TCA9545APWR [TI]

具有中断、复位和电压转换功能的 4 通道、1.65V 至 5.5V I2C/SMBus 开关 | PW | 20 | -40 to 85;
TCA9545APWR
型号: TCA9545APWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有中断、复位和电压转换功能的 4 通道、1.65V 至 5.5V I2C/SMBus 开关 | PW | 20 | -40 to 85

开关 光电二极管 接口集成电路
文件: 总31页 (文件大小:845K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
TCA9545A 低压 4 通道 I2C 和系统管理总线 (SMbus) 开关,具有中断逻辑  
电路和复位功能  
1 特性  
2 应用  
1
4 1 双向转换开关  
服务器  
I2C 总线和 SMBus 兼容  
四个低电平有效中断输入  
低电平有效中断输出  
路由器(电信交换设备)  
工厂自动化  
具有 I2C 从器件地址冲突(例如多个完全一样的温  
度传感器)的产品  
低电平有效复位输入  
两个地址终端,允许在 I2C 总线上支持多达四个器  
3 说明  
TCA9545A 是一款通过 I2C 总线控制的四路双向转换  
开关。串行时钟/串行数据 (SCL/SDA) 上行对分散到四  
个下行对,或者通道。根据可编程控制寄存器的内容,  
可选择任一单独 SCn/SDn 通道或者通道组合。提供四  
个中断输入 (INT3-INT0),每个中断输入针对一个下行  
对。一个中断 (INT) 输出可作为四个中断输入的与  
(AND) 操作。  
通过 I2C 总线进行通道选择,可任意组合  
上电时所有开关通道取消选定  
RON 开关  
支持在 1.8V2.5V3.3V 5V 总线间进行电压  
电平转换  
上电时无干扰  
支持热插入  
低待机电流  
一个低电平有效 (RESET) 输入使得 TCA9545A 能够  
在其中一个下行 I2C 总线长时间处于低电平状态时恢  
复。将 RESET 下拉为低电平会使 I2C 状态机复位,并  
且使所有通道取消选中,这一功能与内部加电复位功能  
的作用一样。  
工作电源电压范围为  
1.65V 5.5V  
5.5V 耐压输入  
0 400kHz 时钟频率  
闩锁性能超过 JESD 78 所规定的 100mA  
ESD 保护性能超出 JESD 22 标准  
在开关上建有导通栅极,这样的话,VCC 端子可被用  
于限制 TCA9545A 传递的最大高压。这允许在每个对  
上使用不同的总线电压,以便 1.8V2.5V 3.3V 部  
件可以在没有任何额外保护的情况下与 5V 部件通信。  
对于每个通道,外部上拉电阻器将总线电压上拉至所需  
的电压水平。所有 I/O 引脚为 5.5V 耐压。  
4000V 人体放电模型 (A114-A)  
1500V 充电器件模型 (C101)  
器件信息  
订货编号  
封装  
封装尺寸  
薄型小外形尺寸封装  
(02)  
TCA9545APWR  
6.5mm x 4.4mm  
简化的应用示意图  
Channel 0  
VCC  
SD0  
SC0  
INT0  
SDA  
SCL  
INT  
Slaves A0, A1...AN  
I2C or SMBus  
Master  
Channel 1  
SD1  
SC1  
INT1  
RESET  
(e.g. µProcessor)  
Slaves B0, B1...BN  
TCA9545A  
Channel 2  
Channel 3  
SD2  
SC2  
INT2  
Slaves C0, C1...CN  
Slaves D0, D1...DN  
A0  
A1  
SD3  
GND  
SC3  
INT3  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCPS204  
 
 
 
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 12  
8.5 Programming........................................................... 12  
8.6 Control Register ...................................................... 15  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application .................................................. 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 I2C Interface Timing Requirements........................... 6  
6.7 Switching Characteristics.......................................... 7  
6.8 Interrupt and Reset Timing Requirements................ 7  
6.9 Typical Characteristics.............................................. 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
9
10 Power Supply Recommendations ..................... 20  
10.1 Power-On Reset Requirements ........................... 20  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
12 器件和文档支持 ..................................................... 23  
12.1 接收文档更新通知 ................................................. 23  
12.2 支持资源................................................................ 23  
12.3 ....................................................................... 23  
12.4 静电放电警告......................................................... 23  
12.5 Glossary................................................................ 23  
13 机械、封装和可订购信息....................................... 23  
7
8
4 修订历史记录  
Changes from Revision C (July 2019) to Revision D  
Page  
Changed VCC = 3.3 V to VCC = 2.5 V in Figure 16................................................................................................................ 17  
Changes from Revision B (March 2014) to Revision C  
Page  
Moved Tstg to the Absolute Maximum Ratings table............................................................................................................... 4  
Changed the Handling Ratings table To: ESD Ratings table................................................................................................. 4  
Changed the last row of column B1 From: X To: 0 in Table 1 ............................................................................................ 16  
Changes from Revision A (March 2014) to Revision B  
Page  
更新了图形中的引脚名称。..................................................................................................................................................... 1  
Changes from Original (January 2014) to Revision A  
Page  
预览文档更新为完整版。 .................................................................................................................................................. 1  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
5 Pin Configuration and Functions  
PW package  
20-Pin TSSOP  
Top View  
A0  
A1  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
SDA  
SCL  
INT  
2
3
4
5
6
7
8
RESET  
INT0  
SD0  
SC3  
SD3  
INT3  
SC2  
SD2  
INT2  
SC0  
INT1  
SD1  
SC1  
9
10  
GND  
Not to scale  
Pin Functions  
PIN  
DESCRIPTION  
NO.  
1
NAME  
A0  
A1  
Address input 0. Connect directly to VCC or ground.  
Address input 1. Connect directly to VCC or ground.  
2
Active-low reset input. Connect to VCC or VDPUM(1) through a pull-up resistor if not  
used.  
3
RESET  
4
INT0  
SD0  
SC0  
INT1  
SD1  
SC1  
GND  
INT2  
SD2  
SC2  
INT3  
SD3  
SC3  
INT  
Active-low interrupt input 0. Connect to VDPU0(1) through a pull-up resistor.  
Serial data 0. Connect to VDPU0 (1) through a pul-up resistor.  
5
(1)  
6
Serial clock 0. Connect to VDPU0 through a pull-up resistor.  
7
Active-low interrupt input 1. Connect to VDPU1(1) through a pull-up resistor.  
Serial data 1. Connect to VDPU1(1) through a pull-up resistor.  
Serial clock 1. Connect to VDPU1(1) through a pull-up resistor.  
Ground  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Active-low interrupt input 2. Connect to VDPU2(1) through a pull-up resistor.  
Serial data 2. Connect to VDPU2(1) through a pull-up resistor.  
Serial clock 2. Connect to VDPU2(1) through a pull-up resistor.  
Active-low interrupt input 3. Connect to VDPU3(1) through a pull-up resistor.  
Serial data 3. Connect to VDPU3(1) through a pull-up resistor.  
Serial clock 3. Connect to VDPU3(1) through a pull-up resistor.  
Active-low interrupt output. Connect to VDPUM(1) through a pull-up resistor.  
Serial clock line. Connect to VDPUM(1) through a pull-up resistor.  
Serial data line. Connect to VDPUM(1) through a pull-up resistor.  
Supply power  
SCL  
SDA  
VCC  
(1) VDPUX is the pull-up reference voltage for the associated data line. VDPUM is the master I2C master reference voltage and VDPU0–VDPU3  
are the slave channel reference voltages.  
Copyright © 2014–2019, Texas Instruments Incorporated  
3
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
MAX  
UNIT  
V
VCC  
VI  
Supply voltage range  
Input voltage range(2)  
7
7
V
II  
Input current  
±20  
±25  
±100  
±100  
400  
85  
mA  
mA  
mA  
mA  
mW  
°C  
IO  
Output current  
Continuous current through VCC  
Continuous current through GND  
Total power dissipation  
Operating free-air temperature range  
Storage temperature range  
Ptot  
TA  
–40  
–65  
Tstg  
150  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
PARAMETER  
DEFINITION  
MIN MAX UNIT  
Human Body Model (HBM), ESD Stress Voltage(2)  
Charged Device Model (CDM) ESD Stress Voltage(3) All Terminals  
All Terminals  
4000  
1500  
V
V
(1)  
VESD  
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by assembly line electrostatic discharges into  
the device.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe  
manufacturing with a standard ESD control process. Terminals listed as 250 V may actually have higher performance.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process. Terminals listed as 250 V may actually have higher performance.  
6.3 Recommended Operating Conditions(1)  
MIN  
1.65  
MAX UNIT  
VCC  
VIH  
Supply voltage  
5.5  
6
V
SCL, SDA  
0.7 × VCC  
0.7 × VCC  
–0.5  
High-level input voltage  
V
A1, A0, INT3–INT0, RESET  
SCL, SDA  
VCC + 0.5  
0.3 × VCC  
0.3 × VCC  
85  
VIL  
TA  
Low-level input voltage  
V
A1, A0, INT3–INT0, RESET  
–0.5  
Operating free-air temperature  
–40  
°C  
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
6.4 Thermal Information  
TCA9545A  
THERMAL METRIC(1)  
PW  
20 TERMINALS  
115.3  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.7  
66.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
6.5  
ψJB  
65.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2014–2019, Texas Instruments Incorporated  
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP(1)  
MAX UNIT  
Power-on reset voltage, VCC  
rising  
VPORR  
VPORF  
No load, VI = VCC or GND(2)  
1.2  
1.5  
V
V
Power-on reset voltage, VCC  
falling(3)  
No load,VI = VCC or GND(2)  
0.8  
1
5 V  
4.5 V to 5.5 V  
3.3 V  
3.6  
2.6  
1.6  
1.0  
0.5  
4.5  
2.8  
1.8  
1.9  
1.4  
0.8  
3 V to 3.6 V  
2.5 V  
Vpass  
Switch output voltage  
VSWin = VCC  
,
ISWout = –100 μA  
V
2.3 V to 2.7 V  
1.8 V  
1.65 V to 1.95 V  
1.65 V to 5.5 V  
1.1  
10  
IOH  
INT  
VO = VCC  
μA  
VOL = 0.4 V  
VOL = 0.6 V  
VOL = 0.4 V  
3
6
3
7
SDA  
IOL  
1.65 V to 5.5 V  
10  
mA  
INT  
SCL, SDA  
SC3–SC0, SD3–SD0  
A1, A0  
±1  
±1  
±1  
±1  
±1  
II  
VI = VCC or GND(2)  
1.65 V to 5.5 V  
μA  
INT3–INT0  
RESET  
5.5 V  
3.6 V  
2.7 V  
1.65 V  
5.5 V  
3.6 V  
2.7 V  
1.65 V  
5.5 V  
3.6 V  
2.7 V  
1.65 V  
5.5 V  
3.6 V  
2.7 V  
1.65 V  
50  
20  
11  
6
VI = VCC or GND(2)  
IO = 0  
tr,max = 300 ns  
fSCL = 400 kHz  
Operating mode  
35  
14  
5
VI = VCC or GND(2)  
IO = 0  
tr,max = 1 µs  
fSCL = 100 kHz  
2
ICC  
μA  
1.6  
1.0  
0.7  
0.4  
1.6  
1.0  
0.7  
0.4  
2
1.3  
1.1  
0.55  
2
Low inputs  
VI = GND(2)  
IO = 0  
Standby mode  
1.3  
1.1  
0.55  
High inputs  
VI = VCC  
IO = 0  
One INT3–INT0 input at 0.6 V,  
Other inputs at VCC or GND(2)  
3
3
2
2
20  
20  
15  
15  
INT3–INT0  
SCL, SDA  
One INT3–INT0 input at VCC – 0.6 V,  
Other inputs at VCC or GND(2)  
Supply-current  
change  
ΔICC  
1.65 V to 5.5 V  
μA  
SCL or SDA input at 0.6 V,  
Other inputs at VCC or GND(2)  
SCL or SDA input at VCC – 0.6 V,  
Other inputs at VCC or GND(2)  
(1) All typical values are at nominal supply voltage (VCC = 1.8 V, 2.5 V, 3.3 V, or 5 V), TA = 25°C.  
(2) RESET = VCC (held high) when all other input voltages, VI = GND  
(3) The power-on reset circuit resets the I2C bus logic with VCC < VPORF  
.
Copyright © 2014–2019, Texas Instruments Incorporated  
5
 
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
A1, A0  
TEST CONDITIONS  
VCC  
MIN TYP(1)  
MAX UNIT  
4.5  
4.5  
4.5  
15  
6
6
Ci  
INT3–INT0  
VI = VCC or GND(2)  
1.65 V to 5.5 V  
6
5.5  
19  
8
pF  
pF  
RESET  
SCL, SDA  
VI = VCC or  
GND(2)  
(4)  
Cio(OFF)  
Switch OFF  
IO = 15 mA  
IO = 10 mA  
1.65 V to 5.5 V  
SC3–SC0, SD3–SD0  
4.5 V to 5.5 V  
3 V to 3.6 V  
4
5
10  
13  
16  
25  
16  
20  
45  
70  
VO = 0.4 V  
VO = 0.4 V  
RON  
Switch on-state resistance  
2.3 V to 2.7 V  
1.65 V to 1.95 V  
7
10  
(4) Cio(ON) depends on the device capacitance and load that is downstream from the device.  
6.6 I2C Interface Timing Requirements  
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5)  
STANDARD MODE  
I2C BUS  
FAST MODE  
I2C BUS  
UNIT  
MIN  
MAX  
MIN  
MAX  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
I2C input fall time  
100  
400  
kHz  
μs  
μs  
ns  
ns  
μs  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
4
0.6  
1.3  
4.7  
50  
50  
tsds  
tsdh  
ticr  
250  
0(1)  
100  
0(1)  
(2)  
1000  
300  
20 + 0.1Cb  
300  
300  
300  
(2)  
(2)  
ticf  
20 + 0.1Cb  
20 + 0.1Cb  
tocf  
tbuf  
tsts  
tsth  
tsps  
I2C output fall time  
10-pF to 400-pF bus  
300  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
4.7  
4.7  
4
1.3  
0.6  
0.6  
0.6  
4
SCL low to SDA output low  
valid  
tvdL(Data) Valid-data time (high to low)(3)  
tvdH(Data) Valid-data time (low to high)(3)  
1
1
μs  
μs  
SCL low to SDA output high  
valid  
0.6  
0.6  
ACK signal from SCL low  
to SDA output low  
tvd(ack)  
Cb  
Valid-data time of ACK condition  
I2C bus capacitive load  
1
1
μs  
400  
400  
pF  
(1) A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to as the VIH min of the SCL signal), in order  
to bridge the undefined region of the falling edge of SCL.  
(2) Cb = total bus capacitance of one bus line in pF  
(3) Data taken using a 1-kpullup resistor and 50-pF load (see Figure 5)  
6
Copyright © 2014–2019, Texas Instruments Incorporated  
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
6.7 Switching Characteristics  
over recommended operating free-air temperature range, CL 100 pF (unless otherwise noted) (see Figure 7)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
MAX  
UNIT  
RON = 20 , CL = 15 pF  
RON = 20 , CL = 50 pF  
0.3  
1
(1)  
tpd  
Propagation delay time  
SDA or SCL  
SDn or SCn  
ns  
tiv  
tir  
Interrupt valid time(2)  
Interrupt reset delay time(2)  
INTn  
INTn  
INT  
INT  
4
μs  
μs  
2
(1) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load  
capacitance, when driven by an ideal voltage source (zero output impedance).  
(2) Data taken using a 4.7-kpullup resistor and 100-pF load (see Figure 7)  
6.8 Interrupt and Reset Timing Requirements  
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7)  
PARAMETER  
Low-level pulse duration rejection of INTn inputs  
High-level pulse duration rejection of INTn inputs  
Pulse duration, RESET low  
MIN  
1
MAX UNIT  
tPWRL  
tPWRH  
tWL  
μs  
μs  
ns  
0.5  
6
(1)  
trst  
RESET time (SDA clear)  
500  
ns  
ns  
tREC(STA)  
Recovery time from RESET to start  
0
(1) trst is the propagation delay measured from the time the RESET terminal is first asserted low to the time the SDA terminal is asserted  
high, signaling a stop condition. It must be a minimum of tWL  
.
Copyright © 2014–2019, Texas Instruments Incorporated  
7
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
6.9 Typical Characteristics  
800  
1.8  
1.6  
1.4  
1.2  
1
VCC = 5.5V  
VCC = 3.3V  
VCC = 1.65V  
700  
600  
500  
400  
300  
200  
100  
0
0.8  
0.6  
0.4  
0.2  
25ºC (Room Temperature)  
85ºC  
-40ºC  
0
2
4
6
IOL (mA)  
8
10  
12  
1.5  
2
2.5  
3
3.5  
VCC (V)  
4
4.5  
5
5.5  
D003  
D004  
Figure 1. SDA Output Low Voltage (VOL) vs Load Current  
(IOL) at Three VCC Levels  
Figure 2. Standby Current (ICC) vs Supply Voltage (VCC) at  
Three Temperature Points  
6
30  
25ºC (Room Temperature)  
85ºC  
-40º  
5.8  
5.6  
5.4  
5.2  
5
25  
20  
15  
10  
5
4.8  
4.6  
4.4  
4.2  
4
25ºC (Room Temperature)  
85ºC  
-40ºC  
0
0
0.5  
1
1.5  
2
2.5  
VCC (V)  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
VCC (V)  
3
3.5  
4
4.5  
5
5.5  
D006  
D001  
Figure 3. Slave channel (SCn/SDn) capacitance (Cio(OFF)) vs.  
Supply Voltage (VCC) at Three Temperature Points  
Figure 4. ON-Resistance (RON) vs Supply Voltage (VCC) at  
Three Temperatures  
8
Copyright © 2014–2019, Texas Instruments Incorporated  
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
7 Parameter Measurement Information  
V
CC  
R
L
= 1 k  
SDn, SCn  
DUT  
C
= 50 pF  
L
(See Note A)  
2
I C PORT LOAD CONFIGURATION  
Two Bytes for Complete  
Device Programming  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Bit 0  
(LSB)  
Data  
Bit 7  
(MSB)  
Data  
Bit 0  
(LSB)  
Stop  
Condition  
(P)  
ACK  
(A)  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
BYTE  
DESCRIPTION  
2
1
I C address + R/W  
2
Control register data  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
vd(ACK)  
or t  
t
icr  
t
sts  
vdL  
t
icf  
t
buf  
t
sp  
t
vdH  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
Repeat  
sds  
Stop  
Condition  
Start  
Condition  
Start or Repeat  
Start Condition  
VOLTAGE WAVEFORMS  
A. CL includes probe and jig capacitance.  
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 ,  
tr/tf = 30 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
Figure 5. I2C Interface Load Circuit, Byte Descriptions, and Voltage Waveforms  
Copyright © 2014–2019, Texas Instruments Incorporated  
9
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (continued)  
Start  
ACK or Read Cycle  
SCL  
SDA  
30%  
50%  
t
rst  
RESET  
t
REC  
t
WL  
Figure 6. Reset Timing  
V
CC  
R
L
= 4.7 kΩ  
INT  
DUT  
C
= 100 pF  
L
(See Note A)  
INTERRUPT LOAD CONFIGURATION  
INTn  
INTn  
0.5 × V  
(input)  
0.5 × V  
CC  
CC  
(input)  
t
ir  
t
iv  
INT  
INT  
0.5 × V  
CC  
0.5 × V  
CC  
(output)  
(output)  
VOLTAGE WAVEFORMS (t )  
iv  
VOLTAGE WAVEFORMS (t )  
ir  
A. CL includes probe and jig capacitance.  
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 ,  
tr/tf = 30 ns.  
Figure 7. Interrupt Load Circuit and Voltage Waveforms  
10  
Copyright © 2014–2019, Texas Instruments Incorporated  
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
8 Detailed Description  
8.1 Overview  
The TCA9545A is a 4-channel, bidirectional translating I2C switch. The master SCL/SDA signal pair is directed to  
four channels of slave devices, SC0/SD0-SC3/SD3. Any individual downstream channel can be selected as well  
as any combination of the four channels. The TCA9545A also supports interrupt signals in order for the master to  
detect an interrupt on the INT output terminal that can result from any of the slave devices connected to the  
INT3-INT0 input terminals.  
The device offers an active-low RESET input which resets the state machine and allows the TCA9545A to  
recover should one of the downstream I2C buses get stuck in a low state. The state machine of the device can  
also be reset by cycling the power supply, VCC, also known as a power-on reset (POR). Both the RESET function  
and a POR will cause all channels to be deselected.  
The connections of the I2C data path are controlled by the same I2C master device that is switched to  
communicate with multiple I2C slaves. After the successful acknowledgment of the slave address (hardware  
selectable by A0 and A1 terminals), a single 8-bit control register is written to or read from to determine the  
selected channels and state of the interrupts.  
The TCA9545A may also be used for voltage translation, allowing the use of different bus voltages on each  
SCn/SDn pair such that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts. This is achieved by using  
external pull-up resistors to pull the bus up to the desired voltage for the master and each slave channel.  
8.2 Functional Block Diagram  
TCA9545A  
6
SC0  
9
SC1  
13  
SC2  
16  
SC3  
5
SD0  
8
SD1  
12  
SD2  
15  
SD3  
Switch Control Logic  
10  
GND  
20  
VCC  
Power-on Reset  
3
RESET  
18  
SCL  
1
A0  
Input Filter  
2
I C Bus Control  
19  
2
SDA  
A1  
4
7
INT0  
INT1  
INT2  
INT3  
17  
Output  
Filter  
INT  
Interrupt Logic  
11  
14  
Copyright © 2014–2019, Texas Instruments Incorporated  
11  
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
8.3 Feature Description  
The TCA9545A is a 4-channel, bidirectional translating switch for I2C buses that supports Standard-Mode (100  
kHz) and Fast-Mode (400 kHz) operation. The TCA9545A features I2C control using a single 8-bit control register  
in which the four least significant bits control the enabling and disabling of the 4 switch channels of I2C data flow.  
The TCA9545A also supports interrupt signals for each slave channel and this data is held in the four most  
significant bits of the control register. Depending on the application, voltage translation of the I2C bus can also be  
achieved using the TCA9545A to allow 1.8-V, 2.5-V, or 3.3-V parts to communicate with 5-V parts. Additionally,  
in the event that communication on the I2C bus enters a fault state, the TCA9545A can be reset to resume  
normal operation using the RESET pin feature or by a power-on reset which results from cycling power to the  
device.  
8.4 Device Functional Modes  
8.4.1 RESET Input  
The RESET input can be used to recover the TCA9545A from a bus-fault condition. The registers and the I2C  
state machine within this device initialize to their default states if this signal is asserted low for a minimum of tWL  
.
All channels also are deselected in this case. RESET must be connected to VCC through a pull-up resistor.  
8.4.2 Power-On Reset  
When power is applied to VCC, an internal power-on reset holds the TCA9545A in a reset condition until VCC has  
reached VPORR. At this point, the reset condition is released and the TCA9545A registers and I2C state machine  
are initialized to their default states, all zeroes, causing all the channels to be deselected. Thereafter, VCC must  
be lowered below at least VPORF to reset the device.  
8.5 Programming  
8.5.1 I2C Interface  
The I2C bus is for two-way two-line communication between different ICs or modules. The two lines are a serial  
data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up  
resistor when connected to the output stages of a device. Data transfer can be initiated only when the bus is not  
busy.  
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high  
period of the clock pulse, as changes in the data line at this time are interpreted as control signals (see Figure 8).  
SDA  
SCL  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
Figure 8. Bit Transfer  
Both data and clock lines remain high when the bus is not busy. A high-to-low transition of the data line while the  
clock is high is defined as the start condition (S). A low-to-high transition of the data line while the clock is high is  
defined as the stop condition (P) (see Figure 9).  
12  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
Programming (continued)  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 9. Definition of Start and Stop Conditions  
A device generating a message is a transmitter; a device receiving a message is the receiver. The device that  
controls the message is the master, and the devices that are controlled by the master are the slaves (see  
Figure 10).  
SDA  
SCL  
2
I C  
Multiplexer  
Master  
Transmitter/  
Receiver  
Master  
Transmitter/  
Receiver  
Slave  
Transmitter/  
Receiver  
Master  
Transmitter  
Slave  
Receiver  
Slave  
Figure 10. System Configuration  
The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not  
limited. Each byte of eight bits is followed by one acknowledge (ACK) bit. The transmitter must release the SDA  
line before the receiver can send an ACK bit.  
When a slave receiver is addressed, it must generate an ACK after the reception of each byte. Also, a master  
must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The  
device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable  
low during the high pulse of the ACK-related clock period (see Figure 11). Setup and hold times must be taken  
into account.  
Copyright © 2014–2019, Texas Instruments Incorporated  
13  
 
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
Programming (continued)  
Data Output  
by Transmitter  
NACK  
Data Output  
by Receiver  
ACK  
SCL From  
1
2
8
9
Master  
S
Start  
Clock Pulse for ACK  
Condition  
Figure 11. Acknowledgment on the I2C Bus  
A master receiver must signal an end of data to the transmitter by not generating an acknowledge (NACK) after  
the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high.  
In this event, the transmitter must release the data line to enable the master to generate a stop condition.  
Data is transmitted to the TCA9545A control register using the write mode shown in Figure 12.  
Slave Address  
Control Register  
SDA  
S
1
1
1
0
0
A1 A0  
0
A
X
X
X
X
B3 B2 B1 B0  
A
P
ACK From Slave  
Stop Condition  
R/W ACK From Slave  
Start Condition  
Figure 12. Write Control Register  
Data is read from the TCA9545A control register using the read mode shown in Figure 13.  
Slave Address  
Control Register  
SDA  
NA  
INT3 INT2 INT1INT0 B3 B2 B1 B0  
S
1
1
1
0
0
A1 A0  
1
A
P
Start Condition  
R/W ACK From Slave  
NACK From Master  
Stop Condition  
Figure 13. Read Control Register  
14  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
8.6 Control Register  
8.6.1 Device Address  
Following a start condition, the bus master must output the address of the slave it is accessing. The address of  
the TCA9545A is shown in Figure 14. To conserve power, no internal pullup resistors are incorporated on the  
hardware-selectable address terminals, and they must be pulled high or low.  
Slave Address  
0
1
1
1
0
A1  
R/W  
A0  
Hardware  
Selectable  
Fixed  
Figure 14. TCA9545A Address  
The last bit of the slave address defines the operation to be performed. When set to a logic 1, a read is selected,  
while a logic 0 selects a write operation.  
8.6.2 Control Register Description  
Following the successful acknowledgment of the slave address, the bus master sends a byte to the TCA9545A,  
which is stored in the control register (see Figure 15). If multiple bytes are received by the TCA9545A, it saves  
the last byte received. This register can be written and read via the I2C bus.  
Interrupt Bits  
(Read Only)  
Channel-Selection Bits  
(Read/Write)  
7
6
4
3
2
1
0
5
INT3 INT2 INT1 INT0 B3  
B2  
B1  
B0  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
INT0  
INT1  
INT2  
INT3  
Figure 15. Control Register  
8.6.3 Control Register Definition  
One or several SCn/SDn downstream pairs, or channels, are selected by the contents of the control register (see  
Table 1). After the TCA9545A has been addressed, the control register is written. The four LSBs of the control  
byte are used to determine which channel or channels are to be selected. When a channel is selected, the  
channel becomes active after a stop condition has been placed on the I2C bus. This ensures that all SCn/SDn  
lines are in a high state when the channel is made active, so that no false conditions are generated at the time of  
connection. A stop condition must occur always right after the acknowledge cycle.  
Copyright © 2014–2019, Texas Instruments Incorporated  
15  
 
 
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
Control Register (continued)  
Table 1. Control Register Write (Channel Selection), Control Register Read (Channel Status)(1)  
INT3  
INT2  
INT1  
INT0  
B3  
B2  
B1  
B0  
0
COMMAND  
Channel 0 disabled  
Channel 0 enabled  
Channel 1 disabled  
Channel 1 enabled  
Channel 2 disabled  
Channel 2 enabled  
Channel 3 disabled  
Channel 3 enabled  
X
X
X
X
X
X
X
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
0
1
X
0
X
0
X
0
X
0
X
0
X
0
X
0
No channel selected,  
power-up/reset default state  
0
(1) Several channels can be enabled at the same time. For example, B3 = 0, B2 = 1, B1 = 1, B0 = 0 means that channels 0 and 3 are  
disabled, and channels 1 are 2 and enabled. Care should be taken not to exceed the maximum bus capacity.  
8.6.4 Interrupt Handling  
The TCA9545A provides four interrupt inputs (one for each channel) and one open-drain interrupt output (see  
Table 2). When an interrupt is generated by any device, it is detected by the TCA9545A and the interrupt output  
is driven low. The channel does not need to be active for detection of the interrupt. A bit also is set in the control  
register.  
Bits 4–7 of the control register correspond to channels 0–3 of the TCA9545A, respectively. Therefore, if an  
interrupt is generated by any device connected to channel 1, the state of the interrupt inputs is loaded into the  
control register when a read is accomplished. Likewise, an interrupt on any device connected to channel 0 would  
cause bit 4 of the control register to be set on the read. The master then can address the TCA9545A and read  
the contents of the control register to determine which channel contains the device generating the interrupt. The  
master then can reconfigure the TCA9545A to select this channel and locate the device generating the interrupt  
and clear it.  
It should be noted that more than one device can provide an interrupt on a channel, so it is up to the master to  
ensure that all devices on a channel are interrogated for an interrupt.  
The interrupt inputs can be used as general-purpose inputs if the interrupt function is not required.  
If unused, interrupt input(s) must be connected to VCC  
.
Table 2. Control Register Read (Interrupt)(1)  
INT3  
INT2  
INT1  
INT0  
B3  
B2  
B1  
B0  
COMMAND  
0
1
No interrupt on channel 0  
Interrupt on channel 0  
No interrupt on channel 1  
Interrupt on channel 1  
No interrupt on channel 2  
Interrupt on channel 2  
No interrupt on channel 3  
Interrupt on channel 3  
X
X
X
X
X
X
X
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
X
0
1
X
(1) Several interrupts can be active at the same time. For example, INT3 = 0, INT2 = 1, INT1 = 1, INT0 = 0 means that there is no interrupt  
on channels 0 and 3, and there is interrupt on channels 1 and 2.  
16  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
9 Application and Implementation  
9.1 Application Information  
Applications of the TCA9545A will contain an I2C (or SMBus) master device and up to four I2C slave devices.  
The downstream channels are ideally used to resolve I2C slave address conflicts. For example, if four identical  
digital temperature sensors are needed in the application, one sensor can be connected at each channel: 0, 1, 2,  
and 3. When the temperature at a specific location needs to be read, the appropriate channel can be enabled  
and all other channels switched off, the data can be retrieved, and the I2C master can move on and read the next  
channel.  
In an application where the I2C bus will contain many additional slave devices that do not result in I2C slave  
address conflicts, these slave devices can be connected to any desired channel to distribute the total bus  
capacitance across multiple channels. If multiple switches will be enabled simultaneously, additional design  
requirements must be considered (See Design Requirements and Detailed Design Procedure).  
9.2 Typical Application  
A typical application of the TCA9545A will contain anywhere from 1 to 5 separate data pull-up voltages, VDPUX  
one for the master device (VDPUM) and one for each of the selectable slave channels (VDPU0 – VDPU3). In the  
event where the master device and all slave devices operate at the same voltage, then the pass voltage, Vpass  
,
=
VDPUX. Once the maximum Vpass is known, Vcc can be selected easily using Figure 17. In an application where  
voltage translation is necessary, additional design requirements must be considered (See Design Requirements).  
Figure 16 shows an application in which the TCA9545A can be used.  
V
DPUM  
= 1.65 V to 5.5 V  
V
CC  
= 2.5 V  
V
DPU0  
= 1.65 V to 5.5 V  
20  
VCC  
5
19  
SD0  
SC0  
INT0  
SDA  
SDA  
Channel 0  
2
6
4
18  
17  
I C/SMBus  
Master  
SCL  
INT  
SCL  
V
= 1.65 V to 5.5 V  
3
DPU1  
DPU2  
DPU3  
RESET  
8
SD1  
Channel 1  
9
7
SC1  
INT1  
V
= 1.65 V to 5.5 V  
TCA9545A  
12  
13  
11  
SD2  
Channel 2  
SC2  
INT2  
V
= 1.65 V to 5.5 V  
2
1
A1  
15  
16  
14  
SD3  
SC3  
INT3  
A0  
Channel 3  
10  
GND  
Figure 16. TCA9545A Typical Application Schematic  
Copyright © 2014–2019, Texas Instruments Incorporated  
17  
 
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
The pull-up resistors on the INT3-INT0 terminals in the application schematic are not required in all applications.  
If the device generating the interrupt has an open-drain output structure or can be tri-stated, a pull-up resistor is  
required. If the device generating the interrupt has a push-pull output structure and cannot be tri-stated, a pull-up  
resistor is not required. The interrupt inputs should not be left floating in the application.  
The A0 and A1 terminals are hardware selectable to control the slave address of the TCA9545A. These  
terminals may be tied directly to GND or VCC in the application.  
If multiple slave channels will be activated simultaneously in the application, then the total IOL from SCL/SDA to  
GND on the master side will be the sum of the currents through all pull-up resistors, Rp.  
The pass-gate transistors of the TCA9545A are constructed such that the VCC voltage can be used to limit the  
maximum voltage that is passed from one I2C bus to another.  
Figure 17 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using  
data specified in the Electrical Characteristics section of this data sheet). In order for the TCA9545A to act as a  
voltage translator, the Vpass voltage must be equal to or lower than the lowest bus voltage. For example, if the  
main bus is running at 5 V and the downstream buses are 3.3 V and 2.7 V, Vpass must be equal to or below 2.7 V  
to effectively clamp the downstream bus voltages. As shown in Figure 17, Vpass(max) is 2.7 V when the TCA9545A  
supply voltage is 4 V or lower, so the TCA9545A supply voltage could be set to 3.3 V. Pull-up resistors then can  
be used to bring the bus voltages to their appropriate levels (see Figure 16).  
9.2.2 Detailed Design Procedure  
Once all the slaves are assigned to the appropriate slave channels and bus voltages are identified, the pull-up  
resistors, Rp, for each of the buses need to be selected appropriately. The minimum pull-up resistance is a  
function of VDPUX, VOL,(max), and IOL  
:
VDPUX - VOL(max)  
=
Rp(min)  
IOL  
(1)  
The maximum pull-up resistance is a function of the maximum rise time, tr (300 ns for fast-mode operation, fSCL  
400 kHz) and bus capacitance, Cb:  
=
tr  
Rp(max)  
=
0.8473´Cb  
(2)  
The maximum bus capacitance for an I2C bus must not exceed 400 pF for fast-mode operation. The bus  
capacitance can be approximated by adding the capacitance of the TCA9545A, Cio(OFF), the capacitance of  
wires/connections/traces, and the capacitance of each individual slave on a given channel. If multiple channels  
will be activated simultaneously, each of the slaves on all channels will contribute to total bus capacitance.  
18  
Copyright © 2014–2019, Texas Instruments Incorporated  
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
Typical Application (continued)  
9.2.3 TCA9545A Application Curves  
25  
20  
15  
10  
5
5
Standard-mode  
Fast-mode  
25ºC (Room Temperature)  
85ºC  
-40ºC  
4
3
2
1
0
0
0
0.5  
1
1.5  
2
2.5 3  
VCC (V)  
3.5  
4
4.5  
5
5.5  
0
50  
100 150 200 250 300 350 400 450  
Cb (pF)  
D007  
D008  
Space  
spacespace  
Space  
spacespace  
Standard-mode  
(fSCL= 100 kHz, tr = 1 µs)  
Fast-mode  
(fSCL= 400 kHz, tr= 300 ns)  
Figure 17. Pass-Gate Voltage (Vpass) vs Supply Voltage  
(VCC) at Three Temperature Points  
Figure 18. Maximum Pull-Up resistance (Rp(max)) vs Bus  
Capacitance (Cb)  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VDPUX > 2V  
VDPUX <= 2  
0
0.5  
1
1.5  
2
2.5 3  
VDPUX (V)  
3.5  
4
4.5  
5
5.5  
D009  
VOL = 0.2*VDPUX, IOL = 2 mA when VDPUX 2 V  
VOL = 0.4 V, IOL = 3 mA when VDPUX > 2 V  
Figure 19. Minimum Pull-Up Resistance (Rp(min)) vs Pull-Up Reference Voltage (VDPUX  
)
Copyright © 2014–2019, Texas Instruments Incorporated  
19  
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The operating power-supply voltage range of the TCA9545A is 1.65 V to 5.5 V applied at the VCC pin. When the  
TCA9545A is powered on for the first time or anytime the device needs to be reset by cycling the power supply,  
the power-on reset requirements must be followed to ensure the I2C bus logic is initialized properly.  
10.1 Power-On Reset Requirements  
In the event of a glitch or data corruption, TCA9545A can be reset to its default conditions by using the power-on  
reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This  
reset also happens when the device is powered on for the first time in an application.  
A power-on reset is shown in Figure 20.  
V
CC  
Ramp-Down  
Ramp-Up  
V
CC_TRR  
V
drops below VPORF – 50 mV  
CC  
Time  
Time to Re-Ramp  
V
V
CC_FT  
CC_RT  
Figure 20. VCC is Lowered Below the POR Threshold, Then Ramped Back Up to VCC  
Table 3 specifies the performance of the power-on reset feature for TCA9545A for both types of power-on reset.  
Table 3. Recommended Supply Sequencing And Ramp Rates(1)  
PARAMETER  
MIN TYP  
MAX UNIT  
VCC_FT  
VCC_RT  
Fall time  
See Figure 20  
See Figure 20  
1
100  
100  
ms  
ms  
Rise time  
0.1  
Time to re-ramp (when VCC drops below VPORF(min) – 50 mV or  
when VCC drops to GND)  
VCC_TRR  
VCC_GH  
VCC_GW  
See Figure 20  
See Figure 21  
See Figure 21  
40  
μs  
V
Level that VCC can glitch down to, but not cause a functional  
disruption when VCC_GW = 1 μs  
1.2  
10  
Glitch width that will not cause a functional disruption when  
VCC_GH = 0.5 × VCC  
μs  
VPORF  
VPORR  
Voltage trip point of POR on falling VCC  
Voltage trip point of POR on rising VCC  
See Figure 22  
See Figure 22  
0.8  
1.25  
1.5  
V
V
1.05  
(1) All supply sequencing and ramp rate values are measured at TA = 25°C  
20  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width  
(VCC_GW) and height (VCC_GH) are dependent on each other. The bypass capacitance, source impedance, and  
device impedance are factors that affect power-on reset performance. Figure 21 and Table 3 provide more  
information on how to measure these specifications.  
V
CC  
V
CC_GH  
Time  
V
CC_GW  
Figure 21. Glitch Width and Glitch Height  
VPOR is critical to the power-on reset. VPOR is the voltage level at which the reset condition is released and all the  
registers and the I2C/SMBus state machine are initialized to their default states. The value of VPOR differs based  
on the VCC being lowered to or from 0. Figure 22 and Table 3 provide more details on this specification.  
V
CC  
V
PORR  
V
PORF  
Time  
POR  
Time  
Figure 22. VPOR  
Copyright © 2014–2019, Texas Instruments Incorporated  
21  
 
 
TCA9545A  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For PCB layout of the TCA9545A, common PCB layout practices should be followed but additional concerns  
related to high-speed data transfer such as matched impedances and differential pairs are not a concern for I2C  
signal speeds. It is common to have a dedicated ground plane on an inner layer of the board and terminals that  
are connected to ground should have a low-impedance path to the ground plane in the form of wide polygon  
pours and multiple vias. By-pass and de-coupling capacitors are commonly used to control the voltage on the  
VCC terminal, using a larger capacitor to provide additional power in the event of a short power supply glitch and  
a smaller capacitor to filter out high-frequency ripple.  
In an application where voltage translation is not required, all VDPUX voltages and VCC could be at the same  
potential and a single copper plane could connect all of pull-up resistors to the appropriate reference voltage. In  
an application where voltage translation is required, VDPUM, VDPU0, VDPU1, VDPU2, and VDPU3 may all be on the  
same layer of the board with split planes to isolate different voltage potentials.  
To reduce the total I2C bus capacitance added by PCB parasitics, data lines (SCn, SDn and INTn) should be a  
short as possible and the widths of the traces should also be minimized (e.g. 5-10 mils depending on copper  
weight).  
11.2 Layout Example  
LEGEND  
Polygonal  
Copper Pour  
Partial Power Plane  
To I2C Master  
VIA to Power Plane  
VIA to GND Plane (Inner Layer)  
By-pass/De-coupling  
capacitors  
VDPUM  
GND  
VCC  
VDPU0  
A0  
A1  
VCC  
SDA  
SCL  
INT  
VDPU3  
RESET  
INT0  
SD0  
SC0  
INT1  
SD1  
SC1  
SC3  
SD3  
INT3  
SC2  
SD2  
INT2  
GND  
VDPU2  
GND  
VDPU1  
22  
版权 © 2014–2019, Texas Instruments Incorporated  
TCA9545A  
www.ti.com.cn  
ZHCSC52D JANUARY 2014REVISED NOVEMBER 2019  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
The following packaging information and addendum reflect the most current data available for the designated  
devices. This data is subject to change without notice and revision of this document.  
版权 © 2014–2019, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCA9545APWR  
ACTIVE  
TSSOP  
PW  
20  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
PW545A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCA9545APWR  
TSSOP  
PW  
20  
2000  
330.0  
16.4  
6.95  
7.0  
1.4  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TCA9545APWR  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCA9546A

具有复位和电压转换的 4 通道、1.65V 至 5.5V I2C/SMBus 开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9546ADR

具有复位和电压转换的 4 通道、1.65V 至 5.5V I2C/SMBus 开关 | D | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9546APWR

具有复位和电压转换的 4 通道、1.65V 至 5.5V I2C/SMBus 开关 | PW | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548A

LOW VOLTAGE 8-CHANNEL I2C SWITCH WITH RESET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548A-Q1

Automotive 8-Channel I2C Switch with Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548AMRGER

具有复位和电压转换的 8 通道、1.65V 至 5.5V I2C/SMBus 开关 | RGE | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548APW

LOW VOLTAGE 8-CHANNEL I2C SWITCH WITH RESET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548APWR

LOW VOLTAGE 8-CHANNEL I2C SWITCH WITH RESET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548ARGER

LOW VOLTAGE 8-CHANNEL I2C SWITCH WITH RESET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548ARGERQ1

Automotive 8-Channel I2C Switch with Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA9548A_15

Low-Voltage 8-Channel I2C Switch With Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCA955

SPEED CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON