TCA9617B [TI]

具有断电高阻抗的 2 位电平转换 1MHz I2C/SMBus 缓冲器/中继器;
TCA9617B
型号: TCA9617B
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有断电高阻抗的 2 位电平转换 1MHz I2C/SMBus 缓冲器/中继器

中继器
文件: 总23页 (文件大小:784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
TCA9617B 电平转换 FM+ I2C 总线中继器  
1 特性  
2 应用  
双通道双向 I2C 缓冲器  
服务器  
1
支持标准模式、快速模式 (400kHz) 和快速模式+  
(1MHz) I2C 操作  
路由器(电信交换设备)  
工业设备  
具有多个 I2C 从器件和/或印刷电路板 (PCB) 走线  
较长的产品  
A 侧上,运行电源电压范围为 0.8V 5.5V  
B 侧上,运行电源电压范围为 2.2V 5.5V  
0.8V 5.5V 2.2V 5.5V 的电压电平转换  
针对 TCA9517 的封装和功能替代产品  
高电平有效中继器启用输入  
漏极开路 I2C I/O  
5.5V 电压容错 I2C 和启用输入支持  
3 说明  
TCA9617B 是一款专门用于 I2C 总线和 SMBus 系统  
BiCMOS 双路双向缓冲器。此器件可在混合应用中  
提供低电压(低至 0.8V)和较高电压(2.2V 至  
5.5V)间的双向电压水平转换(上行转换模式和 下行  
转换模式)。电平转换期间,这个器件在不损失系统性  
能的情况下可扩展 I2C 和相似的总线系统。  
无闭锁操作  
断电高阻抗 I2C 总线引脚  
器件上支持时钟扩展和多主机仲裁  
闩锁性能超出 JESD 78 II 类规范要求的 100mA  
TCA9617B 缓冲 I2C 总线上的串行数据 (SDA) 和串行  
时钟 (SCL) 信号,从而将 550pF 的两条总线连接至一  
I2C 应用。这款器件也可用于将总线隔离为电压和电  
容两部分。  
静电放电 (ESD) 保护性能超过 JESD 22 规范的要  
4000V 人体放电模式 (A114-A)  
1500V 充电器件模型 (C101)  
器件信息(1)  
器件型号  
TCA9617B  
封装  
VSSOP (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
简化原理图  
VCCA  
SCLA  
SDAA  
VCCB  
I2C slave devices  
I2C or SMBus  
Master  
(e.g. Processor)  
SCLB  
SDAB  
TCA9617B  
EN  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCPS259  
 
 
 
 
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application .................................................. 12  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ..................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ....................................... 10  
9
10 Power Supply Recommendations ..................... 15  
11 Layout................................................................... 16  
11.1 Layout Guidelines ................................................. 16  
11.2 Layout Example .................................................... 16  
12 器件和文档支持 ..................................................... 17  
12.1 接收文档更新通知 ................................................. 17  
12.2 社区资源................................................................ 17  
12.3 ....................................................................... 17  
12.4 静电放电警告......................................................... 17  
12.5 术语表 ................................................................... 17  
13 机械、封装和可订购信息....................................... 17  
7
8
4 修订历史记录  
Changes from Revision A (December 2014) to Revision B  
Page  
Changed the appearance of the DGK pin out image ............................................................................................................ 3  
Changed VCCA < VCCB To: VCCA VCCB in the Design Requirements list ............................................................................. 12  
Changes from Original (December 2014) to Revision A  
Page  
初始完整版。 .......................................................................................................................................................................... 1  
2
Copyright © 2014–2018, Texas Instruments Incorporated  
 
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
VCCA  
SCLA  
SDAA  
GND  
1
2
3
4
8
7
6
5
VCCB  
SCLB  
SDAB  
EN  
Not to scale  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
VCCA  
NO.  
1
A-side supply voltage (0.8 V to 5.5 V)  
SCLA  
SDAA  
GND  
EN  
2
I2C SCL line, A side. Connect to VCCA through a pull-up resistor.  
I2C SDA line, A side. Connect to VCCA through a pull-up resistor.  
Supply ground  
3
4
5
Active-high repeater enable input  
SDAB  
SCLB  
VCCB  
6
I2C SDA line, B side. Connect to VCCB through a pull-up resistor.  
I2C SCL line, B side. Connect to VCCB through a pull-up resistor.  
B-side and device supply voltage (2.2 V to 5.5 V)  
7
8
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
7
UNIT  
VCCB  
VCCA  
VI  
Supply voltage range  
V
V
V
V
Supply voltage range  
7
Enable input voltage range(2)  
I2C bus voltage range(2)  
Input clamp current  
7
VI/O  
IIK  
7
VI < 0  
–50  
–50  
±50  
±100  
150  
mA  
IOK  
Output clamp current  
VO < 0  
Continuous output current  
Continuous current through VCC or GND  
Storage temperature range  
mA  
mA  
°C  
IO  
Tstg  
–65  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
Copyright © 2014–2018, Texas Instruments Incorporated  
3
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.8  
MAX  
VCCB  
5.5  
UNIT  
V
VCCA  
VCCB  
IOLA  
IOLB  
TA  
Supply voltage, A-side bus  
Supply voltage, B-side bus  
Low-level output current  
Low-level output current  
Operating free-air temperature  
2.2  
V
30  
mA  
mA  
°C  
0.1  
30  
–40  
85  
6.4 Thermal Information  
TCA9617B  
DGK  
THERMAL METRIC(1)  
UNIT  
8 PINS  
171.8  
61.2  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
93.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.9  
ψJB  
91.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
6.5 Electrical Characteristics  
VCCB = 2.2 V to 5.5 V, GND = 0 V, TA = –40°C to 85°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCCB  
MIN  
TYP  
MAX  
UNIT  
VIK  
Input clamp voltage  
II = –18 mA  
2.2 V to 5.5 V  
–1.2  
V
IOL = 100 µA or 30 mA,  
VILA = 0 V  
SDAB, SCLB  
0.48  
0.53  
0.1  
0.58  
VOL  
Low-level output voltage  
2.2 V to 5.5 V  
2.2 V to 5.5 V  
V
V
SDAA, SCLA  
SDAA, SCLA  
IOL = 30 mA  
0.23  
5.5  
0.7 × VCCA  
0.7 × VCCB  
0.7 × VCCB  
VIH  
High-level input voltage SDAB, SCLB  
EN  
5.5  
5.5  
0.3 ×  
VCCA  
SDAA, SCLA  
VIL  
Low-level input voltage  
SDAB, SCLB  
EN  
2.2 V to 5.5 V  
2.2 V to 5.5 V  
0.4  
V
0.3 ×  
VCCB  
Both channels low,  
SDAA = SCLA = GND and  
IOLB =100 µA, or  
ICCA  
Quiescent supply current for VCCA  
13  
µA  
SDAA = SCLA = open and  
SDAB = SCLB = GND  
Both Channels high,  
SDAA = SCLA = VCCA  
B-side pulled up to VCCB with  
pull-up resistors  
+4.5  
+5.7  
+7  
ICCB  
Quiescent supply current  
5.5 V  
mA  
Both channels low,  
SDAA = SCLA = GND,  
IOLB = 100 µA  
+8.1  
VI = VCCB  
–1  
–10  
–1  
+1  
+10  
+1  
VI = 0.2 V, EN = 0  
VI = VCCB – 0.2 V  
VI = 5.5 V,VCCA = 0 V  
VI = VCCA  
2.2 V to 5.5 V  
0 V  
SDAB, SCLB  
–10  
–1  
+10  
+1  
II  
Input leakage current  
μA  
VI = 0.2 V, EN = 0  
VI = VCCA – 0.2 V  
VI = 5.5 V, VCCA = 0 V  
VI = VCCB  
2.2 V to 5.5 V  
0 V  
–10  
–1  
+10  
+1  
SDAA, SCLA  
–10  
–1  
+10  
+1  
EN  
VI = 0.2 V  
–25  
CI  
Input capacitance  
EN  
VI = 3 V or 0 V  
3.3 V  
3.3 V  
0 V  
7
9
SCLA, SDAA  
VI = 3 V or 0 V  
VI = 3 V or 0 V  
9
pF  
CI/O  
Input/output capacitance  
3.3 V  
0 V  
14  
14  
SCLB, SDAB  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
6.6 Timing Requirements  
VCCA = 0.8 V to 5.5 V, VCCB = 2.2 V to 5.5 V, GND = 0 V, TA = –40°C to 85°C (unless otherwise noted)(1)(2)(3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SDAB, SCLB  
SDAA, SCLA  
42  
61  
61  
69  
68  
55  
90  
tPLH  
Propagation delay  
V
CCB 3 V  
88 137 ns  
94 250  
SDAA, SCLA  
SDAB, SCLB  
VCCB > 3 V  
SDAB, SCLB  
SDAA, SCLA  
SDAA, SCLA  
SDAB, SCLB  
93 144  
ns  
tPHL  
tTLH  
tTHL  
Propagation delay  
90 140  
B side  
88  
ns  
37  
Transition  
time  
(4)  
30%  
70%  
30%  
A side  
B side  
A side  
5.40  
1.40  
100  
6.41 13.8  
ns  
Transition  
time  
70%  
4.71 11.3  
tsu,en  
Setup time, EN high before Start condition(5)  
ns  
(1) Times are specified with loads of 240 ±1% and 400 pF ±10% on B-side and 240 ±1% and 200 pF ±10% on A-side. Different load  
resistance and capacitance alter the rise time, thereby changing the propagation delay and transition times.  
(2) Times are specified with A-side signals pulled up to VCCA and B-side signals pulled up to VCCB  
.
(3) Typical values were measured with VCCA = 0.9 V and VCCB = 2.5 V at TA = 25°C, unless otherwise noted.  
(4) TTLH is determined by the pull-up resistance and load capacitance.  
(5) EN should change state only when the global bus and the repeater port are in an idle state.  
6.7 Typical Characteristics  
TA = 85 C  
TA = 25 C  
TA = -40 C  
TA = 25 C  
TA = -40 C  
TA = 85 C  
Port A IOL (mA)  
Port B IOL (mA)  
VCCA = 0.9 V  
VCCB = 2.2 V  
VCCA = 0.9 V  
VCCB = 2.2 V  
1. Port A VOL vs IOL  
2. Port B VOL vs IOL  
6
版权 © 2014–2018, Texas Instruments Incorporated  
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
7 Parameter Measurement Information  
VCCA  
VCCB  
RPUA  
RPUB  
VCCA VCCB  
DUT  
VIN  
VOUT  
Open Drain  
Driver  
1M  
CLA  
CLB  
3. Test Circuit for Open-Drain Output from A to B  
VCCA  
VCCB  
RPUA  
RPUB  
VCCA VCCB  
DUT  
VOUT  
VIN  
Open Drain  
Driver  
1 M  
CLA  
CLB  
A. VCCA = 0.9 V  
B. VCCB = 2.5 V  
C. RPUA = RPUB = 240 on the A-side and the B-side  
D. CLA = 200 pF on A-side and CLB = 400 pF on B-side (includes probe and jig capacitance)  
E. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , slew rate  
1 V/ns  
F. The outputs are measured one at a time, with one transition per measurement.  
4. Test Circuit for Open-Drain Output from B to A  
版权 © 2014–2018, Texas Instruments Incorporated  
7
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
tPHL,AB  
tTHL,B  
0.7 * VCC  
0.3 * VCC  
VOLB  
VILA  
A-side  
B-side  
tPLH,AB  
tTLH,B  
0.7 * VCC  
0.3 * VCC  
VOLB  
VILA  
5. Propagation Delay And Transition Times (A to B)  
tPHL,BA tTHL,A  
0.7 * VCC  
0.3 * VCC  
A-side  
B-side  
tPLH,BA  
tTLH,A  
0.7 * VCC  
0.3 * VCC  
0.4 V  
6. Propagation Delay And Transition Times (B to A)  
8
版权 © 2014–2018, Texas Instruments Incorporated  
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
8 Detailed Description  
8.1 Overview  
The TCA9617B is a BiCMOS dual bidirectional buffer intended for I2C bus and SMBus systems. As with the  
standard I2C system, pull-up resistors are required to provide the logic high levels on the buffered bus. The  
TCA9617B has standard open-drain configuration of the I2C bus. The size of these pull-up resistors depends on  
the system, but each side of the repeater must have a pull-up resistor. The device is designed to work with  
Standard mode, Fast mode and Fast Mode+ I2C devices. The SCL and SDA lines shall be at high-impedance  
when either one of the supplies is powered off.  
The TCA9617B B-side drivers operate from 2.2 V to 5.5 V. The output low level for this internal buffer is  
approximately 0.5 V, but the input voltage must be below VIL when the output is externally driven low. The  
higher-voltage low signal is called a buffered low. When the B-side I/O is driven low internally, the low is not  
recognized as a low by the input. This feature prevents a lockup condition from occurring when the input low  
condition is released. This type of design on the B side prevents it from being used in series with another  
TCA9617B B-side or other buffers that incorporate a static or dynamic offset voltage. This is because these  
devices do not recognize buffered low signals as a valid low and do not propagate it as a buffered low again.  
The TCA9617B A-side drivers operate from 0.8 V to 5.5 V and do not have the buffered low feature (or the static  
offset voltage). This means that a low signal on the B side translates to a nearly 0-V low on the A side, which  
accommodates smaller voltage swings of low-voltage logic. The output pull-down on the A side drives a hard low,  
and the input level is set to 0.3 VCCA to accommodate the need for a lower low level in systems where the low-  
voltage-side supply voltage is as low as 0.8 V.  
The A side of two or more TCA9617Bs can be connected together to allow a star topology, with the A side on the  
common bus. Also, the A side can be connected directly to any other buffer with static or dynamic offset voltage.  
Multiple TCA9617Bs can be connected in series, A side to B side, with no buildup in offset voltage with only  
time-of-flight delays to consider.  
The TCA9617B includes a power-up circuit that keeps the output drivers turned off until VCCB is above 2.0 V and  
VCCA is above 0.7 V. VCCA is only used to provide references for the A-side input comparators and the power-  
good-detect circuit. The TCA9617B internal circuitry and all I/Os are powered by the VCCB pin.  
After power up and with the EN high, the A side falling below 0.7 VCCA turns on the corresponding B-side driver  
(either SDA or SCL) and drives the B-side down momentarily to 0 V before settling to approximately 0.5 V. When  
the A-side rises above 0.3 VCCA, the B-side pull-down driver is turned off and the external pull-up resistor pulls  
the pin high. If the B side falls first and goes below 0.7 VCCB, the A-side driver is turned on and drives the A-side  
to 0 V. When the B-side rises above 0.45 V, the A-side pull-down driver is turned off and the external pull-up  
resistor pulls the pin high.  
版权 © 2014–2018, Texas Instruments Incorporated  
9
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
V
V
CCA  
1
CCB  
8
6
3
SDAA  
SDAB  
7
2
SCLA  
SCLB  
V
CCB  
Pullup  
Resistor  
5
EN  
4
GND  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Bidirectional Level Translation  
The TCA9617B can provide bidirectional voltage level translation (up-translation and down-translation) between  
low voltages (down to 0.8 V) and higher voltages (2.2 V to 5.5 V) in mixed-mode applications.  
8.3.2 Low to High Transition Characteristics  
8 depicts the offset voltage on the B side of the device. As shown in 8 the slave releases and the B-side  
rises, and it will rise to 0.5 V and stay there until the A-side rises above 0.3 VCCA. This effect can cause the low  
level signal to have a "pedestal." Once the voltage on the A-side crosses 0.3 VCCA, the B-side will continue to  
rise to VCCB  
.
Due to nature of the B-side pedestal and the static offset voltage, there will be a slight overshoot as the B-side  
rises from being externally driven low to the 0.5 V offset. The TCA9617B is designed to control this behavior  
provided the system is designed with rise times greater than 20 ns. Therefore, care should be taken to limit the  
pull-up strength when devices with rise time accelerators are present on the B side. Excessive overshoot on the  
B-side pedestal may cause devices with rise time accelerators to trip prematurely if the overshoot is more than  
accelerator thresholds. Since the A-side does not have a static offset low voltage, no pedestal is seen on the A-  
side as shown in 7.  
10  
版权 © 2014–2018, Texas Instruments Incorporated  
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
Feature Description (接下页)  
8.3.3 High to Low Transition Characteristics  
When the A side of the bus is driven to 0.7 VCCA, the B side driver will turn on. This will drive the B-side to 0 V for  
a short period (see 8) and then the B-side will rise to the static offset voltage of 0.5 V (VOL of TCA9617B).  
This effect, called an inverted pedestal, allows the B-side to drive to logic low much faster than driving to the  
static offset. Driving to the static offset voltage requires that the fall time be slowed to prevent ringing.  
9th Clock Pulse – Acknowledge  
SCL  
SDA  
7. Bus A (0.8 V to 5.5 V Bus) Waveform  
th  
9 Clock Pulse – Acknowledge  
Inverted Pedestal  
SCL  
Pedestal  
SDA  
GND  
VOL of TCA9617B  
VOL of Slave  
8. Bus B (2.2 V to 5.5 V Bus) Waveform  
8.4 Device Functional Modes  
The TCA9617B has an active-high enable (EN) input with an internal pull-up to VCCB, which allows the user to  
select when the repeater is active. This can be used to isolate a badly behaved slave on power-up reset. It  
should never change state during an I2C operation, because disabling during a bus operation may hang the bus,  
and enabling part way through the bus cycles could confuse the I2C parts being enabled. The EN input should  
change state only when the global bus and repeater port are in the idle state to prevent system failures.  
1. Function Table  
INPUT  
FUNCTION  
EN  
L
Outputs disabled  
SDAA = SDAB  
SCLA = SCLB  
H
版权 © 2014–2018, Texas Instruments Incorporated  
11  
 
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
9 Application and Implementation  
9.1 Application Information  
A typical application is shown in 9. In this example, the system master is running on a 0.9-V I2C bus, and the  
slave is connected to a 2.5-V bus. Both buses are running at 400 kHz. Decoupling capacitors are required but  
are not shown in 14 for simplicity.  
The TCA9617B is 5-V tolerant so no additional circuits are required to translate between 0.8-V to 5.5-V bus  
voltages and 2.7-V to 5.5-V bus voltages.  
When the A side of the TCA9617B is pulled low by a driver on the I2C bus, a comparator detects the falling edge  
when it goes below 0.7 VCCA and cause the internal driver on the B side to turn on. The B-side will first pull down  
to 0 V and then settle to 0.5 V. When the B side of the TCA9617B falls below 0.45 V, the TCA9617B will detect  
the falling edge, turn on the internal driver on the A side and pull the A-side pin down to ground.  
On the B-side bus of the TCA9617B, the clock and data lines will have a positive offset from ground equal to the  
VOL of the TCA9617B. After the eighth clock pulse, the data line is pulled to the VOL of the slave device, which is  
close to ground in this example. At the end of the acknowledge, the level rises only to the low level set by the  
driver of the TCA9617B for a short delay (approximately 0.5 V), while the A-side bus rises above 0.3 VCCA and  
then continues high.  
Although the TCA9617 has a single application, the device can exist in multiple configurations. 9 shows the  
standard configuration for the TCA9617. Multiple TCA9617s can be connected either in star configuration (12)  
or in series configuration (13). The design requirements , detailed design procedure, and application curves in  
Standard Application are valid for all three configurations.  
9.2 Typical Application  
9.2.1 Standard Application  
0.9 V  
2.5 V  
240  
240  
820  
820  
VCCA  
VCCB  
SDAA  
SCLA  
SDAB  
SCLB  
Master  
1 MHz  
TCA9617B  
Slave  
1 MHz  
EN  
BUS A  
BUS B  
9. Bidirectional Voltage Level Translator  
9.2.1.1 Design Requirements  
For the level-translating application, the following should be true:  
VCCA = 0.8 V to 5.5 V  
VCCB = 2.2 V to 5.5 V  
VCCA VCCB  
IOL > IO  
12  
版权 © 2014–2018, Texas Instruments Incorporated  
 
 
 
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
Typical Application (接下页)  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Pullup Resistor Sizing  
For the TCA9617B to function correctly, all devices on the B-side must be able to pull the B-side below the  
voltage input low contention level (0.45 V). This means that the VOL of any device on the B-side must be below  
0.4 V to ensure proper operation.  
The VOL of a device can be adjusted by changing the IOL through the device which is set by the pull-up resistor  
value. The pull-up resistor on the B-side must be carefully selected to ensure that logic levels will be transferred  
correctly to the A-side.  
The B-side pull-up resistor sizing must also ensure that the rise time is greater than 20 ns. Shorter rise times will  
increase the pedestal overshoot shown in point 2 of 10.  
9.2.1.3 Application Curves  
2
2
1
1
10. B-side Pedestal  
11. B-side Inverted Pedestal  
版权 © 2014–2018, Texas Instruments Incorporated  
13  
 
 
 
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
9.2.2 Star Application  
Multiple TCA9617B A sides can be connected in a star configuration, allowing all nodes to communicate with  
each other.  
VCCA  
VCCB  
240  
240  
820  
820  
820  
820  
VCCA VCCB  
SDAA SDAB  
SCLA SCLB  
TCA9617B  
Slave  
1 MHz  
EN  
Master  
1 MHz  
820  
VCCA VCCB  
SDAA  
SCLA  
SDAB  
SCLB  
TCA9617B  
Slave  
1 MHz  
EN  
BUS B  
820  
VCCA VCCB  
SDAA  
SCLA  
SDAB  
SCLB  
TCA9617B  
Slave  
1 MHz  
EN  
12. Typical Star Application  
9.2.2.1 Design Requirements  
Refer to Design Requirements.  
9.2.2.2 Detailed Design Procedure  
Refer to Detailed Design Procedure.  
9.2.2.3 Application Curves  
Refer to Application Curves.  
14  
版权 © 2014–2018, Texas Instruments Incorporated  
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
Typical Application (接下页)  
9.2.3 Series Application  
Multiple TCA9617Bs can be connected in series as long as the A side is connected to the B side. I2C bus slave  
devices can be connected to any of the bus segments. The number of devices that can be connected in series is  
limited by repeater delay/time-of-flight considerations on the maximum bus speed requirements.  
VCCA  
VCCB  
240  
240  
820  
820  
820  
820  
820  
820  
VCCA  
SDAA  
SCLA  
VCCB  
SDAB  
SCLB  
VCCA  
SDAA  
SCLA  
VCCB  
SDAB  
SCLB  
VCCA  
SDAA  
SCLA  
VCCB  
SDAB  
SCLB  
SDA  
SCL  
Master  
1 MHz  
TCA9617B  
TCA9617B  
TCA9617B  
Slave  
EN  
EN  
1 MHz  
EN  
13. Typical Series Application  
9.2.3.1 Design Requirements  
Refer to Design Requirements.  
9.2.3.2 Detailed Design Procedure  
Refer to Detailed Design Procedure.  
9.2.3.3 Application Curves  
Refer to Application Curves.  
10 Power Supply Recommendations  
For VCCA, an 0.8-V to 5.5-V power supply is required. For VCCB, a 2.2-V to 5.5-V power supply is required.  
Standard decoupling capacitors are recommended. These capacitors typically range from 0.1 µF to 1 µF, but the  
ideal capacitance depends on the amount of noise from the power supply.  
版权 © 2014–2018, Texas Instruments Incorporated  
15  
TCA9617B  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The recommended decoupling capacitors should be placed as close to the VCCA and VCCB pins of the  
TCA9617B as possible.  
11.2 Layout Example  
Polygonal Copper Pour  
VIA to GND Plane  
Decoupling capacitors  
VCCA  
SCLA  
VCCB  
SCLB  
SDAB  
EN  
1
2
3
4
8
7
6
5
TCA9617B  
SDAA  
GND  
14. Layout Schematic  
16  
版权 © 2014–2018, Texas Instruments Incorporated  
TCA9617B  
www.ti.com.cn  
ZHCSD69B DECEMBER 2014REVISED DECEMBER 2018  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2018, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCA9617BDGKR  
ACTIVE  
VSSOP  
DGK  
8
2500 RoHS & Green  
NIPDAUAG | SN  
Level-1-260C-UNLIM  
-40 to 85  
ZBOK  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCA9617BDGKR  
VSSOP  
DGK  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DGK  
SPQ  
Length (mm) Width (mm) Height (mm)  
364.0 364.0 27.0  
TCA9617BDGKR  
8
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TCA9617BDGKR

具有断电高阻抗的 2 位电平转换 1MHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 85
TI

TCA965

Window Discriminator(Bipolar IC)
INFINEON

TCA965B

Window Discriminator(Bipolar IC)
INFINEON

TCA965BC

暂无描述
INFINEON

TCA965BG

Analog Circuit, 1 Func, BIPolar, PDSO14, PLASTIC, DSO-14
INFINEON

TCA965G

Transistor
INFINEON

TCA971

TRANSISTOR ARRAY WITH 5 NPN TRANSISTORS
INFINEON

TCA9800

具有内部 0.5mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器
TI

TCA9800DGKR

具有内部 0.5mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9800DGKT

具有内部 0.5mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9801

具有内部 1mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器
TI

TCA9801DGKR

具有内部 1mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI