TCAN1043HGDQ1 [TI]

具有 CAN FD 和唤醒输入的故障保护 CAN 收发器 | D | 14 | -55 to 125;
TCAN1043HGDQ1
型号: TCAN1043HGDQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 CAN FD 和唤醒输入的故障保护 CAN 收发器 | D | 14 | -55 to 125

文件: 总52页 (文件大小:2117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
TCAN1043xx-Q1 CAN FD 和唤醒功能的低功耗故障保CAN 收发器  
信息娱乐系统  
仪表组  
车身电子装置与照明  
1 特性  
AEC Q100 标准符合汽车应用要求  
– 温度等1-55°C 125°CTA  
– 器HBM 分级等级±16kV  
– 器CDM 分级等级±1500V  
提供功能安全  
3 说明  
TCAN1043xx-Q1 满足 ISO 118982 (2016) 高速控制  
器局域(CAN) 规范的物理层要求CAN 总线和  
CAN 协议控制器之间的接口。这些器件支持传统 CAN  
CAN FD 协议具有最高 2Mbps 的数据速率。器件  
编号以“G”结尾的器件专为数据速率高达 5Mbps 的  
CAN FD 应用而设计。TCAN1043xx-Q1 可以通过  
INH 输出引脚选择性地启用节点上可能存在的各种电  
从而在整个系统级别减少电池电流消耗。这使得在  
超低电流睡眠状态中功率传送到除 TCAN1043xx-Q1  
以外的所有系统组件TCAN1043xx-Q1 则仍然处  
于低功耗状态CAN 总线进行监控。  
可帮助进行功能安全系统设计的文档  
• 符ISO 11898-2 (2016) 的要求  
• 所有器件均支持经CAN 2Mbps CAN FD灵  
活数据速率),而“G”选项支5Mbps  
– 具有较短的对称传播延迟时间和快速循环次数,  
可增加时序裕量  
– 在有负CAN 网络中实现更快的数据速率  
VIO 电平转换支2.8V 5.5V 的电压范围  
• 工作模式  
– 正常模式  
– 具INH 输出以及本地和远程唤醒请求功能的  
待机模式  
– 具INH 输出以及本地和远程唤醒请求的低功  
耗睡眠模式  
器件信息  
封装(1)  
SOIC (14)  
VSON (14)  
封装尺寸标称值)  
8.95mm x 3.91mm  
4.50mm x 3.00mm  
器件型号  
TCAN1043xx-Q1  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 未供电时具有理想无源行为  
– 总线和逻辑终端为高阻抗运行总线或应用上无  
负载)  
VCC  
3
VIO  
5
VSUP  
10  
NC  
11  
VCC  
– 支持热插拔在总线RXD 输出上可实现上电/  
断电无干扰运行  
• 符合或超EMC 标准要求  
VIO  
VCC  
TRANSMIT  
DOMINANT  
TIME OUT  
1
TXD  
VSUP  
13  
12  
7
9
INH  
VSUP  
– 符IEC 62228-3 2007 标准  
– 符SAE J2962-2 标准  
• 保护特性  
WAKE  
WAKE  
LDO  
8
nFAULT  
14  
CONTROL and MODE  
LOGIC  
nSTB  
EN  
– 总线终端IEC ESD 保护±8kV  
– 总线故障保护±58VH 型号±70VH  
型号)  
6
Sleep Receiver  
WUP  
Detect  
UNDER  
VOLTAGE  
OVER  
TEMP  
– 电源终端欠压保护  
– 驱动器显性超(TXD DTO)数据速率低至  
9.2kbps  
Normal Receiver  
RECEIVE  
DOMINANT  
TIME OUT  
4
MUX  
RXD  
2
GND  
– 热关断保(TSD)  
Copyright © 2016, Texas Instruments Incorporated  
• 接收器共模输入电压±30V  
• 典型循环延迟110ns  
功能模块图  
• 结温范围55°C 150°C  
• 采SOIC (14) 封装和无引线VSON (14) 封装  
(4.5mm x 3.0mm)具有改进的自动光学检(AOI)  
功能  
2 应用  
12V 24V 系统应用  
• 汽车和运输  
高级驾驶辅助系(ADAS)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEV0  
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
9.1 Overview...................................................................18  
9.2 Functional Block Diagram.........................................18  
9.3 Feature Description...................................................19  
9.4 Device Functional Modes..........................................24  
10 Application Information Disclaimer...........................34  
10.1 Application Information........................................... 34  
10.2 Typical Application.................................................. 34  
11 Power Supply Recommendations..............................37  
12 Layout...........................................................................38  
12.1 Layout..................................................................... 38  
12.2 Layout Example...................................................... 39  
13 Device and Documentation Support..........................40  
13.1 Related Links.......................................................... 40  
13.2 Receiving Notification of Documentation Updates..40  
13.3 Community Resources............................................40  
13.4 Trademarks.............................................................40  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 ESD Ratings IEC Specification...................................6  
7.4 Recommended Operating Conditions.........................6  
7.5 Thermal Information....................................................6  
7.6 Dissipation Ratings..................................................... 7  
7.7 Electrical Characteristics.............................................7  
7.8 Switching Characteristics..........................................10  
7.9 Typical Characteristics..............................................12  
8 Parameter Measurement Information..........................13  
9 Detailed Description......................................................18  
Information.................................................................... 40  
4 Revision History  
Changes from Revision D (July 2019) to Revision E (January 2021)  
Page  
• 向列表添加了“功能安全”........................................................................................................................ 1  
Changes from Revision C (October 2018) to Revision D (July 2019)  
Page  
Changed the second sentence in the CAN Bus Dominant Fault section..........................................................21  
Changed the D0014A mechanical pages ........................................................................................................ 40  
Changes from Revision B (May 2018) to Revision C (October 2018)  
Page  
Updated ICC dominant with bus fault ..................................................................................................................7  
Added footnote for IIH and IIL ............................................................................................................................. 7  
Changed the Under-Voltage callout in 9-4 .................................................................................................. 24  
Added sentence: "This minimizes the current flowing into the WAKE pin..." to the last paragraph in Local  
Wake Up (LWU) via WAKE Input Terminal ......................................................................................................29  
Changes from Revision A (December 2017) to Revision B (May 2018)  
Page  
Updated note 1 to: AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/  
JEDEC JS-01 specification.................................................................................................................................5  
Added Note 2 To ESD Specification Table..........................................................................................................6  
Updated IEC 61000-4-2 Unpowered Contact Dicharge to ±15kV ..................................................................... 6  
Changed Max tWK_FILTER to 1.8µs.....................................................................................................................10  
Changes from Revision * (November 2017) to Revision A (December 2017)  
Page  
• 将状态从预告信改为生产数....................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
5 Description (continued)  
When a wake-up pattern is detected on the bus or when a local wake-up is requested via the WAKE input, the  
TCAN1043xx-Q1 will initiate node start-up by driving INH high. The TCAN1043xx-Q1 includes internal logic level  
translation via the VIO terminal to allow for interfacing directly to 3.3 V or 5 V controllers. The device includes  
many protection and diagnostic features including CAN bus line short-circuit detection and battery connection  
detection. The TCAN1043xx-Q1 meets the ESD and EMC requirements of IEC 62228-3 and J2962-2 without the  
need for additional protection components.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
Device Comparison Table  
DEVICE NUMBER  
TCAN1043-Q1  
BUS FAULT PROTECTION  
MAXIMUM DATA RATE  
±58 V  
±70 V  
±58 V  
±70 V  
2 Mbps  
2 Mbps  
5 Mbps  
5 Mbps  
TCAN1043H-Q1  
TCAN1043G-Q1  
TCAN1043HG-Q1  
6 Pin Configuration and Functions  
TXD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
nSTB  
CANH  
CANL  
NC  
TXD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
nSTB  
CANH  
CANL  
NC  
GND  
GND  
V
CC  
V
CC  
Thermal  
Pad  
RXD  
RXD  
VSUP  
WAKE  
nFAULT  
V
IO  
V
V
EN  
IO  
SUP  
INH  
8
EN  
WAKE  
INH  
8
nFAULT  
Not to scale  
6-2. DMT Package, 14 Pin (VSON), Top View  
6-1. D Package, 14 Pin (SOIC), Top View  
6-1. Pin Functions  
PINS  
TYPE  
DESCRIPTION  
NAME  
TXD  
NO  
1
Digital Input  
GND  
CAN transmit data input (low for dominant and high for recessive bus states)  
GND  
VCC  
2
Ground connection  
3
Supply  
5-V CAN bus supply voltage  
RXD  
VIO  
4
Digital Output  
Supply  
CAN receive data output (low for dominant and high for recessive bus states), tri-state  
I/O supply voltage  
5
EN  
6
Digital Input  
Enable input for mode control, integrated pull down  
INH  
7
High Voltage Output Can be used to control system voltage regulators  
nFAULT  
WAKE  
VSUP  
NC  
8
Digital Output  
High Voltage Input  
Supply  
Fault output, inverted logic  
9
Wake input terminal, high voltage input  
Reverse-blocked battery supply input  
No connect (not internally connected)  
Low-level CAN bus input/output line  
High-level CAN bus input/output line  
Standby input for mode control, integrated pull down  
10  
11  
12  
13  
14  
CANL  
CANH  
nSTB  
Bus I/O  
Bus I/O  
Digital Input  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
See (1) (2)  
MIN  
0.3  
0.3  
0.3  
0.3  
58  
70  
58  
70  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
58  
70  
7
UNIT  
V
Battery supply (reverse-blocked) voltage range standard versions  
VSUP  
V
Battery supply (reverse blocked) voltage range H versions  
5-V bus supply voltage  
VCC  
VIO  
V
I/O level shifting voltage  
7
V
CAN bus I/O voltage range (CANH, CANL)  
CAN bus I/O voltage range (CANH, CANL)  
Devices without the "H" suffix  
58  
70  
58  
70  
7
V
VBUS  
Devices with the "H" suffix  
Devices without the "H" suffix  
Devices with the "H" suffix  
V
V
Max differential voltage between CANH and  
CANL  
V(DIFF)  
V
V(Logic_Input)  
Logic input terminal voltage range  
Logic output terminal voltage range  
INH output pin voltage range  
INH output pin voltage range  
WAKE input pin voltage range  
WAKE input pin voltage range  
Logic output current  
V
V(Logic_Output)  
7
V
Devices without the "H" suffix  
H versions  
V
58 and VO VSUP + 0.3  
VINH  
V
70 and VO VSUP + 0.3  
Devices without the "H" suffix  
H versions  
V
58 and VI VSUP + 0.3  
V(WAKE)  
V
70 and VI VSUP + 0.3  
IO(LOGIC)  
IO(INH)  
RXD, and nFAULT  
8
4
mA  
mA  
INH output current  
Wake current if due to ground shifts V(WAKE) V(GND) 0.3 V, thus the current into  
WAKE must be limited via an external serial resistor  
IO(WAKE)  
TJ  
3
mA  
°C  
Operating virtual junction temperature range  
150  
55  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.  
7.2 ESD Ratings  
VALUE  
±4000  
±6000  
±16000  
±1500  
±500  
UNIT  
V
VSUP, INH(1)  
Human body model (HBM), per AEC Q100-002  
All pins, except VSUP, INH(1)  
CAN bus terminals (CANH, CANL)(2)  
All terminals(3)  
V
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM) - SOIC  
Charged device model (CDM) - DMT  
Machine model (MM)  
V
All terminals(3)  
V
Corner terminals(3)  
All terminals(4)  
±750  
V
±200  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Test method based upon AEC-Q100-002, CAN bus terminals stressed with respect to each other and to GND.  
(3) Tested in accordance to AEC-Q100-011.  
(4) Tested in accordance to JEDEC Standard 22, Test Method A115A.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
 
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
VALUE UNIT  
7.3 ESD Ratings IEC Specification  
ISO 10605 per SAE J2962-2:  
Powered Air Discharge(2)  
±15000  
±8000  
V
V
V
V
ISO 10605 per SAE J2962-2:  
Powered Contact Discharge(2)  
CAN bus terminals (CANH, CANL)  
to GND  
System level electrostatic discharge  
(ESD)  
IEC 61000-4-2 (150 pF, 330 Ω):  
Unpowered contact discharge  
±15000  
±6000  
IEC 61000-4-2 (150 pF, 330 Ω)  
Unpowered contact discharge  
VSUP and WAKE  
V(ESD)  
Pulse 1  
Pulse 2  
Pulse 3a  
Pulse 3b  
V
V
V
V
100  
+75  
ISO 7637-2  
CAN bus terminals (CANH, CANL)  
to GND, VSUP, WAKE  
Transients according to GIFT - ICT  
CAN EMC test specification(1)  
150  
+100  
Direct coupling capacitor "slow  
transient pulse" with 100-nF  
coupling capacitor - powered  
CAN bus terminals (CANH, CANL)  
to GND, VSUP, WAKE  
ISO 7637-3 Transients  
±85  
V
(1) ISO 7637 is a system level transient test. Results given here are specific to the IBEE CAN EMC Test specification conditions. Different  
system level configurations will lead to different results.  
(2) Verified by external test facility on SOIC package  
7.4 Recommended Operating Conditions  
MIN NOM MAX UNIT  
Battery supply (reverse-blocked) voltage range - standard version  
Battery supply (reverse-blocked) voltage range - H version  
5V Supply Voltage  
4.5  
4.5  
4.5  
2.8  
2  
45  
60  
V
V
VSUP  
VCC  
5.5  
5.5  
V
VIO  
I/O supply voltage  
V
IOH(LOGIC)  
IOL(LOGIC)  
IO(INH)  
TA  
mA  
mA  
mA  
°C  
Logic terminal high level output current RXD and nFAULT  
Logic terminal low level output current RXD and nFAULT  
INH output current  
2
1
Operational free-air temperature  
125  
55  
7.5 Thermal Information  
TCAN1043x-Q1  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
78  
DMT (VSON)  
14 PINS  
33.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
33.6  
30.5  
34.7  
10.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.7  
0.4  
ΨJT  
34.3  
10.7  
ΨJB  
RθJC(bot)  
n/a  
1.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
7.6 Dissipation Ratings  
PARAMETER  
POWER  
UNIT  
TEST CONDITIONS  
DISSIPATION  
VSUP = 14 V, VCC = 5 V, VIO = 5 V, TJ = 27°C, RL = 60 ,  
nSTB = 5 V, EN = 5 V, CL_RXD = 15 pF. Typical CAN  
operating conditions at 500 kbps with 25% transmission  
(dominant) rate.  
58  
mW  
mW  
PD  
Average power dissipation  
VSUP = 14 V, VCC = 5.5 V, VIO = 5.5 V, TJ = 150°C, RL = 50  
, nSTB = 5.5 V, EN = 5.5 V, CL_RXD = 15 pF. Typical high  
load CAN operating conditions at 1 Mbps with 50%  
transmission (dominant) rate and loaded network.  
126  
TTSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
170  
10  
°C  
°C  
TTSD_HYS  
7.7 Electrical Characteristics  
Over recommended operating conditions with TA = 55°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
SUPPLY CHARACTERISTICS  
Normal, Silent, Go-to-Sleep  
40  
15  
70  
45  
µA  
µA  
Standby mode, VCC > 4.5 V, VIO > 2.8 V,  
VINH = V(WAKE) = VSUP  
Supply current  
VSUP  
Standby mode  
Sleep mode  
ISUP  
Sleep mode, VCC = VIO = VINH = 0 V  
V(WAKE) = VSUP  
15  
30  
70  
µA  
mA  
mA  
mA  
mA  
mA  
See 8-2. TXD = 0 V, RL = 60 , CL  
=
=
open. Typical bus load.  
Dominant  
See 8-2. TXD = 0 V, RL = 50 , CL  
open. High bus load.  
80  
Supply current  
Normal mode  
VCC  
See 8-2. TXD = 0 V, CANH = -25 V, RL  
open, CL = open  
=
Dominant with bus fault  
Recessive  
110  
5
ICC  
See 8-2. TXD = VIO, RL = 50 , CL  
open, RCM = open  
=
=
See 8-2. TXD = VIO, RL = 50 , CL  
open  
Supply current Silent and Go-to-Sleep mode  
2.5  
Supply current Standby mode  
Sleep mode  
5
5
See 8-2. EN = L, NSTB = L  
µA  
µA  
See 8-2. EN = H or L, NSTB = L  
RXD floating, TXD = 0 V (dominant) nSTB =  
VIO, EN = VIO  
Normal mode  
450  
5
µA  
µA  
µA  
V
IIO  
I/O supply current  
Normal, Silent or Go-to-  
Sleep mode  
RXD floating, TXD = VIO recessive  
NSTB = L  
Sleep mode  
5
UVSUP  
Undervoltage detection on VSUP for protected mode  
Hysteresis voltage on UVSUP  
3.0  
4.2  
VHYS(UVSUP)  
50  
4.1  
3.9  
200  
mV  
V
Rising undervoltage detection on VCC for protected mode  
Falling undervoltage detection on VCC for protected mode  
Hysteresis voltage on UVVCC  
4.4  
UVVCC  
3.5  
1.3  
V
VHYS(UVVCC)  
UVVIO  
mV  
V
Undervoltage detection on VIO for protected mode  
Hysteresis voltage on UVIO  
2.75  
VHYS(UVIO)  
80  
mV  
Driver Electrical Characteristics  
CANH  
CANL  
2.75  
0.5  
4.5  
V
V
Bus output voltage  
dominant - normal  
mode  
See 8-2 and 9-3, TXD = 0 V, Normal  
VO(D)  
mode, 50 RL 65 , CL = open, RCM  
=
2.25  
open  
See 8-2 and 9-3, TXD = VCC, VIO  
=
Bus output voltage  
recessive  
VCC, Normal or Silent(2), RL = open, RCM  
open  
=
VO(R)  
CANH and CANL  
2
0.5 × VCC  
3
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
MAX UNIT  
7.7 Electrical Characteristics (continued)  
Over recommended operating conditions with TA = 55°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
See 8-2 and 9-3, TXD = 0 V, Normal  
mode, 50 RL 65 , CL = open, RCM  
= open  
1.5  
3
V
See 8-2 and 9-3, TXD = 0 V, Normal  
mode, 45 RL 50 , CL = open, RCM  
= open  
1.4  
1.5  
1.4  
3
5
V
V
V
Differential output  
voltage dominant  
VOD(D)  
CANH - CANL  
See 8-2 and 9-3, TXD = 0 V, Normal  
mode, RL = 2240 , CL = open, RCM = open  
See 8-2 and 9-3, TXD = 0 V, Normal  
mode, 45 RL 70 , CL = open, RCM  
= open  
3.3  
See 8-2 and 9-3, TXD = VCC, Normal  
or Silent mode(2), RL = 60 , CL = open,  
RCM = open  
12  
50  
mV  
mV  
120  
50  
Differential output  
voltage recessive  
VOD(R)  
CANH - CANL  
See 8-2 and 9-3, TXD = VCC, Normal  
or Silent mode(2), RL = open, CL = open,  
RCM = open  
Driver symmetry, dominant or recessive  
VSYM = (VO(CANH) + VO(CANL))/VCC  
See 8-2 and 10-4, Normal mode, CL  
=
VSYM  
0.9  
400  
100  
1.1 V / V  
open, RCM = open, TXD = 1MHz(3)  
Driver symmetry, dominant  
VSYM(DC) = VCC - VO(CANH) - VO(CANL)  
See 8-2 and 9-3, Normal or Silent  
mode, RL = 60 , CL = open, RCM = open  
VSYM_DC  
400  
mV  
mA  
mA  
See 8-10 and 9-3, VCANH = -5 V, CANL  
= open, TXD = 0 V  
Short circuit steady-state output current  
dominant  
IOS(DOM)  
See 8-10 and 9-3, VCANL = 40 V,  
CANH = open, TXD = 0 V  
100  
5
See 8-10 and 9-3  
27 V VBUS 32 V, VBUS = CANH =  
CANL, TXD = VIO  
Short circuit steady-state output current  
recessive  
IOS(REC)  
mA  
5  
CANH  
0
0
0
0.1  
0.1  
0.2  
V
V
V
0.1  
0.1  
0.2  
Bus output voltage  
Standby mode  
STB = VCC or VIO, RL = open,  
RCM = open  
VO(STB)  
CANL  
CANH - CANL  
Receiver Electrical Characteristics  
Common mode range  
VCM  
-30  
30  
V
See 8-3 and 9-5  
Normal and Silent modes  
500  
400  
-3  
900  
1000  
0.5  
mV  
mV  
V
See 8-3 and 9-5, VCM ±20 V  
See 8-3 and 9-5, VCM ±30 V  
Input threshold voltage  
Normal and Silent modes  
VIT  
VREC  
VDOM  
Receiver recessive voltage  
Receiver dominant voltage  
See 8-3 and 9-5  
Normal or Silent mode, VCM = ±20V  
0.9  
8
V
Hysteresis voltage for input threshold  
Normal and Silent modes  
VHYS  
120  
mV  
mV  
V
See 8-3 and 9-5  
Input threshold  
Sleep mode  
VIT(Sleep)  
VREC(Sleep)  
VDOM(Sleep)  
VCM  
400  
-3  
1150  
0.4  
8
Receiver recessive voltage  
Sleep mode  
See 8-3 and 9-5; VCM = ±12  
Receiver dominant voltage  
Sleep mode  
1.15  
-12  
V
Common mode range  
Standby, Go-to-Sleep and Sleep modes  
12  
V
See 8-3 and 9-5  
CANH = CANL = 5 V, VCC = GND, VIO  
GND, VSUP = 0 V  
=
IIOFF(LKG)  
Power-off (unpowered) bus input leakage current  
4.8  
µA  
CI  
Input capacitance to ground (CANH or CANL)  
Differential input capacitance (CANH or CANL)  
Differential input resistance  
24  
12  
30  
15  
80  
40  
pF  
pF  
kΩ  
kΩ  
(4)  
TXD = VCC, VIO = VCC  
CID  
RID  
RIN  
30  
15  
TXD = VCC = VIO = 5 V, Normal mode; -30  
VCM +30V  
Input resistance (CANH or CANL)  
Input resistance matching:  
[1 RIN(CANH) / RIN(CANL)] × 100%  
RIN(M)  
V(CANH) = V(CANL) = 5V  
2%  
2%  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
7.7 Electrical Characteristics (continued)  
Over recommended operating conditions with TA = 55°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Valid differential load impedance range for bus  
fault circuitry  
RCBF  
RCM = RL, CL = open  
45  
70  
Ω
TXD TERMINAL (CAN TRANSMIT DATA INPUT)  
VIH  
VIL  
High level input voltage  
0.7 VIO  
V
Low level input voltage  
0.3 VIO  
V
IIH  
High level input leakage current  
Low level input leakage current  
Unpowered leakage current  
Input capacitance  
TXD = VCC = VIO = 5.5 V  
0
1
2.5  
1
µA  
µA  
µA  
pF  
2.5  
100  
1  
IIL  
TXD = 0 V, VCC = VIO = 5.5 V  
TXD = 5.5 V, VCC = VIO = 0 V  
VIN = 0.4 x sin(2 x πx 2 x 106 x t) + 2.5 V  
ILKG(OFF)  
CI  
0
5
RXD TERMINAL (CAN RECEIVE DATA OUTPUT)  
VOH  
VOL  
High level output voltage  
Low level output voltage  
0.8 VIO  
0.8 VIO  
0.7 VIO  
V
V
See 8-3, IO = 2 mA.  
See 8-3, IO = 2 mA.  
0.2 VIO  
0.2 VIO  
nFAULT TERMINAL (FAULT AND STATUS OUTPUT)  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
See 8-1, IO = 2 mA.  
See 8-1 IO = 2 mA.  
nSTB TERMINAL (STANDBY MODE INPUT)  
VIH  
High level input voltage  
V
VIL  
Low level input voltage  
0.3 VIO  
V
IIH  
High level input leakage current  
Low level input leakage current  
Unpowered leakage current  
nSTB = VCC = VIO = 5.5 V  
0.5  
1  
1  
10  
1
µA  
µA  
µA  
IIL  
nSTB = 0 V, VCC = VIO = 5.5 V  
nSTB = 5.5 V, VCC = 0V, VIO = 0 V  
ILKG(OFF)  
0
1
EN TERMINAL (ENABLE MODE INPUT)  
VIH  
High level input voltage  
0.7 VIO  
V
VIL  
Low level input voltage  
0.3 VIO  
V
IIH  
High level input leakage current  
Low level input leakage current  
Unpowered leakage current  
EN = VCC = VIO = 5.5 V  
0.5  
1  
1  
10  
1
µA  
µA  
µA  
IIL  
EN = 0 V, VCC = VIO = 5.5 V  
EN = 5.5 V, VCC = 0V, VIO = 0 V  
ILKG(OFF)  
0
1
INH TERMINAL (INHIBIT OUTPUT)  
High level voltage drop INH with respect to VSUP  
Leakage current  
0.5  
1
5
V
ΔVH  
IINH = 0.5 mA  
ILKG(INH)  
INH = 0 V, Sleep Mode  
-5  
µA  
Wake TERMINAL (WAKE INPUT)  
VIH  
VIL  
High level input voltage  
Low level input voltage  
Standby and Sleep Mode  
Standby and Sleep Mode  
VSUP - 1.9  
V
V
VSUP  
-
3.5  
IIH  
IIL  
High level input current(5)  
Low level input current(5)  
µA  
µA  
WAKE = VSUP 1 V  
25  
15  
WAKE = 1 V  
15  
25  
(1) All typical values are at 25°C and supply voltages of VCC = 5 V, VIO = 3.3 V, and RL = 60 . Unless otherwise noted.  
(2) The recessive bus voltage will be the same if the device is in Normal mode with the nSTB and EN terminals high or if the device is in  
Silent mode with the nSTB terminal high and EN terminal low.  
(3) The bus output voltage symmetry, VSYM, is measured using RTERM / 2 = 30 and CSPLIT = 4.7 nF as shown in 10-4  
(4) Specified by design and verified during product validation using the ISO 11898-2 method.  
(5) To minimize system level current consumption, the WAKE pin will automatically configure itself based on the applied voltage to have  
either an internal pull-up or pull-down current source. A high level input results in an internal pull-up and a low level input results in an  
internal pull-down. For more information, refer to Section 10.4.6.2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
7.8 Switching Characteristics  
Over recommended operating conditions with TA = -55°C to 125°C (unless otherwise noted)  
UNI  
T
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX  
DRIVER SWITCHING CHARACTERISTICS  
tpHR  
tpLD  
tsk(p)  
tR  
Propagation delay time, high TXD to driver recessive  
50  
40  
10  
45  
45  
ns  
ns  
ns  
ns  
ns  
Propagation delay time, low TXD to driver dominant  
Pulse skew (|tpHR - tpLD|)  
See 8-2, Normal mode. RL  
= 60 , CL = 100 pF, RCM  
=
open  
Differential output signal rise time  
Differential output signal fall time  
tF  
See 8-9, RL = 60 , CL =  
open  
tTXD_DTO  
Dominant time out  
1.2  
3.8 ms  
RECEIVER SWITCHING CHARACTERISTICS  
tpRH Propagation delay time, bus recessive input to high RXD  
50  
50  
ns  
ns  
Propagation delay time, bus dominant input to RXD low  
output  
tpDL  
See 8-3  
CL(RXD) = 15 pF  
tR  
tF  
Output signal rise time (RXD)  
Output signal fall time (RXD)  
8
8
ns  
ns  
See Figure 17, RL = 60 , CL  
tBUS_DOM  
tCBF  
Dominant time out  
1.3  
1.9  
3.8 ms  
µs  
= open  
45 RCM 70 , CL =  
open  
Bus fault detection time  
Wake Terminal (Wake input)  
See 8-12 and 8-13  
Time required for LWU from a  
high to low or low to high on  
WAKE  
tWAKE_HT  
WAKE hold time  
5
50 µs  
Device Switching Characteristics  
Total loop delay, driver input (TXD) to receiver output (RXD),  
tPROP(LOOP1)  
100 160 ns  
110 175 ns  
See 8-5, Normal mode, RL  
recessive to dominant  
= 60 , CL = 100 pF, CL(RXD)  
=
Total loop delay, driver input (TXD) to receiver output (RXD),  
dominant to recessive  
15 pF  
tPROP(LOOP2)  
See 8-4 and 8-5, Mode  
change time for leaving Sleep  
mode to entering normal and  
silent mode after VCC and VIO  
have crossed UV thresholds  
tMODE1  
Mode change time  
Mode change time  
20 µs  
Mode changes between  
Normal, Silent and Standby  
modes, and Sleep to Standby  
mode transition  
tMODE2  
10 µs  
Time for device to return to  
normal operation from UVVCC  
or UVVIO under voltage event  
tUV_RE-ENABLE Re-enable time after under voltage event  
200 µs  
tPower_Up  
Power up time on VSUP  
250  
µs  
See 8-11  
See 9-5  
Bus time to meet filtered bus requirements for wake up  
request  
tWK_FILTER  
0.5  
1.8 µs  
tWK_TIMEOUT  
tUV  
Bus Wake-up timeout value  
0.5  
159  
5
2
ms  
See 9-5  
Undervoltage filter time for VIO and VCC  
Minimum hold time for transition to sleep mode  
340 ms  
50 µs  
VIO UVVIO or VCC < UVVCC  
EN = H and nSTB = L  
tGo_To_Sleep  
FD Timing Parameters  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
7.8 Switching Characteristics (continued)  
Over recommended operating conditions with TA = -55°C to 125°C (unless otherwise noted)  
UNI  
T
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX  
Bit time on CAN bus output pins with tBIT(TXD) = 500 ns, all  
devices  
435  
155  
400  
530 ns  
210 ns  
550 ns  
tBIT(BUS)  
Bit time on CAN bus output pins with tBIT(TXD) = 200 ns, G  
device variants only  
Normal mode, RL = 60 , CL  
= 100 pF,  
CL(RXD) = 15 pF,  
Bit time on RXD output pins with tBIT(TXD) = 500 ns, all  
devices  
tBIT(RXD)  
Bit time on RXD output pins with tBIT(TXD) = 200 ns, G device  
variants only  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
120  
-65  
-45  
220 ns  
40 ns  
15 ns  
Receiver timing symmetry with tBIT(TXD) = 500 ns, all devices  
ΔtREC  
Receiver timing symmetry with tBIT(TXD) = 200 ns, G device  
variants only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
7.9 Typical Characteristics  
3
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
0
0
4.5 4.6 4.7 4.8 4.9  
5
VCC (V)  
5.1 5.2 5.3 5.4 5.5  
-55  
-35  
-15  
5
25 45  
Temperature (°C)  
65  
85  
105 125  
D002  
D001  
VIO = 5 V  
STB = 0 V  
RCM = Open  
VCC = 5 V  
CL = Open  
VIO = 3.3 V  
RL = 60 Ω  
RL = 60 Ω  
CL = Open  
Temp = 25°C  
RCM = Open  
STB = 0 V  
7-2. VOD(D) over VCC  
7-1. VOD(D) over Temperature  
1.48  
150  
125  
100  
75  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
50  
25  
0
-55  
-55  
-35  
-15  
5
25 45  
Temperature (°C)  
65  
85  
105 125  
-35  
-15  
5
25 45  
Temperature (°C)  
65  
85  
105 125  
D003  
D004  
VCC = 5 V  
CL = Open  
VIO = 3.3 V  
RL = 60 Ω  
VCC = 5 V  
VIO = 3.3 V  
RL = 60 Ω  
RCM = Open  
STB = 0 V  
CL = 100 pF  
CL_RXD = 15 pF  
STB = 0 V  
7-3. ICC Recessive over Temperature  
7-4. Total Loop Delay over Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
8 Parameter Measurement Information  
CANH  
RL  
TXD  
CL  
CANL  
Copyright © 2016, Texas Instruments Incorporated  
8-1. Supply Test Circuit  
RCM  
CANH  
RL  
VCC  
0V  
50%  
tpLD  
0.9V  
50%  
tpHR  
TXD  
TXD  
CL  
VOD  
VCM  
VO(CANH)  
90%  
10%  
CANL  
RCM  
VO(CANL)  
VOD  
0.5V  
tR  
tF  
Copyright © 2016, Texas Instruments Incorporated  
8-2. Driver Test Circuit and Measurement  
CANH  
1.5V  
0.9V  
VID  
IO  
RXD  
0.5V  
0V  
VID  
tpDL  
tpRH  
VOH  
VO  
CL_RXD  
CANL  
90%  
VO(RXD)  
50%  
10%  
VOL  
tF  
tR  
Copyright © 2016, Texas Instruments Incorporated  
8-3. Receiver Test Circuit and Measurement  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
CANH  
CANL  
V
IH  
TXD  
0V  
R
C
L
L
EN  
50%  
EN  
0V  
V
I
t
MODE1  
RXD  
V
OH  
V
C
L_RXD  
O
RXD  
50%  
V
OL  
Copyright © 2017, Texas Instruments Incorporated  
8-4. tMODE1 Test Circuit and Measurement, Silent Mode to Normal Mode  
CANH  
V
IH  
TXD  
TXD  
EN  
R
C
L
V
I
L
0V  
CANL  
V
I
200 ns  
EN  
50%  
RXD  
0V  
tMODE2  
V
OH  
V
C
L_RXD  
O
RXD  
50%  
V
OL  
Copyright © 2017, Texas Instruments Incorporated  
8-5. tMODE2 Test Circuit and Measurement, Normal Mode to Silent Mode  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
CANH  
VCC  
TXD  
VI  
CL  
RL  
50%  
TXD  
CANL  
0V  
tPROP(LOOP2)  
tPROP(LOOP1)  
RXD  
VOH  
VO  
CL_RXD  
50%  
RXD  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
8-6. tPROP(LOOP) Test Circuit and Measurement  
RCM  
CANH  
VCC  
TXD  
VCM  
VI  
CL  
RL  
50%  
TXD  
CANL RCM  
0V  
tPROP(LOOP2)  
tPROP(LOOP1)  
RXD  
VOH  
VO  
CL_RXD  
50%  
RXD  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
8-7. tPROP(LOOP) Test Circuit and Measurement with CM Range  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
CANH  
VI  
TXD  
70%  
VI  
CL  
RL  
TXD  
30%  
30%  
0V  
CANL  
tBIT  
5 x tBIT  
RXD  
VOH  
70%  
RXD  
VO  
CL_RXD  
30%  
VOL  
tREC_SYM  
Copyright © 2016, Texas Instruments Incorporated  
8-8. Loop Delay Symmetry Test Circuit and Measurement  
CANH  
VIH  
TXD  
TXD  
0V  
RL  
CL  
VOD  
VOD(D)  
CANL  
0.9V  
VOD  
0.5V  
0V  
tTXD_DTO  
Copyright © 2016, Texas Instruments Incorporated  
8-9. TXD Dominant Timeout Test Circuit and Measurement  
200 s  
IOS  
CANH  
CANL  
TXD  
VBUS  
0V  
IOS  
VBUS  
VBUS  
or  
0V  
VBUS  
VBUS  
Copyright © 2016, Texas Instruments Incorporated  
8-10. Driver Short-Circuit Current Test and Measurement  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
VSUP  
4.5V  
VSUP  
CVSUP  
INH  
VSUP  
0V  
VO  
tPower_Up  
TCAN1043  
INH = H  
VSUP -1V  
INH  
Copyright © 2016, Texas Instruments Incorporated  
8-11. tPower_Up Timing Measurement  
VSUP  
VSUP  
VWAKE  
VSUP - 2  
VWAKE  
VSUP - 3  
VSUP  
INH  
0V  
CVSUP  
OR  
tWAKE_HT  
TCAN1043  
tWAKE_HT  
VWAKE_IN  
INH = H  
INH = H  
INH  
INH  
VSUP -1V  
VSUP -1V  
Copyright © 2016, Texas Instruments Incorporated  
8-12. tWAKE_HT While Monitoring INH Output  
VSUP  
VSUP  
VWAKE  
VWAKE  
VSUP - 2  
VSUP - 3  
VSUP  
RXD  
0V  
CVSUP  
OR  
tWAKE_HT  
tWAKE_HT  
TCAN1043  
VWAKE_IN  
INH = H  
50%  
INH = H  
50%  
RXD  
RXD  
Copyright © 2016, Texas Instruments Incorporated  
8-13. tWAKE_HT While Monitoring RXD Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TCAN1043xx-Q1 meets or exceeds the specifications of the ISO 11898-2 (2016) High Speed CAN  
(Controller Area Network) physical layer standard. The device has been certified to the requirements of  
ISO11898-2/5 according to the GIFT/ICT High Speed CAN test specification.  
This device provides CAN transceiver differential transmit capability to the bus and differential receive capability  
from the bus. The device includes many protection features providing device and CAN bus robustness. All of the  
devices are available to support CAN and CAN FD (Flexible Data Rate) up to 2 Mbps while the G version of the  
device support CAN and CAN FD data rates up to 5 Mbps.  
9.2 Functional Block Diagram  
VCC  
VIO  
VSUP  
NC  
3
5
10  
11  
VCC  
VIO  
VCC  
TRANSMIT  
DOMINANT  
TIME OUT  
1
TXD  
VSUP  
13  
12  
7
9
INH  
VSUP  
WAKE  
WAKE  
LDO  
8
nFAULT  
14  
CONTROL and MODE  
LOGIC  
nSTB  
EN  
6
Sleep Receiver  
WUP  
Detect  
UNDER  
VOLTAGE  
OVER  
TEMP  
Normal Receiver  
RECEIVE  
DOMINANT  
TIME OUT  
4
MUX  
RXD  
2
GND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
9.3 Feature Description  
9.3.1 Internal and External Indicator Flags (nFAULT and RXD)  
The following device status indicator flags are implemented to allow for the MCU to determine the status of the  
device and the system. In addition to faults, the nFAULT terminal also signals wake up requests and a cold”  
power-up sequence on the VSUP battery terminal so the system can do any diagnostics or cold booting sequence  
necessary. The RXD terminal indicates wake up request and the faults are multiplexed (ORed) to the nFAULT  
output.  
9-1. Device Status Indicator Flags  
EVENT  
FLAG NAME  
CAUSE  
INDICATORS(1)  
FLAG IS CLEARED  
COMMENT  
Power up on VSUP and  
any return of VSUP after  
it has been below  
UVVSUP  
nFAULT = L upon  
entering Silent mode  
from Standby, Go-to-  
Sleep, or Sleep mode  
After transition to normal  
mode  
Power-up  
PWRON  
Wake up request may  
After transition to normal only be set from standby,  
Wake up event on CAN nFAULT = RXD = L after  
bus, state transition on  
WAKE pin, or initial  
power up  
wake up in standby  
mode, go-to-sleep mode,  
and sleep mode  
Wake-up Request  
WAKERQ(2)  
WAKESR  
mode, or either a UVVCC  
or UVVIO event  
Go-to-sleep, or sleep  
mode. Resets timers for  
UVVCC or UVVIO  
Available upon entering  
After four recessive to  
dominant edges on TXD  
in normal mode,leaving  
normal mode, or either a  
UVVCC or UVVIO event  
Wake up event on CAN normal mode(4) , nFAULT  
bus, state transition on  
Wake-up Source  
Recognition(3)  
= L indicates wake from  
WAKE pin, initial power WAKE terminal, nFAULT  
A LWU source flag is set  
on intial power up  
up  
= H indicates wake from  
CAN bus  
VCC returns, or Wake-up  
request occurs  
UVVCC  
UVVIO  
Under voltage VCC  
Under voltage VIO  
Not externally indicated  
Not externally indicated  
VIO returns, or Wake-up  
request occurs  
Under voltage  
VSUP undervoltage event  
triggers the PWRON and  
WAKERQ flags upon  
return of VSUP  
UVVSUP  
CBF  
Under voltage VSUP  
Not externally indicated  
VSUP returns  
CANH shorted to GND,  
VCC, VSUP or CANL  
shorted to GND, VCC  
VSUP  
Failure must persist for  
four consecutive  
dominant to recessive  
transistions  
nFAULT = L in Normal  
mode only(5)  
Upon leaving Normal  
mode  
CAN Bus Failures  
,
TXD Dominant Time Out,  
dominant (low) signal for  
t tTXD_DTO  
CAN driver remains  
disabled until the  
TXDDTO is cleared  
TXDDTO  
TXDRXD  
RXD = L and TXD = H,  
or upon transitioning into  
Normal, Standby, Go-to-  
Sleep, or Sleep modes  
TXD and RXD pins are  
shorted together for t ≥  
tTXD_DTO  
CAN driver remains  
disabled until the  
TXDRXD is cleared  
CAN bus dominant fault,  
when dominant bus  
signal received for t ≥  
tBUS_DOM  
RXD = H, or upon  
transitioning into Normal,  
Standby, Go-to-Sleep, or  
Sleep modes  
nFAULT = L upon  
entering Silent mode  
from Normal mode  
Local Faults  
CANDOM  
TSD  
Driver remains enabled  
TJ drops below tTSD and  
either RXD = L and TXD  
= H, or upon transitioning  
into Normal, Standby,  
Go-to-Sleep, or Sleep  
modes  
Thermal Shutdown,  
junction temperature ≥  
TTSD  
CAN driver remains  
disabled until the TSD is  
cleared  
(1) VIO and VSUP are present  
(2) Transitions to Go-to-sleep mode is blocked until WAKERQ flag is cleared  
(3) Wake-up source recognition reflects the first wake up source. If additional wake-up events occur the source still indicates the original  
wake up source  
(4) Indicator is only available in normal mode until the flag is cleared  
(5) CAN Bus failure flag is indicated after four recessive to dominant edges on TXD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
9.3.2 Power-Up Flag (PWRON)  
This is an internal and external flag that is set and controls the power up state of the device. The device powers  
on to standby mode with the PWRON flag set after VSUP has cleared the under voltage lock out for VSUP  
UVVSUP  
,
9.3.3 Wake-Up Request Flag (WAKERQ)  
This is an internal and external flag that can be set in standby, go-to-sleep, or sleep mode. This flag is set when  
either a valid local wake up (LWU) request occurs, or a valid remote wake request occurs, or on power up on  
VSUP. The setting of this flag clears tUV timer for the UVVCC or UVVIO. This flag is cleared upon entering normal  
mode or during a under voltage event on VCC or VIO.  
9.3.4 Wake-Up Source Recognition Flag (WAKESR)  
This flag is an internal and external flag that is set high or low after a valid local wake up (LWU) request occurs,  
or a valid remote wake request occurs. This flag is only available in Normal mode before four recessive to  
dominant transitions occur on TXD. If the nFAULT pin is high after entering normal mode, this indicates that a  
remote wake request was received. If the nFAULT output is low after entering Normal mode, this indicates that a  
local wake up event occurred. Upon power up on VSUP, or after and under voltage event on VSUP, the local wake  
up request is indicated on nFAULT.  
9.3.5 Undervoltage Fault Flags  
The TCAN1043xx-Q1 device comes with undervoltage detection circuits on all three supply terminals: VSUP  
VCC, and VIO. These flags are internal flags and are not indicated on the nFAULT terminal.  
,
9.3.5.1 Undervoltage on VCC Fault  
This internal flag is set when the voltage on VCC drops below the undervoltage detection voltage threshold,  
UVVCC, for longer than the undervoltage filter time, tUV  
.
9.3.5.2 Undervoltage on VIO Fault  
This internal flag is set when the voltage on VIO drops below the undervoltage detection voltage threshold,  
UVVIO, for longer than the undervoltage filter time, tUV  
.
9.3.5.3 Undervoltage on VSUP Fault  
This internal flag is set when the voltage on VSUP drops below the undervoltage detection voltage threshold,  
UVVSUP. While this flag is not externally indicated, the PWRON and WAKERQ flags are set once the VSUP  
supply returns  
9.3.6 CAN Bus Failure Fault Flag  
The TCAN1043xx-Q1 devices are able to detect the following six faults that can occur on the CANH and CANL  
bus terminals. These faults are only detected in Normal mode and are only indicated via the nFAULT terminal  
while in Normal mode.  
1. CANH bus pin shorted VSUP  
2. CANH bus pin shorted VCC  
3. CANH bus pin shorted GND  
4. CANL bus pin shorted VSUP  
5. CANL bus pin shorted VCC  
6. CANL bus pin shorted GND  
These failures are detected while transmitting a dominant signal on the CAN bus. If one of these fault conditions  
persists for four consecutive dominant bit transmissions, the nFAULT indicates a CAN bus failure flag in Normal  
mode by driving the nFAULT pin low. The CAN bus driver remains active.  
The bus fault failure circuitry is able to detect bus faults for a range of differential resistance loads (RCBF) and for  
any time greater than tCBF_MIN  
.
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
9.3.7 Local Faults  
Local faults are detected in both Normal mode and Silent mode, but are only indicated via the nFAULT pin when  
transitioned form Normal mode to Silent mode. All other mode transitions clear the local fault flag indicators.  
9.3.7.1 TXD Dominant Timeout (TXD DTO)  
During Normal mode, the only mode where the CAN driver is active, the TXD DTO circuit prevents the local  
node from blocking network communication in event of a hardware or software failure where TXD is held  
dominant longer than the time out period tTXD_DTO. The TXD DTO circuit is triggered by a falling edge on TXD. If  
no rising edge is seen before the time out constant of the circuit, tTXD_DTO, expires, the CAN driver is disabled.  
This keeps the bus free for communication between other nodes on the network. The CAN driver is re-activated  
when a recessive signal is seen on the TXD terminal, thus clearing the dominant time out. The receiver and RXD  
terminal reflects what is on the CAN bus and the bus terminals is biased to recessive level during a TXD DTO.  
This fault is indicated via the TXDDTO flag shown on the nFAULT terminal.  
TXD fault stuck dominant: example PCB  
failure or bad software  
Fault is repaired & transmission  
capability restored  
TXD  
(driver)  
tTXD_DTO  
Driver disabled freeing bus for other nodes  
Bus would be —stuck dominant“ blocking communication for the  
whole network but TXD DTO prevents this and frees the bus for  
Normal CAN  
communication  
communication after the time tTXD_DTO  
.
CAN  
Bus  
Signal  
tTXD_DTO  
Communication from  
other bus node(s)  
Communication from  
repaired node  
RXD  
(receiver)  
Communication from  
other bus node(s)  
Communication from  
repaired local node  
Communication from  
local node  
9-1. Example Timing Diagram for TXD DTO  
Note  
The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible  
transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive  
dominant bits (on TXD) for the worst case, where five successive dominant bits are followed  
immediately by an error frame. The minimum transmitted data rate may be calculated by: Minimum  
Data Rate = 11 bits / tTXD_DTO = 11 bits / 1.2 ms = 9.2 kbps.  
9.3.7.2 TXD Shorted to RXD Fault  
The TXDRXD flag is set if the device detects that the TXD and RXD lines have been shorted together for t  
tTXD_DTO. This fault is then indicated via the nFAULT terminal. The CAN driver is disabled until the TXDRXD  
fault is cleared.  
This fault is only indicated in Normal mode and Silent mode.  
9.3.7.3 CAN Bus Dominant Fault  
The CAN bus dominant fault detects if the CAN bus is stuck in a permanent dominant (low) state. This fault is  
detected when the device detects a dominant on the bus for time tBUS_DOM. This fault is then indicated via the  
CANDOM flag shown on the nFAULT terminal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
This fault is only indicated on the nFAULT pin in Silent mode. This fault can also be seen on the RXD pin as a  
dominant pulse for a time tBUS_DOM  
.
9.3.7.4 Thermal Shutdown (TSD)  
If the junction temperature of the device exceeds the thermal shut down threshold, the device turns off the CAN  
driver circuits thus blocking the TXD to the bus transmission path. The shutdown condition is cleared when the  
junction temperature of the device drops below the thermal shutdown temperature of the device. If the fault  
condition that caused the thermal shutdown is still present, the temperature may rise again causing the device to  
reenter thermal shut down. Prolonged operation with thermal shutdown conditions may affect device reliability.  
The thermal shutdown circuit includes hysteresis to avoid oscillation of the driver output. This fault is indicated  
via the TSD flag shown on the nFAULT terminal.  
9.3.7.5 RXD Recessive Fault  
The RXD recessive fault detects if the RXD terminal is stuck (clamped) in a permanent recessive state. This fault  
is detected when the device transmits four dominant bits to the bus via TXD but the RXD output does not follow.  
This fault is then indicated via the RXDREC flag shown on the nFAULT terminal.  
9.3.7.6 Undervoltage Lockout (UVLO)  
The supply terminals have under voltage detection which puts the device in protected mode if one of the supply  
rails drop below the threshold voltage. This protects the bus and system during an under voltage event on either  
VSUP, VCC or VIO supply terminals. These faults are internal fault flags and are not indicated via the nFAULT  
terminal.  
During an undervoltage event on VCC or VIO the device goes into protected mode and the driver is disabled.  
After the UV timer expires, the device transitions into sleep mode and the INH pin goes into a high impedance  
state. In the event of a UV on VIO where the mode pins are no longer driven, the device transitions into standby  
mode (due to internal fail safe biasing on the NSTB and EN pins) until the UV timer expires and the device  
transitions into sleep mode.  
The VCC and VIO undervoltage detection circuits share the same timer. Therefore, if an undervoltage on one  
supply occurs and the timers starts, and then during the undervoltage the other supply has an undervoltage  
event before the first supply recovers the timer does not reset.  
Once an under voltage condition is cleared and the supplies have returned to valid levels the device typically  
needs 200 µs to transition to normal operation.  
9.3.7.7 Unpowered Device  
The device is designed to be an "ideal passive" or no loadto the CAN bus if it is unpowered. The bus  
terminals (CANH, CANL) have extremely low leakage currents when the device is un-powered so they do not  
load down the bus. This is critical if some nodes of the network are unpowered while the rest of the of network  
remains in operation.  
Logic terminals also have extremely low leakage currents when the device is un-powered so they do not load  
down other circuits which may remain powered.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
9.3.7.8 Floating Terminals  
These devices have internal pull ups on critical terminals to place the device into known states if the terminals  
float. See 9-2 for details on terminal bias conditions.  
9-2. Terminal Failsafe Biasing  
TERMINAL  
PULL UP or PULL DOWN  
COMMENT  
Weakly biases TXD toward recessive to prevent bus blockage or  
TXD DTO triggering  
TXD  
Pull up  
Weakly biases nSTB terminal towards low power Standby mode to  
prevent excessive system power  
nSTB  
EN  
Pull down  
Pull down  
Weakly biases EN terminal towards low power mode to prevent  
excessive system power  
Note  
The internal bias should not be relied on by design, especially in noisy environments but should be  
considered a fall back protection. Special care needs to be taken when the device is used with MCUs  
using open drain outputs. TXD is weakly internally pulled up. The TXD pull up strength and CAN bit  
timing require special consideration when this device is used with an open drain TXD output on the  
microprocessor CAN controller. An adequate external pull up resistor must be used to ensure that the  
TXD output of the microprocessor maintains adequate bit timing input to the CAN transceiver.  
9.3.7.9 CAN Bus Short Circuit Current Limiting  
The TCAN1043xx-Q1 has several protection features that limit the short circuit current when a CAN bus line is  
shorted. These include CAN driver current limiting (dominant and recessive). The device has TXD dominant time  
out which prevents permanently having the higher short circuit current of dominant state in case of a system  
fault. During CAN communication the bus switches between dominant and recessive states, thus the short circuit  
current may be viewed either as the current during each bus state or as a DC average current. For system  
current and power considerations in the termination resistors and common mode choke ratings, the average  
short circuit current should typically be used. The percentage dominant is limited by the TXD dominant time out  
and CAN protocol which has forced state changes and recessive bits such as bit stuffing, control fields, and  
interframe space. These ensure there is a minimum recessive amount of time on the bus even if the data field  
contains a high percentage of dominant bits.  
The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short  
circuit currents. The average short circuit current may be calculated with 方程1.  
IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive × IOS(SS)_REC  
]
(1)  
Where:  
IOS(AVG) is the average short circuit current  
%Transmit is the percentage the node is transmitting CAN messages  
%Receive is the percentage the node is receiving CAN messages  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current  
Note  
The short circuit current and possible fault cases of the network should be taken into consideration  
when sizing the power ratings of the termination resistance and other network components.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
9.4 Device Functional Modes  
The device has four main operating modes: Normal mode, Standby mode, Silent mode and Sleep mode, and  
one transitional mode called Go-to-Sleep mode. Operating mode selection is made via the nSTB and EN input  
terminals in conjunction with supply conditions and wake events.  
9-3. Operating Modes  
WAKERQ  
Flag  
VCC and VIO  
VSUP  
EN  
nSTB  
Mode  
Driver  
Receiver  
RXD  
Bus Bias  
INH  
> UVVCC & >  
UVVIO  
> UVVSUP  
H
H
X
Normal  
Enabled  
Enabled  
Mirrors Bus  
State  
VCC/2  
ON  
> UVVCC & >  
UVVIO  
> UVVSUP  
> UVVSUP  
L
H
L
X
Silent  
Disabled  
(OFF)  
Enabled  
Mirrors Bus  
State  
VCC/2  
ON  
> UVVCC & >  
UVVIO  
H
Cleared  
Go-to-Sleep(1)  
Disabled  
(OFF)  
Low Power  
Bus Monitor  
Enabled (ON)  
High or High Z  
Weak pull to  
GND  
ON(2)  
(no VIO  
)
Cleared  
Sleep(3)  
Standby  
Standby  
Sleep  
Disabled  
(OFF)  
Low Power  
Bus Monitor  
Enabled (ON)  
High or High Z  
(no VIO  
Weak pull to  
GND  
OFF  
ON  
)
Set  
X
Disabled  
(OFF)  
Low Power  
Bus Monitor  
Enabled (ON)  
LOW signals  
wake up  
Weak pull to  
GND  
> UVVCC & >  
UVVIO  
> UVVSUP  
> UVVSUP  
< UVVSUP  
L
X
X
L
X
X
Disabled  
(OFF)  
Low Power  
Bus Monitor  
Enabled (ON)  
LOW signals  
wake up  
Weak pull to  
GND  
ON  
< UVVCC  
<UVVIO  
&
X
Disabled  
(OFF)  
Low Power  
Bus Monitor  
Enabled (ON)  
High or High Z  
Weak pull to  
GND  
OFF (High Z)  
OFF (High Z)  
(no VIO  
)
X
X
Protected  
Disabled  
(OFF)  
Disabled  
(OFF)  
High Z  
High Z  
(1) Go-to-sleep: Transitional mode for EN = H, nSTB = L until tgo_to_sleep timer has expired  
(2) The INH pin transitions to high Z (off) after tgo_to_sleep timer has expired  
(3) Mode change from Go-to-Sleep mode to sleep mode once tgo_to_sleep timer has expired  
9.4.1 CAN Bus States  
The CAN bus has two logical states during operation: recessive and dominant. See 9-2 and 9-3.  
In the recessive bus state the bus is biased to a common mode of approximately VCC/2 (2.5 V) via the high  
resistance internal input resistors of the receiver of each node on the bus. Recessive is equivalent to a logic high  
and is typically a differential voltage on the bus of approximately 0 V.  
The dominant bus state is when the bus is driven differentially by one or more drivers. Current flows through the  
termination resistors and generates a differential voltage on the bus. Dominant is equivalent to a logic low and is  
a differential voltage on the bus greater than the minimum threshold for a CAN dominant. A dominant state  
overwrites the recessive state.  
During arbitration, multiple CAN nodes may transmit a dominant bit at the same time. In this case, the differential  
voltage of the bus is greater than the differential voltage of a single driver.  
The host microprocessor of the CAN node uses the TXD terminal to drive the bus and receives data from the  
bus on the RXD terminal.  
The TCAN1043xx-Q1 transceivers has a third bus state in low power standby mode where the bus terminals are  
weakly biased to ground via the high resistance internal resistors of the receiver. See 9-2 and 9-3.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
9-2. Bus States (Physical Bit Representation)  
CANH  
VCC/2  
GND  
A
B
Bias  
Unit  
RXD  
CANL  
A. Normal and Silent Modes  
B. Sleep and Standby Modes  
9-3. Bias Unit (Recessive Common Mode Bias) and Receiver  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
Power  
Off  
Power On  
Start Up  
Standby Mode  
EN = L,  
NSTB = L  
Normal Mode  
EN: L  
NSTB: L  
CAN: weak ground  
EN = H,  
NSTB = H  
EN: H  
NSTB: H  
EN = L,  
NSTB = H  
EN = L,  
CAN: Bi-directional  
NSTB = H  
INH: H  
Wake Sources: CAN, WAKE  
INH: H  
Silent Mode  
EN: L  
NSTB: H  
CAN: Silent (Receive only)  
INH: H  
EN = H,  
NSTB = H  
EN = L or WAKERQ set)  
and NSTB = L  
EN = H,  
NSTB = H  
EN = H,  
NSTB = L and  
WAKERQ Cleared  
NSTB = H, EN = L  
VCC and VIO supplied  
EN = L,  
NSTB = H  
EN = H,  
NSTB = L  
EN = H,  
NSTB = L and  
WAKERQ Cleared  
Wake-up Event:  
CAN bus  
or  
WAKE Pin  
EN = L,  
t < tGO-TO-SLEEP  
Go-to-Sleep Mode  
EN: H  
NSTB: L  
Sleep Mode  
CAN: weak ground  
Wake Sources: CAN, WAKE  
INH: H  
EN: X*  
NSTB: L  
CAN: weak ground  
EN = H,  
t > tGO-TO-SLEEP  
NSTB = H, EN = H  
VCC and VIO supplied  
Wake Sources: CAN, WAKE  
INH: floating  
VCC < VCC,UV and / or  
VIO < VIO,UV for t > tUV  
Under-Voltage  
On VCC or VIO  
*The enable pin can be in a logical high or low state while in sleep mode but since it has an internal pull-down, the lowest possible  
power consumption occurs when the pin is left either floating or pulled low externally.  
9-4. State Diagram  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
9.4.2 Normal Mode  
This is the normal operating mode of the device. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver is translating a digital input on TXD to a differential output on CANH  
and CANL. The receiver is translating the differential signal from CANH and CANL to a digital output on RXD  
Entering Normal mode clears both the WAKERQ and PWRON flags.  
9.4.3 Silent Mode  
Silent mode is commonly referred to as listen only and receive only mode. In this mode, the CAN driver is  
disabled but the receiver is fully operational and CAN communication is unidirectional into the device. The  
receiver is translating the differential signal from CANH and CANL to a digital output on the RXD terminal.  
In Silent mode, the PWRON, and Local Failure Flags can be polled.  
9.4.4 Standby Mode  
Standby mode is a low power mode where the driver and receiver are disabled, reducing current consumption.  
However, this is not the lowest power mode of the device since the INH terminal is on, allowing the rest of the  
system to resume normal operation.  
During standby mode, a wake up request (WAKERQ) is indicated by the RXD terminal being low. The wake up  
source is identified via the nFAULT pin after the device is returned to normal mode.  
9.4.5 Go-to-Sleep Mode  
Go-to-Sleep mode is the transitional mode of the device from any state to sleep. In this state the driver and  
receiver are disabled, reducing the current consumption. However, the INH terminal is on allowing the rest of the  
system to resume normal operation. If the device is held in this state for time tgo_to_sleep the device transitions  
to sleep mode and the INH is turned off (high Z).  
Entering Go-to-Sleep Mode from standby mode is gated if the WAKERQ flag is set. Once this flag is cleared the  
transition is no longer gated.  
9.4.6 Sleep Mode with Remote Wake and Local Wake Up Requests  
Sleep mode is the lowest power mode of the device. The CAN driver and main receiver are turned off and bi-  
directional CAN communication is not possible.  
The low power receiver with bus monitor and WAKE circuits are supplied via the VSUP supply terminal. The low  
power receiver is able to monitor the bus for any activity that validates the wake up pattern (WUP) requirements,  
and the WAKE monitoring circuit monitors for state changes on the WAKE terminal for a local wake up (LWU)  
event. The VCC and VIO supplies may be turned off or be controlled via the INH output for additional system level  
current savings.  
The valid wake up sources in sleep mode are:  
Remote wake request: CAN bus activity that validates the WUP requirements  
Local wake up (LWU) request: state change on WAKE terminal  
Additionally, EN and nSTB can be used to change modes if both VCC and VIO are powered.  
If a bus wake up pattern (WUP) or local wake up (LWU) event occurs, the internal WAKERQ flag is set and the  
device transitions to standby mode which in turn sets the INH output high. The wake up source recognition flag  
(WAKESR) is set either high or low to identify which wake event occurred. This flag can be polled via the  
nFAULT pin after the device is returned to normal mode and only until there have been four recessive to  
dominant transitions on the TXD pin.  
The wake source (WAKESR) flag has two states:  
Low: This indicates that the wake up source was via the WAKE pin.  
High: This indicates that a remote wake request via the CAN bus occurred.  
If both a local wake and a remote wake request occur, the device indicates whichever event was completed first.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
The device transitions into sleep mode if at any time either or both the VCC or VIO supplies have an under  
voltage condition that lasts longer than timer tUV. If VIO remains active in sleep mode, it is recommended to drive  
the EN pin low once the device has transitioned into sleep mode to reduce the current consumption due to the  
internal pull-down on the EN terminal.  
9.4.6.1 Remote Wake Request via Wake Up Pattern (WUP)  
The TCAN1043xx-Q1 use the multiple filtered dominant wake up pattern (WUP) from ISO 11898-2 (2016) to  
qualify bus activity. The WUP is active for both sleep and standby modes and results in the RXD terminal being  
driven low after a valid pattern is received.  
The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second  
filtered dominant pulse. The first filtered dominant initiates the WUP, and the bus monitor then waits on a filtered  
recessive; other bus traffic does not reset the bus monitor. Once a filtered recessive is received the bus monitor  
is waiting for a filtered dominant and again, other bus traffic does not reset the bus monitor. Immediately upon  
reception of the second filtered dominant the bus monitor recognizes the WUP and transition to standby mode,  
drives the INH output high and sets the RXD terminal low (if VIO is present) to signal the wake up request.  
For a dominant or recessive to be considered filtered, the bus must be in that state for more than the  
tWK_FILTER time. Due to variability in tWK_FILTER the following scenarios are applicable. Bus state times less than  
tWK_FILTER(MIN) are never detected as part of a WUP and thus no wake request is generated. Bus state times  
between tWK_FILTER(MIN) and tWK_FILTER(MAX) may be detected as part of a WUP and a wake request may be  
generated. Bus state times greater than tWK_FILTER(MAX) will always be detected as part of a WUP and thus a  
wake request will always be generated. See 9-5 for the timing diagram of the WUP.  
The pattern and tWK_FILTER time used for the WUP and wake request prevents noise and bus stuck dominant  
faults from causing false wake requests while allowing any CAN or CAN FD message to initiate a wake request.  
If the device is switched to normal mode or an under voltage event occurs on either the VCC or VIO supplies, the  
wake request is lost.  
ISO 11898-2 (2016) has two sets of times for a short and long wake up filter times. The tWK_FILTER timing for the  
TCAN1043xx-Q1 devices have been picked to be within the min and max values of both filter ranges. This timing  
has been chosen such that a single bit time at 500 kbps, or two back to back bit times at 1 Mbps triggers the  
filter in either bus state.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
Wake  
Request  
Wake Up Pattern (WUP) received in t < tWK_timeout  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Dominant  
Waiting for  
Filtered  
Recessive  
Bus  
Bus VDiff  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
Mode  
Sleep or Standby Mode  
Standby Mode  
INH  
*
RXD  
The RXD pin is only driven once VIO is present.  
9-5. Wake Up Pattern (WUP)  
For an additional layer of robustness and to prevent false wake-ups, these devices implement a timeout feature.  
For a remote wake up event to successfully occur, the entire WUP must be received within the timeout value t <  
tWK_timeout (see 9-5). If not, the internal logic is reset and the part remains in its current state without waking  
up. The full pattern must then be retransmitted, conforming to the constraints mentioned in this section and  
shown in figure 9-5.  
9.4.6.2 Local Wake Up (LWU) via WAKE Input Terminal  
The WAKE terminal is a high voltage input terminal which can be used for local wake up (LWU) requests via a  
voltage transition. The terminal triggers a local wake up (LWU) event on either a low-to-high, or a high-to-low  
transition since it has a bi-directional input threshold (falling or rising edge).  
This terminal may be used with a switch to VSUP or to ground. If the terminal is unused it should be pulled to  
ground or VSUP to avoid unwanted parasitic wake up events.  
VSUP  
WAKE  
RSERIES  
Filter  
VTH  
GND  
Copyright © 2017, Texas Instruments Incorporated  
9-6. TCAN1043xx-Q1 WAKE Circuit Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
9-6 shows two possible configurations for the WAKE terminal, the low-side and high side switch  
configurations. The objective of the series resistor, RSERIES, is to protect the WAKE pin of the transceiver from  
over current conditions that may occur in the event of a ground shift or ground loss. The minimum value of  
RSERIES can be calculated using the maximum supply voltage, VSUPMAX and the maximum allowable current of  
the WAKE pin, IIO(WAKE). RSERIES is calculated using:  
RSERIES = VSUPMAX / IIO(WAKE)  
(2)  
If the battery voltage never exceeds 58 V DC, then the RSERIES value is approximately 20 kΩ.  
The RBIAS resistor is used to set the static voltage level of the WAKE pin when the switch is not in use. When the  
switch is in use in a high-side switch configuration, the RBIAS resistor in combination with the RSERIES resistor  
sets the WAKE pin voltage appropriately above the VIH threshold. The maximum value of RBIAS can be  
calculated using the maximum supply voltage, VSUPMAX, the maximum WAKE threshold voltage VIH, the  
maximum WAKE input current IIH and the series resistor value RSERIES. RBIAS is calculated using:  
RBIAS < ((VSUP - VIH) / IIH) - RSERIES  
(3)  
If the battery voltage never exceed 58 V DC, then the RBIAS resistor value must be less than 60 kΩ.  
For lower current consumption, the low-side switch configuration is the ideal architecture.  
The LWU circuitry is active in 9.4.6, 9.4.4 and 9.4.5. If a valid LWU event occurs the device transitions to  
standby mode. The LWU circuitry is not active in Normal mode or Silent mode.  
To minimize system level current consumption, the internal bias voltages of the terminal follows the state on the  
terminal with a delay of tWAKE(min). A constant high level on WAKE has an internal pull-up to VSUP and a constant  
low level on WAKE has an internal pull-down to GND. This minimizes the current flowing into the WAKE pin  
under these steady-state conditions so that it does not need to be factored into calculations of the total draw  
from VSUP  
.
Wake  
Threshold  
Not Crossed  
t ≤ tWAKEHT  
No Wake  
UP  
t ≥ tWAKEHT  
Wake UP  
Wake  
INH  
Local Wake Request  
*
RXD  
Mode  
Sleep Mode  
Standby Mode  
The RXD pin is only driven once VIO is present.  
9-7. Local Wake Up Rising Edge  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKEHT  
No Wake  
UP  
t ≥ tWAKEHT  
Wake UP  
Wake  
INH  
Local Wake Request  
*
RXD  
Mode  
Sleep Mode  
Standby Mode  
The RXD pin is only driven once VIO is present.  
9-8. Local Wake Up Falling Edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
9.4.7 Driver and Receiver Function Tables  
9-4. Driver Function Table  
BUS OUTPUTS(2)  
DEVICE MODE TXD INPUTS(1)  
DRIVEN BUS STATE(3)  
CANH CANL  
L
Normal  
H
Z
Z
Z
Z
Z
L
Z
Z
Z
Z
Z
Dominant  
H or Open  
Common Mode Biased to VCC/2  
Common Mode Biased to VCC/2  
Common Mode Biased to GND  
Common Mode Biased to GND  
Common Mode Biased to GND  
Silent  
Standby  
Go-to-Sleep  
Sleep  
X
X
X
X
(1) H = high level, L = low level, X = irrelevant.  
(2) H = high level, L = low level, Z = high Z receiver bias.  
(3) For Bus state and bias see Figure 3 and Figure 4.  
9-5. Receiver Function Table  
CAN DIFFERENTIAL INPUTS  
DEVICE MODE  
BUS STATE  
RXD TERMINAL(1)  
VID = VCANH VCANL  
Dominant  
L
VID 0.9 V  
Indeterminat  
e
0.5 V < VID < 0.9 V  
Indeterminate  
Normal  
Recessive  
Open  
H
H
VID 0.5 V  
Open (VID 0 V)  
VID 1.15 V  
Dominant  
H
Indeterminat  
e
VID 0.4 V  
L if either remote or  
local wake events have  
occurred  
Standby  
0.5 V < VID < 1.15 V  
Open (VID 0 V)  
VID 1.15 V  
Recessive  
Open  
H
Dominant  
L if either remote or  
local wake events have  
occurred andVIO is  
present.  
Tri-State if VIO or VSUP  
are not present  
Indeterminat  
e
0.4 V , VIO < 1.15 V  
Sleep and Go-to-  
Sleep (WUP Monitor)  
Recessive  
Open  
VID 0.4 V  
Open (VID 0 V)  
(1) H = high level, L = low level  
9.4.8 Digital Inputs and Outputs  
All devices have a VIO supply that is used to set the digital input thresholds and digital output levels. The input  
thresholds are ratio metric to the VIO supply using CMOS input levels, making them scalable for µPs with digital  
IOs from 2.8 V to 5 V. The high level output voltages for the RXD and nFAULT output pins are driven to VIO level  
for logic high output.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
9.4.9 INH (Inhibit) Output  
The inhibit output terminal is used to control system power management devices allowing for extremely low  
system current consumption in sleep mode. This terminal can be used to enable and disable local power  
supplies. The pin has two states: driven high and high impedance (High Z).  
When high (on), the terminal shows VSUP minus a diode voltage drop. In the high impedance state, the output is  
left floating. The INH pin is high for normal, silent, Go-to-Sleep, and standby modes. It is low when in sleep  
mode.  
Note  
This terminal should be considered a high voltage logicterminal, not a power output thus should  
be used to drive the EN terminal of the systems power management device and not used as a  
switch for the power management supply itself. This terminal is not reverse battery protected and thus  
should not be connected outside the system module.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
10 Application Information Disclaimer  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TCAN1043xx-Q1 transceivers are typically used in applications with a host microprocessor or FPGA that  
includes the data link layer portion of the CAN protocol. These types of applications usually also include power  
management technology that allows for power to be gated to the application via an enable (EN) or inhibit (INH)  
pin. A single 5-V regulator can be used to drive both VCC and VIO as shown in 10-1, or independent 5-V and  
3.3-V regulators can be used to drive VCC and VIO separately as shown in 10-2. The bus termination is shown  
for illustrative purposes.  
10.2 Typical Application  
VBATTERY  
3.3 k  
100 nF  
33 kꢀ  
EN  
VSUP  
INH  
100 nF  
5 V  
Vreg  
WAKE  
CANH  
10  
7
VOUT  
5
9
VIO  
TCAN1043  
VIN  
VIO  
nSTB  
EN  
13  
TPSxxx  
Port a  
14  
6
Port b  
Port c  
MCU  
nFAULT  
8
NC  
11  
12  
TMS570  
RXD  
TXD  
RXD  
TXD  
4
1
CANL  
3
2
VCC  
GND  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
10-1. Typical CAN Bus Application Using TCAN1043xx-Q1 with 5 V µC  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
VBATTERY  
3.3 k  
100 nF  
EN  
VSUP  
33 kꢀ  
INH  
100 nF  
3.3 V  
Vreg  
WAKE  
CANH  
7
10  
VOUT  
5
9
VIO  
TCAN1043  
VIN  
VIO  
nSTB  
EN  
13  
TPSxxx  
Port a  
14  
6
Port b  
Port c  
MCU  
nFAULT  
8
NC  
11  
12  
TMS570  
RXD  
TXD  
RXD  
TXD  
4
1
CANL  
5 V  
Vreg  
3
2
VIN  
EN  
TPSxxx  
VCC  
GND  
VOUT  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
10-2. Typical CAN Bus Application Using TCAN1043xx-Q1 with 3.3 V µC  
10.2.1 Design Requirements  
10.2.1.1 Bus Loading, Length and Number of Nodes  
A typical CAN application can have a maximum bus length of 40 meters and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A high number of nodes requires a transceiver with high input impedance such as the TCAN1043xx-Q1  
family.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic loading  
of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen, DeviceNet, SAE  
J2284, SAE J1939, and NMEA 2000.  
A CAN network system design is a series of tradeoffs. In ISO 11898-2 the driver differential output is specified  
with a bus load that can range fro 50 Ω to 65 Ω where the differential output must be greater than 1.5 V. The  
TCAN1043xx-Q1 family is specified to meet the 1.5-V requirement down to 50 Ω and is specified to meet 1.4-V  
differential output at 45Ω bus load. The differential input resistance of the TCAN1043xx-Q1 is a minimum of 30  
kΩ. If 100 TCAN1043xx-Q1 transceivers are in parallel on a bus, this is equivalent to a 300-Ωdifferential load in  
parallel with the nominal 60 Ω bus termination which gives a total bus load of 50 Ω. Therefore, the  
TCAN1043xx-Q1 family theoretically supports over 100 transceivers on a single bus segment. However for CAN  
network design margin must be given for signal loss across the system and cabling, parasitic loadings, timing,  
network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is much  
lower. Bus length may also be extended beyond 40 meters by careful system design and data rate tradeoffs. For  
example, CANopen network design guidelines allow the network to be up to 1 km with changes in the  
termination resistance, cabling, less than 64 nodes and significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility  
the CAN network system designer must take the responsibility of good network design to ensure robust network  
operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
10.2.2 Detailed Design Procedures  
10.2.2.1 CAN Termination  
The ISO11898-2 standard specifies the interconnect to be a single twisted pair cable (shielded or unshielded)  
with 120 Ω characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be  
used to terminate both ends of the cable to prevent signal reflections. Unterminated drop-lines (stubs)  
connecting nodes to the bus should be kept as short as possible to minimize signal reflections. The termination  
may be in a node but is generally not recommended, especially if the node may be removed from the bus.  
Termination must be carefully placed so that it is not removed from the bus. System level CAN implementations  
such as CANopen allow for different termination and cabling concepts for example to add cable length.  
Node n  
(with termination)  
Node 1  
Node 2  
Node 3  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
CAN Controller  
CAN  
CAN  
CAN  
Controller  
Controller  
Controller  
TCAN1043HG-Q1  
TCAN1043HG-Q1  
TCAN1043HG-Q1  
TCAN1043HG-Q1  
RTERM  
RTERM  
10-3. Typical CAN Bus Application  
Termination may be a single 120-Ωresistor at the ends of the bus, either on the cable or in a terminating node. If  
filtering and stabilization of the common mode voltage of the bus is desired then split terminationmay be  
used, see 10-4. Split termination improves the electromagnetic emissions behavior of the network by  
eliminating fluctuations in the bus common mode voltage levels at the start and end of message transmissions.  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM/2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM/2  
CANL  
CANL  
Copyright © 2016, Texas Instruments Incorporated  
10-4. CAN Bus Termination Concepts  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
10.2.3 Application Curves  
50  
40  
30  
20  
10  
0
4.5 4.6 4.7 4.8 4.9  
5
VCC (V)  
5.1 5.2 5.3 5.4 5.5  
D005  
VCC = 4.5 V to 5.5 V  
CL = Open  
VIO = 3.3 V  
Temp = 25°C  
RL = 60 Ω  
STB = 0 V  
10-5. ICC Dominant Current over VCC Supply Voltage  
11 Power Supply Recommendations  
The TCAN1043xx-Q1 device is designed to operate with a main VCC input voltage supply range between 4.5 V  
and 5.5 V. The device also has an IO level shifting supply input, VIO , designed for a range between 2.8 V and  
5.5 V. To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a  
100 nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage  
ripple present on the outputs of switched-mode power supplies and also helps to compensate for the resistance  
and inductance of the PCB power planes.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
12 Layout  
12.1 Layout  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
12.1.1 Layout Guidelines  
Place the protection and filtering circuitry close to the bus connector to prevent transients, ESD and noise  
from propagating onto the board. In this layout example a transient voltage suppression (TVS) device, D1,  
has been shown as added protection. The production solution can be either bi-directional TVS diode or  
varistor with ratings matching the application requirements. This example also shows optional bus filter  
capacitors C6 and C8. Additionally (not shown) a series common mode choke (CMC) can be placed on the  
CANH and CANL lines between the TCAN1043xx-Q1 transceiver and the connector.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device.  
Use supply (VCC) and ground planes to provide low inductance as high-frequency current will follow the path  
of least impedance and not the path of least resistance.  
Use at least two vias for supply (VCC, VIO, VSUP) and ground connections of bypass capacitors and protection  
devices to minimize trace and via inductance.  
Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver,  
examples are C4 on the VCC supply net, C5 on the VIO supply net and C9 on the VSUP supply net.  
Bus termination: this layout example shows split termination. This is where the termination is split into two  
resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C7. Split  
termination provides common mode filtering for the bus. When bus termination is placed on the board instead  
of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the  
bus thus also removing the termination. See the application section for information on power ratings needed  
for the termination resistor(s).  
To limit current of digital lines, series resistors may be used as in R2, R3 and R5 but are not required.  
Terminal 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used,  
this is mandatory to ensure the bit timing into the device is met.  
Terminal 9: SW1 is oriented in a low-side configuration which is used to implement a local WAKE event. The  
series resistor R10 is needed for protection against over current conditions as it limits the current into the  
WAKE pin when the ECU has lost its ground connection. The pull-up resistor R9 is required to provide  
sufficient current during stimulation of a WAKE event. See the application section for more information on  
calculating both the R9 and R10 values.  
Terminal 14: Is shown assuming the mode terminal, nSTB, is used. If the device is only be used in normal  
mode, R5 is not needed and R4 could be used for the pull-up resistor to VIO  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
12.2 Layout Example  
R1  
R2  
VIO  
CAN Controller  
VIO  
R4  
R5  
TCAN1043HG-Q1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CAN Controller  
TXD  
GND  
VCC  
nSTB  
R6  
R7  
CANH  
CANL  
NC  
C7  
VCC  
R3  
RXD  
VIO  
CAN Controller  
VBAT  
VIO  
R8  
VSUP  
SW1  
LOCAL  
WAKE  
R10  
EN  
WAKE  
nFAULT  
CAN Controller  
Regulator EN  
GND  
8
CAN Controller  
INH  
12-1. TCAN1043xx-Q1 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
13-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TCAN1043-Q1  
TCAN1043H-Q1  
TCAN1043HG-Q1  
TCAN1043G-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 Community Resources  
13.4 Trademarks  
所有商标均为其各自所有者的财产。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
 
 
 
 
 
 
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
PACKAGE OUTLINE  
DMT0014A  
VSON - 0.9 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
S
C
A
L
E
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
7
8
A
A
2X  
15  
SYMM  
3.9  
4.2 0.1  
14  
1
12X 0.65  
0.35  
0.25  
14X  
0.45  
0.35  
14X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
4223033/B 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
www.ti.com.cn  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
EXAMPLE BOARD LAYOUT  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
14X (0.6)  
14X (0.3)  
SYMM  
1
14  
2X  
(1.85)  
12X (0.65)  
SYMM  
15  
(4.2)  
(0.69)  
TYP  
( 0.2) VIA  
TYP  
8
7
(R0.05) TYP  
(0.55) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223033/B 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
TCAN1043-Q1, TCAN1043H-Q1  
TCAN1043HG-Q1, TCAN1043G-Q1  
ZHCSH19E NOVEMBER 2017 REVISED MARCH 2021  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.47)  
15  
14X (0.6)  
1
14  
14X (0.3)  
(1.18)  
12X (0.65)  
SYMM  
(1.38)  
(R0.05) TYP  
METAL  
TYP  
7
8
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
77.4% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4223033/B 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TCAN1043-Q1 TCAN1043H-Q1 TCAN1043HG-Q1 TCAN1043G-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN1043DMTRQ1  
TCAN1043DMTTQ1  
TCAN1043DQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
SOIC  
SOIC  
VSON  
VSON  
SOIC  
SOIC  
VSON  
VSON  
SOIC  
SOIC  
VSON  
VSON  
SOIC  
SOIC  
DMT  
DMT  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
3000 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
1043  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
250  
50  
RoHS & Green  
RoHS & Green  
NIPDAU | SN  
NIPDAU  
TCAN1043DRQ1  
D
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
TCAN1043GDMTRQ1  
TCAN1043GDMTTQ1  
TCAN1043GDQ1  
DMT  
DMT  
D
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
250  
50  
RoHS & Green  
RoHS & Green  
TCAN1043GDRQ1  
TCAN1043HDMTRQ1  
TCAN1043HDMTTQ1  
TCAN1043HDQ1  
D
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
DMT  
DMT  
D
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
250  
50  
RoHS & Green  
RoHS & Green  
TCAN1043HDRQ1  
TCAN1043HGDMTRQ1  
TCAN1043HGDMTTQ1  
TCAN1043HGDQ1  
TCAN1043HGDRQ1  
D
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
DMT  
DMT  
D
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
250  
50  
RoHS & Green  
RoHS & Green  
D
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN1043DMTRQ1  
TCAN1043DMTTQ1  
TCAN1043DRQ1  
VSON  
VSON  
SOIC  
VSON  
VSON  
SOIC  
VSON  
VSON  
SOIC  
VSON  
VSON  
SOIC  
SOIC  
DMT  
DMT  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
3000  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
16.4  
3.3  
3.3  
6.5  
3.3  
3.3  
6.5  
3.3  
3.3  
6.5  
3.3  
3.3  
6.5  
6.5  
4.8  
4.8  
9.0  
4.8  
4.8  
9.0  
4.8  
4.8  
9.0  
4.8  
4.8  
9.0  
9.0  
1.2  
1.2  
2.1  
1.2  
1.2  
2.1  
1.2  
1.2  
2.1  
1.2  
1.2  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
2500  
3000  
250  
TCAN1043GDMTRQ1  
TCAN1043GDMTTQ1  
TCAN1043GDRQ1  
DMT  
DMT  
D
2500  
3000  
250  
TCAN1043HDMTRQ1  
TCAN1043HDMTTQ1  
TCAN1043HDRQ1  
DMT  
DMT  
D
2500  
3000  
250  
TCAN1043HGDMTRQ1  
TCAN1043HGDMTTQ1  
TCAN1043HGDRQ1  
TCAN1043HGDRQ1  
DMT  
DMT  
D
2500  
2500  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCAN1043DMTRQ1  
TCAN1043DMTTQ1  
TCAN1043DRQ1  
VSON  
VSON  
SOIC  
VSON  
VSON  
SOIC  
VSON  
VSON  
SOIC  
VSON  
VSON  
SOIC  
SOIC  
DMT  
DMT  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
3000  
250  
367.0  
210.0  
340.5  
367.0  
210.0  
340.5  
210.0  
210.0  
340.5  
367.0  
210.0  
356.0  
340.5  
367.0  
185.0  
336.1  
367.0  
185.0  
336.1  
185.0  
185.0  
336.1  
367.0  
185.0  
356.0  
336.1  
35.0  
35.0  
32.0  
35.0  
35.0  
32.0  
35.0  
35.0  
32.0  
35.0  
35.0  
35.0  
32.0  
2500  
3000  
250  
TCAN1043GDMTRQ1  
TCAN1043GDMTTQ1  
TCAN1043GDRQ1  
DMT  
DMT  
D
2500  
3000  
250  
TCAN1043HDMTRQ1  
TCAN1043HDMTTQ1  
TCAN1043HDRQ1  
DMT  
DMT  
D
2500  
3000  
250  
TCAN1043HGDMTRQ1  
TCAN1043HGDMTTQ1  
TCAN1043HGDRQ1  
TCAN1043HGDRQ1  
DMT  
DMT  
D
2500  
2500  
D
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TCAN1043DQ1  
TCAN1043GDQ1  
TCAN1043HDQ1  
TCAN1043HGDQ1  
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
14  
14  
14  
14  
50  
50  
50  
50  
507  
507  
507  
507  
8
8
8
8
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TCAN1043HGDRQ1

具有 CAN FD 和唤醒输入的故障保护 CAN 收发器 | D | 14 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044-Q1

汽车类高速 CAN 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044A-Q1

TCAN1044A-Q1 and TCAN1044AV-Q1 Automotive Fault-Protected CAN FD Transceiver with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044A-Q1_V01

TCAN1044A-Q1 and TCAN1044AV-Q1 Automotive Fault-Protected CAN FD Transceiver with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044A-Q1_V02

TCAN1044A-Q1 and TCAN1044AV-Q1 Automotive Fault-Protected CAN FD Transceiver with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044ADDFRQ1

TCAN1044A-Q1 and TCAN1044AV-Q1 Automotive Fault-Protected CAN FD Transceiver with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044ADRBRQ1

TCAN1044A-Q1 and TCAN1044AV-Q1 Automotive Fault-Protected CAN FD Transceiver with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044ADRQ1

TCAN1044A-Q1 and TCAN1044AV-Q1 Automotive Fault-Protected CAN FD Transceiver with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044AEV-Q1

具有待机功能的汽车类 0 级增强型 CAN FD 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044AEVDDFRQ1

具有待机功能的汽车类 0 级增强型 CAN FD 收发器 | DDF | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044AEVDRQ1

具有待机功能的汽车类 0 级增强型 CAN FD 收发器 | D | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1044AV-Q1

TCAN1044A-Q1 and TCAN1044AV-Q1 Automotive Fault-Protected CAN FD Transceiver with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI