TCA9538 [TI]

具有中断输出、复位和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器;
TCA9538
型号: TCA9538
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有中断输出、复位和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器

文件: 总40页 (文件大小:1017K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
TCA9538 具有中断输出、复位和配置寄存器的低压 8 I2C SMBus 低  
功耗 I/O 扩展器  
1 特性  
2 应用范围  
1
待机流耗低  
I2C 至并行端口扩展器  
服务器  
路由器(电信交换设备)  
个人计算机  
开漏电路低电平有效中断输出  
低电平有效复位输入  
个人电子产品(例如:游戏机)  
工业自动化  
1.65V 5.5V 的工作电源电压范围  
可耐受 5V 电压的 I/O 端口  
400kHz 快速 I2C 总线  
采用 GPIO 受限处理器的产品  
3 说明  
两个硬件地址引脚可在 I2C/SMBus 上支持最多四个  
TCA9538 是一款 16 引脚器件,可为两线双向 I2C 总  
线(或 SMBus)协议提供 8 位通用并行输入输出 (I/O)  
扩展。该器件的工作电源电压范围是 1.65V 5.5V。  
器件支持 100kHz(标准模式)和 400kHz(快速模  
式)时钟频率。当开关、传感器、按钮、LED、风扇等  
设备需要额外的 I/O 时,I/O 扩展器(如 TCA9538)  
可提供简单解决方案。  
器件  
输入和输出配置寄存器  
极性反转寄存器  
所用通道在加电时被配置为输入  
加电时无毛刺脉冲  
SCL/SDA 输入端上的噪声滤波器  
具有最大高电流驱动能力的锁存输出,适用于直接  
驱动 LED  
当 输入 端口状态发生变化时,TCA9538 可在 INT 引  
脚上生成中断。硬件可选地址引脚 A0 A1 最多允许  
四个 TCA9538 器件位于同一 I2C 总线上。该器件还可  
通过 RESET 功能或电源循环供电生成加电复位,从而  
复位到默认状态。  
锁断性能超过 100mA (符合 JESD 78 Class II 规  
范的要求)  
静电放电 (ESD) 保护性能超过 JESD 22 规范要求  
2000V 人体模型 (A114-A)  
1000V 组件充电模式 (C101)  
器件信息(1)  
器件型号  
TCA9538  
封装  
TSSOP (16)  
SSOP (16)  
封装尺寸(标称值)  
5.00mm x 4.40mm  
6.20mm x 5.30mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化框图  
VCC  
SDA  
SCL  
Peripheral  
Devices  
I2C or SMBus  
Master  
(e.g. Processor)  
P0  
P1  
P2  
P3  
INT  
• RESET,  
ENABLE, or  
control  
inputs  
• INT or  
status  
RESET  
TCA9538  
P4  
P5  
P6  
P7  
A0  
A1  
outputs  
• LEDs  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCPS199  
 
 
 
 
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 17  
8.5 Programming........................................................... 17  
8.6 Register Map........................................................... 19  
Application and Implementation ........................ 23  
9.1 Application Information............................................ 23  
9.2 Typical Application ................................................. 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 I2C Interface Timing Requirements........................... 6  
6.7 RESET Timing Requirements................................... 7  
6.8 Switching Characteristics.......................................... 7  
6.9 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
9
10 Power Supply Recommendations ..................... 26  
10.1 Power-On Reset Requirements ........................... 26  
11 Layout................................................................... 28  
11.1 Layout Guidelines ................................................. 28  
11.2 Layout Example .................................................... 28  
12 器件和文档支持 ..................................................... 29  
12.1 文档支持................................................................ 29  
12.2 接收文档更新通知 ................................................. 29  
12.3 社区资源................................................................ 29  
12.4 ....................................................................... 29  
12.5 静电放电警告......................................................... 29  
12.6 Glossary................................................................ 29  
13 机械、封装和可订购信息....................................... 29  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (October 2015) to Revision D  
Page  
Updated Figure 18 ............................................................................................................................................................... 19  
Changes from Revision B (September 2015) to Revision C  
Page  
Added "Time to reset; VCC = 1.65 V-2.3 V" parameter to RESET Timing Requirements table. ............................................ 7  
Added "Output data valid; VCC = 1.65 V-2.3 V" to Switching Characteristics table................................................................ 7  
Updated VCC_GW parameter. ................................................................................................................................................ 26  
Changes from Revision A (September 2014) to Revision B  
Page  
已添加 DB 封装至数据表。..................................................................................................................................................... 1  
Changes from Original (August 2014) to Revision A  
Page  
已将文档更新为完整版。 ........................................................................................................................................................ 1  
2
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
5 Pin Configuration and Functions  
PW, DB Package  
16-Pin TSSOP, SSOP  
Top View  
16  
15  
14  
13  
12  
11  
10  
9
A0  
A1  
1
2
3
4
5
6
7
8
VCC  
SDA  
SCL  
INT  
P7  
RESET  
P0  
P1  
P2  
P6  
P3  
P5  
GND  
P4  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
A0  
A1  
I
I
Address input. Connect directly to VCC or ground  
Address input. Connect directly to VCC or ground  
Ground  
2
GND  
INT  
8
O
13  
Interrupt output. Connect to VCC through a pull-up resistor  
P-port input-output. Push-pull design structure. At power on, P0 is  
configured as an input  
P0  
4
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P-port input-output. Push-pull design structure. At power on, P1 is  
configured as an input  
P1  
P-port input-output. Push-pull design structure. At power on, P2 is  
configured as an input  
P2  
6
P-port input-output. Push-pull design structure. At power on, P3 is  
configured as an input  
P3  
7
P-port input-output. Push-pull design structure. At power on, P4 is  
configured as an input  
P4  
9
P-port input-output. Push-pull design structure. At power on, P5 is  
configured as an input  
P5  
10  
11  
12  
3
P-port input-output. Push-pull design structure. At power on, P6 is  
configured as an input  
P6  
P-port input-output. Push-pull design structure. At power on, P7 is  
configured as an input  
P7  
Active-low reset input. Connect to VCC through a pull-up resistor if no active  
connection is used  
RESET  
SCL  
SDA  
VCC  
14  
15  
16  
I
Serial clock bus. Connect to VCC through a pull-up resistor  
Serial data bus. Connect to VCC through a pull-up resistor  
Supply voltage  
I/O  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage  
(2)  
Input voltage  
6
V
VO  
IIK  
Output voltage(2)  
6
V
Input clamp current  
VI < 0  
–20  
–20  
±20  
50  
mA  
mA  
mA  
mA  
mA  
IOK  
IIOK  
IOL  
IOH  
Output clamp current  
VO < 0  
Input-output clamp current  
VO < 0 or VO > VCC  
VO = 0 to VCC  
VO = 0 to VCC  
Continuous output low current through a single P-port  
Continuous output high current through a single P-port  
Continuous current through GND by all P-ports, INT, and SDA  
Continuous current through VCC by all P-ports  
Storage temperature  
–50  
250  
–160  
150  
ICC  
mA  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
VALUE  
2000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
MIN  
1.65  
MAX UNIT  
VCC  
Supply voltage  
5.5  
V
(1)  
SCL, SDA  
VCC = 1.65 V to 5.5 V  
VCC = 1.65 V to 2.7 V  
VCC = 3 V to 5.5 V  
0.7 × VCC  
0.7 × VCC  
0.8 × VCC  
–0.5  
VCC  
VIH  
High-level input voltage  
5.5  
5.5  
V
A0, A1, RESET, P7–P0  
SCL, SDA  
VCC = 1.65 V to 5.5 V  
VCC = 1.65 V to 2.7 V  
VCC = 3 V to 5.5 V  
0.3 × VCC  
0.3 × VCC  
0.2 × VCC  
25  
VIL  
Low-level input voltage  
–0.5  
V
A0, A1, RESET, P7–P0  
–0.5  
IOL  
IOH  
Low-level output current  
High-level output current  
Any P-port, P7–P0  
Any P-port, P7–P0  
mA  
mA  
–10  
Continuous current through  
GND  
All P-ports P7-P0, INT, and SDA  
200  
ICC  
mA  
°C  
Continuous current through VCC All P-ports P7-P0  
Operating free-air temperature  
–80  
85  
TA  
–40  
(1) The SCL and SDA pins shall not be at a higher potential than the supply voltage VCC in the application, or an increase in supply current,  
ICC, will result.  
4
Copyright © 2014–2016, Texas Instruments Incorporated  
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
6.4 Thermal Information  
TCA9538  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
122  
DB (SSOP)  
16 PINS  
113.2  
63.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
56.4  
67.1  
64  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
10.8  
21.2  
ψJB  
66.5  
63.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
II = –18 mA  
VCC  
MIN  
TYP(1)  
MAX UNIT  
VIK  
Input diode clamp voltage  
1.65 V to 5.5 V  
–1.2  
V
VPORR Power-on reset voltage, VCC rising VI = VCC or GND, IO = 0  
Power-on reset voltage, VCC  
1.2  
1
1.5  
V
VPORF  
VI = VCC or GND, IO = 0  
0.75  
V
falling  
1.65 V  
2.3 V  
1.2  
1.8  
2.6  
4.1  
1.1  
1.7  
2.5  
4
IOH = –8 mA  
3 V  
4.5 V  
VOH  
P-port high-level output voltage(2)  
V
1.65 V  
2.3 V  
IOH = –10 mA  
VOL = 0.4 V  
VOL = 0.5 V  
3 V  
4.5 V  
(3)  
SDA  
1.65 V to 5.5 V  
1.65 V  
2.3 V  
3
11  
10  
13  
15  
17  
14  
17  
20  
24  
7
8
8
3 V  
8
4.5 V  
8
IOL  
P port(4)  
mA  
1.65 V  
2.3 V  
10  
10  
10  
10  
3
VOL = 0.7 V  
3 V  
4.5 V  
(5)  
INT  
VOL = 0.4 V  
1.65 V to 5.5 V  
SCL, SDA  
A0, A1, RESET  
P port  
±1  
±1  
1
II  
VI = VCC or GND  
1.65 V to 5.5 V  
μA  
IIH  
IIL  
VI = VCC  
1.65 V to 5.5 V  
1.65 V to 5.5 V  
μA  
μA  
P port  
VI = GND  
–1  
(1) All typical values are at nominal supply voltage (1.8-, 2.5-, 3.3-, or 5-V VCC) and TA = 25°C.  
(2) Each P-port I/O configured as a high output must be externally limited to a maximum of 10 mA, and the total current sourced by all I/Os  
(P-ports P7-P0) through VCC must be limited to a maximum current of 80 mA.  
(3) The SDA pin must be externally limited to a maximum of 12 mA, and the total current sunk by all I/Os (P-ports P7-P0, INT, and SDA)  
through GND must be limited to a maximum current of 200 mA.  
(4) Each P-port I/O configured as a low output must be externally limited to a maximum of 25 mA, and the total current sunk by all I/Os (P-  
ports P7-P0, INT, and SDA) through GND must be limited to a maximum current of 200 mA.  
(5) The INT pin must be externally limited to a maximum of 7 mA, and the total current sunk by all I/Os (P-ports P7-P0, INT, and SDA)  
through GND must be limited to a maximum current of 200 mA.  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP(1)  
MAX UNIT  
VI = VCC or GND, IO = 0,  
I/O = inputs, fscl = 400 kHz, No load  
tr = 3 ns  
5.5 V  
18  
30  
5.5 V  
3.6 V  
2.7 V  
1.65 V  
5.5 V  
3.6 V  
2.7 V  
1.65 V  
5.5 V  
3.6 V  
2.7 V  
1.65 V  
34  
15  
9
VI = VCC or GND, IO = 0,  
I/O = inputs, fscl = 400 kHz, No load  
tr,max = 300 ns  
Operating mode  
μA  
5
20  
8
ICC  
VI = VCC or GND, IO = 0,  
I/O = inputs, fscl = 100 kHz, No load  
tr,max = 1 µs  
5
3
1.9  
1.1  
1
3.5  
1.8  
μA  
VI = VCC or GND, IO = 0,  
I/O = inputs, fscl = 0 kHz, No load  
Standby mode  
1.6  
0.4  
1
Additional current in standby  
mode  
One P-port input at VCC – 0.6 V,  
Other P-port inputs at VCC or GND  
ΔICC  
1.65 V to 5.5 V  
1.65 V to 5.5 V  
70  
µA  
pF  
Ci  
SCL  
VI = VCC or GND  
4
5.5  
8
5
6.5  
9.5  
SDA  
P port  
Cio  
VIO = VCC or GND  
1.65 V to 5.5 V  
pF  
6.6 I2C Interface Timing Requirements  
over operating free-air temperature range (unless otherwise noted) (see Figure 9)  
MIN  
MAX  
UNIT  
STANDARD MODE  
I2C clock frequency  
fscl  
0
4
100  
50  
kHz  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
I2C clock high time  
tsch  
I2C clock low time  
tscl  
4.7  
I2C spike time  
tsp  
I2C serial-data setup time  
tsds  
250  
0
I2C serial-data hold time  
tsdh  
I2C input rise time  
ticr  
1000  
300  
I2C input fall time  
ticf  
I2C output fall time  
tocf  
10-pF to 400-pF bus  
300  
I2C bus free time between Stop and Start  
I2C Start or repeated Start condition setup  
I2C Start or repeated Start condition hold  
I2C Stop condition setup  
tbuf  
4.7  
4.7  
4
tsts  
tsth  
tsps  
4
tvd(data)  
Valid data time  
SCL low to SDA output valid  
3.45  
3.45  
400  
ACK signal from SCL low to  
SDA (out) low  
tvd(ack)  
Valid data time of ACK condition  
I2C bus capacitive load  
μs  
Cb  
ns  
FAST MODE  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
fscl  
tsch  
tscl  
tsp  
0
0.6  
1.3  
400  
50  
kHz  
μs  
μs  
ns  
I2C serial-data setup time  
tsds  
100  
ns  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
I2C Interface Timing Requirements (continued)  
over operating free-air temperature range (unless otherwise noted) (see Figure 9)  
MIN  
0
MAX  
UNIT  
ns  
I2C serial-data hold time  
tsdh  
I2C input rise time  
ticr  
20  
300  
300  
ns  
20 × (VDD  
/
I2C input fall time  
ticf  
ns  
ns  
5.5 V)  
20 × (VDD  
/
I2C output fall time  
tocf  
10-pF to 400-pF bus  
300  
5.5 V)  
I2C bus free time between Stop and Start  
I2C Start or repeated Start condition setup  
I2C Start or repeated Start condition hold  
I2C Stop condition setup  
tbuf  
1.3  
μs  
μs  
μs  
μs  
μs  
tsts  
0.6  
tsth  
0.6  
tsps  
0.6  
tvd(data)  
Valid data time  
SCL low to SDA output valid  
0.9  
0.9  
ACK signal from SCL low to  
SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
μs  
400  
ns  
6.7 RESET Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
STANDARD and FAST MODE  
tw  
Reset pulse duration  
4
0
ns  
ns  
tREC  
Reset recovery time  
Time to reset; VCC = 2.3 V-5.5 V  
Time to reset; VCC = 1.65 V-2.3 V  
400  
550  
tRESET  
ns  
6.8 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted) (see Figure 10 and Figure 11)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
MAX  
UNIT  
STANDARD and FAST MODE  
tiv  
tir  
Interrupt valid time  
P port  
SCL  
INT  
INT  
4
4
μs  
μs  
Interrupt reset delay time  
Output data valid; VCC = 2.3 V-5.5 V  
Output data valid; VCC = 1.65 V-2.3 V  
Input data setup time  
200  
300  
tpv  
SCL  
P7–P0  
ns  
tps  
tph  
P port  
P port  
SCL  
SCL  
100  
1
ns  
Input data hold time  
μs  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
6.9 Typical Characteristics  
TA = 25°C (unless otherwise noted)  
22  
20  
18  
16  
14  
12  
10  
8
1.8  
1.6  
1.4  
1.2  
1
1.8 V  
2.5 V  
3.3 V  
5 V  
0.8  
0.6  
0.4  
0.2  
0
1.8 V  
2.5 V  
3.3 V  
5 V  
6
4
2
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TA - Free-Air Temperature (°C)  
TA - Free-Air Temperature (°C)  
D001  
D002  
fSCL = 400 kHz  
I/Os = High or Low  
Inputs  
fSCL = 0 kHz  
I/Os = High or Low  
Inputs  
Figure 1. Supply Current (ICC, Operating Mode) vs  
Temperature (TA) at Four Supply Voltages  
Figure 2. Supply Current (ICC, Standby Mode) vs  
Temperature (TA) at Four Supply Voltages  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
VCC = 1.8 V, IOL = 8 mA  
VCC = 5 V, IOL = 8 mA  
VCC = 1.8 V, IOL = 10 mA  
VCC = 5 V, IOL = 10 mA  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-15  
10  
35  
60  
85  
VCC - Supply Voltage (V)  
TA - Free-Air Temperature (°C)  
D003  
D004  
fSCL = 400 kHz  
I/Os = High or Low  
Inputs  
TA = 25°C  
I/Os = High or Low  
Inputs  
Figure 3. Supply Current (ICC, Operating Mode) vs Supply  
Voltage (VCC  
Figure 4. Output Low Voltage (VOL) vs Temperature (TA) for  
P-Port I/Os  
)
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
1.8 V  
2.5 V  
3.3 V  
5 V  
VCC = 1.8 V, IOH = 8 mA  
VCC = 5 V, IOH = 8 mA  
VCC = 1.65 V, IOH = 10 mA  
VCC = 5 V, IOH = 10 mA  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
-40  
-15  
10  
35  
60  
85  
VOL - Output Low Voltage - (V)  
TA - Free-Air Temperature (°C)  
D005  
D006  
TA = 25°C  
Figure 5. Sink Current (IOL) vs Output Low Voltage (VOL) for  
P-Ports at Four Supply Voltages  
Figure 6. Output High Voltage (VCC – VOH) vs Temperature  
(TA) for P-Ports  
8
Copyright © 2014–2016, Texas Instruments Incorporated  
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
70  
6
5
4
3
2
1
0
1.8 V  
2.5 V  
3.3 V  
5 V  
60  
50  
40  
30  
20  
10  
0
IOH = -8 mA  
IOH = -10 mA  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
1
2
3
4
5
6
(VCC - VOH) - Output High Voltage (V)  
VCC - Supply Voltage (V)  
D007  
D008  
TA = 25°C  
TA = 25°C  
Figure 7. Source Current (IOH) vs Output High Voltage (VOH  
)
Figure 8. Output High Voltage (VOH) vs Supply Voltage (VCC  
)
for P-Ports at Four Supply Voltages  
for P-Ports  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CC  
R
L
= 1 kΩ  
SDA  
DUT  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
Three Bytes for Complete  
Device Programming  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Data  
Data  
Stop  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
Bit 0  
(LSB)  
Bit 07  
(MSB)  
Bit 10 Condition  
(LSB)  
(P)  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
icr  
t
sts  
t
PHL  
t
icf  
t
buf  
t
t
sp  
PLH  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
sds  
Repeat  
Start  
Condition  
Stop  
Condition  
Start or  
Repeat  
Start  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
1
DESCRIPTION  
2
I C address  
2, 3  
P-port data  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 9. I2C Interface Load Circuit and Voltage Waveforms  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
Parameter Measurement Information (continued)  
V
CC  
R
L
= 4.7 kΩ  
INT  
DUT  
C
L
= 100 pF  
(see Note A)  
INTERRUPT LOAD CONFIGURATION  
ACK  
From Slave  
ACK  
Start  
8 Bits  
From Slave  
Condition  
R/W  
(One Data Byte)  
From Port  
Slave Address  
Data From Port  
Data 2  
Data 1  
A
1
P
S
1
1
1
0
0
A1 A0  
1
A
1
2
3
4
5
6
7
8
A
A
t
ir  
B
B
t
ir  
INT  
A
t
iv  
t
sps  
A
Data  
Into  
Port  
Address  
Data 1  
Data 2  
0.7 × V  
0.3 × V  
CC  
0.7 × V  
0.3 × V  
CC  
SCL  
INT  
R/W  
A
CC  
CC  
t
iv  
t
ir  
0.7 × V  
0.3 × V  
0.7 × V  
0.3 × V  
CC  
CC  
INT  
P
n
CC  
CC  
View A−A  
A. CL includes probe and jig capacitance.  
View B−B  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 10. Interrupt Load Circuit and Voltage Waveforms  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
Parameter Measurement Information (continued)  
Pn  
500 Ω  
DUT  
2 × V  
CC  
C
= 50 pF  
L
500 Ω  
(see Note A)  
P-PORT LOAD CONFIGURATION  
0.7 × V  
CC  
SCL  
P0  
A
P3  
0.3 × V  
CC  
Slave  
ACK  
SDA  
t
pv  
(see Note B)  
P
n
Last Stable Bit  
Unstable  
Data  
WRITE MODE (R/W = 0)  
0.7 × V  
0.3 × V  
CC  
SCL  
P0  
A
P3  
CC  
t
ph  
t
ps  
0.7 × V  
0.3 × V  
CC  
P
n
CC  
READ MODE (R/W = 1)  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
D. All parameters and waveforms are not applicable to all devices.  
Figure 11. P-Port Load Circuit and Voltage Waveforms  
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
Parameter Measurement Information (continued)  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
D. I/Os are configured as inputs.  
E. All parameters and waveforms are not applicable to all devices.  
Figure 12. Reset Load Circuits and Voltage Waveforms  
Copyright © 2014–2016, Texas Instruments Incorporated  
13  
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCA9538 is an 8-bit I/O expander for the two-line bidirectional bus (I2C) is designed for 1.65-V to 5.5-V  
VCC operation. It provides general-purpose remote I/O expansion for most micro-controller families via the  
I2C interface (serial clock, SCL, and serial data, SDA, pins).  
The TCA9538 open-drain interrupt (INT) output is activated when any input state differs from its  
corresponding Input Port register state and is used to indicate to the system master that an input state has  
changed. The INT pin can be connected to the interrupt input of a micro-controller. By sending an interrupt  
signal on this line, the remote I/O can inform the micro-controller if there is incoming data on its ports without  
having to communicate via the I2C bus. Thus, the TCA9538 can remain a simple slave device. The device  
outputs (latched) have high-current drive capability for directly driving LEDs.  
Two hardware pins (A0 and A1) are used to program and vary the fixed I2C slave address and allow up to  
four devices to share the same I2C bus or SMBus.  
The system master can reset the TCA9538 in the event of a timeout or other improper operation by asserting  
a low on the RESET input pin or by cycling the power supply and causing a power-on reset (POR). A reset  
puts the registers in their default state and initializes the I2C /SMBus state machine. The RESET feature and  
a POR cause the same reset/initialization to occur, but the RESET feature does so without powering down  
the part.  
The TCA9538 consists of one 8-bit Configuration (input or output selection), Input Port, Output Port, and  
Polarity Inversion (active high or active low) registers. At power on, the I/Os are configured as inputs.  
However, the system master can enable the I/Os as either inputs or outputs by writing to the I/O  
configuration bits. The data for each input or output is kept in the corresponding Input Port or Output Port  
register. The polarity of the Input Port register can be inverted with the Polarity Inversion register. All  
registers can be read by the system master.  
The TCA9538 is identical to the TCA9554 except for the removal of the internal I/O pull-up resistors, which  
greatly reduces power consumption when the I/Os are held LOW, the replacement of A2 with RESET, and  
different slave address range.  
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
8.2 Functional Block Diagram  
13  
Interrupt  
Logic  
INT  
LP Filter  
1
A0  
2
A1  
P7−P0  
14  
SCL  
2
Input  
I C Bus  
Control  
Shift  
I/O  
15  
8 Bits  
Port  
Filter  
Register  
SDA  
Write Pulse  
Read Pulse  
3
RESET  
Power-On  
16  
Reset  
VCC  
8
GND  
Pin numbers shown are for the PW package.  
Figure 13. Functional Block Diagram  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
Functional Block Diagram (continued)  
Data From  
Shift Register  
Configuration  
Output Port  
Register Data  
Register  
V
CC  
Data From  
Q1  
D
Q
Shift Register  
FF  
K
Write Configuration  
Pulse  
D
C
Q
Q
C
Q
FF  
K
P0 to P7  
Write Pulse  
ESD Protection  
Diode  
Q2  
Output Port  
Register  
Input Port  
Register  
GND  
Input Port  
D
C
Q
Q
Register Data  
FF  
K
Read Pulse  
To INT  
Data From  
Polarity  
D
C
Q
Q
Shift Register  
Register Data  
FF  
K
Write Polarity  
Pulse  
Polarity  
Inversion  
Register  
At power-on reset, all registers return to default values.  
Figure 14. Simplified Schematic of P0 to P7  
8.3 Feature Description  
8.3.1 I/O Port  
When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a high-impedance input. The input  
voltage may be raised above VCC to a maximum of 5.5 V.  
If the I/O is configured as an output, Q1 or Q2 is enabled depending on the state of the output port register. In  
this case, there are low impedance paths between the I/O pin and either VCC or GND. The external voltage  
applied to this I/O pin must not exceed the recommended levels for proper operation.  
8.3.2 Interrupt Output (INT)  
An interrupt is generated by any rising or falling edge of any P-port I/O configured as an input. After time tiv, the  
signal INT is valid. Resetting the interrupt circuit is achieved when data on the ports is changed back to the  
original state or when data is read from the Input Port register. Resetting occurs in the read mode at the  
acknowledge (ACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK clock pulse  
can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after  
resetting is detected and is transmitted as an interrupt on the INT pin.  
Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output  
cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the  
state of the pin does not match the contents of the Input Port register.  
The INT output has an open-drain structure and requires pull-up resistor to VCC  
.
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
Feature Description (continued)  
8.3.3 RESET Input  
The RESET input can be asserted to reset the system while keeping the VCC at its operating level. A reset can  
be accomplished by holding the RESET pin low for a minimum of tW. The TCA9538 registers and I2C/SMBus  
state machine are changed to their default states once RESET is low (0). Once RESET is high (1), the I/O levels  
at the P port can be changed externally or through the master. This input requires a pull-up resistor to VCC if no  
active connection is used.  
8.4 Device Functional Modes  
8.4.1 Power-On Reset  
When power (from 0 V) is applied to VCC, an internal power-on reset holds the TCA9538 in a reset condition  
until VCC has reached VPORR. At that point, the reset condition is released and the TCA9538 registers and  
SMBus/I2C state machine initialize to their default states. After that, VCC must be lowered to below VPORF and  
then back up to the operating voltage for a power-on reset cycle.  
8.5 Programming  
8.5.1 I2C Interface  
The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be  
connected to a positive supply through a pull-up resistor when connected to the output stages of a device. Data  
transfer may be initiated only when the bus is not busy.  
I2C communication with this device is initiated by a master sending a Start condition, a high-to-low transition on  
the SDA input/output while the SCL input is high (see Figure 15). After the Start condition, the device address  
byte is sent, most significant bit (MSB) first, including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA  
input/output during the high of the ACK-related clock pulse. The address inputs (A0–A1) of the slave device must  
not be changed between the Start and the Stop conditions.  
On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control  
commands (Start or Stop) (see Figure 16).  
A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the  
master (see Figure 15).  
Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see  
Figure 17). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly,  
the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold  
times must be met to ensure proper operation.  
A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after  
the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high.  
In this event, the transmitter must release the data line to enable the master to generate a Stop condition.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 15. Definition of Start and Stop Conditions  
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
 
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
Programming (continued)  
SDA  
SCL  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
Figure 16. Bit Transfer  
Data Output  
by Transmitter  
NACK  
Data Output  
by Receiver  
ACK  
SCL From  
Master  
1
2
8
9
S
Start  
Clock Pulse for  
Condition  
Acknowledgment  
Figure 17. Acknowledgment on I2C Bus  
Table 1 shows the TCA9538 interface definition.  
Table 1. Interface Definition Table  
BIT  
BYTE  
7 (MSB)  
6
H
5
H
4
L
3
L
2
1
0 (LSB)  
I2C slave address  
Px I/O data bus  
H
A1  
P2  
A0  
P1  
R/W  
P0  
P7  
P6  
P5  
P4  
P3  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
8.6 Register Map  
8.6.1 Device Address  
Figure 18 shows the address byte of the TCA9538.  
R/W  
Slave Address  
1
1
1
0
0
A1 A0  
Fixed  
Programmable  
Figure 18. TCA9538 Address  
Table 2 shows the Address Reference of the TCA9538.  
Table 2. Address Reference Table  
INPUTS  
I2C BUS SLAVE ADDRESS  
A1  
L
A0  
L
112 (decimal), 70 (hexadecimal)  
113 (decimal), 71 (hexadecimal)  
114 (decimal), 72 (hexadecimal)  
115 (decimal), 73 (hexadecimal)  
L
H
L
H
H
H
The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read  
is selected while a low (0) selects a write operation.  
8.6.2 Control Register and Command Byte  
Following the successful Acknowledgment of the address byte, the bus master sends a command byte that is  
stored in the control register in the TCA9538 (see Figure 19). Two bits of this command byte state the operation  
(read or write) and the internal register (input, output, polarity inversion or configuration) that is affected. This  
register can be written or read through the I2C bus. The command byte is sent only during a write transmission.  
Once a command byte has been sent, the register that was addressed continues to be accessed by reads until a  
new command byte has been sent.  
0
0
0
0
0
B2 B1 B0  
Figure 19. Control Register Bits  
Table 3 shows the TCA9538 Command byte.  
Table 3. Command Byte Table  
CONTROL REGISTER BITS  
COMMAND BYTE  
REGISTER  
PROTOCOL  
POWER-UP DEFAULT  
(HEX)  
B1  
0
B0  
0
0x00  
0x01  
0x02  
0x03  
Input Port  
Output Port  
Read byte  
XXXX XXXX  
1111 1111  
0000 0000  
1111 1111  
0
1
Read/write byte  
Read/write byte  
Read/write byte  
1
0
Polarity Inversion  
Configuration  
1
1
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
 
 
 
 
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
8.6.3 Register Descriptions  
The Input Port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is  
defined as an input or an output by the Configuration register. It only acts on read operation. Writes to these  
registers have no effect. The default value, X, is determined by the externally applied logic level.  
Before a read operation, a write transmission is sent with the command byte to indicate to the I2C device that the  
Input Port register is accessed next. See Table 4.  
Table 4. Register 0 (Input Port Register) Table  
BIT  
I7  
X
I6  
X
I5  
X
I4  
X
I3  
X
I2  
X
I1  
X
I0  
X
DEFAULT  
The Output Port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the  
Configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this  
register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value. See  
Table 5.  
Table 5. Register 1 (Output Port Register) Table  
BIT  
O7  
1
O6  
1
O5  
1
O4  
1
O3  
1
O2  
1
O1  
1
O0  
1
DEFAULT  
The Polarity Inversion register (register 2) allows polarity inversion of pins defined as inputs by the Configuration  
register. If a bit in this register is set (written with 1), the corresponding port pin polarity is inverted. If a bit in this  
register is cleared (written with a 0), the corresponding port pin original polarity is retained. See Table 6.  
Table 6. Register 2 (Polarity Inversion Register) Table  
BIT  
N7  
0
N6  
0
N5  
0
N4  
0
N3  
0
N2  
0
N1  
0
N0  
0
DEFAULT  
The Configuration register (register 3) configures the directions of the I/O pins. If a bit in this register is set to 1,  
the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is  
cleared to 0, the corresponding port pin is enabled as an output. See Table 7.  
Table 7. Register 3 (Configuration Register) Table  
BIT  
C7  
1
C6  
1
C5  
1
C4  
1
C3  
1
C2  
1
C1  
1
C0  
1
DEFAULT  
20  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
 
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
8.6.3.1 Bus Transactions  
Data is exchanged between the master and the TCA9538 through write and read commands.  
8.6.3.1.1 Writes  
Data is transmitted to the TCA9538 by sending the device address and setting the least-significant bit (LSB) to a  
logic 0 (see Figure 18 for device address). The command byte is sent after the address and determines which  
register receives the data that follows the command byte (see Figure 20 and Figure 21). There is no limitation on  
the number of data bytes sent in one write transmission.  
SCL  
1
2
3
4
5
6
7
8
9
Slave Address  
Command Byte  
Data to Port  
Data 1  
S
1
1
1
0
0
A1 A0  
0
A
0
0
0
0
0
0
0
1
A
A
P
SDA  
ACK From Slave  
ACK From Slave  
R/W ACK From Slave  
Start Condition  
Write to Port  
Data Out  
Data 1 Valid  
From Port  
t
pv  
Figure 20. Write to Output Port Register  
<br/>  
SCL  
1
2
3
4
5
6
7
8
9
Slave Address  
Command Byte  
Data to Register  
Data  
SDA  
S
1
1
1
0
0
A1 A0  
0
A
0
0
0
0
0
0
1
1/0  
A
A
P
Start Condition  
R/W ACK From Slave  
ACK From Slave  
ACK From Slave  
Data to  
Register  
Figure 21. Write to Configuration or Polarity Inversion Registers  
Copyright © 2014–2016, Texas Instruments Incorporated  
21  
 
 
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
8.6.3.1.2 Reads  
The bus master first must send the TCA9538 address with the LSB set to a logic 0 (see Figure 18 for device  
address). The command byte is sent after the address and determines which register is accessed. After a restart,  
the device address is sent again but, this time, the LSB is set to a logic 1. Data from the register defined by the  
command byte then is sent by the TCA9538 (see Figure 22 and Figure 23). After a restart, the value of the  
register defined by the command byte matches the register being accessed when the restart occurred. Data is  
clocked into the register on the rising edge of the ACK clock pulse. There is no limitation on the number of data  
bytes received in one read transmission, but when the final byte is received, the bus master must not  
acknowledge the data.  
ACK From  
Master  
ACK From  
Slave  
ACK From  
Slave  
ACK From  
Slave  
Data from Register  
Data  
Slave Address  
Slave Address  
Command Byte  
A
S
A
1
1
1
0
0
A1 A0 1  
R/W  
A
S
1
1
1
0
0 A1 A0 0  
A
R/W  
NACK From  
Data from Register  
Master  
Data  
P
NA  
Last Byte  
Figure 22. Read From Register  
<br/>  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
Data From Port  
Data 1  
Slave Address  
Data From Port  
Data 4  
S
1
1
1
0
0
A1 A0  
R/W  
1
A
P
A
NA  
Start  
Condition  
NACK From  
Master  
ACK From  
Slave  
ACK From  
Master  
Stop  
Condition  
Read From  
Port  
Data Into  
Port  
Data 2  
Data 3  
Data 4  
Data 5  
t
ph  
t
ps  
INT  
t
iv  
t
ir  
A. This figure assumes the command byte has previously been programmed with 00h.  
B. Transfer of data can be stopped at any moment by a Stop condition.  
C. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address  
call and actual data transfer from the P port. See Figure 22 for these details.  
Figure 23. Read From Input Port Register  
22  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Figure 24 shows an application in which the TCA9538 can be used.  
9.2 Typical Application  
V
CC  
100 kΩ  
2 kΩ  
16  
10 kΩ(1) 10 kΩ(1)  
(x 3)  
10 kΩ 10 kΩ  
V
CC  
VCC  
15  
14  
4
Subsystem 1  
SDA  
SCL  
SDA  
P0  
P1  
(e.g., temperature sensor)  
Master  
Controller  
SCL  
5
INT  
13  
3
INT  
INT  
6
7
P2  
P3  
RESET  
RESET  
RESET  
GND  
Subsystem 2  
(e.g., counter)  
TCA9538  
9
P4  
10  
A
P5  
P6  
P7  
Controlled Device  
(e.g., CBT device)  
11  
12  
2
1
ENABLE  
A1  
A0  
B
GND  
ALARM  
8
Subsystem 3  
(e.g., alarm system)  
V
CC  
(1) The SCL and SDA pins must be tied directly to VCC because if SCL and SDA are tied to an auxiliary power supply  
that could be powered on while VCC is powered off, then the supply current, ICC, increases as a result.  
A. Device address is configured as 1110000 for this example.  
B. P0, P2, and P3 are configured as outputs.  
C. P1, P4, and P5 are configured as inputs.  
D. P6 and P7 are not used and must be configured as outputs.  
Figure 24. Application Schematic  
Copyright © 2014–2016, Texas Instruments Incorporated  
23  
 
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Minimizing ICC When I/Os Control LEDs  
When the I/Os are used to control LEDs, normally they are connected to VCC through a resistor as shown in  
Figure 24. For a P-port configured as an input, ICC increases as VI becomes lower than VCC. The LED is a diode,  
with threshold voltage VT, and when a P-port is configured as an input the LED is off but VI is a VT drop below  
VCC  
.
For battery-powered applications, it is essential that the voltage of P-ports controlling LEDs is greater than or  
equal to VCC when the P-ports are configured as input to minimize current consumption. Figure 25 shows a high-  
value resistor in parallel with the LED. Figure 26 shows VCC less than the LED supply voltage by at least VT.  
Both of these methods maintain the I/O VI at or above VCC and prevents additional supply current consumption  
when the P-port is configured as an input and the LED is off.  
V
CC  
LED  
100 k  
V
CC  
LEDx  
Figure 25. High-Value Resistor in Parallel with LED  
5 V  
3.3 V  
LED  
V
CC  
LEDx  
Figure 26. Device Supplied by a Lower Voltage  
9.2.2 Detailed Design Procedure  
The pull-up resistors, RP, for the SCL and SDA lines need to be selected appropriately and take into  
consideration the total capacitance of all slaves on the I2C bus. The minimum pull-up resistance is a function of  
VCC, VOL,(max), and IOL as shown in Equation 1:  
VCC - VOL(max)  
=
Rp(min)  
IOL  
(1)  
The maximum pull-up resistance is a function of the maximum rise time, tr (300 ns for fast-mode operation, fSCL  
400 kHz) and bus capacitance, Cb as shown in Equation 2:  
=
tr  
Rp(max)  
=
0.8473´Cb  
(2)  
The maximum bus capacitance for an I2C bus must not exceed 400 pF for standard-mode or fast-mode  
operation. The bus capacitance can be approximated by adding the capacitance of the TCA9538, Ci for SCL or  
Cio for SDA, the capacitance of wires/connections/traces, and the capacitance of additional slaves on the bus.  
24  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
 
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
Typical Application (continued)  
9.2.3 Application Curves  
25  
20  
15  
10  
5
1.8  
1.6  
1.4  
1.2  
1
Standard-mode  
Fast-mode  
0.8  
0.6  
0.4  
0.2  
0
VCC > 2V  
VCC <= 2  
0
0
50  
100 150 200 250 300 350 400 450  
Cb (pF)  
0
0.5  
1
1.5  
2
2.5  
VCC (V)  
3
3.5  
4
4.5  
5
5.5  
D008  
D009  
Standard-mode  
Fast-mode  
VOL = 0.2*VCC, IOL = 2 mA  
when VCC 2 V  
(fSCL = 100 kHz, tr = 1 µs)  
(fSCL = 400 kHz, tr = 300 ns)  
VOL = 0.4 V, IOL = 3 mA  
when VCC > 2 V  
Figure 27. Maximum Pull-Up Resistance (Rp(max)) vs Bus  
Capacitance (Cb)  
Figure 28. Minimum Pull-Up Resistance (Rp(min)) vs Pull-Up  
Reference Voltage (VCC  
)
Copyright © 2014–2016, Texas Instruments Incorporated  
25  
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power-On Reset Requirements  
In the event of a glitch or data corruption, the TCA9538 can be reset to its default conditions by using the power-  
on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This  
reset also happens when the device is powered on for the first time in an application.  
The two types of power-on reset are shown in and Figure 29.  
V
CC  
Ramp-Down  
Ramp-Up  
V
CC_TRR  
V
drops below VPORF – 50 mV  
CC  
Time  
Time to Re-Ramp  
V
V
CC_FT  
CC_RT  
Figure 29. VCC is Lowered Below the POR Threshold, Then Ramped Back Up to VCC  
Table 8 specifies the performance of the power-on reset feature for the TCA9538 for both types of power-on  
reset.  
Table 8. Recommended Supply Sequencing And Ramp Rates(1)  
PARAMETER  
MIN  
1
MAX UNIT  
VCC_FT  
VCC_RT  
Fall rate  
See Figure 29  
See Figure 29  
ms  
ms  
Rise rate  
0.1  
Time to re-ramp (when VCC drops to VPOR_MIN – 50 mV or when  
VCC drops to GND)  
VCC_TRR  
VCC_GH  
VCC_GW  
See Figure 29  
See Figure 30  
See Figure 30  
2
μs  
Level that VCC can glitch down to, but not cause a functional  
disruption when VCC_GW = 1 µs  
1.2  
10  
V
Glitch width that does not cause a functional disruption when  
VCC_GH = 0.5 × VCC (For VCC > 3 V)  
μs  
(1) All supply sequencing and ramp rate values are measured at TA = 25°C  
Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width  
(VCC_GW) and height (VCC_GH) are dependent on each other. The bypass capacitance, source impedance, and  
device impedance are factors that affect power-on reset performance. Figure 30 and Table 8 provide more  
information on how to measure these specifications.  
V
CC  
V
CC_GH  
Time  
V
CC_GW  
Figure 30. Glitch Width and Glitch Height  
VPOR is critical to the power-on reset. VPOR is the voltage level at which the reset condition is released and all the  
registers and the I2C/SMBus state machine are initialized to their default states. The value of VPOR differs based  
on the VCC being lowered to or from 0. Figure 31 and Table 8 provide more details on this specification.  
26  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
V
CC  
V
POR  
V
PORF  
Time  
POR  
Time  
Figure 31. VPOR  
Copyright © 2014–2016, Texas Instruments Incorporated  
27  
TCA9538  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For printed circuit board (PCB) layout of the TCA9538, common PCB layout practices must be followed but  
additional concerns related to high-speed data transfer such as matched impedances and differential pairs are  
not a concern for I2C signal speeds.  
In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from  
each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher  
amounts of current that commonly pass through power and ground traces. By-pass and de-coupling capacitors  
are commonly used to control the voltage on the VCC pin, using a larger capacitor to provide additional power in  
the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. These  
capacitors must be placed as close to the TCA9538 as possible. These best practices are shown in Figure 32.  
For the layout example provided in Figure 32, it would be possible to fabricate a PCB with only 2 layers by using  
the top layer for signal routing and the bottom layer as a split plane for power (VCC) and ground (GND). However,  
a 4 layer board is preferable for boards with higher density signal routing. On a 4 layer PCB, it is common to  
route signals on the top and bottom layer, dedicate one internal layer to a ground plane, and dedicate the other  
internal layer to a power plane. In a board layout using planes or split planes for power and ground, vias are  
placed directly next to the surface mount component pad which needs to attach to VCC or GND and the via is  
connected electrically to the internal layer or the other side of the board. Vias are also used when a signal trace  
needs to be routed to the opposite side of the board, but this technique is not demonstrated in Figure 32.  
11.2 Layout Example  
LEGEND  
Power or GND Plane  
To I2C Master  
VIA to Power Plane  
VCC  
VIA to GND Plane  
By-pass/De-coupling  
capacitors  
1
2
3
4
5
6
7
8
A0  
VCC  
SDA  
SCL  
INT  
P7  
16  
15  
14  
13  
12  
11  
10  
9
A1  
RESET  
P0  
P1  
P2  
P6  
P3  
P5  
GND  
P4  
GND  
Figure 32. TCA9538 Layout  
28  
版权 © 2014–2016, Texas Instruments Incorporated  
 
TCA9538  
www.ti.com.cn  
ZHCSCT9D AUGUST 2014REVISED OCTOBER 2016  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档请参见以下部分:  
I2C 总线上拉电阻计算》  
I2C 总线在采用中继器时的最高时钟频率》  
《逻辑器件简介》  
《理解 I2C 总线》  
《为新设计挑选合适的 I2C 器件》  
I/O 扩展器 EVM 用户指南》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定  
期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2016, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCA9538DBR  
TCA9538PWR  
ACTIVE  
ACTIVE  
SSOP  
DB  
16  
16  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TD538  
PW538  
TSSOP  
PW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCA9538DBR  
TCA9538PWR  
SSOP  
DB  
16  
16  
2000  
2000  
330.0  
330.0  
16.4  
12.4  
8.35  
6.9  
6.6  
5.6  
2.4  
1.6  
12.0  
8.0  
16.0  
12.0  
Q1  
Q1  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCA9538DBR  
TCA9538PWR  
SSOP  
DB  
16  
16  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DB0016A  
SSOP - 2 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE PACKAGE  
C
8.2  
7.4  
TYP  
A
0.1 C  
SEATING  
PIN 1 INDEX AREA  
PLANE  
14X 0.65  
16  
1
2X  
6.5  
5.9  
4.55  
NOTE 3  
8
9
0.38  
16X  
0.22  
5.6  
5.0  
B
0.1  
C A B  
NOTE 4  
0.25  
0.09  
SEE DETAIL A  
2 MAX  
0.25  
GAGE PLANE  
0.95  
0.55  
0.05 MIN  
0 -8  
A
15  
DETAIL A  
TYPICAL  
4220763/A 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-150.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DB0016A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.85)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220763/A 05/2022  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DB0016A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.85)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220763/A 05/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCA9538DBR

具有中断输出、复位和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | DB | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9538PWR

具有中断输出、复位和配置寄存器的 8 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | PW | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT RESET AND CONFIGURATION REGISTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539-Q1

具有中断输出、复位和配置寄存器的汽车类 16 位 1.65 至 3.6V I2C/SMBus I/O 扩展器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539PWR

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT RESET AND CONFIGURATION REGISTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539QPWRQ1

具有中断输出、复位和配置寄存器的汽车类 16 位 1.65 至 3.6V I2C/SMBus I/O 扩展器 | PW | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539RGER

具有中断输出、复位和配置寄存器的 16 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | RGE | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539RTWR

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT RESET AND CONFIGURATION REGISTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539_15

Low Voltage 16-Bit I2C and SMBus Low-Power I/O Expander

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9543A

具有中断、复位和电压转换功能的 2 通道、1.65V 至 5.5V I2C/SMBus 开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9543ADR

具有中断、复位和电压转换功能的 2 通道、1.65V 至 5.5V I2C/SMBus 开关 | D | 14 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9543APWR

具有中断、复位和电压转换功能的 2 通道、1.65V 至 5.5V I2C/SMBus 开关 | PW | 14 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI