TCA9539-Q1 [TI]

具有中断输出、复位和配置寄存器的汽车类 16 位 1.65 至 3.6V I2C/SMBus I/O 扩展器;
TCA9539-Q1
型号: TCA9539-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有中断输出、复位和配置寄存器的汽车类 16 位 1.65 至 3.6V I2C/SMBus I/O 扩展器

文件: 总41页 (文件大小:1680K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
具有中断输出、复位引脚和配置寄存器TCA9539-Q1 汽车类低16 I2C 和  
SMBus 低功I/O 扩展器  
1 特性  
3 说明  
AEC-Q1001):符合汽车应用要求  
提供功能安全  
TCA9539-Q1 是一款 24 引脚器件可为两线双向 I2C  
总线SMBus 协议提供 16 位通用并行输入和输  
(I/O) 扩展。该器件的工作电源电压 (VCC) 范围为  
1.65V 3.6V并且支持 100kHzI2C 标准模式和  
400kHzI2C 快速模式两种时钟频率。当开关、传  
感器、按钮、LED、风扇以及其他相似器件需要额外的  
I/O I/O 扩展器TCA9539-Q1可提供简单解  
决方案。  
可帮助进行功能安全系统设计的文档  
I2C 至并行端口扩展器  
• 开漏电路低电平有效中断输出  
• 低电平有效复位输入  
5V 耐压输入和输出端口  
• 兼容大多数微控制器  
400kHz I2C 总线  
• 极性反转寄存器  
• 内部上电复位  
• 加电时无干扰  
• 通过两个硬件地址引脚寻址以便使用多4 个器  
• 锁存输出用于直接驱LED  
• 闩锁性能超100mAJESD 78 II 类规范的  
要求  
TCA9539-Q1 包括一项功能当输入端口状态发生变  
化时INT 引脚上生成中断。硬件可选地址引脚 A0  
A1 最多允许四个 TCA9539-Q1 器件位于同一 I2C  
总线上。也可以通过下电上电生成上电复位将此器件  
复位为默认状态。此外TCA9539-Q1 还具有一个硬  
RESET 引脚可用于将器件复位为默认状态。  
TCA9539-Q1 I2C I/O 扩展器符合汽车类应用的要求。  
器件信息  
封装类型(1)  
ESD 保护性能超JESD 22 规范要求  
封装尺寸标称值)  
器件型号  
2000V 人体放电模(A114-A)  
1000V 带电器件模(C101)  
TCA9539-Q1  
TSSOP (24)  
7.80mm × 4.40mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
汽车信息娱乐系统、高级驾驶辅助系(ADAS)、  
汽车车身电子装置、混合动力汽(HEV)、电动车  
(EV) 和动力总成  
工业自动化、工厂自动化、楼宇自动化、测试与测  
量、电子销售点终(EPOS)  
I2C GPIO 扩展  
空白  
VCC  
Peripheral Devices  
SDA  
SCL  
INT  
P00  
P01  
I2C or SMBus Controller  
(e.g. Processor)  
ñ
/RESET,  
ENABLE, or  
control inputs  
/INT or status  
outputs  
RESET  
ñ
ñ
TCA9539-Q1  
LEDs  
A0  
A1  
P17  
GND  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCPS254  
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................18  
8.5 Programming............................................................ 18  
8.6 Register Maps...........................................................20  
9 Power Supply Recommendations................................29  
9.1 Power-On Reset Requirements................................29  
10 Layout...........................................................................31  
10.1 Layout Guidelines................................................... 31  
10.2 Layout Example...................................................... 32  
11 Device and Documentation Support..........................33  
11.1 Documentation Support.......................................... 33  
11.2 接收文档更新通知................................................... 33  
11.3 支持资源..................................................................33  
11.4 Trademarks............................................................. 33  
11.5 Electrostatic Discharge Caution..............................33  
11.6 术语表..................................................................... 33  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 I2C Interface Timing Requirements.............................6  
6.7 RESET Timing Requirements.....................................7  
6.8 Switching Characteristics............................................7  
6.9 Typical Characteristics................................................8  
7 Parameter Measurement Information.......................... 11  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
4 Revision History  
Changes from Revision C (December 2018) to Revision D (October 2021)  
Page  
• 添加了特性提供功能安................................................................................................................................1  
• 将提到的旧术语实例全局更改为控制器和目标。................................................................................................ 1  
Corrected the pin number for pins A0, SCL, SDA, and VCC in the TCA9539-Q1 Layout ...............................32  
Changes from Revision B (April 2016) to Revision C (December 2018)  
Page  
Changed the appearance of the PW pinout image ............................................................................................3  
Removed (5 V) from the VCC label in 9-1 ....................................................................................................25  
Changes from Revision A (September 2015) to Revision B (April 2016)  
Page  
• 将器件状态从产品预发更改为量产数.........................................................................................................1  
Changes from Revision * (January 2014) to Revision A (September 2015)  
Page  
• 添加了“ESD 等级”表、“特性说明”部分、“器件功能模式”、“应用和实施”部分、“电源相关建议”部  
分、“布局”部分、“器件和文档支持”部分以及“机械、封装和可订购信息”部分.......................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
INT  
A1  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
CC  
2
SDA  
SCL  
A0  
RESET  
P00  
3
4
P01  
5
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
P02  
6
P03  
7
P04  
8
P05  
9
P06  
10  
11  
12  
P07  
GND  
Not to scale  
5-1. PW Package, 24-Pin TSSOP, Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
INT  
1
O
I
Interrupt open-drain output. Connect to VCC through a pull-up resistor  
2
A1  
Address input. Connect directly to VCC or ground  
3
RESET  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
GND  
P10  
P11  
I
Active-low reset input. Connect to VCC through a pull-up resistor if no active connection is used  
P-port input-output. Push-pull design structure. At power-on, P00 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P01 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P02 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P03 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P04 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P05 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P06 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P07 is configured as an input  
Ground  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P-port input-output. Push-pull design structure. At power-on, P10 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P11 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P12 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P13 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P14 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P15 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P16 is configured as an input  
P-port input-output. Push-pull design structure. At power-on, P17 is configured as an input  
Address input. Connect directly to VCC or ground  
P12  
P13  
P14  
P15  
P16  
P17  
A0  
SCL  
SDA  
VCC  
I
Serial clock bus. Connect to VCC through a pull-up resistor  
I/O  
Serial data bus. Connect to VCC through a pull-up resistor  
Supply voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.5  
0.5  
0.5  
MAX  
3.6  
6
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage (2)  
V
VO  
IIK  
Output voltage (2)  
6
V
Input clamp current  
VI < 0  
mA  
mA  
mA  
mA  
mA  
20  
20  
±20  
50  
IOK  
IIOK  
IOL  
IOH  
Output clamp current  
VO < 0  
Input-output clamp current  
Continuous output low current  
Continuous output high current  
Continuous current through GND  
Continuous current through VCC  
Maximum junction temperature  
Storage temperature  
VO < 0 or VO > VCC  
VO = 0 to VCC  
VO = 0 to VCC  
50  
250  
160  
ICC  
mA  
Tj(MAX)  
Tstg  
135  
°C  
°C  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The input negative voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
VCC  
Supply voltage  
1.65  
0.5  
3.6  
5.5  
3.6  
5.5  
V
V
SCL, SDA, A0, A1, RESET, INT (1)  
VI/O  
I/O ports voltage  
V
For P00P07, P10P17 configured as outputs  
For P00P07, P10P17 configured as inputs(1)  
SCL, SDA, A0, A1, RESET, P07P00, P10P17  
SCL, SDA, A0, A1, RESET, P07P00, P10P17  
P00P07, P10P17  
0.5  
V
0.5  
VIH  
VIL  
IOH  
High-level input voltage  
Low-level input voltage  
High-level output current  
0.7 × VCC  
V
0.3 × VCC  
V
mA  
10  
25  
Tj 65°C  
Tj = 85°C  
18  
(2)  
IOL  
Low-level output current  
mA  
P00P07, P10P17  
Tj = 105°C  
Tj = 125°C  
Tj = 135°C  
9
4.5  
3.5  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
 
 
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
6
Tj 85°C  
Tj = 105°C  
Tj = 125°C  
Tj = 135°C  
3
mA  
1.8  
(2)  
IOL  
Low-level output current  
INT, SDA  
1.5  
TA  
Operating free-air temperature  
125  
°C  
40  
(1) For voltages applied above VCC, an increase in ICC results.  
(2) The values shown apply to specific junction temperatures. See the 9.2.1.1 section on how to calculate the junction temperature.  
6.4 Thermal Information  
TCA9539-Q1  
THERMAL METRIC (1)  
PW (TSSOP)  
24 PINS  
108.8  
54  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
62.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
11.1  
62.3  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP (1) MAX UNIT  
VIK  
Input diode clamp voltage  
1.65 V to 3.6 V  
V
II = 18 mA  
1.2  
Power-on reset voltage, VCC  
rising  
VPORR  
VI = VCC or GND  
VI = VCC or GND  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
1.2  
1
1.5  
V
V
Power-on reset voltage, VCC  
falling  
VPORF  
0.75  
1.65 V  
2.3 V  
3 V  
1.2  
1.8  
2.6  
3.3  
1
IOH = 8 mA  
3.6 V  
1.65 V  
2.3 V  
3 V  
P-port high-level output voltage  
VOH  
V
(2)  
1.7  
2.5  
3.2  
3
IOH = 10 mA  
3.6 V  
SDA  
VOL = 0.4 V  
VOL = 0.5 V  
VOL = 0.7 V  
VOL = 0.4 V  
8
IOL  
P port (3)  
1.65 V to 3.6 V  
mA  
µA  
10  
3
INT  
SCL, SDA  
A0, A1, RESET  
P port  
±1  
±1  
1
II  
VI = VCC or GND  
1.65 V to 3.6 V  
IIH  
IIL  
VI = VCC  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
µA  
µA  
P port  
VI = GND  
1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCA9539-Q1  
 
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3.6 V  
MIN  
TYP (1) MAX UNIT  
10  
5
30  
19  
VI = VCC or GND, IO = 0,  
I/O = inputs, fSCL = 400 kHz, no load  
Operating mode  
2.7 V  
1.95 V  
3.6 V  
4
11  
1.1  
1
5
ICC  
VI = VCC  
2.7 V  
4.5 µA  
3.5  
13  
1.95 V  
3.6 V  
0.4  
1.1  
1
IO = 0, I/O = inputs,  
fSCL = 0 kHz, no load  
Standby mode  
VI = GND  
2.7 V  
9.5  
6.5  
1.95 V  
1.65 V to 3.6 V  
0.4  
3
Ci  
SCL  
VI = VCC or GND  
VIO = VCC or GND  
8
9.5  
9.5  
pF  
pF  
SDA  
P port  
3
Cio  
1.65 V to 3.6 V  
3.7  
(1) All typical values are at nominal supply voltage (1.8 V, 2.5 V, or 3.3 V, VCC) and TA = 25°C.  
(2) Each I/O must be externally limited to the maximum allowed IOL, and each octal (P07P00 and P17P10) must be limited to a  
maximum current of 100 mA, for a device total of 200 mA at Tj 85°C. See the 6.3 table for more information.  
(3) The total current sourced by all I/Os must be limited to 160 mA (80 mA for P07P00 and 80 mA for P17P10) for Tj 85°C. See the  
6.3 table for more information.  
6.6 I2C Interface Timing Requirements  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-1)  
MIN  
MAX  
UNIT  
I2C BUSSTANDARD MODE  
fscl  
I2C clock frequency  
0
4
100  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
tsch  
tscl  
I2C clock high time  
I2C clock low time  
4.7  
tsp  
I2C spike time  
50  
tsds  
tsdh  
ticr  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
250  
0
1000  
300  
ticf  
I2C input fall time  
tocf  
tbuf  
tsts  
I2C output fall time  
10 pF to 400 pF bus  
300  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
Valid data time  
4.7  
4.7  
4
tsth  
tsps  
tvd(data)  
4
SCL low to SDA output valid  
3.45  
3.45  
400  
ACK signal from SCL low to  
SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
µs  
pF  
MIN  
MAX  
UNIT  
I2C BUSFAST MODE  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
0
0.6  
1.3  
400  
kHz  
µs  
I2C clock high time  
I2C clock low time  
I2C spike time  
µs  
50  
ns  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
MIN  
100  
0
MAX  
UNIT  
ns  
tsds  
tsdh  
ticr  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
ns  
20  
300  
300  
ns  
20 × (VCC  
/
ticf  
I2C input fall time  
I2C output fall time  
ns  
ns  
5.5 V)  
20 × (VCC  
/
tocf  
10 pF to 400 pF bus  
300  
5.5 V)  
tbuf  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
1.3  
µs  
µs  
µs  
µs  
µs  
tsts  
0.6  
tsth  
0.6  
tsps  
0.6  
tvd(data)  
Valid data time  
SCL low to SDA output valid  
0.9  
0.9  
ACK signal from SCL low to  
SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
µs  
pF  
400  
6.7 RESET Timing Requirements  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-4)  
MIN  
MAX  
UNIT  
ns  
tW  
Reset pulse duration  
6
0
tREC  
Reset recovery time  
ns  
400  
550  
ns  
Time to reset; For VCC =2.3 V 3.6 V  
Time to reset; For VCC = 1.65 V 2.3 V  
tRESET  
ns  
6.8 Switching Characteristics  
over recommended operating free-air temperature range, CL 100 pF (unless otherwise noted) (see 7-2 and 7-3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
Interrupt valid time  
MIN  
MAX  
UNIT  
tiv  
tir  
P port  
SCL  
INT  
INT  
4
4
µs  
µs  
Interrupt reset delay time  
tpv  
Output data valid; For VCC = 2.3 V 3.6  
V
200  
300  
ns  
ns  
SCL  
P port  
Output data valid; For VCC = 1.65 V 2.3  
V
tps  
tph  
Input data setup time  
Input data hold time  
P port  
P port  
SCL  
SCL  
150  
1
ns  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
6.9 Typical Characteristics  
TA = 25°C (unless otherwise noted)  
18  
1.75  
1.5  
Vcc = 1.65 V  
Vcc = 1.8 V  
Vcc = 2.5 V  
Vcc = 3.3 V  
Vcc = 3.6 V  
Vcc = 1.65 V  
Vcc = 1.8 V  
Vcc = 2.5 V  
Vcc = 3.3 V  
Vcc = 3.6 V  
15  
12  
9
1.25  
1
0.75  
0.5  
6
3
0.25  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Temperature (°C)  
D002  
D001  
6-2. Standby Supply Current vs Temperature for Different  
Supply Voltage (VCC  
6-1. Supply Current vs Temperature for Different Supply  
Voltage (VCC  
)
)
14  
12  
10  
8
30  
25  
20  
15  
10  
5
-40 °C  
25 °C  
85 °C  
125 °C  
-40èC  
25èC  
85èC  
125èC  
6
4
2
0
1.6 1.8  
2
2.2 2.4 2.6 2.8  
VCC - Supply Voltage (V)  
3
3.2 3.4 3.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
VOL - Output Low Voltage (V)  
0.6  
0.7  
D003  
D004  
6-3. Supply Current vs Supply Voltage for Different  
6-4. I/O Sink Current vs Output Low Voltage for Different  
Temperature (TA)  
Temperature (TA) for VCC = 1.65 V  
35  
55  
-40èC  
-40èC  
50  
25èC  
25èC  
30  
85èC  
125èC  
85èC  
125èC  
45  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
0
0.1  
0.2  
VOL - Output Low Voltage (V)  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
VOL - Output Low Voltage (V)  
0.3  
0.4  
0.5  
0.6  
0.7  
D005  
D006  
6-5. I/O Sink Current vs Output Low Voltage for Different  
6-6. I/O Sink Current vs Output Low Voltage for Different  
Temperature (TA) for VCC = 1.8 V  
Temperature (TA) for VCC = 2.5 V  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
70  
300  
250  
200  
150  
100  
50  
1.8 V, 1 mA  
1.8 V, 10 mA  
3.3 V, 1mA  
3.3 V, 10 mA  
-40èC  
25èC  
60  
85èC  
125èC  
50  
40  
30  
20  
10  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Temperature (°C)  
0
0.1  
0.2 0.5  
VOL - Output Low Voltage (V)  
0.3  
0.4  
0.6  
0.7  
D010  
D007  
6-8. I/O Low Voltage vs Temperature for Different VCC and IOL  
6-7. I/O Sink Current vs Output Low Voltage for Different  
Temperature (TA) for VCC = 3.3 V  
20  
25  
-40èC  
25èC  
85èC  
-40èC  
25èC  
85èC  
20  
125èC  
125èC  
15  
10  
5
15  
10  
5
0
0
0
0.1  
0.2  
VCC-VOH - Output High Voltage (V)  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
VCC-VOH - Output High Voltage (V)  
0.3  
0.4  
0.5  
0.6  
0.7  
D011  
D012  
6-9. I/O Source Current vs Output High Voltage for Different 6-10. I/O Source Current vs Output High Voltage for Different  
Temperature (TA) for VCC = 1.65 V  
Temperature (TA) for VCC = 1.8 V  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40èC  
25èC  
-40èC  
25èC  
85èC  
85èC  
125èC  
125èC  
0
0
0
0.1  
0.2  
VCC-VOH - Output High Voltage (V)  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
VCC-VOH - Output High Voltage (V)  
0.3  
0.4  
0.5  
0.6  
0.7  
D013  
D014  
6-11. I/O Source Current vs Output High Voltage for Different 6-12. I/O Source Current vs Output High Voltage for Different  
Temperature (TA) for VCC = 2.5 V Temperature (TA) for VCC = 3.3 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCA9539-Q1  
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C (unless otherwise noted)  
400  
15  
12.5  
10  
1.65 V, 10 mA  
2.5 V, 10 mA  
3.6 V, 10 mA  
1.65 V  
1.8 V  
1.95 V  
2.5 V  
2.7 V  
3.3 V  
3.6 V  
350  
300  
250  
200  
150  
100  
7.5  
5
2.5  
0
-40  
-20  
0
20  
40  
60  
Temperature (C)  
80  
100  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Temperature (°C)  
D001  
D018  
6-14. ΔICC vs Temperature for Different VCC (VI = VCC 0.6  
6-13. VCC VOH Voltage vs Temperature for Different VCC  
V)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CC  
R
L
= 1 kΩ  
SDA  
DUT  
C
L
= 50 pF  
(see Note A)  
SDA Load Configuration  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Address  
Bit 0  
Data  
Data  
Stop  
Address  
Bit 6  
ACK  
(A)  
Bit 07  
(MSB)  
Bit 10 Condition  
(LSB)  
Bit 1  
(LSB)  
(P)  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
icr  
t
sts  
t
vd(ack)  
t
icf  
t
buf  
t
t
sp  
vd(data)  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
sds  
Repeat  
Start  
Stop  
Condition  
Start or  
Repeat  
Start  
Condition  
Condition  
Voltage Waveforms  
BYTE  
DESCRIPTION  
2
1
I C address  
2, 3  
P-port data  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
7-1. I2C Interface Load Circuit and Voltage Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
V
CC  
R
L
= 4.7 kΩ  
INT  
DUT  
C
L
= 100 pF  
(see Note A)  
Interrupt Load Configuration  
1
2
3
4
5
6
7
8
SCL  
SDA  
Data From Port  
Target Address  
Data From Port  
Data 4  
Data 1  
S
1
1
1
0
1
A1 A0  
R/W  
1
A
P
NA  
A
Start  
Condition  
NACK From  
Controller  
ACK From  
Target  
ACK From  
Controller  
Stop  
Condition  
Read From  
Port  
Data Into  
Port  
Data 2  
Data 3  
Data 4  
Data 5  
t
ph  
t
ps  
INT  
t
iv  
t
ir  
0.7 × V  
0.3 × V  
CC  
0.7 × V  
0.3 × V  
CC  
SCL  
INT  
R/W  
A
CC  
CC  
t
iv  
t
ir  
0.7 × V  
0.3 × V  
0.7 × V  
0.3 × V  
CC  
CC  
Data Into  
Port (Pn)  
INT  
CC  
CC  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 Hz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
7-2. Interrupt Load Circuit and Voltage Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
A. CL includes probe and jig capacitance.  
B. tpv is measured from 0.7 × VCC on SCL to 50% I/O (Pn) output.  
C. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. All parameters and waveforms are not applicable to all devices.  
7-3. P-Port Load Circuit and Voltage Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
V
CC  
Pn  
500  
R
= 1 kΩ  
L
DUT  
2 × V  
CC  
SDA  
DUT  
C
= 50 pF  
L
(see Note 1)  
500 Ω  
C
= 50 pF  
L
(see Note 1)  
SDA Load Configuration  
P-Port Load Configuration  
Start  
SCL  
ACK or Read Cycle  
SDA  
0.3  
V
CC  
t
RESET  
RESET  
V
/2  
CC  
t
REC  
t
w
Px  
(see Note 4)  
/2  
-V  
CC  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
D. I/Os are configured as inputs.  
E. All parameters and waveforms are not applicable to all devices.  
7-4. Reset Load Circuits and Voltage Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCA9539-Q1 is a 16-bit I/O expander for the two-line bidirectional bus (I2C) designed for 1.65 V to 3.6 V,  
VCC operation. It provides general-purpose remote I/O expansion for most microcontroller families via the I2C  
interface, serial clock (SCL) and serial data (SDA).  
The TCA9539-Q1 consists of two 8-bit Configuration (input or output selection), Input Port, Output Port, and  
Polarity Inversion (active-high or active-low operation) registers. At power-on, the I/Os are configured as inputs.  
The system controller can enable the I/Os as either inputs or outputs by writing to the configuration register bits.  
The data for each input or output is kept in the corresponding Input or output register. The polarity of the Input  
Port register can be inverted with the Polarity Inversion register. All registers can be read by the system  
controller.  
The system controller can reset the TCA9539-Q1 in the event of a time-out or other improper operation by  
asserting a low in the RESET input. The power-on reset puts the registers in their default state and initializes the  
I2C-SMBus state machine. Asserting RESET causes the same reset-initialization to occur without depowering  
the part.  
The TCA9539-Q1 open-drain interrupt ( INT) output is activated when any input state differs from its  
corresponding Input Port register state and is used to indicate to the system controller that an input state has  
changed.  
INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the  
remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via  
the I2C bus. Thus, the TCA9539-Q1 can remain a simple target device.  
The TCA9539-Q1 is similar to the TCA9555, except for the removal of the internal I/O pull-up resistor, which  
greatly reduces power consumption when the I/Os are held low, replacement of A2 with RESET, and a different  
address range. The TCA9539-Q1 is similar to the PCA9539 with lower voltage support (down to VCC = 1.65 V),  
and also improved power-on reset circuitry for different application scenarios.  
Two hardware pins (A0 and A1) are used to program and vary the fixed I2C address and allow up to four devices  
to share the same I2C bus or SMBus.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2 Functional Block Diagram  
TCA9539-Q1  
1
Interrupt  
Logic  
INT  
LP Filter  
21  
2
A0  
A1  
P07-P00  
P17-P10  
22  
23  
SCL  
SDA  
2
I C Bus  
Input  
Filter  
Shift  
I/O  
16 Bits  
Control  
Register  
Port  
Write Pulse  
Read Pulse  
3
RESET  
24  
12  
Power-On  
Reset  
V
CC  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Pin numbers shown are for PW package.  
All I/Os are set to inputs at reset.  
8-1. Logic Diagram (Positive Logic)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
Data From  
Output Port  
Shift Register  
Register Data  
Configuration  
Register  
V
CC  
Q1  
Data From  
D
Q
Shift Register  
FF  
CLK  
D
Q
Q
Write Configuration  
Pulse  
Q
FF  
CLK  
I/O Pin  
Write Pulse  
Output Port  
Register  
Q2  
Input Port  
Register  
GND  
D
Q
Input Port  
Register Data  
FF  
CLK  
Read Pulse  
Q
To INT  
Data From  
Polarity  
D
Q
Q
Shift Register  
Register Data  
FF  
CLK  
Write Polarity  
Pulse  
Polarity Inversion  
Register  
Copyright © 2016, Texas Instruments Incorporated  
At power-on reset, all registers return to default values.  
8-2. Simplified Schematic of P-Port I/Os  
8.3 Feature Description  
8.3.1 I/O Port  
When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The  
input voltage may be raised above VCC to a maximum of 5.5 V.  
If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output Port register. In  
this case, there are low-impedance paths between the I/O pin and either VCC or GND. The external voltage  
applied to this I/O pin must not exceed the recommended levels for proper operation.  
8.3.2 RESET Input  
A reset can be accomplished by holding the RESET pin low for a minimum of tW. The TCA9539-Q1 registers and  
I2C-SMBus state machine are held in their default states until RESET is once again high. This input requires a  
pull-up resistor to VCC, if no active connection is used.  
8.3.3 Interrupt ( INT) Output  
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, tiv, the  
signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original  
setting or data is read from the port that generated the interrupt. Resetting occurs in the read mode at the  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
acknowledge (ACK) bit after the rising edge of the SCL signal. Note that the INT is reset at the ACK just before  
the byte of changed data is sent. Interrupts that occur during the ACK clock pulse can be lost (or be very short)  
because of the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and  
is transmitted as INT.  
Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output  
cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the  
state of the pin does not match the contents of the Input Port register. Because each 8-bit port is read  
independently, the interrupt caused by port 0 is not cleared by a read of port 1, or vice versa.  
INT has an open-drain structure and requires a pull-up resistor to VCC  
.
8.4 Device Functional Modes  
8.4.1 Power-On Reset  
When power (from 0 V) is applied to VCC, an internal power-on reset holds the TCA9539-Q1 in a reset condition  
until VCC has reached VPORR. At that point, the reset condition is released and the TCA9539-Q1 registers and  
I2C-SMBus state machine initialize to their default states. After that, VCC must be lowered to VPORF and then  
back up to the operating voltage for a power-reset cycle. See 8-3.  
8.5 Programming  
8.5.1 I2C Interface  
The TCA9539-Q1 has a standard bidirectional I2C interface that is controlled by a controller device in order to be  
configured or read the status of this device. Each target on the I2C bus has a specific device address to  
differentiate between other target devices that are on the same I2C bus. Many target devices require  
configuration upon startup to set the behavior of the device. This is typically done when the controller accesses  
internal register maps of the target, which have unique register addresses. A device can have one or multiple  
registers where data is stored, written, or read. For more information see Understanding the I2C Bus, SLVA704.  
The physical I2C interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and SCL lines  
must be connected to VCC through a pull-up resistor. The size of the pull-up resistor is determined by the amount  
of capacitance on the I2C lines. For further details, see I2C Pull-up Resistor Calculation, SLVA689. Data transfer  
may be initiated only when the bus is idle. A bus is considered idle if both SDA and SCL lines are high after a  
STOP condition. See 8-1.  
8-3 and 8-4 show the general procedure for a controller to access a target device:  
1. If a controller wants to send data to a target:  
Controller-transmitter sends a START condition and addresses the target-receiver.  
Controller-transmitter sends data to target-receiver.  
Controller-transmitter terminates the transfer with a STOP condition.  
2. If a controller wants to receive or read data from a target:  
Controller-receiver sends a START condition and addresses the target-transmitter.  
Controller-receiver sends the requested register to read to target-transmitter.  
Controller-receiver receives data from the target-transmitter.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
Controller-receiver terminates the transfer with a STOP condition.  
SCL  
SDA  
Data Transfer  
START  
Condition  
STOP  
Condition  
8-3. Definition of Start and Stop Conditions  
SDA line stable while SCL line is high  
SCL  
1
0
1
1
1
ACK  
0
0
0
SDA  
MSB  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
LSB  
ACK  
Byte: 1010 1010 ( 0xAAh )  
8-4. Bit Transfer  
8-1 shows the interface definition.  
8-1. Interface Definition  
BIT  
BYTE  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
I2C target address  
P0x I/O data bus  
P1x I/O data bus  
H
H
H
L
H
A1  
A0  
R/ W  
P00  
P10  
P07  
P17  
P06  
P16  
P05  
P15  
P04  
P14  
P03  
P13  
P02  
P12  
P01  
P11  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCA9539-Q1  
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 Device Address  
8-5 shows the address byte of the TCA9539-Q1.  
R/W  
Target Address  
1
1
1
0
1
A1 A0  
Fixed  
Programmable  
8-5. TCA9539-Q1 Address  
8-2 shows the address reference of the TCA9539-Q1.  
8-2. Address Reference  
INPUTS  
I2C BUS TARGET ADDRESS  
A1  
A0  
L
L
L
116 (decimal), 74 (hexadecimal)  
117 (decimal), 75 (hexadecimal)  
118 (decimal), 76 (hexadecimal)  
119 (decimal), 77 (hexadecimal)  
H
L
H
H
H
The last bit of the target address defines the operation (read or write) to be performed. A high (1) selects a read  
operation, while a low (0) selects a write operation.  
8.6.2 Control Register And Command Byte  
Following the successful acknowledgment of the address byte, the bus controller sends a command byte shown  
in 8-3 that is stored in the control register in the TCA9539-Q1. Three bits of this data byte state the operation  
(read or write) and the internal register (input, output, Polarity Inversion or Configuration) that is affected. This  
register can be written or read through the I2C bus. The command byte is sent only during a write transmission.  
When a command byte has been sent, the register pair that was addressed continues to be accessed by reads  
until a new command byte has been sent. 8-6 shows the control register bits.  
0
0
0
0
0
B2 B1 B0  
8-6. Control Register Bits  
8-3. Command Byte  
CONTROL REGISTER BITS  
COMMAND  
BYTE (HEX)  
POWER-UP  
DEFAULT  
REGISTER  
PROTOCOL  
B2  
0
B1  
0
B0  
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
Input Port 0  
Input Port 1  
Read byte  
xxxx xxxx  
xxxx xxxx  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
0
0
1
Read byte  
0
1
0
Output Port 0  
Read-write byte  
Read-write byte  
Read-write byte  
Read-write byte  
Read-write byte  
Read-write byte  
0
1
1
Output Port 1  
1
0
0
Polarity Inversion Port 0  
Polarity Inversion Port 1  
Configuration Port 0  
Configuration Port 1  
1
0
1
1
1
0
1
1
1
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
 
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
8.6.3 Register Descriptions  
The Input Port registers (registers 0 and 1) shown in 8-4 reflect the incoming logic levels of the pins,  
regardless of whether the pin is defined as an input or an output by the Configuration register. It only acts on  
read operation. Writes to these registers have no effect. The default value, X, is determined by the externally  
applied logic level.  
Before a read operation, a write transmission is sent with the command byte to indicate to the I2C device that the  
Input Port register is accessed next.  
8-4. Registers 0 And 1 (Input Port Registers)  
Bit  
I0.7  
I0.6  
I0.5  
I0.4  
I0.3  
I0.2  
I0.1  
X
I0.0  
X
Default  
Bit  
X
X
X
X
X
X
I1.7  
X
I1.6  
X
I1.5  
X
I1.4  
X
I1.3  
X
I1.2  
X
I1.1  
X
I1.0  
X
Default  
The Output Port registers (registers 2 and 3) shown in 8-5 show the outgoing logic levels of the pins defined  
as outputs by the Configuration register. Bit values in this register have no effect on pins defined as inputs. In  
turn, reads from this register reflect the value that is in the flip-flop controlling the output selection, not the actual  
pin value.  
8-5. Registers 2 And 3 (Output Port Registers)  
Bit  
O0.7  
O0.6  
O0.5  
O0.4  
O0.3  
O0.2  
O0.1  
1
O0.0  
1
Default  
Bit  
1
1
1
1
1
1
O1.7  
1
O1.6  
1
O1.5  
1
O1.4  
1
O1.3  
1
O1.2  
1
O1.1  
1
O1.0  
1
Default  
The Polarity Inversion registers (registers 4 and 5) shown in 8-6 allow Polarity Inversion of pins defined as  
inputs by the Configuration register. If a bit in this register is set (written with 1), the corresponding port pin's  
polarity is inverted. If a bit in this register is cleared (written with a 0), the corresponding port pin's original  
polarity is retained.  
8-6. Registers 4 And 5 (Polarity Inversion Registers)  
Bit  
N0.7  
N0.6  
N0.5  
N0.4  
N0.3  
N0.2  
N0.1  
N0.0  
0
Default  
Bit  
0
0
0
0
0
0
0
N1.7  
0
N1.6  
0
N1.5  
0
N1.4  
0
N1.3  
0
N1.2  
0
N1.1  
0
N1.0  
0
Default  
The Configuration registers (registers 6 and 7) shown in 8-7 configure the directions of the I/O pins. If a bit in  
this register is set to 1, the corresponding port pin is enabled as an input with a high-impedance output driver. If  
a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.  
8-7. Registers 6 And 7 (Configuration Registers)  
Bit  
C0.7  
C0.6  
C0.5  
C0.4  
C0.3  
C0.2  
C0.1  
C0.0  
1
Default  
Bit  
1
1
1
1
1
1
1
C1.7  
1
C1.6  
1
C1.5  
1
C1.4  
1
C1.3  
1
C1.2  
1
C1.1  
1
C1.0  
1
Default  
8.6.3.1 Bus Transactions  
Data is exchanged between the controller and the TCA9539-Q1 through write and read commands, and this is  
accomplished by reading from or writing to registers in the target device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCA9539-Q1  
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
Registers are locations in the memory of the target which contain information, whether it be the configuration  
information or some sampled data to send back to the controller. The controller must write information to these  
registers in order to instruct the target device to perform a task.  
8.6.3.1.1 Writes  
To write on the I2C bus, the controller sends a START condition on the bus with the address of the target, as well  
as the last bit (the R/ W bit) set to 0, which signifies a write. After the target sends the acknowledge bit, the  
controller then sends the register address of the register to which it wishes to write. The target acknowledges  
again, letting the controller know it is ready. After this, the controller starts sending the register data to the target  
until the controller has sent all the data necessary (which is sometimes only a single byte), and the controller  
terminates the transmission with a STOP condition.  
See the 8.6.2 section to see list of the TCA9539-Q1s internal registers and a description of each one.  
8-7 shows an example of writing a single byte to a target register.  
Controller controls SDA line  
Target controls SDA line  
Write to one register in a device  
Register Address N (8 bits)  
Data Byte to Register N (8 bits)  
Device (Target) Address (7 bits)  
S
1
1
1
0
1
A1  
A0  
0
A
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
START  
R/W=0  
ACK  
ACK  
ACK  
STOP  
8-7. Write to Register  
8-9 shows the Write to the Polarity Inversion Register.  
Controller controls SDA line  
Target controls SDA line  
Register Address 0x01 (8 bits)  
Data Byte to Register 0x01 (8 bits)  
Device (Target) Address (7 bits)  
S
1
1
1
0
1
A1  
A0  
0
A
0
0
0
0
0
1
0
0
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
START  
R/W=0  
ACK  
ACK  
ACK  
STOP  
8-8. Write to the Polarity Inversion Register  
8-9 shows the Write to Output Port Registers  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
1
2
3
4
5
6
7
8
9
SCL  
Command Byte  
Data to Port 0  
Data to Port 1  
Data 1  
Target Address  
SDA  
A
P
0.7  
0.0  
1.0  
S
1
1
1
0
1
A1 A0  
0
A
0
0
0
0
0
0
1
0
A
A
1.7  
Data 0  
R/W  
Acknowledge  
From Target  
Acknowledge  
From Target  
Start Condition  
Acknowledge  
From Target  
Write to Port  
Data Out from Port 0  
t
pv  
Data Valid  
Data Out from Port 1  
t
pv  
8-9. Write to Output Port Registers  
8.6.3.1.2 Reads  
Reading from a target is very similar to writing, but requires some additional steps. In order to read from a target,  
the controller must first instruct the target which register it wishes to read from. This is done by the controller  
starting off the transmission in a similar fashion as the write, by sending the address with the R/ W bit equal to 0  
(signifying a write), followed by the register address it wishes to read from. When the target acknowledges this  
register address, the controller sends a START condition again, followed by the target address with the R/ W bit  
set to 1 (signifying a read). This time, the target acknowledges the read request, and the controller releases the  
SDA bus but continues supplying the clock to the target. During this part of the transaction, the controller  
becomes the controller-receiver, and the target becomes the target-transmitter.  
The controller continues to send out the clock pulses, but releases the SDA line so that the target can transmit  
data. At the end of every byte of data, the controller sends an ACK to the target, letting the target know that it is  
ready for more data. When the controller has received the number of bytes it is expecting, it sends a NACK,  
signaling to the target to halt communications and release the bus. The controller follows this up with a STOP  
condition.  
If a read is requested by the controller after a POR without first setting the command byte via a write, the device  
NACKs until a command byte-register address is set as described above.  
See the 8.6.2 section to see list of the TCA9539-Q1s internal registers and a description of each one.  
8-10 shows an example of reading a single byte from a target register.  
Controller controls SDA line  
Target controls SDA line  
Read from one register in a device  
Device (Target) Address (7 bits)  
Register Address N (8 bits)  
Device (Target) Address (7 bits)  
Data Byte from Register N (8 bits)  
S
1
1
1
0
1
A1  
A0  
0
A
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
A
Sr  
1
1
1
0
1
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NA  
P
R/W=1  
START  
ACK  
ACK  
Repeated START  
ACK  
NACK  
STOP  
R/W=0  
8-10. Read from Register  
When a restart occurs after a single write request to a register, the requested register is used for the read  
request. Note that when reading multiple bytes of data. Data is clocked into the register on the rising edge of the  
ACK clock pulse before data is sent. The internal register value is also changed to the other register of the pair  
on the rising edge of the ACK clock pulse before data is sent. After the first byte is read, additional bytes may be  
read, but the data now reflect the information in the other register in the pair. For example, if Input Port 1 is read,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCA9539-Q1  
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
the next byte read is Input Port 0. If a restart occurs during a read, the data is lost because the internal register  
already has been changed to the next register in the pair.  
There is no limitation on the number of data bytes received in one read transmission, but when the final byte is  
received, the bus controller must not acknowledge the data. 8-11 and 8-12 show two different scenarios of  
Read Input Port Register.  
1
2
3
4
5
6
7
8
9
SCL  
I0.x  
I1.x  
I0.x  
I1.x  
SDA  
S
1
1
1
0
1
A1 A0  
1
A
7
6
5
4
3
2
1
0
A
7
6
5
4
3
2
1
0
A
7
6
5
4
3
2
1
0
A
7
6
5
4
3
2
1
0
1
P
Acknowledge  
R/W  
Acknowledge  
Acknowledge  
Acknowledge  
From Target  
No Acknowledge  
From Controller  
From Controller  
From Controller  
From Controller  
Read From Port 0  
Data Into Port 0  
Read From Port 1  
Data Into Port 1  
INT  
t
t
iv  
ir  
Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is  
valid (output mode). It is assumed that the command byte previously has been set to 00 (Read Input Port register).  
This figure eliminates the command byte transfer, a restart, and target address call between the initial target address call and actual  
data transfer from the P port (see the 8.6.3.1.2 section for these details).  
8-11. Read Input Port Register, Scenario 1  
<br/>  
1
2
3
4
5
6
7
8
9
SCL  
10.x  
11.x  
10.x  
11.x  
S
1
1
1
0
1
A1 A0  
1
A
00  
A
10  
A
03  
A
1
P
SDA  
11  
Acknowledge  
From Controller  
Acknowledge  
From Controller  
Acknowledge  
From Target  
Acknowledge  
From Controller  
R/W  
No Acknowledge  
From Controller  
t
ps  
t
ph  
t
ph  
Read From Port 0  
Data Into Port 0  
Data 00  
Data 01  
Data 02  
Data 03  
t
t
iv  
ph  
Read From Port 1  
11  
12  
Data  
Data 10  
Data  
Data Into Port 1  
INT  
t
ir  
t
iv  
t
t
ir  
iv  
Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is  
valid (output mode). It is assumed that the command byte previously has been set to 00 (Read Input Port register).  
This figure eliminates the command byte transfer, a restart, and target address call between the initial target address call and actual  
data transfer from the P port (see the 8.6.3.1.2 section for these details).  
8-12. Read Input Port Register, Scenario 2  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
Applications of the TCA9539-Q1 has this device connected as a target to an I2C controller (processor), and the  
I2C bus may contain any number of other target devices. The TCA9539-Q1 is typically in a remote location from  
the controller, placed close to the GPIOs to which the controller needs to monitor or control.  
IO Expanders such as the TCA9539-Q1 are typically used for controlling LEDs (for feedback or status lights),  
controlling enable or reset signals of other devices, and even reading the outputs of other devices or buttons.  
9.2 Typical Application  
9-1 shows an application in which the TCA9539-Q1 can be used.  
Subsystem 1  
(e.g.,Temperature  
Sensor)  
INT  
V
CC  
Subsystem 2  
(e.g., Counter)  
100 kΩ  
24  
2 kΩ  
4
10 kΩ 10 kΩ 10 kΩ 10 kΩ  
V
CC  
V
CC  
100 kΩ 100 kΩ  
RESET  
A
22  
23  
P00  
SCL  
SDA  
INT  
SCL  
5
P01  
Controller  
GND  
SDA  
6
7
P02  
P03  
1
3
INT  
ENABLE  
8
9
RESET  
P04  
P05  
B
TCA9539-Q1  
V
CC  
10  
Controlled Switch  
(e.g., CBT Device)  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
11  
13  
14  
15  
16  
17  
18  
19  
20  
2
ALARM  
A1  
A0  
Keypad  
Subsystem 3  
(e.g., Alarm)  
21  
GND  
12  
Device address is configured as 1110100 for this example.  
P00, P02, and P03 are configured as outputs.  
P01 and P04 to P17 are configured as inputs.  
Pin numbers shown are for the PW package.  
9-1. Application Schematic  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
9.2.1 Design Requirements  
9.2.1.1 Calculating Junction Temperature and Power Dissipation  
When designing with the TCA9539-Q1, it is important that the 6.3 not be violated. Many of the parameters of  
this device are rated based on junction temperature, so junction temperature must be calculated in order to verify  
that safe operation of the device is met. The basic equation for junction temperature is shown in 方程1.  
Tj = TA + q ´ P  
(
)
JA  
d
(1)  
θJA is the standard junction to ambient thermal resistance measurement of the package, as seen in 6.4 table.  
Pd is the total power dissipation of the device, and the approximation is shown in 方程2.  
P » ICC_STATIC ´ VCC  
(
+
Pd_PORT _L  
+
Pd_PORT _H  
)
d
å
å
(2)  
方程式 2 is the approximation of power dissipation in the device. The equation is the static power plus the  
summation of power dissipated by each port (with a different equation based on if the port is outputting high, or  
outputting low. If the port is set as an input, then power dissipation is the input leakage of the pin multiplied by  
the voltage on the pin). Note that this ignores power dissipation in the INT and SDA pins, assuming these  
transients to be small. They can easily be included in the power dissipation calculation by using 方程式 3 to  
calculate the power dissipation in INT or SDA while they are pulling low, and this gives maximum power  
dissipation.  
Pd_PORT _L = I ´ VOL  
(
OL  
)
(3)  
方程式 3 shows the power dissipation for a single port which is set to output low. The power dissipated by the  
port is the VOL of the port multiplied by the current it is sinking.  
Pd_PORT _H = I  
(
´ V - VOH  
(
CC  
)
)
OH  
(4)  
方程式 4 shows the power dissipation for a single port which is set to output high. The power dissipated by the  
port is the current sourced by the port multiplied by the voltage drop across the device (difference between VCC  
and the output voltage).  
9.2.1.2 Minimizing ICC When I/Os Control LEDs  
When an I/O is used to control an LED, normally it is connected to VCC through a resistor (see 9-1). Because  
the LED acts as a diode, when the LED is off, the I/O VIN is about 1.2 V less than VCC. The ΔICC parameter in  
the 6.5 table show how ICC increases as VIN becomes lower than VCC. For battery-powered applications, it is  
essential that the voltage of I/O pins is greater than or equal to VCC, when the LED is off, to minimize current  
consumption.  
9-2 shows a high-value resistor in parallel with the LED. 9-3 shows VCC less than the LED supply voltage  
by at least 1.2 V. Both of these methods maintain the I/O VCC at or above VCC and prevent additional supply-  
current consumption when the LED is off.  
Take care to make sure that the recommended maximum IOL through the ports not be violated based upon  
junction temperature. See the 6.3 for more information.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
V
CC  
LED  
100 kΩ  
V
CC  
Pn  
9-2. High-Value Resistor In Parallel With LED  
3.3 V  
5 V  
V
CC  
LED  
Pn  
9-3. Device Supplied By Lower Voltage  
9.2.2 Detailed Design Procedure  
The pull-up resistors, RP, for the SCL and SDA lines need to be selected appropriately and take into  
consideration the total capacitance of all targets on the I2C bus. The minimum pull-up resistance is a function of  
V
CC, VOL,(max), and IOL as shown in 方程5.  
VCC - VOL(max)  
Rp(min)  
=
IOL  
(5)  
The maximum pull-up resistance is a function of the maximum rise time, tr (300 ns for fast-mode operation,  
fSCL = 400 kHz) and bus capacitance, Cb as shown in 方程6.  
tr  
Rp(max)  
=
0.8473´Cb  
(6)  
The maximum bus capacitance for an I2C bus must not exceed 400 pF for standard-mode or fast-mode  
operation. The bus capacitance can be approximated by adding the capacitance of the TCA9539-Q1, Ci for SCL  
or Cio for SDA, the capacitance of wires, connections, traces, and the capacitance of additional targets on the  
bus.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCA9539-Q1  
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
9.2.3 Application Curves  
25  
1.8  
1.6  
1.4  
1.2  
1
Standard-mode  
Fast-mode  
20  
15  
10  
5
0.8  
0.6  
0.4  
0.2  
0
VCC > 2V  
VCC <= 2  
0
0
0.5  
1
1.5  
2
2.5 3  
VCC (V)  
3.5  
4
4.5  
5
5.5  
0
50  
100 150 200 250 300 350 400 450  
Cb (pF)  
D009  
D008  
Standard-mode  
Fast-mode  
VOL = 0.2 × VCC, IOL = 2 mA when VCC 2 V  
(fSCL = 100 kHz, tr = 1 µs)  
(fSCL = 400 kHz, tr = 300 ns)  
VOL = 0.4 V, IOL = 3 mA when VCC > 2 V  
9-4. Maximum Pull-Up resistance (Rp(max)) vs  
9-5. Minimum Pull-Up Resistance (Rp(min)) vs  
Pull-Up Reference Voltage (VCC  
Bus Capacitance (Cb)  
)
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 Power-On Reset Requirements  
In the event of a glitch or data corruption, TCA9539-Q1 can be reset to its default conditions by using the power-  
on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This  
reset also happens when the device is powered on for the first time in an application.  
The voltage waveform for a power-on reset is shown in 9-1.  
V
CC  
Ramp-Down  
Ramp-Up  
V
CC_TRR  
V
drops below VPORF – 50 mV  
CC  
Time  
Time to Re-Ramp  
V
V
CC_FT  
CC_RT  
9-1. VCC is Lowered Below the POR Threshold, then Ramped Back Up to VCC  
9-1 specifies the performance of the power-on reset feature for TCA9539-Q1.  
9-1. Recommended Supply Sequencing And Ramp Rates (1)  
PARAMETER  
MIN TYP  
MAX UNIT  
VCC_FT  
VCC_RT  
Fall rate  
0.1  
0.1  
ms  
ms  
See 9-1  
See 9-1  
Rise rate  
Time to re-ramp (when VCC drops to VPOR_MIN 50 mV or  
when VCC drops to GND)  
VCC_TRR  
VCC_GH  
VCC_MV  
2
See 9-1  
See 9-2  
μs  
V
The level (referenced to VCC) that VCC can glitch down to, but  
not cause a functional disruption when VCC_GW  
1.2  
The minimum voltage that VCC can glitch down to without  
causing a reset (VCC_GH must not be violated)  
1.5  
V
See 9-2  
See 9-2  
VCC_GW  
VPORF  
VPORR  
Glitch width that does not cause a functional disruption  
Voltage trip point of POR on falling VCC  
10  
μs  
V
0.75  
1
Voltage trip point of POR on rising VCC  
1.2  
1.5  
V
(1) TA = 40°C to +125°C (unless otherwise noted)  
Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width  
(VCC_GW) and height (VCC_GH) are dependent on each other. The bypass capacitance, source impedance, and  
device impedance are factors that affect power-on reset performance. 9-2 and 9-1 provide more  
information on how to measure these specifications.  
V
CC  
V
CC_GH  
V
CC_MV  
Time  
V
CC_GW  
9-2. Glitch Width, Glitch Height, and Minimum Glitch Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCA9539-Q1  
 
 
 
 
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
VPOR is critical to the power-on reset. VPOR R is the voltage level at which the reset condition is released and all  
the registers and the I2C/SMBus state machine are initialized to their default states. The value of VPOR differs  
based on the VCC being lowered to or from 0. 9-3 and 9-1 provide more details on this specification.  
VCC  
VPORR  
VPORF  
Time  
POR  
Time  
9-3. VPOR  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For printed circuit board (PCB) layout of the TCA9539-Q1, common PCB layout practices must be followed but  
additional concerns related to high-speed data transfer such as matched impedances and differential pairs are  
not a concern for I2C signal speeds.  
In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from  
each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher  
amounts of current that commonly pass through power and ground traces. By-pass and de-coupling capacitors  
are commonly used to control the voltage on the VCC pin, using a larger capacitor to provide additional power in  
the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. These  
capacitors must be placed as close to the TCA9539-Q1 as possible. These best practices are shown in 10-1.  
For the layout example provided in 10-1, it would be possible to fabricate a PCB with only 2 layers by using  
the top layer for signal routing and the bottom layer as a split plane for power (VCC) and ground (GND).  
However, a 4 layer board is preferable for boards with higher density signal routing. On a 4 layer PCB, it is  
common to route signals on the top and bottom layer, dedicate one internal layer to a ground plane, and  
dedicate the other internal layer to a power plane. In a board layout using planes or split planes for power and  
ground, vias are placed directly next to the surface mount component pad which must attach to VCC or GND and  
the via is connected electrically to the internal layer or the other side of the board. Vias are also used when a  
signal trace needs to be routed to the opposite side of the board, but this technique is not demonstrated in 图  
10-1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
10.2 Layout Example  
LEGEND  
Partial view of plane  
(inner layer)  
Via to power plane  
Via to GND plane  
By-pass/de-coupling  
capacitors  
23  
22  
10-1. TCA9539-Q1 Layout  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TCA9539-Q1  
 
 
TCA9539-Q1  
ZHCSEZ2D JANUARY 2014 REVISED OCTOBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Understanding the I2C Bus, SLVA704  
I2C Pull-up Resistor Calculation, SLVA689  
Introduction to Logic, SLVA700  
Maximum Clock Frequency of I2C Bus Using Repeaters, SLVA695  
I2C Bus Pull-Up Resistor Calculation, SLVA689  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TCA9539-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCA9539QPWRQ1  
ACTIVE  
TSSOP  
PW  
24  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
TCA539Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TCA9539-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Aug-2021  
Catalog : TCA9539  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCA9539QPWRQ1  
TSSOP  
PW  
24  
2000  
330.0  
16.4  
6.95  
8.3  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TCA9539QPWRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0024A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
22X 0.65  
24  
1
2X  
7.15  
7.9  
7.7  
NOTE 3  
12  
B
13  
0.30  
24X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220208/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
24X (1.5)  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220208/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
24X (1.5)  
SYMM  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220208/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCA9539PWR

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT RESET AND CONFIGURATION REGISTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539QPWRQ1

具有中断输出、复位和配置寄存器的汽车类 16 位 1.65 至 3.6V I2C/SMBus I/O 扩展器 | PW | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539RGER

具有中断输出、复位和配置寄存器的 16 位 1.65V 至 5.5V I2C/SMBus I/O 扩展器 | RGE | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539RTWR

LOW VOLTAGE 16-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT RESET AND CONFIGURATION REGISTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9539_15

Low Voltage 16-Bit I2C and SMBus Low-Power I/O Expander

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9543A

具有中断、复位和电压转换功能的 2 通道、1.65V 至 5.5V I2C/SMBus 开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9543ADR

具有中断、复位和电压转换功能的 2 通道、1.65V 至 5.5V I2C/SMBus 开关 | D | 14 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9543APWR

具有中断、复位和电压转换功能的 2 通道、1.65V 至 5.5V I2C/SMBus 开关 | PW | 14 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9544A

具有中断和电压转换的 4 通道 1.65V 至 5.5V I2C/SMBus 多路复用器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9544APWR

具有中断和电压转换的 4 通道 1.65V 至 5.5V I2C/SMBus 多路复用器 | PW | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9545A

具有中断、复位和电压转换功能的 4 通道、1.65V 至 5.5V I2C/SMBus 开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9545APWR

具有中断、复位和电压转换功能的 4 通道、1.65V 至 5.5V I2C/SMBus 开关 | PW | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI