
1-0  
CRC seed selection for Decryption – These bits control which seed to use for CRC  
based decryption logic.  
00 : use A5 hex as seed  
01 : use B6 hex as seed  
10 : use 94 hex as seed  
11 : use E2 hex as seed  
13.1.51 Register 53 (0x35)  
Figure 144. Register 53 (0x35)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RSTD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016, Texas Instruments Incorporated  
113  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 84. Register 53 (0x35) Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
WO  
Reset  
Description  
Reserved  
RSTD  
Reserved  
0
Reset decryption block – Setting this bit to '1' resets the decryption block and  
reinitializes the CRC with the CRC seed. It is a self clearing bit.  
'1' -> reset the decryption block  
'0' -> decryption block is not reset  
13.1.52 Register 59 (0x3B)  
Figure 145. Register 59 (0x3B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AMTL  
R/W  
Reserved  
R/W  
AMTR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 85. Register 59 (0x3B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
AMTL  
Reserved  
6-4  
0
Auto Mute Time for Left Channel – These bits specify the length of consecutive zero  
samples at left channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
3
Reserved  
AMTR  
R/W  
R/W  
Reserved  
2-0  
0
Auto Mute Time for Right Channel – These bits specify the length of consecutive zero  
samples at right channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
13.1.53 Register 60 (0x3C)  
Figure 146. Register 60 (0x3C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PCTL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
114  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 86. Register 60 (0x3C) Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PCTL  
0
0
Reserved  
Digital Volume Control – These bits control the behavior of the digital volume.  
00: The volume for Left and right channels are independent  
01: Right channel volume follows left channel setting  
13.1.54 Register 61 (0x3D)  
Figure 147. Register 61 (0x3D)  
7
6
5
4
3
2
1
0
VOLL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 87. Register 61 (0x3D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
VOLL  
R/W  
0001000 Left Digital Volume – These bits control the left channel digital volume. The digital  
0
volume is 24 dB to –103 dB in –0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: –0.5 dB  
...  
11111110: –103 dB  
11111111: Mute  
13.1.55 Register 62 (0x3E)  
Figure 148. Register 62 (0x3E)  
7
6
5
4
3
2
1
0
VOLR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 88. Register 62 (0x3E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
VOLR  
R/W  
0011000 Right Digital Volume – These bits control the right channel digital volume. The digital  
0
volume is 24 dB to –103 dB in –0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: –0.5 dB  
...  
11111110: –103 dB  
11111111: Mute  
13.1.56 Register 63 (0x3F)  
Copyright © 2016, Texas Instruments Incorporated  
115  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Figure 149. Register 63 (0x3F)  
7
6
5
4
3
2
1
0
VNDF  
R/W  
VNDS  
R/W  
VNUF  
R/W  
VNUS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 89. Register 63 (0x3F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VNDF  
R/W  
0
Digital Volume Normal Ramp Down Frequency – These bits control the frequency of  
the digital volume updates when the volume is ramping down. The setting here is  
applied to soft mute request, asserted by XSMUTE pin or P0-R3.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-2  
1-0  
VNDS  
VNUF  
VNUS  
R/W  
R/W  
R/W  
1
0
1
Digital Volume Normal Ramp Down Step – These bits control the step of the digital  
volume updates when the volume is ramping down.  
The setting here is applied to soft mute request, asserted by XSMUTE pin or P0-R3.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Digital Volume Normal Ramp Up Frequency – These bits control the frequency of the  
digital volume updates when the volume is ramping up.  
The setting here is applied to soft unmute request, asserted by XSMUTE pin or P0-R3.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
Digital Volume Normal Ramp Up Step – These bits control the step of the digital  
volume updates when the volume is ramping up.  
The setting here is applied to soft unmute request, asserted by XSMUTE pin or P0-R3.  
00: Increment by 4 dB for each update  
01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
116  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.57 Register 64 (0x40)  
Figure 150. Register 64 (0x40)  
7
6
5
4
3
2
1
0
VEDF  
R/W  
VEDS  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 90. Register 64 (0x40) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VEDF  
R/W  
0
Digital Volume Emergency Ramp Down Frequency – These bits control the frequency  
of the digital volume updates when the volume is ramping down due to clock error or  
power outage, which usually needs faster ramp down compared to normal soft mute.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-0  
VEDS  
R/W  
R/W  
1
Digital Volume Emergency Ramp Down Step – These bits control the step of the digital  
volume updates when the volume is ramping down due to clock error or power outage,  
which usually needs faster ramp down compared to normal soft mute.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Reserved  
Reserved  
13.1.58 Register 65 (0x41)  
Figure 151. Register 65 (0x41)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
ACTL  
R/W  
AMLE  
R/W  
AMRE  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 91. Register 65 (0x41) Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
ACTL  
Reserved  
1
Auto Mute Control**NOBUS** – This bit controls the behavior of the auto mute upon  
zero sample detection. The time length for zero detection is set with P0-R59.  
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are about to be auto  
muted.  
1
0
AMLE  
AMRE  
R/W  
R/W  
1
1
Auto Mute Left Channel**NOBUS** – This bit enables or disables auto mute on right  
channel. Note that when right channel auto mute is disabled and the P0-R65, bit 2 is  
set to 1, the left channel will also never be auto muted.  
0: Disable right channel auto mute  
1: Enable right channel auto mute  
Auto Mute Right Channel**NOBUS** – This bit enables or disables auto mute on left  
channel. Note that when left channel auto mute is disabled and the P0-R65, bit 2 is set  
to 1, the right channel will also never be auto muted.  
0: Disable left channel auto mute  
1: Enable left channel auto mute  
13.1.59 Register 66 (0x42)  
Copyright © 2016, Texas Instruments Incorporated  
117  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Figure 152. Register 66 (0x42)  
7
6
5
4
3
2
1
0
ADLY  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 92. Register 66 (0x42) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ADLY  
R/W  
0001100 AMUTE Delay – These bits control the delay before the complete digital mute to the  
1
assertion of analog mute. This is to allow the non-mute audio samples to completely  
flow out through analog parts before the assertion of the analog mute.  
00000000: No delay  
00000001: 1 LRCLK delay  
00000010: 2 LRCLK delay  
11111111: 255 LRCLK delay  
13.1.60 Register 67 (0x43)  
Figure 153. Register 67 (0x43)  
7
6
5
4
3
2
1
0
DLPA  
R/W  
DRPA  
R/W  
DLPM  
R/W  
DRPM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 93. Register 67 (0x43) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DLPA  
R/W  
0
Left DAC primary AC dither gain – These bits control the AC dither gain for left channel  
primary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
5-4  
3-2  
DRPA  
DLPM  
R/W  
R/W  
0
0
Right DAC primary AC dither gain – These bits control the AC dither gain for right  
channel primary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
Left DAC primary DEM dither gain – These bits control the dither gain for left channel  
primary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
1-0  
DRPM  
R/W  
0
Right DAC primary DEM dither gain – These bits control the dither gain for right  
channel primary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
13.1.61 Register 68 (0x44)  
Figure 154. Register 68 (0x44)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DLPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
118  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 94. Register 68 (0x44) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DLPD  
Reserved  
0
Left DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the left channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
13.1.62 Register 69 (0x45)  
Figure 155. Register 69 (0x45)  
7
6
5
4
3
2
1
0
DLPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 95. Register 69 (0x45) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLPD  
R/W  
0
Left DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the left channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
Copyright © 2016, Texas Instruments Incorporated  
119  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.63 Register 70 (0x46)  
Figure 156. Register 70 (0x46)  
7
6
5
4
3
2
1
0
DRPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 96. Register 70 (0x46) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRPD  
R/W  
0
Right DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the right channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
13.1.64 Register 71 (0x47)  
Figure 157. Register 71 (0x47)  
7
6
5
4
3
2
1
0
DRPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 97. Register 71 (0x47) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRPD  
R/W  
0
Right DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the right channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
120  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.65 Register 72 (0x48)  
Figure 158. Register 72 (0x48)  
7
6
5
4
3
2
1
0
DLSA  
R/W  
DRSA  
R/W  
DLSM  
R/W  
RSM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 98. Register 72 (0x48) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DLSA  
R/W  
01  
Left DAC secondary AC dither gain – These bits control the AC dither gain for left  
channel secondary DAC.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
5-4  
DRSA  
R/W  
01  
Right DAC secondary AC dither gain – These bits control the AC dither gain for right  
channel secondary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
10: AC dither gain = 0.5  
11: no AC dither  
3-2  
1-0  
DLSM  
DRSM  
R/W  
R/W  
01  
01  
Left DAC secondary DEM dither gain – These bits control the dither gain for left  
channel secondary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
Right DAC secondary DEM dither gain – These bits control the dither gain for right  
channel secondary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
Copyright © 2016, Texas Instruments Incorporated  
121  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.66 Register 73 (0x49)  
Figure 159. Register 73 (0x49)  
7
6
5
4
3
2
1
0
DLSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 99. Register 73 (0x49) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLSD  
R/W  
0
Left DAC secondary DC dither – These bits control the DC dither amount to be added  
to the lower part of the left channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
13.1.67 Register 74 (0x4A)  
Figure 160. Register 74 (0x4A)  
7
6
5
4
3
2
1
0
DLSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 100. Register 74 (0x4A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLSD  
R/W  
0
Left DAC secondary DC dither – These bits control the DC dither amount to be added  
to the lower part of the left channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
122  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.68 Register 75 (0x4B)  
Figure 161. Register 75 (0x4B)  
7
6
5
4
3
2
1
0
DRSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 101. Register 75 (0x4B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRSD  
R/W  
0000000 Right DAC secondary DC dither – These bits control the DC dither amount to be added  
0
to the lower part of the right channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
13.1.69 Register 76 (0x4C)  
Figure 162. Register 76 (0x4C)  
7
6
5
4
3
2
1
0
DRSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 102. Register 76 (0x4C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRSD  
R/W  
0000000 Right DAC secondary DC dither – These bits control the DC dither amount to be added  
0
to the lower part of the right channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
Copyright © 2016, Texas Instruments Incorporated  
123  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.70 Register 78 (0x4E)  
Figure 163. Register 78 (0x4E)  
7
6
5
4
3
2
1
0
OLOF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 103. Register 78 (0x4E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OLOF  
R/W  
0000000 Left OFSCAL offset – These bits controls the amount of manual DC offset to be added  
0
to the left channel DAC output. The additional offset would be approximately the  
negative of the decimal value of this register divided by 4 in mV.  
01111111 : –31.75 mV  
01111110 : –31.50 mV  
00000010 : –0.50 mV  
00000001 : –0.25 mV  
00000000 : 0.0 mV  
11111111 : +0.25 mV  
11111110 : +0.50 mV  
10000000 : +32.0 mV  
13.1.71 Register 79 (0x4F)  
Figure 164. Register 79 (0x4F)  
7
6
5
4
3
2
1
0
OROF  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 104. Register 79 (0x4F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OROF  
R/W  
0
Right OFSCAL offset – These bits controls the amount of manual DC offset to be  
added to the right channel DAC output. The additional offset would be approximately  
the negative of the decimal value of this register divided by 4 in mV.  
01111111 : –31.75 mV  
01111110 : –31.50 mV  
00000010 : –0.50 mV  
00000001 : –0.25 mV  
00000000 : 0.0 mV  
11111111 : +0.25 mV  
11111110 : +0.50 mV  
10000000 : +32.0 mV  
124  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.72 Register 80 (0x50)  
Figure 165. Register 80 (0x50)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 105. Register 80 (0x50) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.1.73 Register 81 (0x51)  
Figure 166. Register 81 (0x51)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 106. Register 81 (0x51) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
125  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.74 Register 82 (0x52)  
Figure 167. Register 82 (0x52)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G1SL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 107. Register 82 (0x52) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
Reserved  
126  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.75 Register 83 (0x53)  
Figure 168. Register 83 (0x53)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G0SL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 108. Register 83 (0x53) Register Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G0SL  
Reserved  
0
GPIO0 Output Selection – These bits select the signal to output to GPIO0. To actually  
output the selected signal, the GPIO0 must be set to output mode at P0-R8.  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
0111: Serial audio interface data output (SDOUT)  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active) 1010: PLL lock flag  
1011: Charge pump clock  
1100: Reserved  
1101: Reserved  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD **  
INTERNAL **  
1100: Short detection flag for left channel  
1101: Short detection flag for right channel  
10000: PLL clock/4  
10001: Oscillator clock/4  
10010: Impedance sense flag for left channel  
10011: Impedance sense flag for right channel  
10100: Internal UVP flag, becomes low when VDD falls below roughly 2.7V  
10101: Offset calibration flag, asserted when the system is offset calibrating itself.  
10110: Clock error flag  
10111: Clock changing flag  
11000: Clock missing flag  
11001: Clock halt detection flag  
11010: DSP boot done flag  
11011: Charge pump voltage output valid flag (low active)  
Others: N/A (zero)  
13.1.76 Register 84 (0x54)  
Figure 169. Register 84 (0x54)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 109. Register 84 (0x54) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.1.77 Register 85 (0x55)  
Copyright © 2016, Texas Instruments Incorporated  
127  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Figure 170. Register 85 (0x55)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G2SL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 110. Register 85 (0x55) Register Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G2SL  
0
0
Reserved  
GPIO2 Output Selection – These bits select the signal to output to GPIO2. To actually  
output the selected signal, the GPIO2 must be set to output mode at P0-R8.  
0000: off (low)  
0001: DSP GPIO2 output  
0010: Register GPIO2 output (P0-R86, bit 5)  
0011: Auto mute flag (asserted when both L and R channels are auto muted)  
0100: Auto mute flag for left channel  
0101: Auto mute flag for right channel  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
0111: Serial audio interface data output (SDOUT)  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active)  
1010: PLL lock flag  
1011: Charge pump clock  
1100: Reserved  
1101: Reserved  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD **  
INTERNAL **  
1100: Short detection flag for left channel  
1101: Short detection flag for right channel  
10000: PLL clock/4 10001: Oscillator clock/4  
10010: Impedance sense flag for left channel  
10011: Impedance sense flag for right channel  
10100: Internal UVP flag, becomes low when VDD falls below roughly 2.7V  
10101: Offset calibration flag, asserted when the system is offset calibrating itself.  
10110: Clock error flag  
10111: Clock changing flag  
11000: Clock missing flag  
11001: Clock halt detection flag  
11010: DSP boot done flag  
11011: Charge pump voltage output valid flag (low active)  
Others: N/A (zero)  
128  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.78 Register 86 (0x56)  
Figure 171. Register 86 (0x56)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GOUT2  
R/W  
MUTE  
R/W  
GOUT0  
R/W  
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 111. Register 86 (0x56) Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GOUT2  
0
0
Reserved  
GPIO Output Control – This bit controls the GPIO2 output when the selection at P0-  
R85 is set to 0010 (register output)  
0: Output low  
1: Output high  
4
3
MUTE  
R/W  
R/W  
R/W  
0
0
0
This bit controls the MUTE output when the selection at P0-R84 is set to 0010 (register  
output).  
0: Output low  
1: Output high  
GOUT0  
Reserved  
This bit controls the GPIO0 output when the selection at P0-R83 is set to 0010 (register  
output)  
0: Output low  
1: Output high  
2-0  
Reserved  
13.1.79 Register 87 (0x57)  
Figure 172. Register 87 (0x57)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GINV2  
R/W  
MUTE  
R/W  
GINV0  
R/W  
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 112. Register 87 (0x57) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GINV2  
0
0
Reserved  
GPIO Output Inversion – This bit controls the polarity of GPIO2 output. When set to 1,  
the output will be inverted for any signal being selected.  
0: Non-inverted  
1: Inverted  
4
3
MUTE  
R/W  
R/W  
R/W  
0
0
0
This bit controls the polarity of MUTE output. When set to 1, the output will be inverted  
for any signal being selected.  
0: Non-inverted  
1: Inverted  
GINV0  
This bit controls the polarity of GPIO0 output. When set to 1, the output will be inverted  
for any signal being selected.  
0: Non-inverted  
1: Inverted  
2-0  
Reserved  
Reserved  
13.1.80 Register 88 (0x58)  
Copyright © 2016, Texas Instruments Incorporated  
129  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Figure 173. Register 88 (0x58)  
7
6
5
4
3
2
1
0
DIEI  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 113. Register 88 (0x58) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIEI  
RO  
0x84  
Die ID, Device ID = 0x84  
13.1.81 Register 89 (0x59)  
Figure 174. Register 89 (0x59)  
7
6
5
VSTL  
R
4
VENTL  
R
3
2
1
VSTR  
R
0
VENR  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 114. Register 89 (0x59) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
VSTL  
0
0
Reserved  
Left Digital Volume Status – This bit indicates the status of the left channel digital  
volume.  
0: Digital volume is not changing  
1: Digital volume is changing  
4
VENTL  
R
0
Left Digital Volume Complete Flag – This bit indicates whether the left channel digital  
volume has reached its target volume.  
0: The digital volume has not reached the target volume  
1: The digital volume has reached the target volume  
3-2  
1
Reserved  
VSTR  
R/W  
R
0
0
Reserved  
Right Digital Volume Status – This bit indicates the status of the right channel digital  
volume.  
0: Digital volume is not changing  
1: Digital volume is changing  
0
VENR  
R
0
Right Digital Volume Complete Flag – This bit indicates whether the right channel  
digital volume has reached its target volume.  
0: The digital volume has not reached the target volume  
1: The digital volume has reached the target volume  
13.1.82 Register 91 (0x5B)  
Figure 175. Register 91 (0x5B)  
7
6
5
DTFS  
R
4
3
2
1
0
Reserved  
R/W  
DTSR  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
130  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 115. Register 91 (0x5B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DTFS  
0
0
Reserved  
6-4  
Detected FS – These bits indicate the currently detected audio sampling rate.  
000: Error (Out of valid range)  
001: 8 kHz  
010: 16 kHz  
011: 32-48 kHz  
100: 88.2-96 kHz  
101: 176.4-192 kHz  
110: 384 kHz  
3-0  
DTSR  
R
0
Detected MCLK Ratio – These bits indicate the currently detected MCLK ratio. Note  
that even if the MCLK ratio is not indicated as error, clock error might still be flagged  
due to incompatible combination with the sampling rate. Specifically the MCLK ratio  
must be high enough to allow enough DSP cycles for minimal audio processing when  
PLL is disabled. The absolute MCLK frequency must also be lower than 50 MHz.  
0000: Ratio error (The MCLK ratio is not allowed)  
0001: MCLK = 32 FS  
0010: MCLK = 48 FS  
0011: MCLK = 64 FS  
0100: MCLK = 128 FS  
0101: MCLK = 192 FS  
0110: MCLK = 256 FS  
0111: MCLK = 384 FS  
1000: MCLK = 512 FS  
1001: MCLK = 768 FS  
1010: MCLK = 1024 FS  
1011: MCLK = 1152 FS  
1100: MCLK = 1536 FS  
1101: MCLK = 2048 FS  
1110: MCLK = 3072 FS  
Copyright © 2016, Texas Instruments Incorporated  
131  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.83 Register 92 (0x5C)  
Figure 176. Register 92 (0x5C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DTBR  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 116. Register 92 (0x5C) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DTBR  
0
0
Reserved  
1
Detected SCLK Ratio (MSB)  
13.1.84 Register 93 (0x5D)  
Figure 177. Register 93 (0x5D)  
7
DTBR  
R
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 117. Register 93 (0x5D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DTBR  
R
Detected SCLK Ratio (LSB) – These bits indicate the currently detected SCLK ratio,  
i.e. the number of SCLK clocks in one audio frame. Note that for extreme case of  
SCLK = 1 FS (which is not usable anyway), the detected ratio will be unreliable  
6-0  
Reserved  
R/W  
0
Reserved  
132  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.85 Register 94 (0x5E)  
Figure 178. Register 94 (0x5E)  
7
6
CDST6  
R
5
CDST5  
R
4
CDST4  
R
3
CDST3  
R
2
CDST2  
R
1
CDST1  
R
0
CDST0  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 118. Register 94 (0x5E) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
CDST6  
0
Reserved  
6
Clock Detector Status – This bit indicates whether the MCLK clock is present or not.  
0: MCLK is present  
1: MCLK is missing (halted)  
5
CDST5  
R
This bit indicates whether the PLL is locked or not. The PLL will be reported as  
unlocked when it is disabled.  
0: PLL is locked  
1: PLL is unlocked  
4
3
CDST4  
CDST3  
R
R
This bit indicates whether the both LRCLK and SCLK are missing (tied low) or not.  
0: LRCLK and/or SCLK is present 1: LRCLK and SCLK are missing  
This bit indicates whether the combination of current sampling rate and MCLK ratio is  
valid for clock auto set.  
0: The combination of FS/MCLK ratio is valid  
1: Error (clock auto set is not possible)  
2
CDST2  
R
This bit indicates whether the MCLK is valid or not. The MCLK ratio must be detectable  
to be valid. There is a limitation with this flag, that is, when the low period of LRCLK is  
less than or equal to five SCLKs, this flag will be asserted (MCLK invalid reported).  
0: MCLK is valid  
1: MCLK is invalid  
1
0
CDST1  
CDST0  
R
R
This bit indicates whether the SCLK is valid or not. The SCLK ratio must be stable and  
in the range of 32-256FS to be valid.  
0: SCLK is valid  
1: SCLK is invalid  
This bit indicated whether the audio sampling rate is valid or not. The sampling rate  
must be detectable to be valid. There is a limitation with this flag, that is when this flag  
is asserted and P0-R37 is set to ignore all asserted error flags such that the DAC  
recovers, this flag will be de-asserted (sampling rate invalid not reported anymore).  
0: Sampling rate is valid  
1: Sampling rate is invalid  
Copyright © 2016, Texas Instruments Incorporated  
133  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.86 Register 95 (0x5F)  
Figure 179. Register 95 (0x5F)  
7
6
5
4
LTSH  
R
3
2
CKMF  
R
1
CSRF  
R
0
CERF  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 119. Register 95 (0x5F) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
LTSH  
0
Reserved  
Latched Clock Halt – This bit indicates whether MCLK halt has occurred. The bit is  
cleared when read.  
0: MCLK halt has not occurred  
1: MCLK halt has occurred since last read  
3
2
Reserved  
CKMF  
R/W  
R
0
Reserved  
Clock Missing – This bit indicates whether the LRCLK and SCLK are missing (tied low).  
0: LRCLK and/or SCLK is present  
1: LRCLK and SCLK are missing  
1
0
CSRF  
CERF  
R
R
Clock Resync Request – This bit indicates whether the clock resynchronization is in  
progress.  
0: Not resynchronizing  
1: Clock resynchronization is in progress  
Clock Error – This bit indicates whether a clock error has occurred. The bit is cleared  
when read  
0: Clock error has not occurred  
1: Clock error has occurred.  
134  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.87 Register 96 (0x60)  
Figure 180. Register 96 (0x60)  
7
6
5
4
3
PDPM  
R
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 120. Register 96 (0x60) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
RO  
Reset  
Description  
Reserved  
PDPM  
0
Reserved  
6-0  
PLL P Monitor – These bits indicate the actually used value for PLL divider P. The  
actual value is the auto set one when clock auto set is active and register set one when  
clock auto set is disabled.  
0000000: P = 1  
0000001: P = 2  
...  
1111111: P = 128  
13.1.88 Register 97 (0x61)  
Figure 181. Register 97 (0x61)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PDJM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 121. Register 97 (0x61) Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PDJM  
0
Reserved  
PLL J Monitor – These bits indicate the actually used value for PLL multiplication factor  
J of the overall J.D × R. The actual value is the auto set one when clock auto set is  
active and register set one when clock auto set is disabled.  
000000: Error  
000001: J = 1  
000010: J = 2  
...  
111111: J = 63  
Copyright © 2016, Texas Instruments Incorporated  
135  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.89 Register 98 (0x62)  
Figure 182. Register 98 (0x62)  
7
6
5
PDDM  
R
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 122. Register 98 (0x62) Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PDDM  
0
Reserved  
PLL D Monitor (MSB) – These bits indicate the actually used value for PLL  
multiplication factor D of the overall J.D × R. The actual value is the auto set one when  
clock auto set is active and register set one when clock auto set is disabled.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
....  
9999 (in decimal): D=9999  
Others: Error  
13.1.90 Register 99 (0x63)  
Figure 183. Register 99 (0x63)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PDDM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 123. Register 99 (0x63) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PDDM  
0
Reserved  
PLL D Monitor (LSB) – These bits indicate the actually used value for PLL  
multiplication factor D of the overall J.D × R. The actual value is the auto set one when  
clock auto set is active and register set one when clock auto set is disabled.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
....  
9999 (in decimal): D=9999  
Others: Error  
136  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.91 Register 100 (0x64)  
Figure 184. Register 100 (0x64)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PDRM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 124. Register 100 (0x64)Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PDRM  
0
Reserved  
PLL R Monitor – These bits indicate the actually used value for PLL multiplication factor  
R of the overall J.D × R. The actual value is the auto set one when clock auto set is  
active and register set one when clock auto set is disabled.  
0000: R = 1  
0001: R = 2  
...  
1111: R = 16  
13.1.92 Register 101 (0x65)  
Figure 185. Register 101 (0x65)  
7
6
5
4
3
DDSM  
R
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 125. Register 101 (0x65) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DDSM  
0
Reserved  
6-0  
DSP clock divider monitor – These bits indicate the actually used value of the DSP  
clock divider ratio. The actual value is the auto set one when clock auto set is active  
and register set one when clock auto set is disabled.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.93 Register 102 (0x66)  
Figure 186. Register 102 (0x66)  
7
6
5
4
3
DDAM  
R
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2016, Texas Instruments Incorporated  
137  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 126. Register 102 (0x66) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DDAM  
0
Reserved  
6-0  
DAC clock divider monitor – These bits indicate the actually used value of the DAC  
clock divider ratio. The actual value is the auto set one when clock auto set is active  
and register set one when clock auto set is disabled.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.94 Register 103 (0x67)  
Figure 187. Register 103 (0x67)  
7
6
5
4
3
DCPM  
R
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 127. Register 103 (0x67) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DCPM  
0
Reserved  
6-0  
NCP clock divider monitor – These bits indicate the actually used value of the CP clock  
divider ratio. The actual value is the auto set one when clock auto set is active and  
register set one when clock auto set is disabled.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.95 Register 104 (0x68)  
Figure 188. Register 104 (0x68)  
7
6
5
4
3
DOSM  
R
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 128. Register 104 (0x68) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DOSM  
0
Reserved  
6-0  
OSR clock divider monitor – These bits indicate the actually used value of the OSR  
clock divider ratio. The actual value is the auto set one when clock auto set is active  
and register set one when clock auto set is disabled.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
13.1.96 Register 105 (0x69)  
138  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Figure 189. Register 105 (0x69)  
7
6
5
4
PENM  
R
3
2
PRFM  
R
1
0
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 129. Register 105 (0x69) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PENM  
Reserved  
PLL enable monitor – This bit indicates whether the PLL is currently enabled.  
0: PLL is disabled  
1: PLL is enabled  
3
Reserved  
PRFM  
R/W  
R
Reserved  
2-0  
PLL Reference Monitor – These bits indicate the actual source for the PLL. The source  
is auto set when clock auto set is active and register set when clock auto set is  
disabled.  
000: MCLK  
001: SCLK  
010: OSC  
011: GPIO  
Others: Reserved (mute)  
13.1.97 Register 106 (0x6A)  
Figure 190. Register 106 (0x6A)  
7
CPPM  
R
6
RFPM  
R
5
LDPM  
R
4
LBPM  
R
3
LCPM  
R
2
LOPM  
R
1
ROPM  
R
0
DAPM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 130. Register 106 (0x6A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CPPM  
R
CP PWRDN monitor – This bit is a monitor for CP powerdown status.  
0: Powered down  
1: Active  
6
5
4
3
RFPM  
LDPM  
LBPM  
LCPM  
R
R
R
R
REF PWRDN monitor – This bit is a monitor for analog reference powerdown status.  
0: Powered down  
1: Active  
Line Driver PWRDN monitor – This bit is a monitor for line driver powerdown status.  
0: Powered down  
1: Active  
Line Bias PWRDN monitor – This bit is a monitor for line bias powerdown status.  
0: Powered down  
1: Active  
Line CMFB2 PWRDN monitor – This bit is a monitor for line common feedback  
powerdown status.  
0: Powered down  
1: Active  
2
LOPM  
R
L Output Stage PWRDN monitor – This bit is a monitor for left channel output stage  
powerdown status.  
0: Powered down  
1: Active  
Copyright © 2016, Texas Instruments Incorporated  
139  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 130. Register 106 (0x6A) Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
ROPM  
R
R Output Stage PWRDN monitor – This bit is a monitor for right channel output stage  
powerdown status..  
0: Powered down  
1: Active  
0
DAPM  
R
DAC PWRDN monitor – This bit is a monitor for DAC powerdown status.  
0: Powered down  
1: Active  
140  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.98 Register 107 (0x6B)  
Figure 191. Register 107 (0x6B)  
7
OFPM  
R
6
SSPM  
R
5
ISPM  
R
4
IWPM  
R
3
LSPM  
R
2
RSPM  
R
1
DSRM  
R
0
DERM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 131. Register 107 (0x6B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OFPM  
R
OFSCOMP PWRDN monitor – This bit is a monitor for offset compensator powerdown  
status.  
0: Powered down  
1: Active  
6
5
4
3
2
SSPM  
ISPM  
R
R
R
R
R
Short Protection PWRDN monitor – This bit is a monitor for short protector powerdown  
status.  
0: Powered down  
1: Active  
IMP sense PWRDN monitor – This bit is a monitor for impedance sensor powerdown  
status.  
0: Powered down  
1: Active  
IWPM  
LSPM  
RSPM  
IMP whole PWRDN monitor – This bit is a monitor for whole impedance sensor circuitry  
powerdown status.  
0: Powered down  
1: Active  
L Short Protection RST monitor – This bit is a monitor for left channel short protector  
reset status.  
0: Reset  
1: Active  
R Short Protection RST monitor – This bit is a monitor for right channel short protector  
reset status.  
0: Reset  
1: Active  
1
0
DSRM  
DERM  
R
R
DSM RST monitor – This bit is a monitor for DAC modulator reset status.  
0: Reset  
1: Active  
DEM RST monitor – This bit is a monitor for DAC DEM reset status.  
0: Reset  
1: Active  
Copyright © 2016, Texas Instruments Incorporated  
141  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.99 Register 108 (0x6C)  
Figure 192. Register 108 (0x6C)  
7
6
5
ADLM  
R
4
ADRM  
R
3
2
1
AMLM  
R
0
AMRM  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 132. Register 108 (0x6C) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
ADLM  
0
Reserved  
AMUTE dummy left monitor – This bit is a monitor for left channel dummy output  
analog mute status.  
0: Mute  
1: Unmute  
4
ADRM  
R
AMUTE dummy right monitor – This bit is a monitor for right channel dummy output  
analog mute status.  
0: Mute  
1: Unmute  
3-2  
1
Reserved  
AMLM  
R/W  
R
0
Reserved  
Left Analog Mute Monitor – This bit is a monitor for left channel analog mute status.  
0: Mute  
1: Unmute  
0
AMRM  
R
Right Analog Mute Monitor – This bit is a monitor for right channel analog mute status.  
0: Mute  
1: Unmute  
13.1.100 Register 109 (0x6D)  
Figure 193. Register 109 (0x6D)  
7
6
5
4
SDTM  
R
3
2
1
0
SHTM  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 133. Register 109 (0x6D) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
SDTM  
0
Reserved  
Short detect monitor – This bit indicates whether line output short is occuring.  
0: Normal (No short)  
1: Line output is being shorted  
3-1  
0
Reserved  
SHTM  
R/W  
R
0
Reserved  
Short detected monitor – This bit indicates whether line output short has occurred since  
last read. This bit is sticky and is cleared when read.  
0: No short  
1: Line output short occurred  
142  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.101 Register 110 (0x6E)  
Figure 194. Register 110 (0x6E)  
7
6
5
4
3
2
1
0
DLCM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 134. Register 110 (0x6E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLCM  
R
Left DIFF control monitor – These bits indicate the final control value of the left channel  
differential offset compensator. The value approximates the magnitude of the original  
offset before calibration.  
0000000: 0 mV  
0000001: 0.25 mV  
0000010: 0.50 mV  
0000011: 0.75 mV  
1111111: 63.75 mV  
13.1.102 Register 111 (0x6F)  
Figure 195. Register 111 (0x6F)  
7
6
5
4
3
2
1
0
DRCM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 135. Register 111 (0x6F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRCM  
R
Right DIFF control monitor – These bits indicate the final control value of the right  
channel differential offset compensator. The value approximates the magnitude of the  
original offset before calibration.  
0000000: 0 mV  
0000001: 0.25 mV  
0000010: 0.50 mV  
0000011: 0.75 mV  
1111111: 63.75 mV  
Copyright © 2016, Texas Instruments Incorporated  
143  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.103 Register 112 (0x70)  
Figure 196. Register 112 (0x70)  
7
DLCS  
R
6
5
4
3
2
CLCM  
R
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 136. Register 112 (0x70) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DLCS  
R
Left DIFF control sign – This bit indicates the polarity of DC offset at left channel before  
calibration (the magnitude is indicated in R0/P110).  
0: Negative  
1: Positive  
6-5  
4-0  
Reserved  
CLCM  
R/W  
R
0
Reserved  
Left CMFB control monitor – These bits indicate the final control value of the left  
channel common feedback offset compensator. The value approximates the magnitude  
of the original offset before calibration.  
00000: 0 mV  
00001: 0.25 mV  
00010: 0.50 mV  
11111: 7.75 mV  
13.1.104 Register 113 (0x71)  
Figure 197. Register 113 (0x71)  
7
DRCS  
R
6
5
4
3
2
CRCM  
R
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 137. Register 113 (0x71) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DRCS  
R
Right DIFF control sign – This bit indicates the polarity of DC offset at right channel  
before calibration (the magnitude is indicated in R0-P111)  
0: Negative  
1: Positive  
6-5  
4-0  
Reserved  
CRCM  
R/W  
R
0
Reserved  
Right CMFB control monitor – These bits indicate the final control value of the right  
channel common feedback offset compensator. The value approximates the magnitude  
of the original offset before calibration.  
00000: 0 mV  
00001: 0.25 mV  
00010: 0.50 mV  
11111: 7.75 mV  
144  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.105 Register 114 (0x72)  
Figure 198. Register 114 (0x72)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
MTST  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 138. Register 114 (0x72) Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
MTST  
0
Reserved  
MUTE status – These bits indicate the output of the XSMUTE level decoder for  
monitoring purpose.  
11: 0.7 VDD XSMUTE  
01: 0.3 VDD XSMUTE < 0.7 VDD  
00: 0.3 VDD > XSMUTE  
13.1.106 Register 115 (0x73)  
Figure 199. Register 115 (0x73)  
7
6
5
4
3
2
1
FSMM  
R
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 139. Register 115 (0x73) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
FSMM  
0
Reserved  
FS Speed Mode Monitor – These bits indicate the actual FS operation mode being  
used. The actual value is the auto set one when clock auto set is active and register  
set one when clock auto set is disabled.  
In Auto set,  
000: error  
001: 8 kHz  
010: 16 kHz  
011: 32-48 kHz  
100: 88.2-96 kHz  
101: 176.4-192 kHz  
110: 384 kHz  
111: reserved  
In register set mode,  
000: reserved  
001: 8 kHz  
010: 16 kHz  
011: 48 kHz  
100: 88.2-96 kHz  
101: 176.4-192 kHz  
110: 384 kHz  
111: 32 kHz  
Copyright © 2016, Texas Instruments Incorporated  
145  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.107 Register 118 (0x76)  
Figure 200. Register 118 (0x76)  
7
BOTM  
R
6
5
4
3
2
1
0
Reserved  
R/W  
PSTM  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 140. Register 118 (0x76) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BOTM  
R
DSP Boot Done Flag – This bit indicates whether the DSP boot is completed.  
0: DSP is booting  
1: DSP boot completed  
6-4  
3-0  
Reserved  
PSTM  
R/W  
R
Reserved  
Power State – These bits indicate the current power state of the DAC.  
000: Powerdown  
0001: Wait for CP voltage valid  
0010: Common feedback offset calibration  
0011: Differential mode offset calibration  
0100: Volume ramp up  
0101: Run (Playing)  
0110: Line output short and Low impedance  
0111: Volume ramp down  
1000: Standby  
13.1.108 Register 119 (0x77)  
Figure 201. Register 119 (0x77)  
7
6
5
GPIN2  
R
4
MUTE  
R
3
GPIN0  
R
2
Reserved  
R
1
Reserved  
R
0
Reserved  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 141. Register 119 (0x77) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
RO  
Reset  
Description  
Reserved  
GPIN2  
0
Reserved  
GPIO Input States – This bit indicates the logic level at GPIO2 pin.  
0: Low  
1: High  
4
3
2
1
0
MUTE  
GPIN0  
RO  
RO  
RO  
RO  
RO  
This bit indicates the logic level at MUTE pin.  
0: Low  
1: High  
This bit indicates the logic level at GPIO0 pin.  
0: Low  
1: High  
N/A  
0: Low  
1: High  
N/A  
0: Low  
1: High  
N/A  
0: Low  
1: High  
146  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.1.109 Register 120 (0x78)  
Figure 202. Register 120 (0x78)  
7
6
5
4
AMFL  
R
3
2
1
0
AMFR  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 142. Register 120 (0x78) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
AMFL  
0
Reserved  
Auto Mute Flag for Left Channel – This bit indicates the auto mute status for left  
channel.  
0: Not auto muted  
1: Auto muted  
3-1  
0
Reserved  
AMFR  
R/W  
R
0
Reserved  
Auto Mute Flag for Right Channel – This bit indicates the auto mute status for right  
channel.  
0: Not auto muted  
1: Auto muted  
Copyright © 2016, Texas Instruments Incorporated  
147  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.1.110 Register 121 (0x79)  
Figure 203. Register 121 (0x79)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DWAO  
R/W  
Reserved  
R/W  
DAMD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 143. Register 121 (0x79) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DWAO  
0
0
Reserved  
DWA off – This bit controls the DWA rotation.  
0: DWA is active (Rotation active)  
1: DWA is disabled (No rotation)  
3-2  
1-0  
Reserved  
DAMD  
R/W  
R/W  
0
0
Reserved  
DAC Mode – This bit controls the DAC mode.  
0: Mode1  
1: Mode2  
** INTERNAL ** (Mode1: Cascaded Galton,  
Mode2: Cascaded DWA)  
10: Non-cascaded Galton  
11: Non-cascaded DWA  
148  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.2 Registers - Page 1  
13.2.1 Register 1 (0x01)  
Figure 204. Register 1 (0x01)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
REXT  
R/W  
Reserved  
R/W  
OSEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 144. Register 1 (0x01) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
REF BG Ext - This bit controls what is output from the VCOM pin  
0: AVDD divided voltage  
1: Bandgap reference voltage  
4
REXT  
R/W  
R/W  
0
0
3-1  
Reserved  
Reserved  
Output Amplitude Type - This bit selects the output amplitude type. The clock autoset  
feature will not work with PLL enabled in VCOM mode.  
In this case this feature has to be disabled via P0-R37 and the clock dividers must be  
set manually.  
0
OSEL  
R/W  
0
0: VREF mode (Constant output amplitude against AVDD variation)  
1: VCOM mode (Output amplitude is proportional to AVDD variation)  
13.2.2 Register 2 (0x02)  
Figure 205. Register 2 (0x02)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LAGN  
R/W  
Reserved  
R/W  
RAGN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 145. Register 2 (0x02) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Analog Gain Control for Left Channel - This bit controls the left channel analog gain.  
4
3-1  
0
LAGN  
R/W  
R/W  
R/W  
0
0
0
0: 0 dB  
1: -6 dB  
Reserved  
RAGN  
Reserved  
Analog Gain Control for Right Channel - This bit controls the right channel analog gain.  
0: 0 dB  
1: -6 dB  
Copyright © 2016, Texas Instruments Incorporated  
149  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.2.3 Register 3 (0x03)  
Figure 206. Register 3 (0x03)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CPDY  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 146. Register 3 (0x03) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
Reserved  
R/W  
0
Reserved  
CP Delay -These bits control the delay of charge pump clock.  
000: 65 ns  
001: 90 ns  
010: 115 ns  
011: 140 ns  
100: 165 ns  
101: 190 ns  
110: 215 ns  
111: 240 ns  
2-0  
CPDY  
R/W  
0
13.2.4 Register 4 (0x04)  
Figure 207. Register 4 (0x04)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
OPWR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 147. Register 4 (0x04) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
0
Reserved  
Output Power - These bits control the power of output driver.  
00: Normal power  
1-0  
OPWR  
R/W  
1
01: Increased power  
10: More increased power  
11: Maximum power  
150  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.2.5 Register 5 (0x05)  
Figure 208. Register 5 (0x05)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
UEPD  
R/W  
UIPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 148. Register 5 (0x05) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
0
Reserved  
External UVP Control - This bit enables or disables detection of power supply drop via  
XSMUTE pin (External Under Voltage Protection).  
0: Enabled  
1: Disabled  
1
0
UEPD  
UIPD  
R/W  
R/W  
0
0
Internal UVP Control - This bit enables or disables internal detection of AVDD voltage  
drop (Internal Under Voltage Protection).  
0: Enabled  
1: Disabled  
13.2.6 Register 6 (0x06)  
Figure 209. Register 6 (0x06)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AMCT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 149. Register 6 (0x06) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
Analog Mute Control -This bit enables or disables analog mute following digital mute.  
0
AMCT  
R/W  
1
0: Disabled  
1: Enabled  
Copyright © 2016, Texas Instruments Incorporated  
151  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.2.7 Register 7 (0x07)  
Figure 210. Register 7 (0x07)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AGBL  
R/W  
Reserved  
R/W  
AGBR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 150. Register 7 (0x07) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Analog +10% Gain for Left Channel - This bit enables or disables amplitude boost  
mode for left channel.  
0: Normal amplitude  
4
3-1  
0
AGBL  
R/W  
R/W  
R/W  
0
0
1
1: +10% (+0.8 dB) boosted amplitude  
Reserved  
AGBR  
Reserved  
Analog +10% Gain for Right Channel - This bit enables or disables amplitude boost  
mode for right channel.  
0: Normal amplitude  
1: +10% (+0.8 dB) boosted amplitude  
13.2.8 Register 8 (0x08)  
Figure 211. Register 8 (0x08)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RBGF  
R/W  
Reserved  
R/W  
RCMF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 151. Register 8 (0x08) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
REF BG Fast - This bit controls the bandgap voltage ramp up speed.  
0: Normal ramp up, ~50 ms with external capacitance = 1 µF  
1: Fast ramp up, ~1 ms with external capacitance = 1 µF  
4
3-1  
0
RBGF  
R/W  
R/W  
R/W  
0
0
1
Reserved  
RCMF  
Reserved  
VCOM Reference Ramp Up - This bit controls the VCOM voltage ramp up speed.  
0: Normal ramp up, ~600 ms with external capacitance = 1 µF  
1: Fast ramp up, ~3 ms with external capacitance = 1 µF  
152  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.2.9 Register 9 (0x09)  
Figure 212. Register 9 (0x09)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DEME  
R/W  
VCPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 152. Register 9 (0x09) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
0
Reserved  
VCOM Pin as De-emphasis Control - This bit controls whether to use the  
DEEMP/VCOM pin as De-emphasis control.  
0: Disabled (DEEMP/VCOM is not used to control De-emphasis)  
1: Enabled (DEEMP/VCOM is used to control De-emphasis)  
1
0
DEME  
VCPD  
R/W  
R/W  
0
1
Power down control for VCOM - This bit controls VCOM powerdown switch.  
0: VCOM is powered on  
1: VCOM is powered down  
13.2.10 Register 10 (0x0A)  
Figure 213. Register 10 (0x0A)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LBBG  
R/W  
Reserved  
R/W  
LBVC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 153. Register 10 (0x0A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
R/W  
0
Reserved  
Line 1st stage bias ctrl<1> at BG mode - Applied when LSB of 0x01 at Page1=0  
5-4  
3-2  
1-0  
LBBG  
R/W  
R/W  
R/W  
1
0
1
0: low  
1: high  
Reserved  
LBVC  
Reserved  
Line 1st stage bias ctrl<1> at COM mode - Applied when LSB of 0x01 at Page1=1  
0: low  
1: high  
Copyright © 2016, Texas Instruments Incorporated  
153  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.2.11 Register 11 (0x0B)  
Figure 214. Register 11 (0x0B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CBBG  
R/W  
Reserved  
R/W  
CBVC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 154. Register 11 (0x0B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
R/W  
0
Reserved  
CMFB bias ctrl<1> at BG mode - Applied when LSB of 0x01 at Page1=0  
5-4  
3-2  
1-0  
CBBG  
R/W  
R/W  
R/W  
1
0
0
0: low  
1: high  
Reserved  
CBVC  
Reserved  
CMFB bias ctrl<1> at COM mode - Applied when LSB of 0x01 at Page1=1  
0: low  
1: high  
13.2.12 Register 12 (0x0C)  
Figure 215. Register 12 (0x0C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SSBG  
R/W  
Reserved  
R/W  
SSVC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 155. Register 12 (0x0C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
R/W  
0
Reserved  
Short protection sink ref current ctrl<1> at BG mode - Applied when LSB of 0x01at  
Page1=0  
0: low  
1: high  
5-4  
3-2  
1-0  
SSBG  
R/W  
R/W  
R/W  
0
0
0
Reserved  
SSVC  
Reserved  
Short protection sink ref current ctrl<1> at COM mode - Applied when LSB of 0x01 at  
Page1=1  
0: low  
1: high  
154  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.2.13 Register 13 (0x0D)  
Figure 216. Register 13 (0x0D)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SRBG  
R/W  
SRVC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 156. Register 13 (0x0D) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
0
0
Reserved  
Short protection source ref current ctrl<1> at BG mode - Applied when LSB of 0x01 at  
Page1=0  
0: low  
1: high  
SRBG  
SRVC  
4-2  
1
R/W  
R/W  
R/W  
1
0
1
Short protection source ref current ctrl<1> at COM mode - Applied when LSB of 0x01  
at Page1=1  
0: low  
0
1: high  
13.2.14 Register 14 (0x0E)  
Figure 217. Register 14 (0x0E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 157. Register 14 (0x0E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.2.15 Register 15 (0x0F)  
Figure 218. Register 15 (0x0F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CPCP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 158. Register 15 (0x0F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
NCP clock digital delay control - This bit controls the CP clock phase delay against the  
DAC clock.  
0: 0 degree (no delay)  
1: 180 degree delay  
0
CPCP  
R/W  
1
Copyright © 2016, Texas Instruments Incorporated  
155  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3 Registers - Page 253  
13.3.1 Register 1 (0x01)  
Figure 219. Register 1 (0x01)  
7
6
5
4
3
2
1
1
1
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 159. Register 1 (0x01) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.2 Register 2 (0x02)  
Figure 220. Register 2 (0x02)  
7
6
5
4
3
2
0
0
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 160. Register 2 (0x02) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.3 Register 3 (0x03)  
Figure 221. Register 3 (0x03)  
7
6
5
4
3
2
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 161. Register 3 (0x03 Field Descriptions)  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.4 Register 4 (0x04)  
Figure 222. Register 4 (0x04)  
7
6
5
4
3
2
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 162. Register 4 (0x04) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
156  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.5 Register 5 (0x05)  
Figure 223. Register 5 (0x05)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 163. Register 5 (0x05) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.6 Register 6 (0x06)  
Figure 224. Register 6 (0x06)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 164. Register 6 (0x06) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.7 Register 7 (0x07)  
Figure 225. Register 7 (0x07)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 165. Register 7 (0x07) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.8 Register 8 (0x08)  
Figure 226. Register 8 (0x08)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 166. Register 8 (0x8) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
157  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.9 Register 9 (0x09)  
Figure 227. Register 9 (0x09)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 167. Register 9 (0x9) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.10 Register 10 (0x0A)  
Figure 228. Register 10 (0x0A)  
7
6
5
4
3
2
1
0
DRSV  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 168. Register 10 (0xA) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Dither Reserved - Performance adjustment dither setting when "RESERVED" bond  
option is selected  
DRSV  
0
0
6-0  
Reserved  
Reserved  
13.3.11 Register 11 (0x0B)  
Figure 229. Register 11 (0x0B)  
7
6
5
4
3
2
1
0
D100  
R/W  
Reserved  
R/W  
OFSCAL0  
R/W  
OFSCAL1  
R/W  
OFSCAL2  
R/W  
OFSCAL3  
R/W  
OFSCAL4  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 169. Register 11 (0xB) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Dither Reserved - Performance adjustment dither setting when "RESERVED" bond  
option is selected  
D100  
0
0
6-5  
Reserved  
Reserved  
Ofscal Bypass Filter - Select whether to bypass the front-end filter.  
0: Front-end filter used.  
4
OFSCAL0  
R/W  
0
1: Front-end filter bypassed.  
Ofscal Full Span - Select whether to activate front-end filter half period (good for  
majority type) or full period (good for averaging type).  
0: Front-end filter is active last half of control period.  
3
OFSCAL1  
R/W  
0
1: Front-end filter is active the whole control period.  
Ofscal Average Filtering - Select the type of front-end filter.  
0: Front-end filter is majority decision type  
1: Front-end filter is averaging type  
2
1
OFSCAL2  
OFSCAL3  
R/W  
R/W  
0
0
Ofscal Disable Fine Calibration - Select whether to do fine calibration.  
0: Do 64-step coarse calibration followed by 32-step fine calibration.  
1: Do 96-step coarse calibration only (no fine calibration).  
Ofscal Disable Post Averaging - Select whether to use post-averaging on the integrator  
output.  
0: Final calibration control source is post-averaging result.  
1: Final calibration control source is integrator output.  
0
OFSCAL4  
R/W  
0
158  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.12 Register 12 (0x0C)  
Figure 230. Register 12 (0x0C)  
7
6
5
4
3
2
1
0
D105  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 170. Register 12 (0x0C) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Dither 105 dB - Performance adjustment dither setting when "105dB" bond option is  
selected  
D105  
0
0
6-0  
Reserved  
Reserved  
13.3.13 Register 13 (0x0D)  
Figure 231. Register 13 (0x0D)  
7
6
5
4
3
2
1
0
D110  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 171. Register 13 (0x0D) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Dither 115 dB - Performance adjustment dither setting when "110dB" bond option is  
selected  
D110  
0
0
6-0  
Reserved  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
159  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.14 Register 14 (0x0E)  
Figure 232. Register 14 (0x0E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SUMD  
R/W  
Reserved  
R/W  
SUAS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 172. Register 14 (0x0E) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
SUMD  
0
0
0
0
Reserved  
SpeedUp CLK missing detection  
Reserved  
3-1  
0
Reserved  
SUAS  
SpeedUp Analog Sequence  
13.3.15 Register 15 (0x0F)  
Figure 233. Register 15 (0x0F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SDEN  
R/W  
Reserved  
R/W  
DSOC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 173. Register 15 (0x0F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Short Detection Enable  
0: Short detection enable  
1: Short detection disable  
4
SDEN  
R/W  
1
3-1  
0
Reserved  
DSOC  
R/W  
R/W  
0
0
Reserved  
Disable Subsequent Offset Cancellation  
160  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.16 Register 16 (0x10)  
Figure 234. Register 16 (0x10)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SWDA  
R/W  
Reserved  
R/W  
DPOL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 174. Register 16 (0x10) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
0
Reserved  
Shuffle DWA of Galton - Shuffle DWA Outputs of Galton DEM  
0,3: No shuffle  
5
R/W  
R/W  
1
SDWA  
1: Shuffle Internally  
2: Global Shuffle  
4
3-1  
0
0
0
0
Reserved  
DPOL  
Reserved  
Select DC dither polarity for the secandary DAC. Select DC dither polarity +4.0% or  
-4.0% for the secondary DAC.  
R/W  
13.3.17 Register 17 (0x11)  
Figure 235. Register 17 (0x11)  
7
6
5
4
3
2
1
0
DLSC  
R/W  
Reserved  
R/W  
DRSC  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 175. Register 17 (0x11) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
DLSC  
0
0
0
0
Left DAC Primary/Secondary Scale - Secondary to Primary scaling factor for left DAC  
6-4  
3
Reserved  
DRSC  
Reserved  
Right DAC Primary/Secondary Scale - See DAC digital design spec  
Reserved  
2-0  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
161  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.18 Register 18 (0x12)  
Figure 236. Register 18 (0x12)  
7
6
5
4
3
2
1
0
LPA0  
R/W  
LPB1  
R/W  
LPB2  
R/W  
LPB3  
R/W  
RPA0  
R/W  
RPB1  
R/W  
RPB2  
R/W  
RPB3  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 176. Register 18 (0x12) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Left DAC primary a0 zero - Left DAC primary modulator coeff tweaks.  
7
LPA0  
R/W  
0
0: normal  
1: zero  
Left DAC primary b1 zero  
0: normal  
1: zero  
6
5
4
3
2
1
0
LPB1  
LPB2  
LPB3  
RPA0  
RPB1  
RPB2  
RPB3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
Left DAC primary b2 zero  
0: normal  
1: zero  
Left DAC primary b3 zero  
0: normal  
1: zero  
Right DAC primary a0 zero - Right DAC primary modulator coeff tweaks  
0: normal  
1: zero  
Right DAC primary b1 zero  
0: normal  
1: zero  
Right DAC primary b2 zero  
0: normal  
1: zero  
Right DAC primary b3 zero  
0: normal  
1: zero  
162  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.19 Register 19 (0x13)  
Figure 237. Register 19 (0x13)  
7
6
5
4
3
2
1
0
LPG1  
R/W  
Reserved  
R/W  
LPUB  
R/W  
Reserved  
R/W  
RPG1  
R/W  
Reserved  
R/W  
RPUB  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 177. Register 19 (0x13) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
LPG1  
0
0
0
0
0
0
0
0
Left DAC primary g1 gain. Left DAC primary local loop gain  
6
Reserved  
LPUB  
Reserved  
5
Left DAC primary upper bits. Number of left DAC primary upper bits  
4
Reserved  
RPG1  
Reserved  
3
Right DAC primary g1 gain. Right DAC primary local loop gain  
2
Reserved  
RPUB  
Reserved  
1
Right DAC primary upper bits. Number of right DAC primary upper bits  
Reserved  
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
163  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.20 Register 20 (0x14)  
Figure 238. Register 20 (0x14)  
7
6
5
4
3
2
1
0
LSA0  
R/W  
LSB1  
R/W  
LSB2  
R/W  
LSB3  
R/W  
RSA0  
R/W  
RSB1  
R/W  
RSB2  
R/W  
RSB3  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 178. Register 20 (0x14) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Left DAC secondary a0 zero. Left DAC secondary modulator coeff tweaks.  
7
LSA0  
R/W  
0
0: normal  
1: zero  
Left DAC secondary b1 zero  
0: normal  
1: zero  
6
5
4
3
2
1
0
LSB1  
LSB2  
LSB3  
RSA0  
RSB1  
RSB2  
RSB3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
Left DAC secondary b2 zero  
0: normal  
1: zero  
Left DAC secondary b3 zero  
0: normal  
1: zero  
Right DAC secondary a0 zero. Right DAC seconday modulator coeff tweaks.  
0: normal  
1: zero  
Right DAC secondary b1 zero  
0: normal  
1: zero  
Right DAC secondary b2 zero  
0: normal  
1: zero  
Right DAC secondary b3 zero  
0: normal  
1: zero  
164  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.21 Register 21 (0x15)  
Figure 239. Register 21 (0x15)  
7
6
5
4
3
2
1
0
LSG1  
R/W  
Reserved  
R/W  
LSUB  
R/W  
Reserved  
R/W  
RSG1  
R/W  
Reserved  
R/W  
RSUB  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 179. Register 21 (0x15) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
LSG1  
0
0
0
0
0
0
0
0
Left DAC secondary g1 gain. Left DAC secondary local loop gain  
6
Reserved  
LSUB  
Reserved  
5
Left DAC secondary upper bits. Number of left DAC secondary upper bits  
4
Reserved  
RSG1  
Reserved  
3
Right DAC secondary g1 gain. Right DAC secondary local loop gain  
Reserved  
2
Reserved  
RSUB  
1
Right DAC secondary upper bits. Number of right DAC secondary upper bits  
Reserved  
0
Reserved  
13.3.22 Register 2 (0x16)  
Figure 240. Register 22 (0x16)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CPHY  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 180. Register 22 (0x16) Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
CPHY  
0
1
Reserved  
CP Hysterisis - Hysterisis control of VNEG Detector  
13.3.23 Register 23 (0x17)  
Figure 241. Register 23 (0x17)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CPHY  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 181. Register 23 (0x17) Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
CPHY  
0
1
Reserved  
CP Hysterisis - Hysterisis control of VNEG Detector  
Copyright © 2016, Texas Instruments Incorporated  
165  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.24 Register 24 (0x18)  
Figure 242. Register 24 (0x18)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
OT33  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 182. Register 24 (0x18) Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
0
1
0
0
Reserved  
1
OT33  
Bias current trimming for internal 3.3V oscillator. Bias current 00-111: ?-?uA  
0
13.3.25 Register 25 (0x19)  
Figure 243. Register 25 (0x19)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 183. Register 25 (0x19) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.26 Register 26 (0x1A)  
Figure 244. Register 26 (0x1A)  
7
6
5
4
3
2
1
0
RBTR  
R/W  
RCTR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 184. Register 26 (0x1A) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
1
0
0
0
6
RBTR  
RCTR  
REF BTrim. Trimming of bandgap reference voltage.  
REF CTrim. Trimming of common voltage dividing AVDD.  
5
4
3-0  
166  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.27 Register 27 (0x1B)  
Figure 245. Register 27 (0x1B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 185. Register 27 (0x1B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.28 Register 28 (0x1C)  
Figure 246. Register 28 (0x1C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PLLR  
R/W  
Reserved  
R/W  
PTST  
R/W  
PVC1  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 186. Register 28 (0x1C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
PLL RST - Reset counter of all divider.  
0: Reset  
1: Normal operation  
4
3-2  
1
PLLR  
R/W  
R/W  
R/W  
1
0
0
Reserved  
PTST  
Reserved  
PLL IREF TEST. IREF test mode enable/disable.  
0: normal  
1: test mode  
PLL VCIC.  
0
PVCI  
R/W  
0
0: Normal operation  
1: Brings higher free-running frequency  
13.3.29 Register 29 (0x1D)  
Figure 247. Register 29 (0x1D)  
7
6
5
4
3
2
1
0
PLL IREF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 187. Register 29 (0x1D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reference current control on test-mode.  
00000000-11111111: ?? -??A  
7-0  
PLL IREF  
R/W  
0
Copyright © 2016, Texas Instruments Incorporated  
167  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.30 Register 30 (0x1E)  
Figure 248. Register 30 (0x1E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PLLT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 188. Register 30 (0x1E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
PLL TEST - Power up/down control for PFD in PLL at test mode.  
0
PLLT  
R/W  
0
0: Power up  
1: Power down  
13.3.31 Register 31 (0x1F)  
Figure 249. Register 31 (0x1F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LSFG  
R/W  
Reserved  
R/W  
LSPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 189. Register 31 (0x1F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
LDO_SCPZ - LDO short flag.  
0: Short state  
1: Not short state  
4
3-1  
0
LSFG  
R/W  
R/W  
R/W  
0
0
0
Reserved  
LSPD  
Reserved  
LDO SCPD - LDO power down behavior at short condition.  
0: LDO is automatically power down if short state detects  
1: Disable  
168  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.32 Register 32 (0x20)  
Figure 250. Register 32 (0x20)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
UTM1  
R/W  
UTM2  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 190. Register 32 (0x20) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
0
Reserved  
UVP TEST mode 1 - Change external threshold voltage.  
0: VH=0.7xDVDD, VL=0.3xDVDD  
1: VH=0.67xDVDD, VL=0.33xDVDD  
1
0
UTM1  
UTM2  
R/W  
R/W  
UVP TEST mode 2 - Change reference source for internal AVDD detection.  
0: Divided LDO_1p8 by resistor  
0
1: Bandgap reference of UVP  
13.3.33 Register 33 (0x21)  
Figure 251. Register 33 (0x21)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
TST1  
R/W  
TST2  
R/W  
TST3  
R/W  
TST4  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 191. Register 33 (0x21) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
0
Reserved  
Analog test mode 1 - Line first stage load ctrl <0>  
3
2
1
TST1  
TST2  
TST3  
R/W  
R/W  
R/W  
0
0
1
0: Disable  
1: Enable  
Analog test mode 2 - Line first stage load ctrl <1>0: Disable  
1: Enable  
Analog test mode 3 - Line slew rate ctrl <0>  
0: Disable  
1: Enable  
Analog test mode 4 - Line slew rate ctrl <1>  
0
TST4  
R/W  
1
0: Disable  
1: Enable  
Copyright © 2016, Texas Instruments Incorporated  
169  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.34 Register 34 (0x22)  
Figure 252. Register 34 (0x22)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RFPO  
R/W  
DLPO  
R/W  
LLPO  
R/W  
BLPO  
R/W  
CLPO  
R/W  
OLPO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 192. Register 34 (0x22) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
R/W  
0
Reserved  
REF PWRDN override. Power up/down control for whole bias current.  
5
4
3
2
1
RFPO  
DLPO  
LLPO  
BLPO  
CLPO  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0: normal  
1: override  
Lch DAC PWRDN override. Power up/down control for Lch current DAC.  
0: normal  
1: override  
Lch Line Driver PWRDN override. Power up/down control for Lch line driver  
0: normal  
1: override  
Lch Line Bias PWRDN override. Power up/down control for bais block of Lch line driver  
0: normal  
1: override  
Lch Line CMFB2 PWRDN override. Power up/down control for CMFB of Lch line driver  
0: normal  
1: override  
Lch Output Stage PWRDN override. Power up/down control for output stage of Lch line  
driver  
0: normal  
1: override  
0
OLPO  
R/W  
0
170  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.35 Register 35 (0x23)  
Figure 253. Register 35 (0x23)  
7
6
5
4
3
2
1
0
GLPO  
R/W  
ALPO  
R/W  
ULPO  
R/W  
CPPO  
R/W  
FLPO  
R/W  
SLPO  
R/W  
ILPO  
R/W  
WLPO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 193. Register 35 (0x23) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lch Gain control PWRDN override. Power up/down control for Lch gain control  
7
GLPO  
R/W  
0
0: normal  
1: override  
Lch AMUTE override. Lch Analog Mute control.  
6
5
4
ALPO  
ULPO  
CPPO  
R/W  
R/W  
R/W  
0
0
0
0: normal  
1: override  
Lch AMUTE dummy override. Lch Analog Mute control.  
0: normal  
1: override  
CP PWRDN override. Power up/down control for negative charge pump.  
0: normal  
1: override  
Lch OFSCOMP PWRDN override. Power up/down control for offset calibration block for  
Lch line driver.  
0: normal  
1: override  
3
2
1
0
FLPO  
SLPO  
ILPO  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Lch Short Protection PWRDN override. Power up/down control for short protection of  
Lch line driver.  
0: normal  
1: override  
Lch IMP sense PWRDN override. Power up/down control for impedance sensing circuit  
of Lch line driver.  
0: normal  
1: override  
Lch IMP whole PWRDN override. Power up/down control for impedance sensing circuit  
of Lch line driver at whole analog power down.  
0: normal  
WLPO  
1: override  
Copyright © 2016, Texas Instruments Incorporated  
171  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.36 Register 36 (0x24)  
Figure 254. Register 36 (0x24)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RFPS  
R/W  
DLPS  
R/W  
LLPS  
R/W  
BLPS  
R/W  
CLPS  
R/W  
OLPS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 194. Register 36 (0x24) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Reserved  
R/W  
0
Reserved  
REF PWRDN state. Power up/down control for whole bias current.  
5
4
3
2
1
RFPS  
DLPS  
LLPS  
BLPS  
CLPS  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0: Power down  
1: Power up  
Lch DAC PWRDN state. Power up/down control for Lch current DAC.  
0: Power down  
1: Power up  
Lch Line Driver PWRDN state. Power up/down control for Lch line driver.  
0: Power down  
1: Power up  
Lch Line Bias PWRDN state .Power up/down control for bais block of Lch line driver.  
0: Power down  
1: Power up  
Lch Line CMFB2 PWRDN state. Power up/down control for CMFB of Lch line driver.  
0: Power down  
1: Power up  
Lch Output Stage PWRDN state. Power up/down control for output stage of Lch line  
driver.  
0: Power down  
1: Power up  
0
OLPS  
R/W  
0
172  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.37 Register 37 (0x25)  
Figure 255. Register 37 (0x25)  
7
6
5
4
3
2
1
0
GLPS  
R/W  
ALPS  
R/W  
ULPS  
R/W  
CPPS  
R/W  
FLPS  
R/W  
SLPS  
R/W  
ILPS  
R/W  
WLPS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 195. Register 37 (0x25) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Lch Gain control PWRDN state. Power up/down control for Lch gain control.  
7
GLPS  
R/W  
0
0: Power down  
1: Power up  
Lch AMUTE state. Lch Analog Mute control.  
0: Power down  
1: Power up  
6
5
4
ALPS  
ULPS  
CPPS  
R/W  
R/W  
R/W  
0
0
0
Lch AMUTE dummy state. Lch Analog Mute control.  
0: Power down  
1: Power up  
CP PWRDN state. Power up/down control for negative charge pump.  
0: Power down  
1: Power up  
Lch OFSCOMP PWRDN state. Power up/down control for offset calibration block for  
Lch line driver.  
0: Power down  
1: Power up  
3
2
1
0
FLPS  
SLPS  
ILPS  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Lch Short Protection PWRDN state. Power up/down control for short protection of Lch  
line driver.  
0: Power down  
1: Power up  
Lch IMP sense PWRDN state. Power up/down control for impedance sensing circuit of  
Lch line driver.  
0: Power down  
1: Power up  
Lch IMP whole PWRDN state. Power up/down control for impedance sensing circuit of  
Lch line driver at whole analog power down.  
0: Power down  
WLPS  
1: Power up  
Copyright © 2016, Texas Instruments Incorporated  
173  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.38 Register 38 (0x26)  
Figure 256. Register 38 (0x26)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DRPO  
R/W  
LRPO  
R/W  
BRPO  
R/W  
CRPO  
R/W  
ORPO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 196. Register 38 (0x26) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Rch DAC PWRDN override. Power up/down control for Rch current DAC.  
4
3
DRPO  
LRPO  
R/W  
R/W  
0
0
0: normal  
1: override  
Rch Line Driver PWRDN override. Power up/down control for Rch line driver.  
0: normal  
1: override  
Rch Line Bias PWRDN override. Power up/down control for bais block of Rch line  
driver.  
0: normal  
1: override  
2
1
0
BRPO  
CRPO  
ORPO  
R/W  
R/W  
R/W  
0
0
0
Rch Line CMFB2 PWRDN override. Power up/down control for CMFB of Rch line  
driver.  
0: normal  
1: override  
Rch Output Stage PWRDN override. Power up/down control for output stage of Rch  
line driver.  
0: normal  
1: override  
174  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.39 Register 39 (0x27)  
Figure 257. Register 39 (0x27)  
7
6
5
4
3
2
1
0
GRPO  
R/W  
ARPO  
R/W  
URPO  
R/W  
Reserved  
R/W  
FRPO  
R/W  
SRPO  
R/W  
IRPO  
R/W  
WRPO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 197. Register 39 (0x27) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Rch Gain control PWRDN override. Power up/down control for Rch gain control.  
7
GRPO  
R/W  
0
0: normal  
1: override  
Rch AMUTE override. Rch Analog Mute control.  
6
ARPO  
R/W  
0
0: normal  
1: override  
Rch AMUTE dummy override. Rch Analog Mute control.  
5
4
URPO  
R/W  
R/W  
0
0
0: normal  
1: override  
Reserved  
Reserved  
Rch OFSCOMP PWRDN override. Power up/down control for offset calibration block  
for Rch line driver.  
0: normal  
1: override  
3
2
1
0
FRPO  
SRPO  
IRPO  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Rch Short Protection PWRDN override. Power up/down control for short protection of  
Rch line driver.  
0: normal  
1: override  
Rch IMP sense PWRDN override. Power up/down control for impedance sensing circuit  
of Rch line driver.  
0: normal  
1: override  
Rch IMP whole PWRDN override. Power up/down control for Rch impedance sensing  
circuit of Rch line driver at whole analog power down.  
0: normal  
WRPO  
1: override  
Copyright © 2016, Texas Instruments Incorporated  
175  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.40 Register 40 (0x28)  
Figure 258. Register 40 (0x28)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DRPS  
R/W  
LRPS  
R/W  
BRPS  
R/W  
CRPS  
R/W  
ORPS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 198. Register 40 (0x28) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Rch DAC PWRDN state. Power up/down control for Rch current DAC.  
4
3
2
1
DRPS  
LRPS  
BRPS  
CRPS  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: Power down  
1: Power up  
Rch Line Driver PWRDN state. Power up/down control for Rch line driver.  
0: Power down  
1: Power up  
Rch Line Bias PWRDN state. Power up/down control for bais block of Rch line driver.  
0: Power down  
1: Power up  
Rch Line CMFB2 PWRDN state. Power up/down control for CMFB of Rch line driver.  
0: Power down  
1: Power up  
Rch Output Stage PWRDN state. Power up/down control for output stage of Rch line  
driver.  
0: Power down  
1: Power up  
0
ORPS  
R/W  
0
176  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.41 Register 41 (0x29)  
Figure 259. Register 41 (0x29)  
7
6
5
4
3
2
1
0
GRPS  
R/W  
ARPS  
R/W  
URPS  
R/W  
Reserved  
R/W  
FRPS  
R/W  
SRPS  
R/W  
IRPS  
R/W  
WRPS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 199. Register 41 (0x29) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Rch Gain control PWRDN state. Power up/down control for Rch gain control.  
7
GRPS  
R/W  
0
0: Power down  
1: Power up  
Rch AMUTE state. Rch Analog Mute control.  
0: Power down  
6
ARPS  
R/W  
0
1: Power up  
Rch AMUTE dummy state. Rch Analog Mute control.  
5
4
URPS  
R/W  
R/W  
0
0
0: Power down  
1: Power up  
Reserved  
Reserved  
Rch OFSCOMP PWRDN state. Power up/down control for offset calibration block for  
Rch line driver.  
0: Power down  
1: Power up  
3
2
1
0
FRPS  
SRPS  
IRPS  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Rch Short Protection PWRDN state. Power up/down control for short protection of Rch  
line driver.  
0: Power down  
1: Power up  
Rch IMP sense PWRDN state. Power up/down control for impedance sensing circuit of  
Rch line driver.  
0: Power down  
1: Power up  
Rch IMP whole PWRDN state. Power up/down control for Rch impedance sensing  
circuit of Rch line driver at whole analog power down.  
0: Power down  
1: Power up  
WRPS  
Copyright © 2016, Texas Instruments Incorporated  
177  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.42 Register 42 (0x2A)  
Figure 260. Register 42 (0x2A)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CMEN  
R/W  
Reserved  
R/W  
CMSL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 200. Register 42 (0x2A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
CP operation mode control enable. Enable/Disable for charge pump mode select.  
4
3-1  
0
CMEN  
R/W  
R/W  
R/W  
0
0
1
0: Disable  
1: Enable  
Reserved  
CMSL  
Reserved  
CP operation mode select. Charge pump mode select by register.  
0: Normal operation  
1: Constant current mode  
13.3.43 Register 43 (0x2B)  
Figure 261. Register 43 (0x2B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CHDP  
R/W  
Reserved  
R/W  
CHI4  
R/W  
HDEN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 201. Register 43 (0x2B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
CHD power up/down control. Power up/down control for clock halt detector.  
4
3-2  
1
CHDP  
R/W  
R/W  
R/W  
1
0
0
0: Power down  
1: Power up  
Reserved  
CHI4  
Reserved  
CHD current control override. x4 current control for clock halt detector.  
0: Normal operation  
1: x4 current operation  
CHD detector enable/disable control. Enable/disable control for clock halt detector. At  
'disable', output shows "1".  
0: Enable  
0
HDEN  
R/W  
0
1: Disable  
178  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.44 Register 44 (0x2C)  
Figure 262. Register 44 (0x2C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LBPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 202. Register 44 (0x2C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
LDO bandgap power up/down control. LDO bandgap power/up down control on Test  
mode.  
0: Power down  
1: Power up  
0
LBPD  
R/W  
0
13.3.45 Register 63 (0x3F)  
Figure 263. Register 63 (0x3F)  
7
6
5
4
3
2
1
0
PWD1  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 203. Register 63 (0x3F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Password1  
First word of password.  
Both words of password must be correctly set in order to unlock test registers.  
7-0  
PWD1  
R/W  
0
When locked, writing to test registers are inhibited and reading them will return 0.  
13.3.46 Register 64 (0x40)  
Figure 264. Register 64 (0x40)  
7
6
5
4
3
2
1
0
PWD2  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 204. Register 64 (0x40) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Password2  
First word of password.  
Both words of password must be correctly set in order to unlock test registers.  
When locked, writing to test registers are inhibited and reading them will return 0.  
7-0  
PWD2  
R/W  
0
Copyright © 2016, Texas Instruments Incorporated  
179  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.47 Register 65 (0x41)  
Figure 265. Register 65 (0x41)  
7
6
5
4
3
1
0
Reserved  
R/W  
TSEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 205. Register 65 (0x41) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R/W  
0
Reserved  
Test Mode Selection (No longer need)  
0: Normal  
1:SCAN  
2:IDDQ  
3:VOH  
4:VOL  
3-0  
TSEL  
R/W  
0
5: VIL  
6:VIH  
7:HI-Z  
13.3.48 Register 70 (0x46)  
Figure 266. Register 70 (0x46)  
7
6
5
4
3
1
0
Left Channel DIFF Manual Offset (Q5.2)  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 206. Register 70 (0x46) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Add manual offset to the left channel DIFF offset compensator.  
Observed offset delta:  
0111111 : -15.75 mV  
0111110 : -15.50 mV  
0111101 : -15.25 mV  
0000001 : -0.25 mV  
0000000 : 0.0 mV  
1111111 : 0.25 mV  
Left Channel  
DIFF Manual  
Offset (Q5.2)  
7-0  
R/W  
0
1000010 : 15.50 mV  
1000001 : 15.75 mV  
1000000 : 16.0 mV  
180  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.49 Register 71 (0x47)  
Figure 267. Register 71 (0x47)  
7
6
5
4
3
1
0
Left Channel CMFB Manual Offset (Q6.2)  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 207. Register 71 (0x47) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Add manual offset to the left channel CMFB offset compensator.  
Observed offset delta:  
0111111 : -31.75 mV  
0111110 : -31.50 mV  
0111101 : -31.25 mV  
0000001 : -0.25 mV  
0000000 : 0.0 mV  
1111111 : 0.25 mV  
Left Channel  
CMFB Manual  
Offset (Q6.2)  
7-0  
R/W  
0
1000010 : 31.50 mV  
1000001 : 31.75 mV  
1000000 : 32.0 mV  
13.3.50 Register 72 (0x48)  
Figure 268. Register 72 (0x48)  
7
6
5
4
3
1
0
Right Channel DIFF Manual Offset (Q5.2)  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 208. Register 72 (0x48) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Add manual offset to the right channel DIFF offset compensator.  
Observed offset delta:  
0111111 : -15.75 mV  
0111110 : -15.50 mV  
0111101 : -15.25 mV  
0000001 : -0.25 mV  
0000000 : 0.0 mV  
1111111 : 0.25 mV  
Right Channel  
DIFF Manual  
Offset (Q5.2)  
7-0  
R/W  
0
1000010 : 15.50 mV  
1000001 : 15.75 mV  
1000000 : 16.0 mV  
Copyright © 2016, Texas Instruments Incorporated  
181  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.51 Register 73 (0x49)  
Figure 269. Register 73 (0x49)  
7
6
5
4
3
1
0
Right Channel CMFB Manual Offset (Q6.2)  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 209. Register 73 (0x49) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Add manual offset to the right channel CMFB offset compensator.  
Observed offset delta:  
0111111 : -31.75 mV  
0111110 : -31.50 mV  
0111101 : -31.25 mV  
0000001 : -0.25 mV  
0000000 : 0.0 mV  
1111111 : 0.25 mV  
Right Channel  
CMFB Manual  
Offset (Q6.2)  
7-0  
R/W  
0
1000010 : 31.50 mV  
1000001 : 31.75 mV  
1000000 : 32.0 mV  
13.3.52 Register 74 (0x4A)  
Figure 270. Register 74 (0x4A)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 210. Register 74 (0x4A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.53 Register 75 (0x4B)  
Figure 271. Register 75 (0x4B)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 211. Register 75 (0x4B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
182  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.54 Register 76 (0x4C)  
Figure 272. Register 76 (0x4C)  
7
6
5
4
3
1
0
Reserved  
Left Channel  
DIFF Monitor(8)  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 212. Register 76 (0x4C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
This register shows the approximation of original / compensated left channel DIFF  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : -0.25 mV  
Left Channel DIFF  
Monitor(8)  
0
R
1000010 : -63.50 mV  
1000001 : -63.75 mV  
1000000 : -64.0 mV  
13.3.55 Register 77 (0x4D)  
Figure 273. Register 77 (0x4D)  
7
6
5
4
3
1
0
Left Channel DIFF Monitor(7:0)  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 213. Register 77 (0x4D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This register shows the approximation of original / compensated left channel DIFF  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : -0.25 mV  
Left Channel  
DIFF Monitor(7:0)  
7-0  
R
1000010 : -63.50 mV  
1000001 : -63.75 mV  
1000000 : -64.0 mV  
Copyright © 2016, Texas Instruments Incorporated  
183  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.56 Register 78 (0x4E)  
Figure 274. Register 78 (0x4E)  
7
6
5
4
3
1
0
Reserved  
R/W  
I048  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 214. Register 78 (0x4E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
FS Det 48 kHz Min Range . Minimum OSC count in LRCLK for 48 kHz detection.  
Decimal Value 863.  
4-0  
I048  
R/W  
0
13.3.57 Register 79 (0x4F)  
Figure 275. Register 79 (0x4F)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 215. Register 79 (0x4F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.58 Register 80 (0x50)  
Figure 276. Register 80 (0x50)  
7
6
5
4
3
1
0
Reserved  
R/W  
X048  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 216. Register 80 (0x50) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
FS Det 48 kHz Max Range. Minimum OSC count in LRCLK for 48 kHz detection.  
Decimal Value 2479.  
4-0  
X048  
R/W  
0
13.3.59 Register 81 (0x51)  
Figure 277. Register 81 (0x51)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 217. Register 81 (0x51) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
184  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.60 Register 82 (0x52)  
Figure 278. Register 82 (0x52)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 218. Register 82 (0x52) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.61 Register 83 (0x53)  
Figure 279. Register 83 (0x53)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 219. Register 83 (0x53) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.62 Register 84 (0x54)  
Figure 280. Register 84 (0x54)  
7
6
5
4
3
1
0
Reserved  
Left Channel  
CMFB Monitor  
(8)  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 220. Register 84 (0x54) Field Descriptions  
Bit  
Field  
Type Reset  
R/W  
Description  
7-1  
Reserved  
0
Reserved  
This register shows the approximation of original / compensated left channel CMFB  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : -0.25 mV  
Left Channel CMFB  
Monitor(8)  
0
R
1000010 : -63.50 mV  
1000001 : -63.75 mV  
1000000 : -64.0 mV  
Copyright © 2016, Texas Instruments Incorporated  
185  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.63 Register 85 (0x55)  
Figure 281. Register 85 (0x55)  
7
6
5
4
3
1
0
Left Channel CMFB Monitor (7:0)  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 221. Register 85 (0x55) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This register shows the approximation of original / compensated left channel CMFB  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : –0.25 mV  
Left Channel  
CMFB Monitor  
(7:0)  
7-0  
R
1000010 : –63.50 mV  
1000001 : –63.75 mV  
1000000 : –64.0 mV  
13.3.64 Register 86 (0x56)  
Figure 282. Register 86 (0x56)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 222. Register 86 (0x56) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.65 Register 87 (0x57)  
Figure 283. Register 87 (0x57)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 223. Register 87 (0x57) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
186  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.66 Register 88 (0x58)  
Figure 284. Register 88 (0x58)  
7
6
5
4
3
1
0
Reserved  
Right Channel  
DIFF Monitor  
(8)  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 224. Register 88 (0x58) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
This register shows the approximation of original / compensated right channel DIFF  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : -0.25 mV  
Right Channel  
DIFF Monitor (8)  
0
R
1000010 : -63.50 mV  
1000001 : -63.75 mV  
1000000 : -64.0 mV  
13.3.67 Register 89 (0x59)  
Figure 285. Register 89 (0x59)  
7
6
5
4
3
1
0
Right Channel DIFF Monitor (7:0)  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 225. Register 89 (0x59) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This register shows the approximation of original / compensated right channel DIFF  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : -0.25 mV  
Right Channel  
DIFF Monitor  
(7:0)  
7-0  
R
1000010 : -63.50 mV  
1000001 : -63.75 mV  
1000000 : -64.0 mV  
Copyright © 2016, Texas Instruments Incorporated  
187  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
13.3.68 Register 90 (0x5A)  
Figure 286. Register 90 (0x5A)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 226. Register 90 (0x5A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.69 Register 91 (0x5B)  
Figure 287. Register 91 (0x5B)  
7
6
5
4
3
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 227. Register 91 (0x5B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R/W  
0
Reserved  
13.3.70 Register 92 (0x5C)  
Figure 288. Register 92 (0x5C)  
7
6
5
4
3
1
0
Reserved  
Right Channel  
CMFB Monitor  
(8)  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 228. Register 92 (0x5C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
This register shows the approximation of original / compensated right channel CMFB  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : –0.25 mV  
Right Channel  
CMFB Monitor(8)  
0
R
1000010 : –63.50 mV  
1000001 : –63.75 mV  
1000000 : –64.0 mV  
188  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
13.3.71 Register 93 (0x5D)  
Figure 289. Register 93 (0x5D)  
7
6
5
4
3
1
0
Right Channel CMFB Monito r(7:0)  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 229. Register 93 (0x5D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This register shows the approximation of original / compensated right channel CMFB  
offset.  
Observed offset delta:  
0111111 : 63.75 mV  
0111110 : 63.50 mV  
0111101 : 63.25 mV  
0000001 : 0.25 mV  
0000000 : 0.0 mV  
1111111 : –0.25 mV  
Right Channel  
CMFB Monitor  
(7:0)  
7-0  
R
1000010 : –63.50 mV  
1000001 : –63.75 mV  
1000000 : –64.0 mV  
13.4 DSP Memory Map  
Table 230. Memory Map — Book 0x78 (120)(1)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
FORMAT  
LEVEL METER  
4 / 1.31  
0x54  
0x58  
0x0C  
0x0C  
Level Meter Left Output  
0x000000--  
0x000000--  
Level Meter Left Output  
Level Meter Right  
Output  
Level Meter Right  
Output  
4 / 1.31  
SECONDARY EQ LEFT 12 BQS  
4 / 5.27  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
CH-L BQ 1 B0  
CH-L BQ 1 B1  
CH-L BQ 1 B2  
CH-L BQ 1 A1  
CH-L BQ 1 A2  
CH-L BQ 2 B0  
CH-L BQ 2 B1  
CH-L BQ 2 B2  
CH-L BQ 2 A1  
CH-L BQ 2 A2  
CH-L BQ 3 B0  
CH-L BQ 3 B1  
CH-L BQ 3 B2  
CH-L BQ 3 A1  
CH-L BQ 3 A2  
CH-L BQ 4 B0  
CH-L BQ 4 B1  
CH-L BQ 4 B2  
CH-L BQ 4 A1  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
4 / 6.26  
4 / 5.27  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
(1) The registers in this table do not require the swap flag to work  
Copyright © 2016, Texas Instruments Incorporated  
189  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
DSP Memory Map (continued)  
Table 230. Memory Map — Book 0x78 (120)(1) (continued)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
FORMAT  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x15  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
0x16  
CH-L BQ 4 A2  
CH-L BQ 5 B0  
CH-L BQ 5 B1  
CH-L BQ 5 B2  
CH-L BQ 5 A1  
CH-L BQ 5 A2  
CH-L BQ 6 B0  
CH-L BQ 6 B1  
CH-L BQ 6 B2  
CH-L BQ 6 A1  
CH-L BQ 6 A2  
CH-L BQ 7 B0  
CH-L BQ 7 B1  
CH-L BQ 7 B2  
CH-L BQ 7 A1  
CH-L BQ 7 A2  
CH-L BQ 8 B0  
CH-L BQ 8 B1  
CH-L BQ 8 B2  
CH-L BQ 8 A1  
CH-L BQ 8 A2  
CH-L BQ 9 B0  
CH-L BQ 9 B1  
CH-L BQ 9 B2  
CH-L BQ 9 A1  
CH-L BQ 9 A2  
CH-L BQ 10 B0  
CH-L BQ 10 B1  
CH-L BQ 10 B2  
CH-L BQ 10 A1  
CH-L BQ 10 A2  
CH-L BQ 11 B0  
CH-L BQ 11 B1  
CH-L BQ 11 B2  
CH-L BQ 11 A1  
CH-L BQ 11 A2  
CH-L BQ 12 B0  
CH-L BQ 12 B1  
CH-L BQ 12 B2  
CH-L BQ 12 A1  
CH-L BQ 12 A2  
4 / 1.31  
4 / 1.31  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
SECONDARY EQ RIGHT 12 BQS  
4 / 5.27  
0x08  
0x0C  
0x10  
0x17  
0x17  
0x17  
CH-R BQ 1 B0  
CH-R BQ 1 B1  
CH-R BQ 1 B2  
0x7FFFFFFF  
0x00000000  
0x00000000  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
4 / 6.26  
4 / 5.27  
190  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
DSP Memory Map (continued)  
Table 230. Memory Map — Book 0x78 (120)(1) (continued)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
FORMAT  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x17  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
CH-R BQ 1 A1  
CH-R BQ 1 A2  
CH-R BQ 2 B0  
CH-R BQ 2 B1  
CH-R BQ 2 B2  
CH-R BQ 2 A1  
CH-R BQ 2 A2  
CH-R BQ 3 B0  
CH-R BQ 3 B1  
CH-R BQ 3 B2  
CH-R BQ 3 A1  
CH-R BQ 3 A2  
CH-R BQ 4 B0  
CH-R BQ 4 B1  
CH-R BQ 4 B2  
CH-R BQ 4 A1  
CH-R BQ 4 A2  
CH-R BQ 5 B0  
CH-R BQ 5 B1  
CH-R BQ 5 B2  
CH-R BQ 5 A1  
CH-R BQ 5 A2  
CH-R BQ 6 B0  
CH-R BQ 6 B1  
CH-R BQ 6 B2  
CH-R BQ 6 A1  
CH-R BQ 6 A2  
CH-R BQ 7 B0  
CH-R BQ 7 B1  
CH-R BQ 7 B2  
CH-R BQ 7 A1  
CH-R BQ 7 A2  
CH-R BQ 8 B0  
CH-R BQ 8 B1  
CH-R BQ 8 B2  
CH-R BQ 8 A1  
CH-R BQ 8 A2  
CH-R BQ 9 B0  
CH-R BQ 9 B1  
CH-R BQ 9 B2  
CH-R BQ 9 A1  
CH-R BQ 9 A2  
CH-R BQ 10 B0  
CH-R BQ 10 B1  
CH-R BQ 10 B2  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Copyright © 2016, Texas Instruments Incorporated  
191  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
DSP Memory Map (continued)  
Table 230. Memory Map — Book 0x78 (120)(1) (continued)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
FORMAT  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
0x18  
CH-R BQ 10 A1  
CH-R BQ 10 A2  
CH-R BQ 11 B0  
CH-R BQ 11 B1  
CH-R BQ 11 B2  
CH-R BQ 11 A1  
CH-R BQ 11 A2  
CH-R BQ 12 B0  
CH-R BQ 12 B1  
CH-R BQ 12 B2  
CH-R BQ 12 A1  
CH-R BQ 12 A2  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
SECONDARY BQ GAIN SCALE AND VOLUME  
0x08  
0x0C  
0x19  
0x19  
Left Gain  
4 / 8.24  
Gain  
Gain  
Right Gain  
4 / 8.24  
BANK SWITCH  
0x08  
0x14  
Left Gain  
4 / 32.0  
0x00000000  
Needs swap flag to run -  
Table 231. Memory Map — Book 0x8C (140)(1)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
FORMAT  
DSP MEMORY UPDATE  
4 / 32.0  
0x10  
0x01  
DSP Memory Swap Flag  
0x00000000  
DSP Memory Swap Flag  
MAIN EQ LEFT 12 BQS  
4 / 5.27  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
CH-L BQ 1 B0  
CH-L BQ 1 B1  
CH-L BQ 1 B2  
CH-L BQ 1 A1  
CH-L BQ 1 A2  
CH-L BQ 2 B0  
CH-L BQ 2 B1  
CH-L BQ 2 B2  
CH-L BQ 2 A1  
CH-L BQ 2 A2  
CH-L BQ 3 B0  
CH-L BQ 3 B1  
CH-L BQ 3 B2  
CH-L BQ 3 A1  
CH-L BQ 3 A2  
CH-L BQ 4 B0  
CH-L BQ 4 B1  
CH-L BQ 4 B2  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
4 / 6.26  
4 / 5.27  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
(1) Will be set to default anytime a DSP reset, CP error or device standby occurs. Clock errors and frequency changes cause DSP reset.  
The clocks should be stable when using these mux in non-default state. Always poll muxes status and set muxes prior to use in  
application. TI recommends that these muxes are repeatedly polled and refreshed during application in the event a DSP reset occurred  
that cleared the muxes.  
192  
Copyright © 2016, Texas Instruments Incorporated  
 
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 231. Memory Map — Book 0x8C (140)(1) (continued)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
FORMAT  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
MAIN EQ RIGHT 12 BQS  
4 / 5.27  
4 / 6.26  
4 / 5.27  
4 / 2.30  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1C  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
CH-L BQ 4 A1  
CH-L BQ 4 A2  
CH-L BQ 5 B0  
CH-L BQ 5 B1  
CH-L BQ 5 B2  
CH-L BQ 5 A1  
CH-L BQ 5 A2  
CH-L BQ 6 B0  
CH-L BQ 6 B1  
CH-L BQ 6 B2  
CH-L BQ 6 A1  
CH-L BQ 6 A2  
CH-L BQ 7 B0  
CH-L BQ 7 B1  
CH-L BQ 7 B2  
CH-L BQ 7 A1  
CH-L BQ 7 A2  
CH-L BQ 8 B0  
CH-L BQ 8 B1  
CH-L BQ 8 B2  
CH-L BQ 8 A1  
CH-L BQ 8 A2  
CH-L BQ 9 B0  
CH-L BQ 9 B1  
CH-L BQ 9 B2  
CH-L BQ 9 A1  
CH-L BQ 9 A2  
CH-L BQ 10 B0  
CH-L BQ 10 B1  
CH-L BQ 10 B2  
CH-L BQ 10 A1  
CH-L BQ 10 A2  
CH-L BQ 11 B0  
CH-L BQ 11 B1  
CH-L BQ 11 B2  
CH-L BQ 11 A1  
CH-L BQ 11 A2  
CH-L BQ 12 B0  
CH-L BQ 12 B1  
CH-L BQ 12 B2  
CH-L BQ 12 A1  
CH-L BQ 12 A2  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
Left BQ coefficient  
0x58  
0x5C  
0x60  
0x64  
0x1D  
0x1D  
0x1D  
0x1D  
CH-R BQ 1 B0  
CH-R BQ 1 B1  
CH-R BQ 1 B2  
CH-R BQ 1 A1  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Copyright © 2016, Texas Instruments Incorporated  
193  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 231. Memory Map — Book 0x8C (140)(1) (continued)  
SUB  
PAGE  
NUMBER OF BYTES /  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
ADDRESS  
FORMAT  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x08  
0x8C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1D  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
CH-R BQ 1 A2  
CH-R BQ 2 B0  
CH-R BQ 2 B1  
CH-R BQ 2 B2  
CH-R BQ 2 A1  
CH-R BQ 2 A2  
CH-R BQ 3 B0  
CH-R BQ 3 B1  
CH-R BQ 3 B2  
CH-R BQ 3 A1  
CH-R BQ 3 A2  
CH-R BQ 4 B0  
CH-R BQ 4 B1  
CH-R BQ 4 B2  
CH-R BQ 4 A1  
CH-R BQ 4 A2  
CH-R BQ 5 B0  
CH-R BQ 5 B1  
CH-R BQ 5 B2  
CH-R BQ 5 A1  
CH-R BQ 5 A2  
CH-R BQ 6 B0  
CH-R BQ 6 B1  
CH-R BQ 6 B2  
CH-R BQ 6 A1  
CH-R BQ 6 A2  
CH-R BQ 7 B0  
CH-R BQ 7 B1  
CH-R BQ 7 B2  
CH-R BQ 7 A1  
CH-R BQ 7 A2  
CH-R BQ 8 B0  
CH-R BQ 8 B1  
CH-R BQ 8 B2  
CH-R BQ 8 A1  
CH-R BQ 8 A2  
CH-R BQ 9 B0  
CH-R BQ 9 B1  
CH-R BQ 9 B2  
CH-R BQ 9 A1  
CH-R BQ 9 A2  
CH-R BQ 10 B0  
CH-R BQ 10 B1  
CH-R BQ 10 B2  
CH-R BQ 10 A1  
CH-R BQ 10 A2  
CH-R BQ 11 B0  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
194  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 231. Memory Map — Book 0x8C (140)(1) (continued)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
FORMAT  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 1.31  
4 / 2.30  
4 / 1.31  
4 / 2.30  
4 / 1.31  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
CH-R BQ 11 B1  
CH-R BQ 11 B2  
CH-R BQ 11 A1  
CH-R BQ 11 A2  
CH-R BQ 12 B0  
CH-R BQ 12 B1  
CH-R BQ 12 B2  
CH-R BQ 12 A1  
CH-R BQ 12 A2  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
Right BQ coefficient  
MAIN BQ GAIN SCALE AND VOLUME  
0x58  
0x5C  
0x1F  
0x1F  
Left Gain  
4 / 8.24  
0x01000000  
0x01000000  
Gain  
Gain  
Right Gain  
4 / 8.24  
DPEQ SENSE BQ  
DPEQ sense BQ  
coefficient  
0x6C  
0x70  
0x74  
0x78  
0x7C  
0x1F  
0x1F  
0x1F  
0x1F  
0x1F  
BQ B0  
BQ B1  
BQ B2  
BQ A1  
BQ A2  
4 / 1.31  
4 / 1.31  
4 / 1.31  
4 / 1.31  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
DPEQ sense BQ  
coefficient  
DPEQ sense BQ  
coefficient  
DPEQ sense BQ  
coefficient  
DPEQ sense BQ  
coefficient  
4 / 1.31  
DPEQ HIGH LEVEL PATH BQ  
4 / 1.31  
DPEQ high BQ  
coefficient  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x20  
0x20  
0x20  
0x20  
0x20  
BQ B0  
BQ B1  
BQ B2  
BQ A1  
BQ A2  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
DPEQ high BQ  
coefficient  
4 / 1.31  
4 / 1.31  
4 / 1.31  
DPEQ high BQ  
coefficient  
DPEQ high BQ  
coefficient  
DPEQ high BQ  
coefficient  
4 / 1.31  
DPEQ LOW LEVEL PATH BQ  
4 / 1.31  
DPEQ low BQ  
coefficient  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x20  
0x20  
0x20  
0x20  
0x20  
BQ B0  
BQ B1  
BQ B2  
BQ A1  
BQ A2  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
DPEQ low BQ  
coefficient  
4 / 1.31  
4 / 1.31  
4 / 1.31  
4 / 1.31  
DPEQ low BQ  
coefficient  
DPEQ low BQ  
coefficient  
DPEQ low BQ  
coefficient  
DRC 1 BQ  
4 / 1.31  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x20  
0x20  
0x20  
0x20  
0x20  
BQ B0  
BQ B1  
BQ B2  
BQ A1  
BQ A2  
0x9D8E8900  
0x007BFC00  
0x007BFC00  
0x7040C300  
0x9D8E8900  
DRC 1 BQ coefficient  
DRC 1 BQ coefficient  
DRC 1 BQ coefficient  
DRC 1 BQ coefficient  
DRC 1 BQ coefficient  
4 / 1.31  
4 / 1.31  
4 / 1.31  
4 / 1.31  
Copyright © 2016, Texas Instruments Incorporated  
195  
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
Table 231. Memory Map — Book 0x8C (140)(1) (continued)  
SUB  
PAGE  
NUMBER OF BYTES /  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
ADDRESS  
FORMAT  
DRC 2 BQ  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x20  
0x20  
0x20  
0x20  
0x20  
BQ B0  
4 / 1.31  
4 / 1.31  
0x70BCBF00  
0x007BFC00  
0x007BFC00  
0x7040C300  
0x9D8E8900  
DRC 2 BQ coefficient  
DRC 2 BQ coefficient  
DRC 2 BQ coefficient  
DRC 2 BQ coefficient  
DRC 2 BQ coefficient  
BQ B1  
BQ B2  
BQ A1  
BQ A2  
4 / 1.31  
4 / 1.31  
4 / 1.31  
DPEQ CONTROL  
DPEQ Sense Energy  
Time constant  
0x58  
0x20  
Alpha  
4 / 1.31  
0x02DEAD00  
0x5C  
0x60  
0x20  
0x20  
Gain  
4 / 1.31  
0x74013901  
0x0020C49B  
DPEQ Threshold Gain  
DPEQ Threshold Offset  
Offset  
4 / 1.31  
LEVER METER  
Level meter Energy  
Time constant  
0x64  
0x20  
Level Meter Alpha  
4 / 1.31  
0x00A7264A  
DRC SUM  
4 / 1.31  
0x68  
0x6C  
0x20  
0x20  
DRC 1 sum  
DRC 2 sum  
0x7FFFFFFF  
0x00000000  
DRC1 Mixer Gain  
DRC2 Mixer Gain  
4 / 1.31  
DRC 1  
DRC1 Energy Time  
constant  
0x70  
0x74  
0x78  
0x7C  
0x08  
0x0C  
0x20  
0x20  
0x20  
0x20  
0x21  
0x21  
DRC1 Energy  
DRC1 Attack  
DRC1 Decay  
K0_1  
4 / 1.31  
4 / 1.31  
4 / 1.31  
4 / 9.23  
4 / 9.23  
4 / 9.23  
0x7FFFFFFF  
0x7FFFFFFF  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
DRC1 Attack Time  
constant  
DRC1 Decay Time  
constant  
DRC1 Region 1 Slope  
(comp/Exp)  
DRC1 Region 2 Slope  
(comp/Exp)  
K1_1  
DRC1 Region 3 Slope  
(comp/Exp)  
K2_1  
0x10  
0x14  
0x18  
0x1C  
0x21  
0x21  
0x21  
0x21  
T1_1  
4 / 9.23  
4 / 9.23  
4 / 9.23  
4 / 9.23  
DRC 2  
0xE7000000  
0xFE800000  
0x00000000  
0x00000000  
DRC1 Threshold 1  
DRC1 Threshold 2  
DRC1 Offset 1  
T2_1  
Offset 1  
Offset 2  
DRC1 Offset 2  
DRC2 Energy Time  
constant  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x21  
0x21  
0x21  
0x21  
0x21  
0x21  
DRC2 Energy  
DRC2 Attack  
DRC2 Decay  
K0_1  
4 / 1.31  
4 / 1.31  
4 / 1.31  
4 / 9.23  
4 / 9.23  
4 / 9.23  
0x7FFFFFFF  
0x7FFFFFFF  
0x7FFFFFFF  
0x00000000  
0x00000000  
0x00000000  
DRC2 Attack Time  
constant  
DRC2 Decay Time  
constant  
DRC2 Region 1 Slope  
(comp/Exp)  
DRC2 Region 2 Slope  
(comp/Exp)  
K1_1  
DRC2 Region 3 Slope  
(comp/Exp)  
K2_1  
0x38  
0x3C  
0x40  
0x44  
0x21  
0x21  
0x21  
0x21  
T1_1  
4 / 9.23  
4 / 9.23  
4 / 9.23  
4 / 9.23  
0xE7000000  
0xFE800000  
0x00000000  
0x00000000  
DRC2 Threshold 1  
DRC2 Threshold 2  
DRC2 Offset 1  
T2_1  
Offset 1  
Offset 2  
DRC2 Offset 2  
196  
Copyright © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
Table 231. Memory Map — Book 0x8C (140)(1) (continued)  
SUB  
ADDRESS  
NUMBER OF BYTES /  
PAGE  
REGISTER NAME  
DEFAULT VALUE  
DESCRIPTION  
FORMAT  
FINE VOLUME OUTPUT  
Left Channel Fine  
Volume Gain  
0x48  
0x4C  
0x21  
0x21  
Fine volume left  
Fine volume right  
4 / 2.30  
0x3FFFFFFF  
0x3FFFFFFF  
Right Channel Fine  
Volume Gain  
4 / 2.30  
INPUT MIXER  
4 / 9.23  
Left Channel Mixer Left  
Input Gain  
0x50  
0x54  
0x58  
0x5C  
0x21  
0x21  
0x21  
0x21  
Left in to left out  
Right in to left out  
Left in to right out  
Right in to right out  
0x00800000  
0x00000000  
0x00000000  
0x00800000  
Left Channel Mixer Right  
Input Gain  
4 / 9.23  
4 / 9.23  
Right Channel Mixer Left  
Input Gain  
Right Channel Mixer  
Right Input Gain  
4 / 9.23  
DPEQ GAIN SCALE  
4 / 6.26  
DPEQ Sense Input Gain  
Scale  
0x60  
0x21  
DPEQ sense scale  
0x40000000  
BYPASS EQ MUX  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x21  
0x21  
0x21  
0x21  
0x21  
4 / 32.0  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00400000  
GANG LEFT / RIGHT EQ  
4 / 32.0  
BYPASS WORKLOAD TO SDOUT  
4 /32.0  
BYPASS TO LEVEL METER BIT  
4 / 32.0  
THD BOOST  
4 / 9.23  
AGL  
0x78  
0x7C  
0x21  
0x21  
Attack Threshold  
4 / 5.27  
0x40000000  
0x06153BD1  
Threshold linear  
AGL Alpha Time  
constant  
Softening Filter Alpha  
4 / 1.31  
4 / 1.31  
AGL Attack Time  
constant  
0x08  
0x22  
Attack Rate  
0x0001B4E8  
0x0C  
0x10  
0x22  
0x22  
AGL Enable  
Chomp  
4 / 1.31  
4 / 1.31  
0x40000000  
0x0020C49C  
AGL Enable Mux  
AGL Omega Time  
constant  
0x14  
0x18  
0x22  
0x22  
Softening Filter Omega  
Release Rate  
4 / 1.31  
4 / 1.31  
0x79EAC42F  
0x00002BB1  
AGL Release Time  
constant  
0x1C  
0x22  
Volume  
4 / 1.31  
0x7FFFFFFF  
AGL Volume  
版权 © 2016, Texas Instruments Incorporated  
197  
 
TAS5780M  
ZHCSFY4 DECEMBER 2016  
www.ti.com.cn  
14 器件和文档支持  
14.1 器件支持  
14.1.1 器件命名规则  
Glossary部分列出的术语是根据多项德州仪器  
(TI)  
计划定义的通用术语(包括常用的缩写和单词),符合  
JEDECIPCIEEE 等行业标准。本部分提供的术语定义了特定于本产品和文档、附属产品、或本产品使用的支  
持工具和软件的单词、短语和缩写。如对定义和术语有其他疑问,请访问e2e 音频放大器论坛。  
桥接负载 (BTL) 是一种输出配置,其中扬声器的两端分别连接一个半桥。  
DUT 是指被测器件,用于区分其他器件。  
闭环架构是一种拓扑结构,其中放大器监视输出引脚、对比输出信号与输入信号,并尝试修正输出信号的非线性。  
动态控件是指系统或最终用户在正常使用时可更改的控件。  
GPIO 是通用输入/输出引脚。该引脚是一个高度可配置的双向数字引脚,可执行系统所需的多种功能。  
主机处理器(也称系统处理器、标量、主机或系统控制器)是指用作中央系统控制器的器件,可为其连接的器件提  
供控制信息,从其上游器件采集音频源数据后分配给其他器件。该器件通常配置音频路径中音频处理器件(如  
TAS5780M)的控件,从而根据频率响应、时间校准、目标声压级、系统安全工作区域和用户偏好优化扬声器的音  
频输出。  
HybridFlow 通过搭配使用 RAM 内置的元件和 ROM 内置的元件构成一款可配置器件,与完全可编程器件相比更  
加易于使用,而且还能保持足够的灵活性以适应多种 应用  
最大持续输出功率是指放大器在 25°C 工作环境温度下可持续(不关断)提供的最大输出功率。测试该参数时,当  
放大器温度达到热平衡点并且不再升高时停止测试  
并行桥接负载 (PBTL) 是一种输出配置,其中扬声器的两端分别连接一对并行放置的半桥。  
rDS(on) 是指放大器输出级中所用 MOSFET 的导通电阻。  
静态控制/静态配置是指系统正常使用时不发生变化的控件。  
过孔是指 PCB 中的镀铜通孔。  
14.1.2 开发支持  
有关 RDGUI 软件,请咨询当地的现场支持工程师。  
14.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
198  
版权 © 2016, Texas Instruments Incorporated  
TAS5780M  
www.ti.com.cn  
ZHCSFY4 DECEMBER 2016  
14.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
14.4 商标  
Burr-Brown, PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
199  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5780MDCA  
ACTIVE  
HTSSOP  
HTSSOP  
DCA  
48  
48  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
BURR-BROWN  
TAS5780M  
TAS5780MDCAR  
ACTIVE  
DCA  
2000 RoHS & Green  
NIPDAU  
BURR-BROWN  
TAS5780M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DCA 48  
12.5 x 6.1, 0.5 mm pitch  
HTSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224608/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TAS5780MDCAR

20W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI

TAS5782M

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器
TI

TAS5782MDCA

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85
TI

TAS5782MDCAR

具有处理功能的 20W 立体声、40W 单声道、4.5V 至 26.4V、数字输入 D 类智能音频放大器 | DCA | 48 | -25 to 85
TI

TAS5805M

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器
TI

TAS5805MPWP

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | PWP | 28 | -25 to 85
TI

TAS5805MPWPR

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | PWP | 28 | -25 to 85
TI

TAS5806M

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5806MD

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器
TI

TAS5806MDCPR

23-W, Inductor-Less, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with Enhanced Processing and Low Power Dissipation
TI

TAS5806MDDCPR

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器 | DCP | 38 | -25 to 85
TI

TAS5822M

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI