TCAN1046AVDYYRQ1 [TI]

具有待机模式和 1.8V I/O 支持的增强型汽车双路 CAN 收发器 | DYY | 14 | -40 to 150;
TCAN1046AVDYYRQ1
型号: TCAN1046AVDYYRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有待机模式和 1.8V I/O 支持的增强型汽车双路 CAN 收发器 | DYY | 14 | -40 to 150

文件: 总41页 (文件大小:2671K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
TCAN104xAV-Q1 Automotive Dual CAN FD Transceiver with 1.8-V I/O Support and  
Standby Mode  
1 Features  
3 Description  
AEC-Q100 (Grade 1): Qualified for automotive  
applications  
Two high-speed CAN transceivers with  
independent mode control  
Meets the requirements of ISO 11898-2:2016  
physical layer standard  
Functional Safety-Capable  
Documentation available to aid in functional  
safety system design  
Support of classical CAN and optimized CAN FD  
performance at 2, 5, and 8 Mbps  
– Short and symmetrical propagation delays for  
enhanced timing margin  
I/O voltage range supports 1.7 V to 5.5 V  
Support for 12-V and 24-V battery applications  
Receiver common-mode input voltage: ±12 V  
Protection features:  
The  
TCAN1046AV-Q1  
and  
TCAN1048AV-Q1  
(TCAN104xAV-Q1) are dual, high-speed controller  
area network (CAN) transceivers that meet the  
physical layer requirements of the ISO 11898-2:2016  
high-speed CAN specification.  
The TCAN104xAV-Q1 transceivers support both  
classical CAN and CAN FD networks up to 8  
megabits per second (Mbps). The device includes  
internal logic level translation via the VIO terminal to  
allow for interfacing the transceiver I/O's directly to  
1.8-V, 2.5-V, 3.3-V, or 5-V logic levels.  
The two CAN channels support independent mode  
control through the standby pins. Therefore, each  
transceiver can be placed into a low-power state,  
standby mode, without impacting the state of the other  
CAN channel. While in standby mode, the device  
supports remote wake-up pattern via the CAN bus  
which is compliant to the ISO 11898-2:2016 defined  
wake-up pattern (WUP).  
– Bus fault protection: ±58 V  
– Undervoltage protection  
– TXD-dominant time-out (DTO)  
Data rates down to 9.2 kbps  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
4.50 mm x 3.00 mm  
8.65 mm x 3.91 mm  
4.20 mm × 2 mm  
– Thermal-shutdown protection (TSD)  
Operating modes:  
VSON (14)  
– Normal mode  
– Low power standby mode supporting remote  
wake-up request  
Optimized behavior when unpowered  
– Bus and logic pins are high impedance (no load  
to operating bus or application)  
– Hot-plug capable: power-up and power-down  
glitch-free operation on bus and RXD output  
Junction temperatures from: –40°C to 150°C  
Available in space-saving SOT-23, SOIC (14) and  
leadless VSON (14) packages (4.5 mm x 3.0 mm)  
with improved automated optical inspection (AOI)  
capability  
TCAN1046AV-Q1  
SOIC (14)  
SOT-23 (14)  
VSON (14)  
SOIC (14)  
4.50 mm x 3.00 mm  
8.95 mm x 3.91 mm  
TCAN1048AV-Q1  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
VIN  
VOUT  
1.8  
V
/
2.5  
Regulator  
(e.g. TPSxxxx)  
V / 3.3 V  
VOUT  
V Voltage  
VIN  
VIN  
5
Regulator  
(e.g. TPSxxxx)  
VIO  
11  
VCC  
VCC  
3
CANH1  
13  
STB1/nSTB1  
Port  
x
14  
RXD1  
TXD1  
RXD1  
TXD1  
4
1
CANL1  
2 Applications  
12  
CAN FD Controller  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
Transient and  
ESD  
TCAN1046AV-Q1  
TCAN1048AV-Q1  
Automotive and Transportation  
Body control modules  
Automotive gateway  
Dual CAN FD  
Transceiver  
STB2/nSTB2  
Port  
x
8
CANH2  
RXD2  
TXD2  
10  
7
6
RXD2  
TXD2  
Advanced driver assistance system (ADAS)  
Infotainment  
CANL2  
9
5
2
Optional:  
Terminating  
Node  
GND1  
GND2  
Optional:  
Filtering,  
Transient and  
ESD  
Simplified Schematics  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Description Continued....................................................3  
6 Device Comparison.........................................................3  
7 Pin Configuration and Functions...................................4  
8 Specifications.................................................................. 6  
8.1 Absolute Maximum Ratings ....................................... 6  
8.2 ESD Ratings .............................................................. 6  
8.3 ESD Ratings — IEC Specifications ............................6  
8.4 Recommended Operating Conditions ........................7  
8.5 Thermal Characteristics .............................................7  
8.6 Supply Characteristics ............................................... 8  
8.7 Dissipation Ratings .................................................... 9  
8.8 Electrical Characteristics ..........................................10  
8.9 Switching Characteristics .........................................12  
8.10 Typical Characteristics............................................14  
9 Parameter Measurement Information..........................15  
10 Detailed Description....................................................18  
10.1 Overview.................................................................18  
10.2 Functional Block Diagram.......................................19  
10.3 Feature Description.................................................20  
10.4 Device Functional Modes........................................24  
11 Application and Implementation................................ 26  
11.1 Application Information............................................26  
11.2 Typical Application.................................................. 26  
11.3 System Examples................................................... 29  
12 Power Supply Recommendations..............................29  
13 Layout...........................................................................30  
13.1 Layout Guidelines................................................... 30  
13.2 Layout Example...................................................... 30  
14 Device and Documentation Support..........................31  
14.1 Receiving Notification of Documentation Updates..31  
14.2 Support Resources................................................. 31  
14.3 Trademarks.............................................................31  
14.4 Electrostatic Discharge Caution..............................31  
14.5 Glossary..................................................................31  
15 Mechanical, Packaging, and Orderable  
Information.................................................................... 31  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (July 2021) to Revision A (December 2021)  
Page  
Changed the document status from: Advanced Information to: Production data............................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
5 Description Continued  
The transceivers also include many protection and diagnostic features including thermal-shutdown (TSD), TXD-  
dominant time-out (DTO), supply undervoltage detection, and bus fault protection up to ±58 V. The devices have  
defined failsafe behavior in supply undervoltage or floating pin scenarios.  
6 Device Comparison  
Table 6-1. Device Comparison Table  
Bus Fault Protection on both  
Part Number  
Low Voltage I/O Logic Support Standby (STB) Pin Mode  
CAN Channels  
±58 V  
±58 V  
TCAN1046AV-Q1  
TCAN1048AV-Q1  
Yes  
Yes  
Active-high  
Active-low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7 Pin Configuration and Functions  
TXD1  
GND1  
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
STB1 / nSTB1  
CANH1  
CANL1  
RXD1  
GND2  
TXD2  
RXD2  
VIO  
CANH2  
CANL2  
8
STB2 / nSTB2  
Not to scale  
Figure 7-2. DYY Package, 14 Pin SOT-23, Top View  
Figure 7-1. D Package, 14 Pin SOIC, Top View  
TXD1  
GND1  
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
STB1 / nSTB1  
CANH1  
CANL1  
Thermal  
Pad  
RXD1  
GND2  
TXD2  
RXD2  
VIO  
CANH2  
CANL2  
8
STB2 / nSTB2  
Not to scale  
Figure 7-3. DMT Package, 14 Pin VSON, Top View  
Table 7-1. Pin Functions  
Pins  
Type  
Description  
Name  
TXD1  
GND1  
VCC  
No.  
1
Digital Input CAN transmit data input channel 1; integrated pull-up  
2
GND  
Ground connection  
5-V supply voltage  
3
Supply  
RXD1  
GND2  
TXD2  
RXD2  
STB2  
4
Digital Output CAN receive data output channel 1; tri-state when VIO < UVVIO  
GND Ground connection  
5
6
Digital Input CAN transmit data input channel 2; integrated pull-up  
7
Digital Output CAN receive data output channel 2; tri-state when VIO < UVVIO  
Standby input of channel 2 for mode control; integrated pull-up (TCAN1046AV–Q1)  
8
Digital Input  
Standby input of channel 2 for mode control; inverse logic with integrated pull-down  
(TCAN1048AV–Q1)  
nSTB2  
CANL2  
CANH2  
VIO  
9
Bus IO  
Bus IO  
Supply  
Bus IO  
Low-level CAN bus channel 2 input/output line  
High-level CAN bus channel 2 input/output line  
I/O supply voltage  
10  
11  
12  
CANL1  
Low-level CAN bus channel 1 input/output line  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Table 7-1. Pin Functions (continued)  
Pins  
Type  
Description  
Name  
CANH1  
STB1  
No.  
13  
Bus IO  
High-level CAN bus channel 1 input/output line  
Standby input of channel 1 for mode control; integrated pull-up (TCAN1046AV–Q1)  
14  
Digital Input  
Standby input of channel 1 for mode control; inverse logic with integrated pull-down  
(TCAN1048AV–Q1)  
nSTB1  
Thermal Pad (VSON only)  
Connect the thermal pad to the printed circuit board (PCB) ground plane for thermal relief  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
(1) (2)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
VCC  
VIO  
Supply voltage  
6
6
Supply voltage I/O level shifter  
V
CAN Bus I/O voltage  
CANH1, CANL1, CANH2, CANL2  
VBUS  
–58  
58  
V
VDIFF  
Max differential voltage between CANHx and CANLx  
Logic input terminal voltage  
RXDx output terminal voltage range  
RXDx output current  
–45  
–0.3  
–0.3  
–8  
45  
6
V
V
VLogic_Input  
VRXDx  
IO(RXDx)  
TJ  
6
V
8
mA  
°C  
°C  
Junction temperature  
–40  
–65  
165  
150  
TSTG  
Storage temperature  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.  
8.2 ESD Ratings  
VALUE  
UNIT  
HBM classification level 3A for  
all pins  
±4000  
V
Human-body model (HBM), per AEC Q100-002(1)  
HBM classification level 3B  
for global pins CANHx and  
CANLx with respect to GND  
VESD  
Electrostatic discharge  
±10000  
±750  
V
V
Charged-device model (CDM), per AEC Q100-011  
CDM classification level C5 for all pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 ESD Ratings — IEC Specifications  
VALUE  
UNIT  
Unpowered contact discharge  
per ISO 10605 (1)  
±8000  
±8000  
V
V
V
SAE J2962-2 per ISO 10605  
VESD System level Electrostatic discharge  
Powered Contact Discharge  
(2)  
SAE J2962-2 per ISO 10605  
Powered Air Discharge (2)  
±15000  
CAN bus terminals to GND  
CANH1, CANL1, CANH2, CANL2  
Pulse 1  
–100  
75  
V
V
V
V
V
Pulse 2a  
Transient voltage per ISO 7637-2(3)  
VTran  
Pulse 3a  
–150  
100  
±30  
Pulse 3b  
Transient voltage per ISO 7637-3(4)  
DCC slow transient pulse  
(1) Tested according to IEC 62228-3:2019 CAN Transceivers  
(2) Results given here are specific to the SAE J2962-2 Communication Transceivers Qualification Requirements - CAN. Testing performed  
by OEM approved independent 3rd party, EMC report available upon request.  
(3) Tested according to IEC 62228-3:2019 CAN Transceivers  
(4) Tested according to SAE J2962-2  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
 
 
 
 
 
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.4 Recommended Operating Conditions  
MIN  
4.5  
NOM  
MAX  
5.5  
UNIT  
V
VCC  
Supply voltage  
5
VIO  
Supply voltage for I/O level shifter  
RXDx terminal high-level output current  
RXDx terminal low-level output current  
Operating junction temperature  
1.7  
5.5  
V
IOH(RXDx)  
IOL(RXDx)  
TJ  
–1.5  
mA  
mA  
1.5  
-40  
150  
8.5 Thermal Characteristics  
TCAN1046AV-Q1 / TCAN1048AV-Q1  
DYY (SOT)  
THERMAL METRIC(1)  
UNIT  
D (SOIC)  
DMT (VSON)  
RθJA  
Junction-to-ambient thermal resistance  
75.8  
35.8  
37.4  
6.6  
87.2  
35.2  
31.6  
11.2  
31.5  
38.1  
38.7  
15.0  
2.0  
/W  
/W  
/W  
/W  
/W  
/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
37.0  
15.0  
5.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.6 Supply Characteristics  
Over recommended operating conditions with TJ = -40to 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = 0 V, TXDy = VIO  
50  
77.5  
mA  
RL1 = RL2 = 60 Ω, CL = open;  
See Figure 9-1  
Dominant  
One Channel(1)  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = 0 V, TXDy = VIO  
55  
95  
87.5  
140  
160  
15  
mA  
mA  
mA  
mA  
RL1 = RL2 = 50 Ω, CL = open;  
See Figure 9-1  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = TXDy = 0 V  
RL1 = RL2 = 60 Ω, CL = open;  
See Figure 9-1  
Dominant  
Two channels(1)  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = TXDy = 0 V  
RL1 = RL2 = 50 Ω, CL = open;  
See Figure 9-1  
Dominant  
100  
10  
Two channels(1)  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = TXDy = VIO  
RL1 = RL2 = 50 Ω, CL = open;  
See Figure 9-1  
Supply current  
Normal mode  
Recessive  
Two channels  
ICC  
TCAN1046AV: STB1 = STB2 = 0 V  
CANx dominant TCAN1048AV: nSTB1 = nSTB2 = VIO  
with bus fault  
CANy  
TXDx = TXDy = VIO  
90  
137.5  
210  
mA  
mA  
CANHx = CANLx = ±25 V  
RLx = open, RLy = 50 Ω, CL = open;  
See Figure 9-1  
recessive(1) (2)  
TCAN1046AV: STB1 = STB2 = 0 V  
CANx dominant TCAN1048AV: nSTB1 = nSTB2 = VIO  
with bus fault  
CANy  
TXDx = TXDy = 0 V  
135  
CANHx = CANLx = ±25 V  
RLx = open, RLy = 50 Ω, CL = open;  
See Figure 9-1  
dominant(1) (2)  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
CANx and CANy TXDx = TXDy = 0 V  
dominant with  
CANH1 = CANL1 = ±25 V  
CANH2 = CANL2 = ±25 V  
RLx = RLy = open, CL = open;  
See Figure 9-1  
170  
0.4  
260  
mA  
µA  
bus fault(1) (2)  
TCAN1046AV: STB1 = STB2 = VIO  
TCAN1048AV: nSTB1 = nSTB2 = 0 V  
TXDx = TXDy = VIO  
Supply current  
Standby mode  
3
RLx = RLy = 60 Ω, CL = open  
See Figure 9-1  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.6 Supply Characteristics (continued)  
Over recommended operating conditions with TJ = -40to 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = 0 V, TXDy = VIO  
RLx = RLy = 60 Ω, CL = open  
RXD1 and RXD2 floating  
Dominant  
150  
350  
µA  
One channel(1)  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = TXDy = 0 V  
RLx = RLy = 60 Ω, CL = open  
RXD1 and RXD2 floating  
I/O supply current  
Normal mode  
Dominant  
255  
50  
600  
100  
30  
µA  
µA  
µA  
Two channels(1)  
IIO  
TCAN1046AV: STB1 = STB2 = 0 V  
TCAN1048AV: nSTB1 = nSTB2 = VIO  
TXDx = TXDy = VIO  
RLx = RLy = 60 Ω, CL = open  
RXD1 and RXD2 floating  
Recessive  
Two channels(1)  
TCAN1046AV: STB1 = STB2 = VIO  
TCAN1048AV: nSTB1 = nSTB2 = 0 V  
TXDx = TXDy = VIO  
RLx = RLy = 60 Ω, CL = open  
RXD1 and RXD2 floating  
I/O supply current  
Standby mode  
17  
Rising undervoltage detection on VCC  
Falling undervoltage detection on VCC  
4.2  
4
4.4  
V
V
UVCC  
3.5  
1.4  
4.25  
VHYS(UVCC) Hysteresis voltage on UVCC  
200  
1.56  
1.51  
40  
mV  
V
Rising undervoltage detection on VIO  
UVVIO  
1.65  
1.59  
Falling undervoltage detection on VIO  
V
VHYS(UVIO)  
Hysteresis voltage on UVIO  
mV  
(1) TXD1 and TXD2 are interchangeable for TXDx and TXDy  
(2) CAN1 and CAN2 are interchangeable for CANx and CANy  
8.7 Dissipation Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC = 5 V, VIO = 1.8 V, TJ= 27°C, RL = 60Ω,  
TXD input = 250 kHz 50% duty cycle square  
wave, CL_RXD = 15 pF  
95  
95  
mW  
VCC = 5 V, VIO = 3.3 V, TJ= 27°C, RL = 60Ω,  
TXD input = 250 kHz 50% duty cycle square  
wave, CL_RXD = 15 pF  
mW  
mW  
mW  
mW  
VCC = 5 V, VIO = 5 V, TJ= 27°C, RL = 60Ω, TXD  
input = 250 kHz 50% duty cycle square wave,  
CL_RXD = 15 pF  
95  
One channel average power dissipation  
Normal mode  
PD  
VCC = 5.5 V, VIO = 1.8 V, TJ= 150°C, RL = 60Ω,  
TXD input = 2.5 MHz 50% duty cycle square  
wave, CL_RXD = 15 pF  
120  
120  
120  
VCC = 5.5 V, VIO = 3.3 V, TJ= 150°C, RL = 60Ω,  
TXD input = 2.5 MHz 50% duty cycle square  
wave, CL_RXD = 15 pF  
VCC = 5.5 V, VIO = 5 V, TJ= 150°C, RL = 60Ω,  
TXD input = 2.5 MHz 50% duty cycle square  
wave, CL_RXD = 15 pF  
mW  
°C  
TTSD  
Thermal shutdown temperature  
175  
195  
12  
210  
TTSD(HYS) Thermal shutdown hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.8 Electrical Characteristics  
Over recommended operating conditions with TJ = -40to 150(unless otherwise noted), CAN electrical parameters apply  
to both channels  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Driver Electrical Characteristics  
CANH  
CANL  
STB = 0 V / nSTB = VIO  
TXD = 0 V  
50 Ω ≤ RL ≤ 65 Ω, CL = open;  
See Figure 9-2 and Figure 10-3  
2.75  
0.5  
4.5  
V
V
Dominant output voltage  
Normal mode  
VO(DOM)  
2.25  
STB = 0 V / nSTB = VIO  
TXD = VIO  
RL = open (no load);  
See Figure 9-2 and Figure 10-3  
Recessive output voltage  
Normal mode  
VO(REC)  
CANH and CANL  
2
0.5 VCC  
3
V
STB = 0 V / nSTB = VIO  
Driver symmetry  
(VO(CANH) + VO(CANL))/VCC  
TXD = 250 kHz, 1 MHz, 2.5 MHz  
RL = 60 Ω, CSPLIT = 4.7 nF, CL = open;  
See Figure 9-2 and Figure 10-3  
VSYM  
0.9  
–400  
1.5  
1.1 V/V  
400 mV  
STB = 0 V / nSTB = VIO  
RL = 60 Ω, CL = open;  
See Figure 9-2 and Figure 10-3  
DC output symmetry  
(VCC - VO(CANH) - VO(CANL)  
VSYM_DC  
)
STB = 0 V / nSTB = VIO  
TXD = 0 V  
50 Ω ≤ RL ≤ 65 Ω, CL = open;  
See Figure 9-2 and Figure 10-3  
3
3.3  
5
V
V
V
STB = 0 V / nSTB = VIO  
TXD = 0 V  
45 Ω ≤ RL ≤ 70 Ω, CL = open;  
See Figure 9-2 and Figure 10-3  
Differential output voltage  
Normal mode  
Dominant  
VOD(DOM)  
CANH - CANL  
1.4  
1.5  
STB = 0 V / nSTB = VIO  
TXD = 0 V  
RL = 2240 Ω, CL = open;  
See Figure 9-2 and Figure 10-3  
STB = 0 V / nSTB = VIO  
TXD = VIO  
RL = 60 Ω, CL = open;  
See Figure 9-2 and Figure 10-3  
–120  
–50  
12 mV  
50 mV  
Differential output voltage  
Normal mode  
VOD(REC)  
CANH - CANL  
STB = 0 V / nSTB = VIO  
TXD = VIO  
RL = open, CL = open;  
See Figure 9-2 and Figure 10-3  
Recessive  
CANH  
-0.1  
-0.1  
-0.2  
0.1  
0.1  
0.2  
V
V
V
STB = VIO / nSTB = 0 V  
RL = open;  
See Figure 9-2 and Figure 10-3  
Bus output voltage  
Standby mode  
VO(STB)  
CANL  
CANH - CANL  
STB = 0 V / nSTB = VIO  
TXD = 0 V  
V(CANH) = -15 V to 40 V, CANL = open;  
See Figure 9-8 and Figure 10-3  
–115  
mA  
Short-circuit steady-state output current,  
IOS(SS_DOM)  
dominant  
Normal mode  
STB = 0 V / nSTB = VIO  
TXD = 0 V  
V(CAN_L) = -15 V to 40 V, CANH = open;  
See Figure 9-8 and Figure 10-3  
115 mA  
STB = 0 V / nSTB = VIO  
TXD = VIO  
–27 V ≤ VBUS ≤ 32 V, where VBUS = CANH  
= CANL;  
Short-circuit steady-state output current,  
recessive  
Normal mode  
IOS(SS_REC)  
–5  
5
mA  
See Figure 9-8 and Figure 10-3  
Receiver Electrical Characteristics  
STB = 0 V / nSTB = VIO  
-12 V ≤ VCM ≤ 12 V;  
See Figure 9-3 and Table 10-5  
Input threshold voltage  
Normal mode  
VIT  
500  
400  
900 mV  
STB = VIO / nSTB = 0 V  
-12 V ≤ VCM ≤ 12 V;  
See Figure 9-3 and Table 10-5  
Input threshold  
VIT(STB)  
1150 mV  
Standby mode  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.8 Electrical Characteristics (continued)  
Over recommended operating conditions with TJ = -40to 150(unless otherwise noted), CAN electrical parameters apply  
to both channels  
PARAMETER  
TEST CONDITIONS  
STB = 0 V / nSTB = VIO  
-12 V ≤ VCM ≤ 12 V;  
See Figure 9-3 and Table 10-5  
MIN  
TYP  
MAX UNIT  
Dominant state differential input voltage range  
Normal mode  
VDOM  
0.9  
9
0.5  
9
V
V
STB = 0 V / nSTB = VIO  
-12 V ≤ VCM ≤ 12 V;  
See Figure 9-3 and Table 10-5  
Recessive state differential input voltage range  
Normal mode  
VREC  
-4  
1.15  
-4  
STB = VIO / nSTB = 0 V  
-12 V ≤ VCM ≤ 12 V;  
See Figure 9-3 and Table 10-5  
Dominant state differential input voltage range  
Standby mode  
VDOM(STB)  
VREC(STB)  
VHYS  
V
STB = VIO / nSTB = 0 V  
-12 V ≤ VCM ≤ 12 V;  
See Figure 9-3 and Table 10-5  
Recessive state differential input voltage range  
Standby mode  
0.4  
V
STB = 0 V / nSTB = VIO  
-12 V ≤ VCM ≤ 12 V;  
See Figure 9-3 and Table 10-5  
Hysteresis voltage for input threshold  
Normal mode  
115  
mV  
Common mode range  
Normal and standby modes  
VCM  
See Figure 9-3 and Table 10-5  
–12  
12  
5
V
Unpowered bus input leakage current  
(measured individually for each channel)  
ILKG(IOFF)  
CANH = CANL = 5 V, VCC = VIO = GND  
µA  
CI  
Input capacitance to ground (CANH or CANL)  
Differential input capacitance  
20 pF  
10 pF  
90 kΩ  
TXD = VIO  
CID  
RID  
Differential input resistance  
40  
20  
STB = 0 V / nSTB = VIO  
TXD = VIO  
-12 V ≤ VCM ≤ 12 V  
Single ended input resistance  
(CANH or CANL)  
RIN  
45 kΩ  
Input resistance matching  
[1 – (RIN(CANH) / RIN(CANL))] × 100 %  
RIN(M)  
V(CAN_H) = V(CAN_L) = 5 V  
–1  
1
%
TXD Terminal (CAN Transmit Data Input)  
VIH  
VIL  
IIH  
High-level input voltage  
0.7 VIO  
V
V
Low-level input voltage  
0.3 VIO  
1
High-level input leakage current  
TXD = VCC = VIO = 5.5 V  
–2.5  
0
µA  
TXD = 0 V  
VCC= VIO = 5.5 V  
IIL  
Low-level input leakage current  
–200  
-100  
–20 µA  
TXD = 5.5 V  
VCC= VIO = 0 V  
ILKG(OFF)  
CI  
Unpowered leakage current  
Input capacitance  
–1  
0
5
1
µA  
pF  
VIN = 0.4×sin(2×π×2×106×t)+2.5 V  
RXD Terminal (CAN Receive Data Output)  
IO = –1.5 mA  
See Figure 9-3  
VOH  
High-level output voltage  
Low-level output voltage  
Unpowered leakage current  
0.8 VIO  
V
V
IO = 1.5mA  
See Figure 9-3  
VOL  
0.2 VIO  
1
RXD = 5.5 V  
VCC = VIO = 0 V  
ILKG(OFF)  
–1  
0
µA  
STB / nSTB Terminal (Standby Mode Input)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.7 VIO  
V
V
0.3 VIO  
2
TCAN1046AV high-level input leakage current  
STB  
IIH  
IIL  
IIH  
IIL  
STB = VCC = VIO = 5.5 V  
–2  
–20  
2
µA  
TCAN1046AV low-level input leakage current  
STB  
STB = 0 V  
VCC = VIO = 5.5 V,  
–2 µA  
25 µA  
TCAN1048AV high-level input leakage current  
nSTB  
nSTB = VCC = VIO = 5.5 V  
TCAN1048AV low-level input leakage current  
nSTB  
nSTB = 0 V  
VCC = VIO = 5.5 V,  
-2  
2
µA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.8 Electrical Characteristics (continued)  
Over recommended operating conditions with TJ = -40to 150(unless otherwise noted), CAN electrical parameters apply  
to both channels  
PARAMETER  
TEST CONDITIONS  
STB = 5.5V  
MIN  
TYP  
MAX UNIT  
TCAN1046AV unpowered leakage current  
–1  
1
1
µA  
µA  
VCC = VIO = 0 V  
ILKG(OFF)  
nSTB = 0 V  
VCC = VIO = 0 V  
TCAN1048AV unpowered leakage current  
–1  
8.9 Switching Characteristics  
Over recommended operating conditions with TJ = -40to 150(unless otherwise noted); Parameters apply to both CAN  
channels  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
125  
165  
150  
180  
MAX  
210  
255  
210  
UNIT  
Device Switching Characteristics  
STB = 0 V / nSTB = VIO  
VIO = 2.8 V to 5.5 V  
RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF;  
See Figure 9-4  
Total loop delay  
Driver input (TXD) to receiver output (RXD),  
recessive to dominant  
tPROP(LOOP1)  
tPROP(LOOP1)  
tPROP(LOOP2)  
ns  
STB = 0 V / nSTB = VIO  
VIO = 1.7 V  
RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF;  
See Figure 9-4  
Total loop delay  
Driver input (TXD) to receiver output (RXD),  
recessive to dominant  
ns  
STB = 0 V / nSTB = VIO  
VIO = 2.8 V to 5.5 V  
RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF;  
See Figure 9-4  
Total loop delay  
Driver input (TXD) to receiver output (RXD),  
dominant to recessive  
ns  
STB = 0 V / nSTB = VIO  
VIO = 1.7 V  
RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF;  
See Figure 9-4  
Total loop delay  
Driver input (TXD) to receiver output (RXD),  
dominant to recessive  
tPROP(LOOP2)  
255  
20  
ns  
µs  
Mode change time, from normal to standby or from  
standby to normal  
tMODE  
See Figure 9-5 and Figure 9-6  
See Figure 10-5  
tWK_FILTER  
Filter time for a valid wake-up pattern  
Bus wake-up timeout  
0.5  
0.8  
1.8  
6
µs  
tWK_TIMEOUT  
ms  
Driver Switching Characteristics  
Propagation delay time, high TXD to driver  
tpHR  
80  
70  
ns  
ns  
recessive (dominant to recessive)  
Propagation delay time, low TXD to driver dominant  
(recessive to dominant)  
tpLD  
STB = 0 V / nSTB = VIO  
RL = 60 Ω, CL = 100 pF;  
See Figure 9-2  
tsk(p)  
tR  
Pulse skew (|tpHR - tpLD|)  
14  
28  
50  
ns  
ns  
ns  
Differential output signal rise time  
Differential output signal fall time  
tF  
STB = 0 V / nSTB = VIO  
RL = 60 Ω, CL = 100 pF;  
See Figure 9-7  
tTXD_DTO  
Dominant timeout  
1.2  
4.0  
ms  
Receiver Switching Characteristics  
Propagation delay time, bus recessive input to high  
tpRH  
81  
66  
ns  
ns  
output (dominant to recessive)  
STB = 0 V / nSTB = VIO  
CL(RXD) = 15 pF  
See Figure 9-3  
Propagation delay time, bus dominant input to low  
output (recessive to dominant)  
tpDL  
tR  
tF  
RXD output signal rise time  
RXD output signal fall time  
10  
10  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.9 Switching Characteristics (continued)  
Over recommended operating conditions with TJ = -40to 150(unless otherwise noted); Parameters apply to both CAN  
channels  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FD Timing Characteristics  
Bit time on CAN bus output pins  
tBIT(TXD) = 500 ns  
450  
160  
85  
525  
205  
130  
540  
210  
135  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bit time on CAN bus output pins  
tBIT(TXD) = 200 ns  
tBIT(BUS)  
tBIT(RXD)  
tREC  
Bit time on CAN bus output pins  
tBIT(TXD) = 125 ns(1)  
Bit time on RXD output pins  
tBIT(TXD) = 500 ns  
410  
130  
75  
STB = 0 V / nSTB = VIO  
RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF  
Bit time on RXD output pins  
tBIT(TXD) = 200 ns  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
See Figure 9-4  
;
Bit time on RXD output pins  
tBIT(TXD) = 125 ns(1)  
Receiver timing symmetry  
tBIT(TXD) = 500 ns  
-50  
-40  
-40  
Receiver timing symmetry  
tBIT(TXD) = 200 ns  
10  
Receiver timing symmetry  
tBIT(TXD) = 125 ns(1)  
10  
(1) Measured during characterization and not an ISO 11898-2:2016 parameter.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.10 Typical Characteristics  
3
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
4.5  
4.6  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
5.5  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
VCC (V)  
Temperature (èC)  
TCAN  
TCAN  
A.  
Temp = 25 °C  
RL = 60 Ω  
VCC = 5 V  
VIO = 3.3 V  
RL = 60 Ω  
Figure 8-2. VOD(DOM) Over VCC VOD(DOM) vs VCC Channel 1 &  
Channel 2  
Figure 8-1. VOD(DOM) Over Temperature VOD(DOM) vs VCC Channel  
1 & Channel 2  
2
1.5  
1
20  
18  
16  
14  
12  
10  
0.5  
0
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
Temperature (èC)  
Temperature (èC)  
ICC_  
TCAN  
VCC = 5 V  
VIO = 3.3 V  
RL = 60 Ω  
VCC = 5 V  
VIO = 3.3 V  
RL = 60 Ω  
Figure 8-3. ICC Standby vs Temperature  
Figure 8-4. IIO Standby vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
9 Parameter Measurement Information  
CANH  
TXD  
RL  
CL  
CANL  
Figure 9-1. ICC Test Circuit  
RCM  
CANH  
50%  
50%  
TXD  
TXD  
RL  
CL  
VOD  
VCM  
VCC  
VO(CANH)  
tpLD  
tpHR  
90%  
10%  
0V  
CANL  
RCM  
0.9V  
VO(CANL)  
VOD  
0.5V  
tR  
tF  
Figure 9-2. Driver Test Circuit and Measurement  
CANH  
1.5V  
0.9V  
VID  
IO  
RXD  
0.5V  
0V  
VID  
tpDL  
tpRH  
VOH  
VO  
CL_RXD  
CANL  
90%  
VO(RXD)  
50%  
10%  
VOL  
tF  
tR  
Figure 9-3. Receiver Test Circuit and Measurement  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
TXD  
VI  
70%  
tLOOP1  
30%  
30%  
CANH  
0 V  
TXD  
STB  
VI  
RL  
CL  
tBIT(TXD)  
5 x tBIT(TXD)  
CANL  
tBIT(BUS)  
0 V  
900 mV  
500 mV  
RXD  
+
VDIFF  
VO  
CL_RXD  
œ
RXD  
VOH  
70%  
30%  
VOL  
tBIT(RXD)  
tLOOP2  
Figure 9-4. Transmitter and Receiver Timing Test Circuit and Measurement  
CANH  
VIH  
TXD  
CL  
0V  
RL  
STB  
50%  
CANL  
STB  
VI  
0V  
tMODE  
RXD  
VOH  
VO  
CL_RXD  
RXD  
50%  
VOL  
Figure 9-5. TCAN1046AV tMODE Test Circuit and Measurement  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
CANH  
VIH  
TXD  
CL  
0V  
RL  
nSTB  
50%  
CANL  
0V  
nSTB  
VI  
tMODE  
VOH  
RXD  
RXD  
50%  
VO  
CL_RXD  
VOL  
Figure 9-6. TCAN1048AV tMODE Test Circuit and Measurement  
VIH  
0V  
CANH  
TXD  
TXD  
RL  
CL  
VOD  
VOD(D)  
CANL  
0.9V  
VOD  
0.5V  
0V  
tTXD_DTO  
Figure 9-7. TXD Dominant Timeout Test Circuit and Measurement  
200 s  
IOS  
CANH  
TXD  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
0V  
or  
0V  
VBUS  
VBUS  
Figure 9-8. Driver Short-Circuit Current Test and Measurement  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
10 Detailed Description  
10.1 Overview  
The TCAN104xAV-Q1 devices meet or exceed the specifications of the ISO 11898-2:2016 high speed CAN  
(Controller Area Network) physical layer standard. The devices have been certified to the requirements of ISO  
11898-2:2016 physical layer requirements according to the GIFT/ICT high speed CAN test specification. The  
transceivers provide a number of different protection features making them ideal for the stringent automotive  
system requirements while also supporting CAN FD data rates up to 8 Mbps.  
The TCAN104xAV-Q1 support the following CAN standards:  
CAN transceiver physical layer standards:  
– ISO 11898-2:2016 High speed medium access unit  
– ISO 11898-5:2007 High speed medium access unit with low-power mode  
– SAE J2284-1: High Speed CAN (HSC) for Vehicle Applications at 125 kbps  
– SAE J2284-2: High Speed CAN (HSC) for Vehicle Applications at 250 kbps  
– SAE J2284-3: High Speed CAN (HSC) for Vehicle Applications at 500 kbps  
– SAE J2284-4: High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 2 Mbps  
– SAE J2284-5: High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps  
EMC requirements:  
– IEC 62228-3 EMC evaluation of transceivers - CAN transceivers  
– VeLIO (Vehicle LAN Interoperability and Optimization) CAN and CAN-FD Transceiver Requirements  
– SAE J2962-2 Communication Transceivers Qualification Requirements – CAN  
Conformance test requirements:  
– ISO 16845-2 Road vehicles – Controller area network (CAN) conformance test plan Part 2: High-speed  
medium access unit conformance test plan  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
10.2 Functional Block Diagram  
VCC  
VIO  
VCC  
3
VIO  
11  
3
11  
VCC  
VCC  
VIO  
VIO  
13 CANH1  
13 CANH1  
TSD  
TSD  
Dominant  
time-out  
Dominant  
time-out  
TXD1  
1
TXD1  
1
12 CANL1  
12 CANL1  
VIO  
STB1 14  
Mode Select  
nSTB1 14  
Mode Select  
UVP  
UVP  
VIO  
VIO  
MUX  
MUX  
4
Logic Output  
4
Logic Output  
RXD1  
RXD1  
VIO  
VIO  
WUP Monitor  
WUP Monitor  
Low Power Receiver  
Low Power Receiver  
VCC  
VCC  
VIO  
VIO  
10 CANH2  
10 CANH2  
TSD  
TSD  
Dominant  
time-out  
Dominant  
time-out  
TXD2  
STB2  
6
8
TXD2  
6
8
9
CANL2  
9
CANL2  
VIO  
Mode Select  
nSTB2  
Mode Select  
UVP  
UVP  
VIO  
VIO  
MUX  
MUX  
RXD2  
7
Logic Output  
RXD2  
7
Logic Output  
VIO  
VIO  
WUP Monitor  
WUP Monitor  
Low Power Receiver  
Low Power Receiver  
2
5
2
5
GND1  
GND2  
GND1  
GND2  
Figure 10-1. TCAN1046AV-Q1 (left image with pull-up on STB) and TCAN1048AV-Q1 (right image with  
pull-down on nSTB) Block Diagrams  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
10.3 Feature Description  
10.3.1 Pin Description  
10.3.1.1 TXD1 and TXD2  
TXD1 and TXD2 are the logic-level signals, referenced to VIO, from a CAN controller to the device.  
10.3.1.2 GND1 and GND2  
GND1 and GND2 are ground pins of the transceiver, both must be connected to the PCB ground.  
10.3.1.3 VCC  
VCC provides the 5-V power supply to both the CAN channels.  
10.3.1.4 RXD1 and RXD2  
RXD1 and RXD2 are the logic-level signals, referenced to VIO, from the TCAN104xAV-Q1 to a CAN controller.  
These pins are only driven once VIO is present.  
10.3.1.5 VIO  
The VIO pin provides the digital I/O voltage to match the CAN controller voltage thus avoiding the requirement for  
a level shifter. The VIO pin supports voltages from 1.7 V to 5.5 V providing the widest range of controller support.  
10.3.1.6 CANH and CANL  
The CAN high and CAN low are differential bus pins of the two integrated CAN channels. The CANH and CANL  
pins are connected to the CAN transceiver and the low-voltage WUP CAN receiver.  
10.3.1.7 STB1, STB2, nSTB1, and nSTB2 (Standby)  
The STB1, STB2, nSTB1, and nSTB2 pins are input pins used for mode control of the transceiver.  
The TCAN1046AV-Q1 implements STB1 and STB2 which can be supplied from either the system processor or  
from a static system voltage source. If normal mode is the only intended mode of operation than the STB pins  
can be tied directly to GND.  
The TCAN1048AV-Q1 implements nSTB1 and nSTB2 which can be supplied from either the system processor  
or from a static system voltage source. If normal mode is the only intended mode of operation, the nSTB pins  
can be tied directly to the VIO voltage source.  
10.3.2 CAN Bus States  
The CAN bus has two logical states during operation: recessive and dominant. See Figure 10-2 and Figure 10-3.  
A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the  
TXD1, TXD2, RXD1 and RXD2 pins. A recessive bus state occurs when the bus is biased to VCC/2 via the  
high-resistance internal input resistors (RIN) of the receiver and corresponds to a logic high on the TXD1, TXD2,  
RXD1 and RXD2 pins.  
A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a  
dominant bit at the same time during arbitration, and in this case the differential voltage of the bus is greater than  
the differential voltage of a single driver.  
The TCAN104xAV-Q1 transceiver implements a low-power standby (STB or nSTB) mode which enables a third  
bus state where the bus pins are weakly biased to ground via the high resistance internal resistors of the  
receiver. See Figure 10-2 and Figure 10-3.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Normal Mode  
Standby Mode  
CANH  
VDIFF  
VDIFF  
CANL  
Recessive  
Dominant  
Recessive  
Time, t  
Figure 10-2. Bus States  
CANH  
2.5V  
GND  
A
B
RXD  
Bias  
Unit  
CANL  
A. Normal Mode  
B. Standby Mode  
Figure 10-3. Simplified Recessive Common Mode Bias Unit and Receiver  
10.3.3 TXD Dominant Timeout (DTO)  
During normal mode, the only mode where the CAN driver is active, the TXD DTO circuit prevents the local node  
from blocking network communication in the event of a hardware or software failure where TXD is held dominant  
longer than the timeout period tTXD_DTO. The TXD DTO circuit is triggered by a falling edge on TXD. If no rising  
edge is seen before the timeout period of the circuit, tTXD_DTO, the CAN driver is disabled. This frees the bus for  
communication between other nodes on the network. The CAN driver is reactivated when a recessive signal is  
seen on the TXD pin which clears the dominant time out. The receiver remains active and biased to VCC/2. The  
RXD output reflects the activity on the CAN bus during the TXD DTO fault.  
The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data  
rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the  
worst case, where five successive dominant bits are followed immediately by an error frame. The minimum  
transmitted data rate may be calculated using Equation 1.  
Minimum Data Rate = 11 bits / tTXD_DTO = 11 bits / 1.2 ms = 9.2 kbps  
(1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Fault is repaired & transmission capability  
restored  
TXD fault stuck dominant: example PCB failure or bad software  
tTXD_DTO  
TXD (driver)  
Driver disabled freeing bus for other nodes  
Normal CAN communication  
Bus would be —stuck dominant“ blocking communication for the whole network but TXD DTO  
prevents this and frees the bus for communication after the time tTXD_DTO  
.
CAN Bus Signal  
tTXD_DTO  
Communication from other bus node(s)  
Communication from repaired node  
RXD (receiver)  
Communication from local node  
Communication from other bus node(s)  
Communication from repaired local node  
Figure 10-4. Example Timing Diagram for TXD Dominant Timeout  
10.3.4 CAN Bus Short Circuit Current Limiting  
The TCAN104xAV-Q1 has several protection features that limit the short circuit current when a CAN bus line  
is shorted. The features include CAN driver current limiting in the dominant and recessive states and TXD  
dominant state timeout which prevents permanently having the higher short-circuit current of a dominant state  
in case of a system fault. During CAN communication, the bus switches between the dominant and recessive  
states, thus the short-circuit current may be viewed as either the current during each bus state or as a DC  
average current. When selecting termination resistors or a common-mode choke for the CAN design the average  
power rating, IOS(AVG), should be used. The percentage dominant is limited by the TXD DTO and the CAN  
protocol which has forced state changes and recessive bits due to bit stuffing, control fields, and interframe  
space. These provides for a minimum amount of recessive time on the bus even if the data field contains a high  
percentage of dominant bits.  
The average short-circuit current of the bus depends on the ratio of recessive to dominant bits and their  
respective short-circuit currents. The average short-circuit current may be calculated using Equation 2.  
IOS(AVG) = % Transmit x [(% REC_Bits x IOS(SS)_REC) + (% DOM_Bits x IOS(SS)_DOM)] + [% Receive x IOS(SS)_REC  
]
(2)  
Where:  
IOS(AVG) is the average short-circuit current  
% Transmit is the percentage the node is transmitting CAN messages  
% Receive is the percentage the node is receiving CAN messages  
% REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
% DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short-circuit current  
IOS(SS)_DOM is the dominant steady state short- circuit current  
The short-circuit current and the possible fault cases of the network should be considered when sizing the power  
supply used to generate the transceivers VCC supply.  
10.3.5 Thermal Shutdown (TSD)  
If the junction temperature of the TCAN104xAV-Q1 exceeds the thermal shutdown threshold, TTSD, the device  
turns off the CAN driver circuitry and blocks the TXD to bus transmission path. The shutdown condition is  
cleared when the junction temperature of the device drops below TTSD. The CAN bus pins are biased to VCC/2  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
during a TSD fault and the receiver to RXD path remains operational. The TCAN104xAV-Q1 TSD circuit includes  
hysteresis which prevents the CAN driver output from oscillating during a TSD fault.  
10.3.6 Undervoltage Lockout  
The supply pins, VCC and VIO, have undervoltage detection that places the device into a protected state. This  
protects the bus during an undervoltage event on either supply pin.  
Table 10-1. Undervoltage Lockout - TCAN104xAV-Q1  
VCC  
VIO  
DEVICE STATE  
BUS  
RXD PIN  
> UVVCC  
> UVVIO  
Normal  
Per TXD  
Mirrors bus  
High impedance  
Weak pull-down to  
ground  
STB = VIO: Standby mode;  
TCAN1046AV-Q1  
VIO: Remote wake request(1)  
STB = GND: Protected mode;  
TCAN1046AV-Q1  
High impedance  
High impedance  
Recessive  
Recessive  
< UVVCC  
> UVVIO  
nSTB = VIO: Protected mode;  
TCAN1048AV-Q1  
High impedance  
Weak pull-down to  
ground  
nSTB = GND: Standby mode;  
TCAN1048AV-Q1  
VIO: Remote wake request(1)  
> UVVCC  
< UVVCC  
< UVVIO  
< UVVIO  
Protected  
Protected  
High impedance  
High impedance  
High impedance  
High impedance  
(1) See Section 10.4.3.1  
Once the undervoltage condition is cleared and tMODE has expired, the TCAN104xAV-Q1 transitions to normal  
mode and the host controller can send and receive CAN traffic.  
10.3.7 Unpowered Device  
The TCAN104xAV-Q1 is designed to be an ideal passive or no load to the CAN bus if the device is unpowered.  
The bus pins were designed to have low leakage currents when the device is unpowered, and do not load  
the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains  
operational.  
The logic pins also have low leakage currents when the device is unpowered, and do not load other circuits  
which may remain powered.  
10.3.8 Floating pins  
The TCAN104xAV-Q1 has internal pull-ups or pull-downs on critical pins which place the device into known  
states if the pin floats. This internal bias should not be relied upon by design though, especially in noisy  
environments, but instead should be considered a failsafe protection feature.  
When a CAN controller supporting open-drain outputs is used an adequate external pull-up resistor must be  
chosen. This specifies that the TXD output of the CAN controller maintains acceptable bit time to the input of the  
CAN transceiver. See Table 10-2 for details on pin bias conditions.  
Table 10-2. Pin Bias  
Pin  
Pull-up or Pull-down  
Comment  
Weakly biases TXD1 and TXD2 towards recessive to prevent bus  
blockage or TXD DTO triggering  
TXD1 and TXD2  
Pull-up  
Weakly biases STB1 and STB2 towards low-power standby mode to  
prevent excessive system power; TCAN1046AV-Q1 only  
STB1 and STB2  
Pull-up  
Weakly biases nSTB1 and nSTB2 towards low-power standby mode  
to prevent excessive system power; TCAN1048AV-Q1 only  
nSTB1 and nSTB2  
Pull-down  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
10.4 Device Functional Modes  
10.4.1 Operating Modes  
The TCAN104xAV-Q1 has two main operating modes; normal mode and standby mode. Operating mode  
selection is made by applying a high or low level to the STB or nSTB pins on the TCAN1046A or TCAN1048A  
device respectively.  
Table 10-3. Operating Modes  
STB  
nSTB  
Low  
Device Mode  
Standby mode  
Normal Mode  
Driver  
Disabled  
Enabled  
Receiver  
RXD Pin  
High (recessive) until valid  
WUP is received  
See section Section  
10.4.3.1  
Low-power receiver with  
bus monitor enable  
High  
Low  
High  
Enabled  
Mirrors bus state  
10.4.2 Normal Mode  
This is the normal operating mode of the TCAN104xAV-Q1. The CAN driver and receiver are fully operational  
and CAN communication is bi-directional. The driver is translating a digital input on the TXD1 and TXD2 inputs  
to a differential output on the CANH1, CANL1 and CANH2, CANL2 bus pins. The receiver is translating the  
differential signal from CANH1, CANL1 and CANH2, CANL2 to a digital output on the RXD1 and RXD2 outputs.  
10.4.3 Standby Mode  
This is the low-power mode of the TCAN104xAV-Q1. The CAN driver and main receiver are switched off and  
bi-directional CAN communication is not possible. The low-power receiver and bus monitor circuits are enabled  
to allow for RXD wake-up requests via the CAN bus. A wake-up request is output to RXD1 or RXD2 depending  
on the channel which receives the WUP as shown in Figure 10-5. The local CAN protocol controller should  
monitor RXD1 and RXD2 for transitions (high-to-low) and reactivate the device to normal mode by pulling the  
STB1 and STB2 pins low or the nSTB1 and nSTB2 pins high. The CAN bus pins are weakly pulled to GND in  
this mode; see Figure 10-2 and Figure 10-3.  
In standby mode, only the VIO supply is required; therefore. the VCC may be switched off for additional system  
level current savings.  
10.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode  
The TCAN104xAV-Q1 supports a remote wake-up request that is used to indicate to the host controller that the  
bus is active and the node should return to normal operation.  
The device uses the multiple filtered dominant wake-up pattern (WUP) from the ISO 11898-2:2016 standard to  
qualify bus activity. Once a valid WUP has been received, the wake request is indicated to the controller by a  
falling edge and low period corresponding to a filtered dominant on the RXD output of the TCAN104xAV-Q1.  
The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second  
filtered dominant pulse. The first filtered dominant initiates the WUP, and the bus monitor then waits on a filtered  
recessive; other bus traffic does not reset the bus monitor. Once a filtered recessive is received the bus monitor  
is waiting for a filtered dominant and again, other bus traffic does not reset the bus monitor. Immediately upon  
reception of the second filtered dominant the bus monitor recognizes the WUP and drives the RXD output low  
every time an additional filtered dominant signal is received from the bus.  
For a dominant or recessive to be considered filtered, the bus must be in that state for more than the  
tWK_FILTER time. Due to variability in tWK_FILTER the following scenarios are applicable. Bus state times less than  
tWK_FILTER(MIN) are never detected as part of a WUP and thus no wake request is generated. Bus state times  
between tWK_FILTER(MIN) and tWK_FILTER(MAX) may be detected as part of a WUP and a wake-up request may be  
generated. Bus state times greater than tWK_FILTER(MAX) are always detected as part of a WUP, and thus a wake  
request is always generated. See Figure 10-5 for the timing diagram of the wake-up pattern.  
The pattern and tWK_FILTER time used for the WUP prevents noise and bus stuck dominant faults from causing  
false wake-up requests while allowing any valid message to initiate a wake-up request.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
The ISO 11898-2:2016 standard has defined times for a short and long wake-up filter time. The tWK_FILTER timing  
for the device has been picked to be within the minimum and maximum values of both filter ranges. This timing  
has been chosen such that a single bit time at 500 kbps, or two back-to-back bit times at 1 Mbps triggers the  
filter in either bus state. Any CAN frame at 500 kbps or less would contain a valid WUP.  
For an additional layer of robustness and to prevent false wake-ups, the device implements a wake-up timeout  
feature. For a remote wake-up event to successfully occur, the entire WUP must be received within the timeout  
value t ≤ tWK_TIMEOUT. If not, the internal logic is reset and the transceiver remains in its current state without  
waking up. The full pattern must then be transmitted again, conforming to the constraints mentioned in this  
section. See Figure 10-5 for the timing diagram of the wake-up pattern with wake timeout feature.  
Bus Wake via RXD  
Wake Up Pattern (WUP) received in t < tWK_Timeout  
Request  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Dominant  
Waiting for  
Filtered  
Recessive  
Bus  
Bus VDiff  
RXD  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
Filtered Dominant RXD Output  
Bus Wake Via RXD Requests  
Figure 10-5. Wake-Up Pattern (WUP) with tWK_TIMEOUT  
10.4.4 Driver and Receiver Function  
Table 10-4. Driver Function Table  
Bus Outputs  
Device Mode  
TXD Input  
Driven Bus State(2)  
CANH  
CANL  
Low  
High or open  
X(1)  
High  
Low  
Dominant  
Normal  
High impedance  
High impedance  
High impedance  
High impedance  
Biased recessive  
Biased to ground  
Standby  
(1) X = irrelevant  
(2) For bus state and bias see Figure 10-2 and Figure 10-3  
Table 10-5. Receiver Function Table Normal and Standby Mode  
CAN Differential Inputs  
VID = VCANH – VCANL  
Device Mode  
Bus State  
RXD Pin  
VID ≥ 0.9 V  
0.5 V < VID < 0.9 V  
VID ≤ 0.5 V  
Dominant  
Undefined  
Recessive  
Dominant  
Undefined  
Recessive  
Open  
Low  
Undefined  
High  
Normal  
VID ≥ 1.15 V  
High  
Low if a remote wake event  
occurred  
0.4 V < VID < 1.15 V  
VID ≤ 0.4 V  
Standby  
Any  
See Figure 10-5  
Open (VID ≈ 0 V)  
High  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
11 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
11.1 Application Information  
11.2 Typical Application  
Figure 11-1 shows a typical configuration for 5 V system using the TCAN104xAV-Q1. The bus termination is  
shown for illustrative purposes.  
VIN  
VOUT  
VIN  
5-V Voltage  
Regulator  
(e.g. TPSxxxx)  
VCC  
VIO  
11  
VCC  
3
CANH1  
13  
STB1/nSTB1  
Port x  
14  
RXD1  
TXD1  
RXD1  
TXD1  
4
1
CANL1  
12  
CAN FD Controller  
Optional:  
Filtering,  
Transient and  
ESD  
TCAN1046AV-Q1  
TCAN1048AV-Q1  
Optional:  
Terminating  
Node  
Dual CAN FD  
Transceiver  
STB2/nSTB2  
8
Port x  
CANH2  
RXD2  
TXD2  
10  
7
6
RXD2  
TXD2  
CANL2  
9
2
5
GND1  
GND2  
Optional:  
Filtering,  
Transient and  
ESD  
Optional:  
Terminating  
Node  
Figure 11-1. Transceiver Application Using 5 V I/O Connections  
11.2.1 Design Requirements  
11.2.1.1 CAN Termination  
Termination may be a single 120-Ω resistor at each end of the bus, either on the cable or in a terminating  
node. If filtering and stabilization of the common-mode voltage of the bus is desired, then split termination may  
be used, see Figure 11-2. Split termination improves the electromagnetic emissions behavior of the network by  
filtering higher-frequency common-mode noise that may be present on the differential signal lines.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM/2  
RTERM  
TCAN Transceiver  
TCAN Transceiver  
CSPLIT  
RTERM/2  
CANL  
CANL  
Figure 11-2. CAN Bus Termination Concepts  
11.2.2 Detailed Design Procedures  
11.2.2.1 Bus Loading, Length and Number of Nodes  
A typical CAN application may have a maximum bus length of 40 meters and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A high number of nodes requires a transceiver with high input impedance such as the TCAN104xAV-Q1.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic loading  
of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen, DeviceNet, SAE  
J2284, SAE J1939, and NMEA 2000.  
A CAN network system design is a series of tradeoffs. In the ISO 11898-2:2016 specification, the driver  
differential output is specified with a bus load that can range from 50 Ω to 65 Ω where the differential output  
must be greater than 1.5 V. The TCAN104xAV-Q1 family is specified to meet the 1.5-V requirement down to  
50 Ω and is specified to meet 1.4-V differential output at 45-Ω bus load. The differential input resistance of  
the TCAN104xAV-Q1 is a minimum of 40 kΩ. If 100 TCAN104xAV-Q1 transceivers are in parallel on a bus,  
this is equivalent to a 400-Ω differential load in parallel with the nominal 60-Ω bus termination which gives a  
total bus load of approximately 52 Ω. Therefore, the TCAN104xAV-Q1family theoretically supports over 100  
transceivers on a single bus segment. However, for a CAN network design margin must be given for signal  
loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal  
integrity thus a practical maximum number of nodes is often lower. Bus length may also be extended beyond  
40 meters by careful system design and data rate tradeoffs. For example, CANopen network design guidelines  
allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and  
significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility,  
the CAN network system, a good network design is required for robust network operation.  
Please refer to the application report SLLA270: Controller Area Network Physical layer requirements. This  
document discusses in detail all system design physical layer parameters.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Node 1  
Node 2  
Node 3  
Node n  
(with termination)  
System Contoller  
System Controller  
System Controller  
System Controller  
CAN FD  
Controller  
CAN FD  
CAN FD  
CAN FD  
Controller  
Controller  
Controller  
TCAN1048AV-Q1  
TCAN1046AV-Q1  
TCAN1044A-Q1  
TCAN1043AV-Q1  
R
TERM  
R
TERM  
Figure 11-3. Typical CAN Bus  
11.2.3 Application Curves  
VCC = 5 V  
VIO = 3.3 V  
RL = 60 Ω  
A.  
VCC = 5 V  
VIO = 3.3 V  
RL = 60 Ω  
Figure 11-4. tPROP(LOOP1) TRX1 & TRX2  
Figure 11-5. tPROP(LOOP2) TRX1 & TRX2  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
11.3 System Examples  
The CAN transceiver is typically used in applications with a host controller or FPGA that includes the link layer  
portion of the CAN protocol. A 1.8 V, 2.5 V, or 3.3 V application is shown in Figure 11-6. The bus termination is  
shown for illustrative purposes.  
VIN  
VOUT  
1.8 V / 2.5 V / 3.3 V  
Regulator  
(e.g. TPSxxxx)  
VOUT  
5 V Voltage  
VIN  
VIN  
Regulator  
(e.g. TPSxxxx)  
VIO  
11  
VCC  
VCC  
3
CANH1  
13  
STB1/nSTB1  
Port x  
14  
RXD1  
TXD1  
RXD1  
TXD1  
4
1
CANL1  
12  
CAN FD Controller  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
TCAN1046AV-Q1  
TCAN1048AV-Q1  
Transient and  
ESD  
Dual CAN FD  
Transceiver  
STB2/nSTB2  
8
Port x  
CANH2  
RXD2  
TXD2  
10  
7
6
RXD2  
TXD2  
CANL2  
9
5
2
Optional:  
Terminating  
Node  
GND1  
GND2  
Optional:  
Filtering,  
Transient and  
ESD  
Figure 11-6. Transceiver Application Using 1.8 V, 2.5 V, 3.3 V I/O Connections  
12 Power Supply Recommendations  
The TCAN104xAV-Q1 device is designed to operate with a main VCC input voltage supply range between 4.5 V  
and 5.5 V. The device has an I/O level shifting supply input, VIO, designed for a range between 1.8 V and 5.5 V.  
Both supply inputs must be well regulated. A decoupling capacitor, typically 100 nF, should be placed near the  
CAN transceiver's main VCC and VIO supply pins in addition to bypass capacitors.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
13 Layout  
Robust and reliable CAN node design may require special layout techniques depending on the application  
and automotive design requirements. Since transient disturbances have high frequency content and a wide  
bandwidth, high-frequency layout techniques should be applied during PCB design.  
13.1 Layout Guidelines  
Place the protection and filtering circuitry close to the bus connector, J1, to prevent transients, ESD, and  
noise from propagating onto the board. This layout example shows optional transient voltage suppression  
(TVS) diodes, D1 and D2, which may be implemented if the system-level requirements exceed the specified  
rating of the transceiver. This example also shows optional bus filter capacitors C6, C8, C9 and C11.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device.  
Decoupling capacitors should be placed as close as possible to the supply pins VCC and VIO of transceiver.  
Use at least two vias for supply and ground connections of bypass capacitors and protection devices to  
minimize trace and via inductance.  
Note  
High frequency current follows the path of least impedance and not the path of least resistance.  
This layout example shows how split termination could be implemented on the CAN node. The termination is  
split into two resistors, R8 and R9 for channel 1, R10 and R11 for channel 2 with the center or split tap of the  
termination connected to ground via capacitor C7 or C10. Split termination provides common-mode filtering  
for the bus. See CAN Termination, CAN Bus Short Circuit Current Limiting, and Equation 2 for information on  
termination concepts and power ratings needed for the termination resistor(s).  
13.2 Layout Example  
STB1/nSTB1  
GND  
VCC  
R1  
TXD1  
GND1  
VCC  
STB1 / nSTB1  
CANH1  
TXD1  
R2  
GND  
GND  
CMC  
C7  
CANL1  
VCC  
GND  
GND  
TCAN1046AV  
VIO  
CANH2  
CANL2  
R3  
RXD1  
GND2  
RXD1  
R4  
TCAN1048AV  
VCC  
C10  
CMC  
TXD2  
RXD2  
R5  
TXD2  
RXD2  
GND  
R6  
STB2 / nSTB2  
STB2/nSTB2  
GND  
Figure 13-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
TCAN1046AV-Q1, TCAN1048AV-Q1  
SLLSFL8A – JULY 2021 – REVISED DECEMBER 2021  
www.ti.com  
14 Device and Documentation Support  
14.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
14.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
14.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
14.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
14.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCAN1046AV-Q1 TCAN1048AV-Q1  
 
 
 
 
 
 
 
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN1046AVDMTRQ1  
TCAN1048AVDMTRQ1  
VSON  
VSON  
DMT  
DMT  
14  
14  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
4.8  
4.8  
1.2  
1.2  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCAN1046AVDMTRQ1  
TCAN1048AVDMTRQ1  
VSON  
VSON  
DMT  
DMT  
14  
14  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DMT 14  
3 x 4.5, 0.65 mm pitch  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225088/A  
www.ti.com  
PACKAGE OUTLINE  
DMT0014B  
VSON - 1 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.13)  
1.0  
0.8  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
7
8
(0.19) TYP  
A
A
2X  
3.9  
15  
SYMM  
4.2 0.1  
14  
1
12X 0.65  
0.35  
0.25  
14X  
0.45  
0.35  
PIN 1 ID  
14X  
0.1  
C A B  
(OPTIONAL)  
0.05  
C
4225087/B 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMT0014B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
14X (0.6)  
14X (0.3)  
SYMM  
1
14  
2X  
(1.85)  
12X (0.65)  
SYMM  
15  
(4.2)  
(0.69)  
TYP  
(
0.2) VIA  
TYP  
8
7
(R0.05) TYP  
(0.55) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225087/B 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMT0014B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.47)  
15  
14X (0.6)  
1
14  
14X (0.3)  
(1.18)  
12X (0.65)  
SYMM  
(1.38)  
(R0.05) TYP  
METAL  
TYP  
8
7
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
77.4% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4225087/B 01/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
C
3.36  
3.16  
SEATING PLANE  
PIN 1 INDEX  
AREA  
A
0.1 C  
12X 0.5  
14  
1
4.3  
4.1  
NOTE 3  
2X  
3
7
8
0.31  
0.11  
14X  
0.1  
C A  
B
1.1 MAX  
2.1  
1.9  
B
0.2  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAUGE PLANE  
0°- 8°  
0.1  
0.0  
0.63  
0.33  
DETAIL A  
TYP  
4224643/B 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.  
5. Reference JEDEC Registration MO-345, Variation AB  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224643/B 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 20X  
4224643/B 07/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TCAN1046DMTRQ1

汽车类高速双路 CAN 收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1046V-Q1

具有待机和 1.8V IO 支持的汽车类高速双 CAN 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1046VDMTRQ1

具有待机和 1.8V IO 支持的汽车类高速双 CAN 收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1048AV-Q1

TCAN104xAV-Q1 Automotive Dual CAN FD Transceiver with 1.8-V I/O Support and Standby Mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1048AVDMTRQ1

具有低功耗待机模式和 1.8V I/O 支持的增强型汽车类双路 CAN 收发器 | DMT | 14 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1048AVDRQ1

具有低功耗待机模式和 1.8V I/O 支持的增强型汽车类双路 CAN 收发器 | D | 14 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN104XAV-Q1

TCAN104xAV-Q1 Automotive Dual CAN FD Transceiver with 1.8-V I/O Support and Standby Mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1051H

具有灵活数据速率的故障保护 CAN 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1051H-Q1

具有灵活数据速率的汽车类故障保护 CAN 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1051HD

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1051HDQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1051HDR

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI