TCAN4420 [TI]

具有极性控制功能的 CAN 收发器;
TCAN4420
型号: TCAN4420
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有极性控制功能的 CAN 收发器

文件: 总32页 (文件大小:1224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TCAN4420  
ZHCSH93 DECEMBER 2017  
具有极性控制功能的 TCAN4420 CAN 收发器  
1 特性  
2 应用  
1
符合 ISO 11898-2 (2016) 物理层标准要求  
通过 SW(开关)引脚进行外部极性控制  
楼宇自动化  
楼宇安全网关  
可用于将极性切换为 CAN 总线的正常(默认)  
或反向配置  
HVAC 网关和系统控制器  
电梯主面板  
双电源  
3 说明  
5V VCC 引脚用于为 CAN 驱动器和接收器供电  
TCAN4420 是一款符合 ISO 11898-2 (2016) 物理层标  
准规格要求的高速控制器局域网 (CAN) 收发器。该器  
件还支持通过微控制器由 SW 引脚从外部控制 CAN 总  
线极性。TCAN4420 包含众多可 实现 器件和 CAN 网  
络可靠性的保护特性。支持 2.8V 5V MCU,且包含  
可通过 VIO 引脚实现的 I/O 接口。  
2.8V 5V VIO 引脚用于为 RXDTXD SW  
引脚供电  
宽运行范围  
±46V 总线故障保护  
±12V 共模  
–40°C 125°C 环境温度  
保护特性  
器件信息(1)  
人体放电模型 (HBM) ESD 保护高达 ±12kV  
CC VIO 电源欠压保护  
器件型号  
TCAN4420  
封装  
封装尺寸(标称值)  
V
SOIC (D) (8)  
4.90mm x 3.91mm  
TXD 显性超时 (TXD DTO) - 支持低至 9.2kbps  
的数据速率  
(1) 如需了解所有可用型号,请参阅数据表末尾的可订购产品附  
录。  
热关断保护 (TSD)  
优化了未上电时的性能  
总线和逻辑终端处于高阻态(运行总线或应用上  
无负载)  
上电/断电无毛刺脉冲运行  
快速循环时间:150ns  
功能框图  
VIO  
5
VCC  
VCC  
VIO  
3
1
VCC  
7
6
CANH  
CANL  
VCC  
Dominant  
Time Out  
DRIVER  
TXD  
8
Over  
Temp.  
Mode and  
Control Logic  
SW  
Polarity  
Control  
Under  
Voltage  
VIO  
VCC  
4
2
Logic  
Output  
RXD  
GND  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSF19  
 
 
 
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
目录  
8.2 Functional Block Diagrams ..................................... 14  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application ................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 ESD Ratings Specifications ...................................... 4  
6.4 Recommended Operating Conditions....................... 5  
6.5 Thermal Information.................................................. 5  
6.6 Power Supply Characteristics ................................... 6  
6.7 AC and DC Electrical Characteristics ....................... 6  
6.8 Timing Requirements ............................................... 7  
6.9 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
9
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 23  
12 器件和文档支持 ..................................................... 24  
12.1 器件支持 ............................................................... 24  
12.2 接收文档更新通知 ................................................. 24  
12.3 社区资源................................................................ 24  
12.4 ....................................................................... 24  
12.5 静电放电警告......................................................... 24  
12.6 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 25  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 12 月  
*
初始发行版  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
SW  
TXD  
GND  
VCC  
1
2
3
4
8
7
6
5
CANH  
CANL  
VIO  
RXD  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
TXD  
NO.  
1
Logic Input CAN transmit data input (LOW for dominant and HIGH for recessive bus states)  
GND  
VCC  
2
Ground  
Power  
Ground connection  
3
5 V ±10% supply voltage  
RXD  
VIO  
4
Logic Output CAN receive data output (LOW for dominant and HIGH for recessive bus states)  
5
Power  
Bus I/O  
Bus I/O  
Transceiver I/O level shifting supply voltage  
Low level CAN bus input/output line  
High level CAN bus input/output line  
CANL  
CANH  
6
7
Polarity switch pin. Set to low for normal polarity (default), and high to reverse the polarity of  
the CAN pins  
SW  
8
Logic Input  
Copyright © 2017, Texas Instruments Incorporated  
3
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
–0.3  
–0.3  
–46  
MAX  
6
UNIT  
VCC  
Supply voltage  
VIO  
Supply voltage select for I/O level shifter  
CAN Bus I/O voltage (CANH, CANL)  
Logic input terminal voltage  
RXD output terminal voltage range  
RXD output current  
6
VBUS  
VLogic_Input  
VRXD  
IO(RXD)  
TJ  
46  
6
V
–0.3  
–0.3  
6
8
mA  
°C  
Operating virtual junction temperature range, packaged units  
Ambient temperature  
–40  
–40  
–65  
150  
125  
150  
TA  
TSTG  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC  
Q100-002  
All pins(1)  
All pins(2)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
±750  
(1) Tested in accordance to AEC-Q100-002.  
(2) Tested in accordance to AEC-Q100-011.  
6.3 ESD Ratings Specifications  
VALUE  
UNIT  
CAN bus terminal  
(CANH, CANL)  
Electrostatic discharge(1)  
Human bodt model (HBM)  
±12000  
V
IEC 61400-4-2 according to IBEE CAN  
EMC test spec(2)  
IEC 61400-4-2 Air Discharge(2)  
V(ESD)  
(4)  
(4)  
CANH and CANL terminals to GND(3)  
CANH and CANL terminals to GND(3)  
±8000  
V
±15000  
–100  
75  
V
V
V
V
Pulse 1  
Pulse 2  
Pulse 3a  
ISO7637 Transients according to IBEE  
CAN EMC test spec(5)  
CAN bus terminals (CANH, CANL)  
–150  
(1) System level ESD test, results given here were performed at the system level with appropriate external components such TVS diodes.  
Different system level configurations may lead to different results.  
(2) IEC 61000-4-2 is a system level ESD test. Results given here are specific to the IBEE CAN EMC Test specification conditions. Different  
system level configurations may lead to different results.  
(3) IEC 61000-4-2 is a system level ESD test. Results given here were performed at the system level with appropriate external components  
such TVS diodes. Different system level configurations may lead to different results.  
(4) Testing performed in accordance with 3rd party IBEE Zwickau test method.  
(5) ISO7637 is a system level transient test. Results given here are specific to the IBEE CAN EMC Test specification conditions. Different  
system level configurations may lead to different results.  
4
Copyright © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
2.8  
–2  
NOM  
MAX  
5.5  
UNIT  
V
VCC  
Supply voltage  
5
VIO  
Supply Voltage for I/O Level Shifter  
RXD terminal HIGH level output current  
RXD terminal LOW level output current  
5.5  
V
IOH(RXD)  
IOL(RXD)  
mA  
mA  
2
Operational free-air temperature (see Thermal Characteristics  
table)  
TA  
–40  
125  
°C  
6.5 Thermal Information  
TCAN4420  
SOIC  
8 PINS  
114  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.2  
59.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.5  
ΨJB  
58.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
6.6 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See 6, TXD = 0 V, RL = 60 , CL  
open,  
=
=
Dominant  
Dominant  
55  
70  
80  
See 6, TXD = 0 V, RL = 50 , CL  
open,  
60  
100  
10  
Supply Current Normal  
Mode  
ICC  
mA  
Dominant with  
bus Fault  
See 6, TXD = 0 V, STBx = 0 V, CANH  
= –25 V, RL = open, CL = open  
180  
See 6, TXD = VCC, RL = 60 , CL  
open, RCM = open, S or STB = 0 V  
=
Recessive  
20  
Under voltage detection on VCC for protected mode  
Hysteresis voltage  
3.5  
1.3  
4.4  
V
mV  
V
UVVCC  
UVVIO  
200  
115  
268  
Under voltage detection on VIO for protected mode  
2.7  
VCC = VIO= 5 V, TJ = 25, RL = 60 , Input to TXD at 250  
kHz, 25% duty cycle square wave, CL_RXD = 15 pF. Typical  
CAN operating conditions at 500 kbps with 25% transmission  
(domiant) rate.  
Average Power  
Dissapation  
PD  
mW  
VCC = VIO= 5.5 V, TJ = 150, RL = 50 . Input to TXD at  
500 kHz, 50% duty cycle square wave, CL_RXD = 15 pF.  
Typical high load CAN operating conditions at 1 Mbps with  
50% transmission (domiant) rate and loaded network.  
Thermal Shutdown Temperature  
Thermal Shutdown Hysterisis  
185  
15  
6.7 AC and DC Electrical Characteristics  
All typical values are at 25°C and supply voltages of VCC = 5 V. RL = 60 over operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver Electrical Characteristics  
CANH  
CANL  
2.75  
0.5  
4.5  
V
V
Bus output voltage  
(dominant)  
See 8 and 9, TXD = 0 V, RL = 60 ,  
CL = open, RCM = open  
VO(D)  
2.25  
See 6 and 9, TXD = VCC, RL = open  
(no load), RCM = open  
VO(R)  
Bus output voltage (recessive)  
2
0.5 x VCC  
3
V
See 6 and 9, TXD = 0 V, 50 Ω ≤ RL  
65 , CL = open, RCM = open  
1.5  
3
V
4.75 V VCC 5.25 V  
VOD(D)  
Differential output voltage (dominant)  
See 6 and 9, TXD = 0 V, 50 Ω ≤ RL  
65 , CL = open, RCM = open  
1.3  
3.2  
V
4.5 V VCC 5.5 V  
See 6 and 9, TXD = VCC, RL = 60  
, CL = open, RCM = open  
–120  
–50  
12  
50  
mV  
mV  
mV  
mA  
mA  
mA  
VOD(R)  
Differential output voltage (recessive)  
See6 and 9,TXD = VCC, RL = open,  
CL = open, RCM = open  
Output symmetry (dominant or recessive)  
See 6 and 9, RL = 60 , CL = open,  
RCM = open  
VSYM  
–400  
–115  
400  
(VCC - VO(CANH) - VO(CANL)  
)
See 6 and 12, V(CAN_H) –5 V,  
CANL = open, TXD = 0 V  
Short-circuit steady-state output current,  
Dominant  
IOS(DOM)  
See 6 and 12, V(CAN_L) = 40 V,  
CANH = open, TXD = 0 V  
115  
5
Short-circuit steady-state output current,  
Recessive  
See 6 and 12, –27 V VBUS 32 V,  
VBUS = CANH = CANL  
IOS(REC)  
–5  
Receiver Electrical Characteristics  
VIT  
Input threshold voltage  
500  
–12  
900  
12  
mV  
mV  
V
VHYS  
VCM  
Hysteresis voltage for input threshold  
Common Mode Range  
See 10  
120  
5
IIOFF(LKG)  
Power-off (unpowered) bus input leakage CANH = CANL = 5 V, VCC to GND via 0  
current  
µA  
Ω
6
Copyright © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
AC and DC Electrical Characteristics (continued)  
All typical values are at 25°C and supply voltages of VCC = 5 V. RL = 60 over operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
40  
MAX  
UNIT  
CI  
Input capacitance to ground (CANH or  
CANL)  
pF  
CID  
RID  
Differential input capacitance  
Differential input resistance  
20  
pF  
TXD = VCC = VIO  
20  
10  
80  
40  
kΩ  
Single Ended Input resistance  
(CANH or CANL)  
RIN  
kΩ  
Input resistance matching:  
[1 – (RIN(CANH) / RIN(CANL))] × 100 %  
RIN(M)  
V(CAN_H) = V(CAN_L) = 5 V  
–1%  
2.8  
1%  
VIO PIN  
VIO  
Supply voltage on VIO pin  
Supply current on VIO pin  
5.5  
350  
50  
V
RXD pin floating, TXD = 0 V  
RXD pin floating, TXD = 5  
µA  
µA  
IIO  
TXD Terminal (CAN Transmit Data Input)  
VIH  
VIL  
High-level input voltage  
0.7VIO  
V
Low-level input voltage  
0.3VIO  
V
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
Input Capacitance  
VTXD = VIO = VCC = 5.5 V  
–2.5  
–200  
–1  
0
1
–6  
1
µA  
µA  
µA  
pF  
IIL  
VTXD = 0 V, VCC = 5.5 V  
ILKG(OFF)  
CI  
VTXD = 5.5 V, VIO = VCC = 0 V  
VIN = 0.4 x sin(2 x M x 2 x 106 x t) + 2.5  
0
20  
RXD Pin (CAN Receive Data Output)  
VOH  
High-level input voltage  
Low-level input voltage  
Unpowered leakage current  
See 10, IO = –2 mA  
0.8VIO  
–1  
V
V
VOL  
See 10, IO = –2 mA  
0.2VIO  
1
ILKG(OFF)  
VRXD = 5.5 V, VIO = VCC = 0 V  
0
µA  
SW Pin (Polarity Switch Input)  
VIH  
High-level input voltage  
0.7VIO  
V
VIL  
Low-level input voltage  
0.3VIO  
V
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
SW = VIO = VCC = 5.5 V  
SW = 0 V, VCC = 5.5 V  
0.5  
–1  
–1  
20  
1
µA  
µA  
µA  
IIL  
ILKG(OFF)  
SW = 5.5 V, VIO = VCC = 0 V  
0
1
6.8 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Switching Characteristics  
Propagation delay time,  
high TXD to Driver Recessive  
tpHR  
tpLD  
50  
40  
See 9,  
Typical Conditions for DS: RL  
60 , CL = 100 pF, RCM = open  
=
Propagation delay time,  
low TXD to Driver Dominant  
ns  
tsk(p)  
Pulse skew (|tpHR - tpLD|)  
10  
25  
25  
tR  
Differential output signal rise time  
Differential output signal fall time  
Dominant time out(1)  
tF  
tTXD_DTO  
See 13, RL = 60 , CL = open  
1.2  
4
ms  
(1) The TXD dominant time out (tTXD_DTO) disables the driver of the transceiver once the TXD has been dominant longer than tTXD_DTO  
,
which releases the bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may only transmit  
dominant again after TXD has been returned HIGH (recessive). While this protects the bus from local faults, locking the bus dominant, it  
limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst  
case, where five successive dominant bits are followed immediately by an error frame. This, along with the tTXD_DTO minimum, limits the  
minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11/ tTXD_DTO = 11 bits / 1.2 ms = 9.2 kbps.  
Copyright © 2017, Texas Instruments Incorporated  
7
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
Timing Requirements (continued)  
MIN  
NOM  
MAX  
UNIT  
Propagation delay time, bus recessive input  
to high RXD_INT output  
tpRH  
tpDL  
50  
See 10 CL(RXD) = 15 pF  
Typical Conditions for DS: CANL  
= 1.5 V, CANH = 3.5 V  
Propagation delay time, bus dominant input  
to RXD low output  
50  
ns  
tR  
tF  
Differential output signal rise time  
Differential output signal fall time  
8
8
Device Switching Characteristics  
Total loop delay, driver input (TXD) to  
receiver output (RXD), recessive to  
dominant(2)  
See 10 Typical Conditions: RL  
= 60 , CL = 100 pF, CL(RXD) = 15  
pF  
t(LOOP1)  
t(LOOP2)  
150  
150  
ns  
Total loop delay, driver input (TXD) to  
receiver output (RXD), dominant to  
receissive(2)  
See 10 Typical Conditions: RL  
= 60 , CL = 100 pF, CL(RXD) = 15  
pF  
Mode change time from normal  
configuration to reverse  
tMODE  
300  
300  
µs  
µs  
See 10. Time for device to  
return to normal operation from  
UVVCC and UVVIO under voltage  
event  
tUV_RE-ENABLE  
Re-enable time after UV event  
(2) Time span from signal edge on TXD input to next signal edge with same polarity on RXD output, the maximum of delay of both signal  
edges is to be considered.  
8
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
6.9 Typical Characteristics  
3
2.5  
2
3
2.5  
2
VOD vs T ; SW = 0  
VOD vs T ; SW = 1  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
VOD vs VCC : SW = 0  
VOD vs VCC : SW = 1  
-50  
0
50  
100  
150  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
SLLS  
Temperature (èC)  
VCC (V)  
SLLS  
VCC = 5 V  
CL = Open  
VIO = 5 V  
RCM = Open  
RL= 60Ω  
SW = 0 / 1  
SW = 0 / 1  
CL = Open  
VIO = 5 V  
RL= 60Ω  
RCM = Open  
Temp = 25°C  
1. VOD(D) over Temperature  
2. VOD(D) over VCC Supply Voltage  
13.4  
13.3  
13.2  
13.1  
13  
100  
90  
80  
70  
60  
50  
40  
ICC Recessive : SW = 0  
ICC Recessive : SW = 1  
12.9  
12.8  
12.7  
12.6  
SW=0  
SW=1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-50  
0
50  
100  
150  
Temperature (èC)  
Temperature (èC)  
SLLS  
SLLS  
VCC = 5 V  
CL = Open  
VIO = 5 V  
RL= 60Ω  
VCC = 5 V  
CL = Open  
VIO = 5 V  
RL= 60Ω  
SW = 0 / 1  
RCM = Open  
SW = 0 / 1  
RCM = Open  
3. ICC over Temperature  
4. Dominant to Recessive TLOOP over Temperature  
80  
75  
70  
65  
60  
55  
50  
45  
SW = 0  
SW = 1  
40  
-50  
0
50  
Temperature (èC)  
100  
150  
SLLS  
VCC = 5 V  
CL = Open  
VIO = 5 V  
RCM = Open  
RL= 60 Ω  
SW = 0 / 1  
5. Recessive to Dominant TLOOP vs Temperature  
版权 © 2017, Texas Instruments Incorporated  
9
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
CANH  
VOD(D)  
VOD(R)  
CANL  
Time, t  
Recessive  
Logic H  
Dominant  
Logic L  
Recessive  
Logic H  
6. Bus States (Physical Bit Representation)  
10  
CANH  
VCC / 2  
RXD  
10 ꢀ  
CANL  
7. Common Mode Bias Unit and Receiver  
CANH  
TXD  
RL  
CL  
CANL  
8. Supply Test Circuit  
10  
版权 © 2017, Texas Instruments Incorporated  
 
 
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
Parameter Measurement Information (接下页)  
RCM  
CANH  
RL  
VCC  
50%  
50%  
TXD  
TXD  
0 V  
CL  
VOD  
VCM  
VO(CANH)  
tpLD  
tpHR  
90%  
CANL  
RCM  
0.9 V  
VO(CANL)  
VOD  
0.5 V  
10%  
tR  
tF  
9. Driver Test Circuit and Measurement  
CANH  
1.5 V  
RXD  
IO  
0.9 V  
VID  
0.5 V  
0 V  
VOH  
VID  
tpDL  
tpRH  
VO  
CL_RXD  
CANL  
90%  
70%  
VO(RXD)  
30%  
10%  
VOL  
tF  
tR  
10. Receiver Test Circuit and Measurement  
5 V  
CANH  
4.4 V  
TXD  
VSUP  
R
0 V  
CL  
L
3.8V  
tUV_RE-ENABLE  
CANL  
STB  
0 V  
70%  
Hi Z  
RXD VO  
RXD  
30%  
VO  
CL_RXD  
11. UV Re-enable Time after UV Event  
版权 © 2017, Texas Instruments Incorporated  
11  
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
CANH  
VI  
TXD  
VI  
tLOOP  
Falling  
edge  
CL  
RL  
70%  
TXD  
30%  
30%  
CANL  
STB  
0 V  
0 V  
5 x tBIT(TXD)  
tBIT(TXD)  
RXD  
tBIT(Bus)  
VO  
CL_RXD  
900 mV  
VDiff  
500 mV  
VOH  
70%  
RXD  
30%  
VOL  
tLOOP  
rising  
edge  
tBIT(RXD)  
12. Transmitter and Receiver Timing Behavior Test Circuit and Measurement  
CANH  
VIH  
TXD  
30%  
TXD  
RL  
CL  
VOD  
0 V  
VOD(D)  
CANL  
0.9 V  
VOD  
0.5 V  
0 V  
tTXD_DTO  
13. TXD_INT Dominant Time Out Test Circuit and Measurement  
12  
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
Parameter Measurement Information (接下页)  
200 s  
IOS  
CANH  
TXD  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
0 V  
or  
0 V  
VBUS  
VBUS  
14. Driver Short-Circuit Current Test and Measurement  
版权 © 2017, Texas Instruments Incorporated  
13  
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCAN4420 is a high-speed CAN transceiver that meets the specifications of the ISO 11898-2 (2016) High  
Speed CAN (Controller Are Network) physical layer standards. It includes many protection features providing  
device and CAN network robustness. It also allows for the polarity of the CAN pins to be controlled externally by  
a micro-controller through the use of the polarity switch pin, SW.  
The CAN bus has two logical states during operation: recessive and dominant. See 6 and 7.  
A recessive bus state occurs when the bus is biased to a common mode of VCC/2 via the receivers bias unit.  
Recessive is equivalent to logic high on the TXD pin and is typically a differential voltage on the bus of  
approximately 0 V.  
A dominant bus state occurs when the bus is driven differentially by one or more drivers. The driver produces a  
current which flows through the termination resistors on the bus and generates a differential voltage. Dominant is  
equivalent to logic low on the TXD pin and is a differential voltage on the bus greater than the minimum required  
threshold for a CAN dominant.  
The host microprocessor of the CAN node uses the TXD terminal, pin 1, to drive the bus and receives data from  
the bus via the RXD terminal, pin 4. The TCAN4420 integrates level shifting capabilities into the RXD output via  
the VIO pin. This feature eliminates the need for an additional level shifter between the host microprocessor and  
the RXD output of the CAN transceiver.  
8.2 Functional Block Diagrams  
VIO  
5
VCC  
VCC  
VIO  
3
1
VCC  
7
6
CANH  
CANL  
VCC  
Dominant  
Time Out  
DRIVER  
TXD  
8
Over  
Temp.  
Mode and  
Control Logic  
SW  
Polarity  
Control  
Under  
Voltage  
VIO  
VCC  
4
2
Logic  
Output  
RXD  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 TXD Dominant Time Out (DTO)  
The TXD DTO circuit prevents the local node from blocking network communication in event of a hardware or  
software failure where TXD is held dominant longer than the time out period tTXD_DTO. The DTO circuit timer  
starts on a falling edge on TXD. The DTO circuit disables the CAN bus driver if no rising edge is seen before the  
timeout period expires. This frees the bus for communication between other nodes on the network. The CAN  
driver is re-activated when a recessive signal is seen on the TXD terminal, thus clearing the TXD DTO condition.  
The receiver and RXD terminal still reflect activity on the CAN bus, and the bus terminals are biased to the  
recessive level during a TXD dominant timeout.  
14  
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
Feature Description (接下页)  
8.3.2 CAN Bus Short Circuit Current Limiting  
The TCAN4420 has several protection features that limit the short circuit current when a CAN bus line is shorted.  
These include CAN driver current limiting (dominant and recessive). During CAN communication the bus  
switches between dominant and recessive states, thus the short circuit current may be viewed either as the  
current during each bus state or as a DC average current. For system current and power considerations in the  
termination resistors and common mode choke ratings the average short circuit current should be used. The  
percentage dominant is limited by the TXD dominant time out and CAN protocol which has forced state changes  
and recessive bits such as bit stuffing, control fields, and inter frame space. These ensure there is a minimum  
recessive amount of time on the bus even if the data field contains a high percentage of dominant bits.  
The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short  
circuit currents. The average short circuit current may be calculated using 公式 1.  
IOS(AVG) = %Transmit x [(%REC_Bits x IOS(SS)_REC) + (%DOM_Bits x IOS(SS)_DOM)] + [%Receive x IOS(SS)_REC  
]
(1)  
Where:  
IOS(AVG) is the average short circuit current  
%Transmit is the percentage the node is transmitting CAN messages  
%Receive is the percentage the node is receiving CAN messages  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages,  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current.  
The short circuit current and possible fault cases of the network should be taken into  
consideration when sizing the power ratings of the termination resistance, other network  
components, and the power supply used to generate VCC  
.
8.3.3 Thermal Shutdown  
If the junction temperature of the device exceeds the thermal shut down threshold of 170ºC the device turns off  
the CAN driver circuitry thus blocking the TXD to bus transmission path. The shutdown condition is cleared when  
the junction temperature of the device drops below the thermal shutdown temperature of the device. If the fault  
condition that caused the thermal shutdown is still present, the temperature may rise again and the device enters  
thermal shut down again. Prolonged operation with thermal shutdown conditions may affect device reliability. The  
thermal shutdown circuit includes hysteresis to avoid oscillation of the driver output.  
During thermal shutdown the CAN bus driver is turned off thus no transmission is possible  
from TXD to the bus. The CAN bus terminals are biased to recessive level during a  
thermal shutdown, and the receiver to RXD path remains operational.  
8.3.4 Under Voltage Lockout (UVLO) and Unpowered Device  
The VCC and VIO supply terminals have under voltage detection circuitry which places the device in a protected  
mode if an under voltage fault occurs. This protects the bus during an under voltage event on these terminals. If  
VIO is under voltage the RXD terminal is tri-stated (high impedance) and the device does not pass any signals  
from the bus. If VCC supply is lost, or has a brown out that triggers the UVLO, the device transitions to a  
protected mode. See 1.  
If VIO drops below UVVIO under voltage detection, the transceiver switches off and disengage from the bus until  
VIO has recovered.  
版权 © 2017, Texas Instruments Incorporated  
15  
 
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
The device is designed to be an "ideal passive" or “no load” to the CAN bus if the device is unpowered. The bus  
terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered, so they do not  
load the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains  
operational. Logic terminals also have low leakage currents when the device is unpowered, so they do not load  
other circuits which may remain powered.  
1. Under Voltage Lockout Protection  
VCC  
VIO  
DEVICE STATE  
Normal  
BUS  
RXD  
> UVVCC  
< UVVCC  
> UVVCC  
< UVVCC  
> UVVIO  
> UVVIO  
< UVVIO  
< UVVIO  
Per TXD  
Mirrors Bus  
Protected  
Protected  
Protected  
High Impedance  
High Impedance  
High Impedance  
High (Recessive)  
High Impedance  
High Impedance  
space  
Once an under voltage condition is cleared and the VCC supply has returned to valid level  
the device typically needs tMODE to transition to normal operation. The host processor  
should not attempt to send or receive messages until this transition time has expired.  
8.3.4.1 VIO Supply PIN  
A separate VIO supply pin is supported on this device. This pin should be connected to the supply voltage of the  
microcontroller, see 17 and 18. This sets the signal levels for TXD, RXD and SW pins to the I/O level of the  
microcontroller.  
8.4 Device Functional Modes  
8.4.1 Polarity Configuration  
The device supports two polarity configurations on the CAN pins. For a conventional (normal) CAN connection,  
connect SW pin to GND. Allow for a time interval equal to tMODE after changing the SW pin, before reading the  
bus or the RXD pin. To support a reverse connection of the CAN pins, connect the SW pin to VIO. This approach  
enables compatibility with existing boards that already use this pin (pin 8) to be connected to GND for normal  
operation. See 2.  
2. Polarity Configurations  
SW Pin  
LOW  
Device Polarity  
Normal  
VOD(TX) or VID (RX)  
= CANH-CANL  
HIGH  
Reverse  
= CANL-CANH  
8.4.2 Normal Polarity Mode  
This is the normal configuration of the device. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver is translating a digital input on TXD to a differential output on CANH  
and CANL. The receiver is translating the differential signal from CANH and CANL to a digital output on RXD.  
Normal Mode is enabled when there is a logic low on the SW pin.  
8.4.3 Reverse Polarity Mode  
The TCAN4420 supports a reverse polarity configuration when the SW pin is connected to supply. In this  
configuration, both the driver and receiver remain fully operational, the key difference being that both VOD and VID  
are now defined as the difference between CANL and CANH pins as indicated in 2. Also see Table 3 and  
4 for the pin voltage levels in this configuration.  
16  
版权 © 2017, Texas Instruments Incorporated  
 
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
8.4.4 Driver and Receiver Function  
The digital logic input and output levels for these devices are TTL levels with respect to VIO for compatibility with  
protocol controllers having 2.8 V to 5 V logic or I/O.  
3 and 4 provide the states of the CAN driver and CAN receiver in each mode.  
3. Driver Function Table  
BUS OUTPUTS(2)  
DRIVEN BUS  
DEVICE MODE  
TXD INPUT(1)  
STATE(3)  
CANH  
CANL  
L
H
Z
L
L
Z
H
Z
Dominant  
Biased Recessive  
Dominant  
Normal  
H or Open  
L
Reverse  
H or Open  
Z
Biased Recessive  
(1) H = high level, L = low level  
(2) H = high level, L = low level, Z = high Z receiver bias  
(3) For Bus state and bias see 7  
4. Receiver Function Table  
CAN DIFFERENTIAL INPUTS  
DEVICE MODE  
BUS STATE  
RXD TERMINAL(1)  
VID = VCANH – VCANL  
VID 0.9 V  
Dominant  
Undefined  
Recessive  
L
Undefined  
H
Normal: VID = VCANH – VCANL  
Reverse: VID = VCANL – VCANH  
0.5 V < VID < 0.9 V  
VID 0.5 V  
(1) H = high level, L = low level  
8.4.5 Floating Terminals  
The TCAN4420 has internal pull ups and pull downs on critical terminals to place the device into known states if  
the terminal floats. See 5 for details on terminal bias conditions  
5. Terminal Bias  
TERMINAL  
PULL UP or PULL DOWN  
COMMENT  
Weakly biases TXD toward recessive to prevent bus blockage or  
TXD DTO triggering  
TXD  
Pull up  
Weakly biases SW terminal towards GND to use the default (normal)  
polarity configuration  
SW  
Pull down  
space  
The internal bias should not be relied upon as only termination, especially in noisy  
environments but should be considered a failsafe protection. Special care needs to be  
taken when the device is used with MCUs which implement open drain outputs. TXD is  
weakly internally pulled up. The TXD pull up strength and CAN bit timing require special  
consideration when this device is used with an open drain TXD output on the  
microprocessor CAN controller. An adequate external pull up resistor must be used to  
ensure that the TXD output of the microprocessor maintains adequate bit timing input to  
the CAN transceiver.  
版权 © 2017, Texas Instruments Incorporated  
17  
 
 
 
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
These CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the  
data link layer portion of the CAN protocol. Below are typical application configurations for both 5 V and 3.3 V  
microprocessor applications. The bus termination is shown for illustrative purposes.  
9.2 Typical Application  
15. Typical CAN Bus Application  
9.2.1 Design Requirements  
9.2.1.1 Bus Loading, Length and Number of Nodes  
A typical CAN application can have a maximum bus length of 40 meters and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus.  
A high number of nodes require a transceiver with high input impedance such as the TCAN4420 transceiver.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original  
ISO11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic  
loading of the bus. Examples of these CAN systems level specifications are ARINC825, CANopen, DeviceNet,  
SAE J2284, SAE J1939, and NMEA 2000.  
A CAN network system design is a series of tradeoffs. In ISO 11898-2 the driver differential output is specified  
with a 60-Ω bus load where the differential output must be greater than 1.5 V. The TCAN4420 is specified to  
meet the 1.5 V requirement across this load and is specified to meet 1.3-V differential output at 50-Ω bus load.  
The differential input resistance of this family of transceiver is a minimum of 20 kΩ. If 67 of these transceivers are  
in parallel on a bus, this is equivalent to an 300-Ω differential load in parallel with the 60 Ω bus termination which  
gives a total bus load of 50 Ω. Therefore, this family theoretically supports over 67 transceivers on a single bus  
segment with margin to the 0.9-V minimum differential input voltage requirement at each receiving node.  
However, for network design, margin must be given for signal loss across the system and cabling, parasitic  
loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum number of  
nodes is much lower. Bus length may also be extended beyond 40 meters by careful system design and data  
rate tradeoffs. For example CANopen network design guidelines allow the network to be up to 1 km with changes  
in the termination resistance, cabling, less than 64 nodes on the bus, and significantly lowered data rate.  
18  
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
Typical Application (接下页)  
This flexibility in network design is one of its key strengths allowing for these system level network extensions  
and additional standards to build on the typical CAN bus length parameters. However, when using this flexibility  
the network system designer must take the responsibility of good network design to ensure robust network  
operation.  
9.2.2 Detailed Design Procedure  
9.2.2.1 CAN Termination  
The ISO 11898 standard specifies the interconnect to be a twisted-pair cable (shielded or unshielded) with 120-Ω  
characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line must be used to  
terminate both ends of the cable to prevent signal reflections. Unterminated drop lines, stubs, connecting nodes  
to the bus must be kept as short as possible to minimize signal reflections. The termination may be on the cable  
or in a node, but if nodes may be removed from the bus, the termination must be carefully placed so that it is not  
removed from the bus  
Termination may be a single 120-Ω resistor at the end of the bus either on the cable or in a terminating node. If  
filtering and stabilization of the common mode voltage of the bus is desired, then split termination may be used,  
see 16. Split termination improves the electromagnetic emissions behavior of the network by eliminating  
fluctuations in the bus common-mode voltages.  
Split Termination  
Standard Termination  
CANH  
CANH  
RTERM/2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM/2  
CANL  
CANL  
16. CAN Bus Termination Concepts  
The TCAN4420 transceiver supports both 5-V only applications and applications where level shifting is needed  
for a 3.3-V microcontroller. See 17 and 18 for application examples.  
版权 © 2017, Texas Instruments Incorporated  
19  
 
TCAN4420  
ZHCSH93 DECEMBER 2017  
Typical Application (接下页)  
www.ti.com.cn  
5-V Voltage  
Regulator  
VOUT  
VIN  
(e.g. TPSxxxx)  
VCC  
VIO  
VCC  
GPIO1  
5-V MCU  
3
5
CANH  
SW  
7
8
TCAN4420 CAN  
Transceiver  
RXD  
TXD  
RXD  
TXD  
With Polarity  
Control  
4
1
CANL  
6
2
Optional:  
Terminating  
Node  
GND  
Optional:  
Filtering,  
Transient and ESD  
Copyright © 2017, Texas Instruments Incorporated  
17. Typical CAN Bus Application Using TCAN4420 with 5 V µC  
3-V Voltage  
VOUT  
VIN  
Regulator  
(e.g. TPSxxxx)  
5-V Voltage  
VOUT  
Regulator  
VIN  
(e.g. TPSxxxx)  
VCC  
VIO  
VCC  
GPIO1  
3-V MCU  
3
5
CANH  
SW  
7
8
TCAN4420 CAN  
Transceiver  
RXD  
TXD  
RXD  
TXD  
With Polarity  
Control  
4
1
CANL  
6
2
Optional:  
Terminating  
Node  
GND  
Optional:  
Filtering,  
Transient and ESD  
Copyright © 2017, Texas Instruments Incorporated  
18. Typical CAN Application Using TCAN4420 with 3.3 V µC  
20  
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
Typical Application (接下页)  
9.2.3 Application Curves  
70  
60  
50  
40  
30  
20  
10  
0
ICC Dominant vs VCC : SW = 0  
ICC Dominant vs VCC : SW = 1  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
VCC (V)  
SLLS  
19. ICC Dominant Current over VCC Supply Voltage  
10 Power Supply Recommendations  
The TCAN4420 device is designed to operate with a main VCC input voltage supply range between 4.5 V and  
5.5 V. The device also has an IO level shifting supply input, VIO, designed for a range between 2.8 V and  
5.5 V. To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a  
100-nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage  
ripple present on the outputs of switched-mode power supplies and also helps to compensate for the resistance  
and inductance of the PCB power planes.  
版权 © 2017, Texas Instruments Incorporated  
21  
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
11 Layout  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
11.1 Layout Guidelines  
Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and  
noise from propagating onto the board. In this layout example a transient voltage suppression (TVS) device,  
D1, has been used for added protection. The production solution can be either bi-directional TVS diode or  
varistor with ratings matching the application requirements. This example also shows optional bus filter  
capacitors C3 and C4. Additionally (not shown) a series common mode choke (CMC) can be placed on the  
CANH and CANL lines between the TCAN4420 transceiver and connector J1.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device.  
Use supply (VCC) and ground planes to provide low inductance.  
High-frequency currents follows the path of least impedance and not the path of least  
resistance.  
Use at least two vias for supply (VCC) and ground connections of bypass capacitors and protection devices to  
minimize trace and via inductance.  
Bypass capacitors should be placed as close as possible to the supply terminals of transceiver, examples are  
C1 on the VCC supply and C5 on the VIO supply.  
Bus termination: this layout example shows split termination. This is where the termination is split into two  
resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C2. Split  
termination provides common mode filtering for the bus. When bus termination is placed on the board instead  
of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the  
bus thus also removing the termination. See the application section for information on power ratings needed  
for the termination resistor(s).  
To limit current of digital lines, serial resistors may be used. Examples are R2, R3, and R4. These are not  
required.  
Pin 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used, this is  
mandatory to ensure the bit timing into the device is met.  
Pin 5: A bypass capacitor should be placed as close to the pin as possible (example C5). A voltage must be  
applied to the VIO for normal operation.  
Pin 8: is shows the SW terminal with R4 and R5 as optional resistors. The SW terminal can also be tied to an  
IO for soft polarity configuration.  
22  
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
11.2 Layout Example  
20. Example Layout  
版权 © 2017, Texas Instruments Incorporated  
23  
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
该器件将遵循以下 CAN 标准。本系统规格涵盖了所需的核心内容;但是,应为这些标准提供参考,并指出和探讨  
所有分歧之处。本文档应提供所需的全部基本内容。但是,由于详细的 CAN 协议范围不在此物理层(收发器)规  
格范围之内,这些额外的资源对全面了解 CAN(包括协议)非常有帮助。  
12.1.1 器件命名规则  
CAN 收发器物理层标准:  
ISO11898-2 高速媒介访问单元(原高速 CAN 收发器标准)  
具有低功耗模式的 ISO11898-5 高速媒介访问单元(取代了 ISO11898-2 标准规范中的若干电气规格,并增加  
了在低功耗模式下通过总线实现原始唤醒功能)。  
一致性测试要求:  
A Comprehensible Guide to Controller Area Network”, Wilfried Voss, Copperhill Media Corporation  
"CAN System Engineering: From Theory to Practical Applications”, 2nd Edition, 2013; Dr. Wolfhard Lawrenz,  
Springer.  
12.2 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
24  
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
25  
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SOIC  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/B 04/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
26  
版权 © 2017, Texas Instruments Incorporated  
TCAN4420  
www.ti.com.cn  
ZHCSH93 DECEMBER 2017  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/B 04/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2017, Texas Instruments Incorporated  
27  
TCAN4420  
ZHCSH93 DECEMBER 2017  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/B 04/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
28  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN4420DR  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
4420  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN4420DR  
SOIC  
D
8
2500  
330.0  
15.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 41.3  
TCAN4420DR  
D
8
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TCAN4420DR

具有极性控制功能的 CAN 收发器 | D | 8 | -40 to 125
TI

TCAN4550

具有集成收发器的 CAN FD 控制器
TI

TCAN4550-Q1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC)
TI

TCAN4550RGYR

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125
TI

TCAN4550RGYRQ1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC) | RGY | 20 | -40 to 125
TI

TCAN4550RGYT

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125
TI

TCAN4550RGYTQ1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC) | RGY | 20 | -40 to 125
TI

TCAN4551-Q1

具有集成收发器的汽车控制局域网灵活数据速率 (CAN FD) 控制器
TI

TCAN4551RGYRQ1

具有集成收发器的汽车控制局域网灵活数据速率 (CAN FD) 控制器 | RGY | 20 | -40 to 125
TI

TCAQ22340HDH

Silicon Controlled Rectifier, 6440A I(T)RMS, 2200V V(DRM), 2200V V(RRM), 1 Element, HERMETIC SEALED, CERAMIC PACKAGE-4
POWEREX

TCAW-T10-N05

Fixed Attenuator,
APITECH

TCB100

Current Transformer, CURRENT TRANSFORMER
VISHAY