THS1009CDAR [TI]

10-BIT, 2 ANALOG INPUT, 8 MSPS, SIMULTANEOUS SAMPLING ANALOG-TO-DIGITAL CONVERTER; 10位, 2个模拟输入, 8 MSPS同步采样模拟数字转换器
THS1009CDAR
型号: THS1009CDAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10-BIT, 2 ANALOG INPUT, 8 MSPS, SIMULTANEOUS SAMPLING ANALOG-TO-DIGITAL CONVERTER
10位, 2个模拟输入, 8 MSPS同步采样模拟数字转换器

转换器 输入元件
文件: 总31页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A – AUGUST 2000 – REVISED DECEMBER 2002  
ꢃꢄꢆ ꢇ ꢈꢀꢉ ꢊ ꢋ ꢌ ꢋ ꢍ ꢎꢏ ꢈꢌ ꢐ ꢑꢀꢉ ꢒ ꢓ ꢂꢐ ꢂꢉ ꢂ ꢈꢓ ꢑꢍꢀꢋ ꢌꢔ ꢎꢑ ꢂ ꢂ ꢋꢓ ꢐꢍ ꢈꢌ ꢏ  
ꢋ ꢌ ꢋ ꢍꢎ ꢏ ꢆ ꢀ ꢎ ꢆ ꢕꢈ ꢏꢈ ꢀꢋ ꢍ ꢖ ꢎꢌ ꢗꢔ ꢘꢀ ꢔꢘ  
programming the ADC into the desired mode. The  
THS1009 consists of two analog inputs, which are  
sampled simultaneously. These inputs can be selected  
individually and configured to single-ended or  
differential inputs. Internal reference voltages for the  
ADC (1.5 V and 3.5 V) are provided. An external  
reference can also be chosen to suit the dc accuracy  
and temperature drift requirements of the application.  
FEATURES  
D
Simultaneous Sampling of Two Single-Ended  
Signals or One Differential Signals or  
Combination of Both  
D
Signal-to-Noise and Distortion Ratio: 59 dB  
at f = 2 MHz  
I
D
D
D
D
D
D
D
D
Differential Nonlinearity Error: ±1 LSB  
Integral Nonlinearity Error: ±1 LSB  
Auto-Scan Mode for Two Inputs  
3-V or 5-V Digital Interface Compatible  
Low Power: 216 mW Max at 5 V  
Power Down: 1 mW Max  
The THS1009C is characterized for operation from 0°C  
to 70°C, and the THS1009I is characterized for  
operation from –40°C to 85°C.  
DA PACKAGE  
(TOP VIEW)  
D0  
D1  
D2  
D3  
D4  
D5  
NC  
5-V Analog Single Supply Operation  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RESET  
AINP  
2
Internal Voltage References . . . 50 PPM/°C  
and ±5% Accuracy  
3
AINM  
4
D
Glueless DSP Interface  
REFIN  
REFOUT  
REFP  
REFM  
AGND  
5
D
Parallel µC/DSP Interface  
6
BV  
7
DD  
APPLICATIONS  
BGND  
D6  
8
9
D
D
D
D
D
Radar Applications  
D7  
AV  
10  
11  
12  
13  
14  
15  
16  
DD  
Communications  
D8  
D9  
CS0  
CS1  
Control Applications  
High-Speed DSP Front-End  
Automotive Applications  
RA0  
20 WR (R/W)  
19  
18  
17  
RA1  
CONV_CLK  
SYNC  
RD  
DV  
DD  
DGND  
DESCRIPTION  
The THS1009 is a CMOS, low-power, 10-bit, 8 MSPS  
analog-to-digital converter (ADC). The speed,  
resolution, bandwidth, and single-supply operation are  
suited for applications in radar, imaging, high-speed  
ORDERING INFORMATION  
PACKAGED DEVICE  
T
A
TSSOP  
(DA)  
acquisition, and communications.  
A
multistage  
pipelined architecture with output error correction logic  
provides for no missing codes over the full operating  
temperature range. Internal control registers allow for  
0°C to 70°C  
THS1009CDA  
THS1009IDA  
–40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢐꢘ ꢎ ꢕꢑ ꢖ ꢀꢈ ꢎꢌ ꢕ ꢋꢀꢋ ꢙꢚ ꢛꢜ ꢝ ꢞꢟ ꢠꢙꢜꢚ ꢙꢡ ꢢꢣ ꢝ ꢝ ꢤꢚꢠ ꢟꢡ ꢜꢛ ꢥꢣꢦ ꢧꢙꢢ ꢟꢠꢙ ꢜꢚ ꢨꢟ ꢠꢤꢩ ꢐꢝ ꢜꢨꢣ ꢢꢠꢡ  
ꢢ ꢜꢚ ꢛꢜꢝ ꢞ ꢠꢜ ꢡ ꢥꢤ ꢢ ꢙ ꢛꢙ ꢢ ꢟ ꢠꢙ ꢜꢚꢡ ꢥ ꢤꢝ ꢠꢪꢤ ꢠꢤ ꢝ ꢞꢡ ꢜꢛ ꢀꢤꢫ ꢟꢡ ꢈꢚꢡ ꢠꢝ ꢣꢞ ꢤꢚꢠ ꢡ ꢡꢠ ꢟꢚꢨ ꢟꢝ ꢨ ꢬ ꢟꢝ ꢝ ꢟ ꢚꢠꢭꢩ  
ꢐꢝ ꢜ ꢨꢣꢢ ꢠ ꢙꢜ ꢚ ꢥꢝ ꢜ ꢢ ꢤ ꢡ ꢡ ꢙꢚ ꢮ ꢨꢜ ꢤ ꢡ ꢚꢜꢠ ꢚꢤ ꢢꢤ ꢡꢡ ꢟꢝ ꢙꢧ ꢭ ꢙꢚꢢ ꢧꢣꢨ ꢤ ꢠꢤ ꢡꢠꢙ ꢚꢮ ꢜꢛ ꢟꢧ ꢧ ꢥꢟ ꢝ ꢟꢞ ꢤꢠꢤ ꢝ ꢡꢩ  
Copyright 2002, Texas Instruments Incorporated  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS  
(1)  
over operating free-air temperature range unless otherwise noted  
UNITS  
DGND to DV  
BGND to BV  
0.3 V to 6.5 V  
0.3 V to 6.5 V  
0.3 V to 6.5 V  
DD  
Supply voltage range  
DD  
DD  
AGND to AV  
Analog input voltage range  
Reference input voltage  
Digital input voltage range  
AGND 0.3 V to AV  
DD  
+ 1.5 V  
+ 0.3 V  
+ 0.3 V  
0.3 V + AGND to AV  
DD  
0.3 V to BV /DV  
DD DD  
Operating virtual junction temperature range, T  
40°C to 150°C  
0 to 70°C  
J
THS1009C  
THS1009I  
Operating free-air temperature range, T  
A
40°C to 85°C  
65°C to 150°C  
260°C  
Storage temperature range, T  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1)  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
POWER SUPPLY  
MIN NOM  
MAX  
5.25  
5.25  
5.25  
UNIT  
AV  
DD  
4.75  
4.75  
3
5
5
Supply voltage  
DV  
V
DD  
DD  
BV  
ANALOG AND REFERENCE INPUTS  
MIN NOM  
MAX  
UNIT  
Analog input voltage in single-ended configuration  
V
V
V
V
V
V
V
REFM  
REFP  
4
Common-mode input voltage V  
in differential configuration  
(optional)  
1
2.5  
CM  
External reference voltage,V  
3.5 AV 1.2  
REFP  
DD  
External reference voltage, V  
REFM  
(optional)  
1.4  
1.5  
2
Input voltage difference, REFP REFM  
DIGITAL INPUTS  
MIN NOM  
MAX  
UNIT  
V
BV  
BV  
BV  
BV  
DV  
DV  
DV  
= 3.3 V  
2
DD  
DD  
DD  
DD  
DD  
DD  
DD  
High-level input voltage, V  
IH  
= 5.25 V  
2.6  
V
= 3.3 V  
0.6  
0.6  
V
Low-level input voltage, V  
IL  
= 5.25 V  
V
Input CONV_CLK frequency  
= 4.75 V to 5.25 V  
= 4.75 V to 5.25 V  
= 4.75 V to 5.25 V  
0.1  
62  
62  
0
8
MHz  
ns  
ns  
CONV_CLK pulse duration, clock high, t  
62  
62  
5000  
5000  
70  
w(CONV_CLKH)  
CONV_CLK pulse duration, clock low, t  
w(CONV_CLKL)  
THS1009CDA  
THS1009IDA  
Operating free-air temperature, T  
°C  
A
40  
85  
2
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions, AV  
DIGITAL SPECIFICATIONS  
PARAMETER  
= DV  
DD  
= 5 V, BV  
DD  
= 3.3 V, V  
REF  
= internal voltage (unless otherwise noted)  
DD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital inputs  
I
I
High-level input current  
Low-level input current  
Input capacitance  
DV  
DD  
= digital inputs  
50  
50  
50  
50  
µA  
µA  
pF  
IH  
Digital input = 0 V  
IL  
C
5
i
Digital outputs  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= 50 µA, BV  
= 3.3 V, 5 V  
= 3.3 V, 5 V  
BV 0.5  
V
OH  
OH  
DD  
DD  
= 50 µA,  
BV  
0.4  
10  
V
OL  
OL  
DD  
I
High-impedance-state output current  
Output capacitance  
CS1 = DGND, CS0 = DV  
DD  
10  
µA  
pF  
pF  
OZ  
C
5
O
L
C
Load capacitance at databus D0 D9  
30  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions, AV  
DC SPECIFICATIONS  
PARAMETER  
= DV  
DD  
= 5 V, BV  
DD  
= 3.3 V, f = 8 MSPS, V = internal voltage (unless otherwise noted)  
REF  
DD  
s
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
10  
Bits  
Accuracy  
Integral nonlinearity, INL  
Differential nonlinearity, DNL  
±1  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
After calibration in single-ended mode  
After calibration in differential mode  
±5  
Offset error  
10  
10  
10  
10  
Gain error  
Analog input  
Input capacitance  
15  
pF  
Input leakage current  
Internal voltage reference  
V
AIN  
= V  
REFM  
to V  
REFP  
±10  
µA  
Accuracy, V  
Accuracy, V  
3.3  
1.4  
3.5  
1.5  
50  
3.7  
1.6  
V
REFP  
V
PPM/°C  
µV  
REFM  
Temperature coefficient  
Reference noise  
100  
Accuracy, REFOUT  
2.475  
2.5 2.525  
V
Power supply  
I
I
I
Analog supply current  
Digital supply current  
Buffer supply current  
Power dissipation  
AV  
AV  
AV  
AV  
= DV  
= 5 V, BV  
= 5 V, BV  
= 5 V, BV  
= 5 V, BV  
=3.3 V  
= 3.3 V  
= 3.3 V  
= 3.3 V  
36  
0.5  
1.5  
186  
40  
3
mA  
mA  
mA  
mW  
DDA  
DDD  
DDB  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
= DV  
= DV  
= DV  
DD  
DD  
DD  
4
216  
Power dissipation in power down with conversion  
clock inactive  
AV  
= DV  
= 5 V, BV  
= 3.3 V  
0.25  
mW  
DD  
DD  
DD  
3
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions, V  
= internal voltage, f = 8 MSPS, f = 2 MSPS at 1 dB (unless otherwise noted)  
s I  
REF  
AC SPECIFICATIONS, AV  
DD  
= DV  
DD  
= 5 V, BV = 3.3 V, C < 30 pF  
DD L  
PARAMETER  
TEST CONDITIONS  
MIN  
56  
TYP  
59  
MAX  
UNIT  
Differential mode  
Single-ended mode  
Differential mode  
Single-ended mode  
Differential mode  
Single-ended mode  
Differential mode  
Single-ended mode  
Differential mode  
Single-ended mode  
SINAD Signal-to-noise ratio + distortion  
dB  
dB  
55  
58  
59  
61  
SNR  
Signal-to-noise ratio  
58  
60  
64  
63  
9.5  
9.35  
65  
THD  
Total harmonic distortion  
Effective number of bits  
Spurious free dynamic range  
dB  
9
8.85  
61  
ENOB  
SFDR  
Bits  
dB  
60  
64  
Analog Input  
Full-power bandwidth with a source impedance of 150 in  
differential configuration.  
Full scale sinewave, 3 dB  
Full scale sinewave, 3 dB  
100 mVpp sinewave, 3 dB  
100 mVpp sinewave, 3 dB  
96  
54  
96  
54  
MHz  
MHz  
MHz  
MHz  
Full-power bandwidth with a source impedance of 150 in  
single-ended configuration.  
Small-signal bandwidth with a source impedance of 150 in  
differential configuration.  
Small-signal bandwidth with a source impedance of 150 in  
single-ended configuration.  
TIMING REQUIREMENTS  
AV  
= DV  
DD  
= 5 V, BV  
DD  
= 3.3 V, V = internal voltage, C < 30 pF  
REF L  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONV  
CLK  
t
Latency  
5
pipe  
t
t
t
t
Setup time, CONV_CLK low before CS valid  
Setup time, CS invalid to CONV_CLK low  
Delay time, CONV_CLK low to SYNC low  
Delay time, CONV_CLK low to SYNC high  
10  
20  
ns  
ns  
ns  
ns  
su(CONV_CLKL-READL)  
su(READH-CONV_CLKL)  
d(CONV_CLKL-SYNCL)  
d(CONV_CLKL-SYNCH)  
10  
10  
4
www.ti.com  
TERMINAL  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Terminal Functions  
I/O  
DESCRIPTION  
NAME  
NO.  
30  
29  
23  
24  
7
AINP  
AINM  
I
I
Analog input, single-ended or positive input of differential channel A  
Analog input, single-ended or negative input of differential channel A  
Analog supply voltage  
AV  
DD  
I
AGND  
BV  
I
Analog ground  
I
Digital supply voltage for buffer  
DD  
BGND  
CONV_CLK  
CS0  
8
I
Digital ground for buffer  
15  
22  
21  
16  
I
Digital input. This input is the conversion clock input.  
Chip select input (active low)  
I
CS1  
I
Chip select input (active high)  
SYNC  
O
Synchronizationoutput. This signal indicates in a multichannel operation that data of channel A is brought to the  
digital output and can therefore be used for synchronization.  
DGND  
17  
18  
I
I
Digital ground. Ground reference for digital circuitry.  
Digital supply voltage  
DV  
DD  
D0 D9  
16,  
I/  
Digital input, output; D0 = LSB  
912  
O/Z  
RA0  
13  
I
Digital input. RA0 is used as an address line (RA0) for the control register. This is required for writing to control  
register 0 and control register 1. See Table 7.  
RA1  
14  
I
Digital input. RA1 is used as an address line (RA1) for the control register. This is required for writing to control  
register 0 and control register 1. See Table 7.  
NC  
32  
28  
O
I
Not connected  
REFIN  
Common-modereference input for the analog input channels. It is recommended that this pin be connected to the  
reference output REFOUT.  
REFP  
REFM  
26  
25  
I
I
Reference input, requires a bypass capacitor of 10 µF to AGND in order to bypass the internal reference voltage.  
An external reference voltage at this input can be applied. This option can be programmed through control  
register 0. See Table 8.  
Reference input, requires a bypass capacitor of 10 µF to AGND in order to bypass the internal reference voltage.  
An external reference voltage at this input can be applied. This option can be programmed through control  
register 0. See Table 8.  
RESET  
31  
27  
I
Hardware reset of the THS1009. Sets the control register to default values.  
REFOUT  
O
Analog fixed reference output voltage of 2.5 V. Sink and source capability of 250 µA. The reference output requires  
a capacitor of 10 µF to AGND for filtering and stability.  
(1)  
RD  
19  
20  
I
I
The RD input is used only if the WR input is configured as a write only input. In this case, it is a digital input, active  
low as a data read select from the processor. See timing section.  
(1)  
WR (R/W)  
This input is programmable. It functions as a read-write input (R/W) and can also be configured as a write-only input  
(WR), which is active low and used as data write select from the processor. In this case, the RD input is used as a  
read input from the processor. See timing section.  
(1)  
The start-conditions of RD and WR (R/W) are unknown. The first access to the ADC has to be a write access to initialize the ADC.  
5
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DD  
DV  
DD  
3.5 V  
1.5 V  
2.5 V  
REFP  
1.225 V  
REF  
REFOUT  
REFM  
REFIN  
REFP  
REFM  
10  
BV  
DD  
Single-Ended  
+
10-Bit  
Pipeline  
ADC  
and/or  
Differential  
MUX  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
S/H  
AINP  
AINM  
S/H  
Buffers  
CONV_CLK  
CS0  
RA0  
RA1  
Logic  
and  
Control  
Control  
Register  
CS1  
BGND  
RD  
WR (R/W)  
RESET  
SYNC  
AGND  
DGND  
6
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
vs  
SAMPLING FREQUENCY (SINGLE-ENDED)  
SIGNAL-TO-NOISE AND DISTORTION  
vs  
SAMPLING FREQUENCY (SINGLE-ENDED)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
65  
60  
55  
50  
45  
40  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
DD  
IN  
DD  
DD  
DD  
IN  
DD  
DD  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
f
s
Sampling Frequency MHz  
f
s
Sampling Frequency MHz  
Figure 1  
Figure 2  
SIGNAL-TO-NOISE  
vs  
SPURIOUS FREE DYNAMIC RANGE  
vs  
SAMPLING FREQUENCY (SINGLE-ENDED)  
SAMPLING FREQUENCY (SINGLE-ENDED)  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
DD  
IN  
DD  
DD  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
DD  
IN  
DD  
DD  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
f
s
Sampling Frequency MHz  
f
s
Sampling Frequency MHz  
Figure 3  
Figure 4  
7
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
SIGNAL-TO-NOISE AND DISTORTION  
vs  
vs  
SAMPLING FREQUENCY (DIFFERENTIAL)  
SAMPLING FREQUENCY (DIFFERENTIAL)  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
65  
60  
55  
50  
45  
40  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
DD  
IN  
DD  
DD  
DD  
IN  
DD  
DD  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
f
s
Sampling Frequency MHz  
f
s
Sampling Frequency MHz  
Figure 5  
Figure 6  
SIGNAL-TO-NOISE  
vs  
SPURIOUS FREE DYNAMIC RANGE  
vs  
SAMPLING FREQUENCY (DIFFERENTIAL)  
SAMPLING FREQUENCY (DIFFERENTIAL)  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
DD  
IN  
DD  
DD  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
DD  
IN  
DD  
DD  
0
1
2
f
3
4
5
6
7
8
9
0
1
2
s
3
4
5
6
7
8
9
Sampling Frequency MHz  
f
Sampling Frequency MHz  
s
Figure 7  
Figure 8  
8
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
vs  
SIGNAL-TO-NOISE AND DISTORTION  
vs  
INPUT FREQUENCY (SINGLE-ENDED)  
INPUT FREQUENCY (SINGLE-ENDED)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
65  
60  
55  
50  
45  
40  
AV  
= 5 V, DV  
= BV  
= 3 V,  
f = 8 MSPS, AIN = 1 dB FS  
DD  
s
DD  
DD  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dB FS  
DD  
s
DD  
DD  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f Input Frequency MHz  
i
f Input Frequency MHz  
i
Figure 9  
Figure 10  
SIGNAL-TO-NOISE  
vs  
INPUT FREQUENCY (SINGLE-ENDED)  
SPURIOUS FREE DYNAMIC RANGE  
vs  
INPUT FREQUENCY (SINGLE-ENDED)  
80  
90  
AV  
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dBFS  
DD  
s
DD  
DD  
f
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
75  
70  
65  
60  
55  
50  
45  
40  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dB FS  
DD  
s
DD  
DD  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f Input Frequency MHz  
i
f Input Frequency MHz  
i
Figure 12  
Figure 11  
9
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TYPICAL CHARACTERISTICS  
SIGNAL-TO-NOISE AND DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
INPUT FREQUENCY (DIFFERENTIAL)  
INPUT FREQUENCY (DIFFERENTIAL)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
65  
60  
55  
50  
45  
40  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dB FS  
DD  
s
DD  
DD  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 800 MSPS, AIN = 1 dB FS  
DD  
s
DD  
DD  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f Input Frequency MHz  
i
f Input Frequency MHz  
i
Figure 13  
Figure 14  
SIGNAL-TO-NOISE  
vs  
INPUT FREQUENCY (DIFFERENTIAL)  
SPURIOUS FREE DYNAMIC RANGE  
vs  
INPUT FREQUENCY (DIFFERENTIAL)  
65  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
60  
55  
50  
45  
40  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dB FS  
DD  
s
DD  
DD  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dB FS  
DD  
s
DD  
DD  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f Input Frequency MHz  
i
f Input Frequency MHz  
i
Figure 16  
Figure 15  
10  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
SAMPLING RATE (DIFFERENTIAL)  
EFFECTIVE NUMBER OF BITS  
vs  
SAMPLING FREQUENCY (SINGLE-ENDED)  
11.0  
10.5  
10.0  
9.5  
11.0  
10.5  
10.0  
9.5  
9.0  
9.0  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
DD  
IN  
DD  
DD  
8.5  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 500 kHz, AIN = 1 dB FS  
8.5  
DD  
IN  
DD  
DD  
8.0  
8.0  
7.5  
7.5  
7.0  
7.0  
6.5  
6.5  
6.0  
0
1
2
3
4
5
6
7
8
9
6.0  
f
Sampling Frequency MHz  
0
1
2
3
4
5
6
7
8
9
s
f
s
Sampling Frequency MHz  
Figure 18  
Figure 17  
EFFECTIVE NUMBER OF BITS  
vs  
INPUT FREQUENCY (DIFFERENTIAL)  
EFFECTIVE NUMBER OF BITS  
vs  
INPUT FREQUENCY (SINGLE-ENDED)  
11.0  
10.5  
10.0  
9.5  
11.0  
10.5  
10.0  
9.5  
9.0  
9.0  
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dB FS  
s
AV  
f
= 5 V, DV  
= BV  
= 3 V,  
= 8 MSPS, AIN = 1 dB FS  
DD  
DD  
DD  
DD  
s
DD  
DD  
8.5  
8.5  
8.0  
8.0  
7.5  
7.5  
7.0  
7.0  
6.5  
6.5  
6.0  
6.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f Input Frequency MHz  
i
f Input Frequency MHz  
i
Figure 20  
Figure 19  
11  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
ADC CODE  
1.0  
0.8  
AV  
= 5 V,  
= 3 V,  
= 8 MSPS  
DD  
DV  
= BV  
DD  
f
DD  
0.6  
s
0.4  
0.2  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
256  
512  
768  
1024  
ADC Code  
Figure 21  
INTEGRAL NONLINEARITY  
vs  
ADC CODE  
1.0  
0.8  
0.6  
AV  
= 5 V,  
= 3 V,  
= 8 MSPS  
DD  
DV  
= BV  
DD  
f
DD  
0.4  
s
0.2  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
256  
512  
768  
1024  
ADC Code  
Figure 22  
12  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TYPICAL CHARACTERISTICS  
FAST FOURIER TRANSFORM (4096 Points)  
(SINGLE-ENDED)  
vs  
FREQUENCY  
0
20  
40  
60  
80  
AV  
DD  
= 5 V, DV  
DD  
= BV = 3 V,  
DD  
f
s
= 8 MHz, AIN = 1 dB FS, f = 1.25 MHz  
IN  
100  
120  
140  
0
500000  
1000000 1500000 2000000 2500000 3000000 3500000 4000000  
f Frequency Hz  
Figure 23  
FAST FOURIER TRANSFORM (4096 Points)  
(DIFFERENTIAL)  
vs  
FREQUENCY  
0
20  
AV  
DD  
= 5 V, DV  
DD  
= BV = 3 V,  
DD  
f
s
= 8 MHz, AIN = 0.5 dB FS, f = 1.25 MHz  
IN  
40  
60  
80  
100  
120  
140  
0
500000  
1000000 1500000 2000000 2500000 3000000 3500000 4000000  
f Frequency Hz  
Figure 24  
13  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
DETAILED DESCRIPTION  
Reference Voltage  
The THS1009 has a built-in reference, which provides the reference voltages for the ADC. VREFP is set to 3.5 V  
and VREFM is set to 1.5 V. An external reference can also be used through two reference input pins, REFP and  
REFM, if the reference source is programmed as external. The voltage levels applied to these pins establish the  
upper and lower limits of the analog inputs to produce a full-scale and zero-scale reading respectively.  
Analog Inputs  
The THS1009 consists of two analog inputs, which are sampled simultaneously. These inputs can be selected  
individually and configured as single-ended or differential inputs. The desired analog input channel can be  
programmed.  
Converter  
The THS1009 uses a 10-bit pipelined multistaged architecture which achieves a high sample rate with low power  
consumption. The THS1009 distributes the conversion over several smaller ADC sub-blocks, refining the conversion  
with progressively higher accuracy as the device passes the results from stage to stage. This distributed conversion  
requires a small fraction of the number of comparators used in a traditional flash ADC. A sample-and-hold amplifier  
(SHA) within each of the stages permits the first stage to operate on a new input sample while the second through  
the eighth stages operate on the seven preceding samples.  
Conversion  
An external clock signal with a duty cycle of 50% has to be applied to the clock input (CONV_CLK). A new conversion  
is started with every falling edge of the applied clock signal. The conversion values are available at the output with  
a latency of 5 clock cycles.  
SYNC  
In multichannel mode, the first SYNC signal is delayed by [7+ (# Channels Sampled)] cycles of the CONV_CLK after  
a SYNC reset. This is due to the latency of the pipeline architecture of the THS1009.  
Sampling Rate  
The maximum possible conversion rate per channel is dependent on the selected analog input channels. Table 1  
shows the maximum conversion rate for the different combinations.  
Table 1. Maximum Conversion Rate in Continuous Conversion Mode  
NUMBER OF  
CHANNELS  
MAXIMUM CONVERSION  
RATE PER CHANNEL  
CHANNEL CONFIGURATION  
1 single-ended channel  
1
2
1
8 MSPS  
4 MSPS  
8 MSPS  
2 single-ended channels  
1 differential channel  
The maximum conversion rate per channel, fc, is given by:  
8 MSPS  
# channels  
fc +  
Continuous Conversion Mode  
During conversion the ADC operates with a free running external clock signal applied to the input CONV_CLK. With  
every falling edge of the CONV_CLK signal a new converted value is available to the databus with the corresponding  
read signal. The THS1009 offers up to two analog inputs to be selected. It is important to provide the channel  
information to the system; this means knowing which channel is available to the databus. To maintain this channel  
integrity, the THS1009 has an output signal SYNC, which is always active low if the data of channel 1 is applied to  
the databus.  
14  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Figure 25 shows the timing of the conversion when one analog input channel is selected. The maximum throughput  
rate is 8 MSPS in this mode. The signal SYNC is disabled for the selection of one analog input since this information  
is not required for one analog input. There is a certain timing relationship required for the read signal with respect  
to the conversion clock. This can be seen in Figure 26 and the timing specification. A more detailed description of  
the timing is given in the section timing and signal description of the THS1009.  
Sample N+1  
Channel 1  
Sample N  
Channel 1  
Sample N+2  
Channel 1  
Sample N+3 Sample N+4  
Sample N+5  
Channel 1  
Sample N+6  
Channel 1  
Sample N+7 Sample N+8  
Channel 1  
Channel 1  
Channel 1  
Channel 1  
AIN  
t
d(A)  
t
d(pipe)  
t
w(CONV_CLKH)  
t
w(CONV_CLKL)  
CONV_CLK  
t
c
t
t
su(CONV_CLKL-READL)  
su(READH-CONV_CLKL)  
READ  
Data N4  
Channel 1  
Data N3  
Channel 1  
Data N+1  
Channel 1  
Data N2  
Channel 1  
Data N1  
Channel 1  
Data N  
Channel 1  
Data N+2  
Channel 1  
READ is the logical combination from CS0, CS1 and RD  
Figure 25. Conversion Timing in 1-Channel Operation  
Figure 27 shows the conversion timing when two analog input channels are selected. The maximum throughput rate  
per channel is 4 MSPS in this mode. The data flow in the bottom of the figure shows the order the converted data  
is available to the data bus. This can be seen in Figure 26 and Table 2. A more detailed description of the timing is  
given in the section timing and signal description of the THS1009.  
Sample N  
Channel 1, 2  
Sample N+1  
Channel 1, 2  
Sample N+2  
Channel 1, 2  
Sample N+3  
Channel 1, 2  
Sample N+4  
Channel 1, 2  
AIN  
t
d(A)  
t
d(pipe)  
t
w(CONV_CLKH)  
t
w(CONV_CLKL)  
CONV_CLK  
t
c
t
su(CONV_CLKL-READL)  
t
su(READH-CONV_CLKL)  
READ  
t
su(CONV_CLKL-SYNCH)  
t
su(CONV_CLKL-SYNCL)  
SYNC  
Data N  
Channel 2  
Data N2  
Channel 1  
Data N2  
Channel 2  
Data N1  
Channel 1  
Data N1  
Channel 2  
Data N  
Channel 1  
Data N+1  
Channel 1  
READ is the logical combination from CS0, CS1 and RD  
Figure 26. Conversion Timing in 2-Channel Operation  
15  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
DIGITAL OUTPUT DATA FORMAT  
The digital output data format of the THS1009 can either be in binary format or in twos complement format. The  
following tables list the digital outputs for the analog input voltages.  
Table 2. Binary Output Format for Single-Ended Configuration  
SINGLE-ENDED, BINARY OUTPUT  
ANALOG INPUT VOLTAGE  
DIGITAL OUTPUT CODE  
AIN = V  
3FFh  
200h  
000h  
REFP  
+ V  
AIN = (V  
)/2  
REFP  
REFM  
AIN = V  
REFM  
Table 3. Twos Complement Output Format for Single-Ended Configuration  
SINGLE-ENDED, TWOS COMPLEMENT  
ANALOG INPUT VOLTAGE  
DIGITAL OUTPUT CODE  
AIN = V  
1FFh  
000h  
200h  
REFP  
+ V  
AIN = (V  
)/2  
REFP  
REFM  
AIN = V  
REFM  
Table 4. Binary Output Format for Differential Configuration  
DIFFERENTIAL, BINARY OUTPUT  
ANALOG INPUT VOLTAGE  
DIGITAL OUTPUT CODE  
V
= AINP AINM  
in  
= V  
V
V  
REFM  
REF  
REFP  
V
= V  
3FFh  
200h  
000h  
in  
REF  
V
= 0  
in  
= V  
V
in  
REF  
Table 5. Twos Complement Output Format for Differential Configuration  
DIFFERENTIAL, BINARY OUTPUT  
ANALOG INPUT VOLTAGE  
= AINP AINM  
DIGITAL OUTPUT CODE  
V
in  
= V  
V
REF  
V  
REFM  
REFP  
V
= V  
1FFh  
000h  
200h  
in  
REF  
V
= 0  
in  
= V  
V
in  
REF  
ADC CONTROL REGISTER  
The THS1009 contains two 10-bit wide control registers (CR0, CR1) in order to program the device into the desired  
mode. The bit definitions of both control registers are shown in Table 6.  
Table 6. Bit Definitions of Control Register CR0 and CR1  
REG  
CR0  
CR1  
BIT 9  
TEST1  
BIT 8  
TEST0  
OFFSET  
BIT 7  
SCAN  
BIN/2s  
BIT 6  
DIFF1  
R/W  
BIT 5  
DIFF0  
RES  
BIT 4  
CHSEL1  
RES  
BIT 3  
CHSEL0  
RES  
BIT 2  
PD  
BIT 1  
RES  
BIT 0  
VREF  
RESERVED  
RES  
SRST  
RESET  
16  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Writing to Control Register 0 and Control Register 1  
The 10-bit wide control register 0 and control register 1 can be programmed by addressing the desired control  
register and writing the register value to the ADC. The addressing is performed with the upper bits RA0 and RA1.  
During this write process, the data bits D0 to D9 contain the desired control register value. Table 7 shows the  
addressing of each control register.  
Table 7. Control Register Addressing  
D0 D9  
RA0  
RA1  
Addressed Control Register  
Control register 0  
Desired register value  
Desired register value  
Desired register value  
Desired register value  
0
1
0
1
0
0
1
1
Control register 1  
Reserved for future  
Reserved for future  
INITIALIZATION OF THE THS1009  
The initialization of the THS1009 should be done according to the configuration flow shown in Figure 27.  
Start  
No  
Use Default  
Values?  
Yes  
Write 0x401 to  
Write 0x401 to  
THS1009  
THS1009  
(Set Reset Bit in CR1)  
(Set Reset Bit in CR1)  
Clear RESET By  
Writing 0x400 to  
CR1  
Clear RESET By  
Writing 0x400 to  
CR1  
Write the User  
Configuration to  
CR0  
Write The User  
Configuration to  
CR1 ( Must  
Exclude RESET)  
Continue  
Figure 27. THS1009 Configuration Flow  
17  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
ADC CONTROL REGISTERS  
Control Register 0, Write Only (see Table 8)  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
0
TEST1  
TEST0  
SCAN  
DIFF1  
DIFF0  
CHSEL1 CHSEL0  
PD  
RES  
VREF  
Table 8. Control Register 0 Bit Functions  
RESET  
VALUE  
BITS  
NAME  
FUNCTION  
0
0
VREF  
Vref select:  
Bit 0 = 0 The internal reference is used  
Bit 0 = 1 The external reference voltage is used for the ADC  
1
2
0
0
RES  
PD  
Reserved  
Power down.  
Bit 2 = 0 The ADC is active  
Bit 2 = 1 Power down  
The reading and writing to and from the digital outputs is possible during power down.  
3, 4  
5,6  
7
0,0  
1,0  
0
CHSEL0,  
CHSEL1  
Channel select  
Bit 3 and bit 4 select the analog input channel of the ADC. Refer to Table 9.  
DIFF0, DIFF1 Number of differential channels  
Bit 5 and bit 6 contain information about the number of selected differential channels. Refer to Table 9.  
SCAN  
Autoscan enable  
Bit 7 enables or disables the autoscan function of the ADC. Refer to Table 9.  
8,9  
0,0  
TEST0,  
TEST1  
Test input enable  
Bit 8 and bit 9 control the test function of the ADC. Three different test voltages can be measured. This  
feedback allows the check of all hardware connections and the ADC operation.  
Refer to Table 10 for selection of the three different test voltages.  
18  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
ANALOG INPUT CHANNEL SELECTION  
The analog input channels of the THS1009 can be selected via bits 3 to 7 of control register 0. One single channel  
(single-ended or differential) is selected via bit 3 and bit 4 of control register 0. Bit 5 controls the selection between  
single-ended and differential configuration. Bit 6 and bit 7 select the autoscan mode, if more than one input channel  
is selected. Table 9 shows the possible selections.  
Table 9. Analog Input Channel Configurations  
BIT 7  
SCAN  
BIT 6  
DIFF1  
BIT 5  
DIFF0  
BIT 4  
CHSEL1 CHSEL0  
BIT 3  
DESCRIPTION OF THE SELECTED INPUTS  
Analog input AINP (single ended)  
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
1
0
1
1
0
0
0
1
1
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
1
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
1
0
1
1
0
1
0
1
0
0
1
0
0
1
0
1
0
1
Analog input AINM (single ended)  
Reserved  
Reserved  
Differential channel (AINPAINM)  
Reserved  
Autoscan two single ended channels: AINP, AINM, AINP, …  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Test Mode  
The test mode of the ADC is selected via bit 8 and bit 9 of control register 0. The different selections are shown in  
Table 10.  
Table 10. Test Mode  
BIT 9  
TEST1 TEST0  
BIT 8  
OUTPUT RESULT  
0
0
1
1
0
1
0
1
Normal mode  
V
REFP  
)+(V  
((V  
))/2  
REFP  
REFM  
V
REFM  
Three different options can be selected. This feature allows support testing of hardware connections between the  
ADC and the processor.  
19  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Control Register 1, Write Only (see Table 11)  
BIT11  
BIT 10  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
SRST  
BIT 0  
0
1
RESERVED OFFSET  
BIN/2s  
R/W  
RES  
RES  
RES  
RES  
RESET  
Table 11. Control Register 1 Bit Functions  
RESET  
VALUE  
BITS  
NAME  
FUNCTION  
0
0
RESET  
Reset  
Writing a 1 into this bit resets the device and sets the control register 0 and control register 1 to the reset values.  
To bring the device out of RESET, a 0 has to be written into this bit.  
1
0
SRST  
Writing a 1 into this bit resets the sync generator. When running in multichannel mode, this must be set during the  
configurationcycle.  
2, 3  
4
0,0  
1
RES  
RES  
RES  
R/W  
Reserved  
Reserved  
5
1
Reserved  
6
0
R/W, RD/WR selection  
Bit 6 of control register 1 controls the function of the inputs RD and WR. Whenbit 6 in control register 1 is set to  
1, WR becomes a R/W input and RD is disabled. From now on a read is signalled with R/W high and a write with  
R/W as a low signal. If bit 6 in control register 1 is set to 0, the input RD becomes a read input and the input WR  
becomes a write input.  
7
8
0
0
BIN/2s  
Complement select  
If bit 7 of control register 1 is set to 0, the output value of the ADC is in twos complement. If bit 7 of  
control register 1 is set to 1, the output value of the ADC is in binary format. Refer to Table 2 through Table 5.  
OFFSET  
Offset cancellation mode  
Bit 8 = 0 normal conversion mode  
Bit 8 = 1 offset calibration mode  
If a 1 is written into bit 8 of control register 1, the device internally sets the inputs to zero and does a conver-  
sion. The conversion result is stored in an offset register and subtracted from all conversions in order to  
reduce the offset error.  
9
0
RESERVED Always write 0.  
20  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
TIMING AND SIGNAL DESCRIPTION OF THE THS1009  
The reading from the THS1009 and writing to the THS1009 is performed by using the chip select inputs (CS0, CS1),  
the write input WR and the read input RD. The write input is configurable to a combined read/write input (R/W). This  
is desired in cases where the connected processor consists of a combined read/write output signal (R/W). The two  
chip select inputs can be used to interface easily to a processor.  
Reading from the THS1009 takes place by an internal RD signal, which is generated from the logical combination  
int  
of the external signals CS0, CS1 and RD (see Figure 28). This signal is then used to strobe out the words and to  
enable the output buffers. The last external signal (either CS0, CS1 or RD) to become valid makes RD active while  
int  
the write input (WR) is inactive. The first of those external signals switching to its inactive state deactivates RD  
again.  
int  
Writing to the THS1009 takes place by an internal WR signal, which is generated from the logical combination of  
int  
the external signals CS0, CS1 and WR. This signal strobes the control words into the control registers 0 and 1. The  
last external signal (either CS0, CS1 or WR) to become valid switches WR active while the read input (RD) is  
int  
inactive. The first of those external signals going to its inactive state deactivates WR again.  
int  
RD  
int  
CS0  
CS1  
RD  
WR  
int  
WR  
Control/Data  
Registers  
Data Bits  
Figure 28. Logical Combination of CS0, CS1, RD, and WR  
21  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Read Timing (using RD, RD-controlled)  
Figure 29 shows the read-timing behavior when the WR(R/W) input is programmed as a write-input only. The input  
RD acts as the read-input in this configuration. This timing is called RD-controlled because RD is the last external  
signal of CS0, CS1, and RD which becomes valid.  
CS0  
CS1  
t
t
su(CS)  
h(CS)  
WR  
RD  
t
w(RD)  
10%  
10%  
t
a
t
h
90%  
90%  
D(09)  
t
d(CSDAV)  
90%  
DATA_AV  
Figure 29. Read Timing Diagram Using RD (RD-controlled)  
Read Timing Parameter (RD-controlled)  
PARAMETER  
Setup time, RD low to last CS valid  
MIN  
0
TYP  
MAX  
10  
UNIT  
ns  
t
t
t
t
t
t
su(CS)  
Access time, last CS valid to data valid  
Delay time, last CS valid to DATA_AV inactive  
Hold time, first CS invalid to data invalid  
Hold time, RD change to first CS invalid  
Pulse duration, RD active  
0
ns  
a
12  
ns  
d(CSDAV)  
h
0
5
5
ns  
ns  
h(CS)  
w(RD)  
10  
ns  
22  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Write Timing (using WR, WR-controlled)  
Figure 30 shows the write-timing behavior when the WR(R/W) input is programmed as a write input WR only. The  
input RD acts as the read input in this configuration. This timing is called WR-controlled because WR is the last  
external signal of CS0, CS1, and WR which becomes valid.  
CS0  
CS1  
t
t
h(CS)  
su(CS)  
t
w(WR)  
WR  
RD  
10%  
10%  
t
su  
t
h
90%  
90%  
D(09)  
DATA_AV  
Figure 30. Write Timing Diagram Using WR (WR-controlled)  
Write Timing Parameter Using WR (WR-controlled)  
PARAMETER  
MIN  
0
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
Setup time, CS stable to last WR valid  
Setup time, data valid to first WR invalid  
Hold time, WR invalid to data invalid  
Hold time, WR invalid to CS change  
Pulse duration, WR active  
su(CS)  
5
ns  
su  
2
ns  
h
5
ns  
h(CS)  
w(WR)  
10  
ns  
23  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Read Timing (using R/W, CS0-controlled)  
Figure 31 shows the read-timing behavior when the WR(R/W) input is programmed as a combined read-write input  
R/W. The RD input has to be tied to high-level in this configuration. This timing is called CS0-controlled because CS0  
is the last external signal of CS0, CS1, and R/W which becomes valid. The reading of the data should be done with  
a certain timing relative to the conversion clock CONV_CLK, as illustrated in Figure 31.  
t
su(CSOHCONV_CLKL)  
t
su(CONV_CLKLCSOL)  
CONV_CLK  
10%  
10%  
90%  
t
w(CS)  
CS0  
CS1  
10%  
10%  
t
t
h(R/W)  
su(R/W)  
90%  
90%  
R/W  
RD  
t
a
t
h
90%  
90%  
D(011)  
Figure 31. Read Timing Diagram Using R/W (CS0-controlled)  
Read Timing Parameter (CS0-controlled)  
PARAMETER  
MIN  
10  
20  
0
TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
Setup time, CONV_CLK low before CS valid  
Setup time, CS invalid to CONV_CLK low  
Setup time, R/W high to last CS valid  
Access time, last CS valid to data valid  
Hold time, first CS invalid to data invalid  
Hold time, first external CS invalid to R/W change  
Pulse duration, CS active  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(CONV_CLKLCSOL)  
su(CSOHCONV_CLKL)  
su(R/W)  
a
0
10  
5
0
h
5
h(R/W)  
w(CS)  
10  
24  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
Write Timing (using R/W, CS0-controlled)  
Figure 32 shows the write-timing behavior when the WR(R/W) input is programmed as a combined read-write input  
R/W. The RD input has to be tied to high-level in this configuration. This timing is called CS0-controlled because CS0  
is the last external signal of CS0, CS1, and R/W which becomes valid. The write into the THS1009 can be performed  
irrespective of the conversion clock signal CONV_CLK.  
t
90%  
w(CS)  
CS0  
CS1  
10%  
10%  
t
t
h(R/W)  
su(R/W)  
R/W  
RD  
10%  
10%  
t
su  
t
h
90%  
90%  
D(011)  
Figure 32. Write Timing Diagram Using R/W (CS0-controlled)  
Write Timing Parameter (CS0-controlled)  
PARAMETER  
Setup time, R/W stable to last CS valid  
MIN  
0
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
su(R/W)  
Setup time, data valid to first CS invalid  
Hold time, first CS invalid to data invalid  
Hold time, first CS invalid to R/W change  
Pulse duration, CS active  
5
ns  
su  
2
ns  
h
5
ns  
h(R/W)  
w(CS)  
10  
ns  
25  
ꢁꢂ  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
ANALOG INPUT CONFIGURATION AND REFERENCE VOLTAGE  
The THS1009 features two analog input channels. These can be configured for either single-ended or differential  
operation. Figure 33 shows a simplified model, where a single-ended configuration for channel AINP is selected. The  
reference voltages for the ADC itself are V  
and V  
(either internal or external reference voltage). The analog  
REFP  
REFM  
input voltage range is between V  
to V  
. This means that V  
defines the minimum voltage and V  
REFM  
REFP  
REFM REFP  
defines the maximum voltage, which can be applied to the ADC. The internal reference source provides the voltage  
of 1.5 V and the voltage V of 3.5 V (see also section Reference Voltage). The resulting analog input  
V
REFM  
REFP  
voltage swing of 2 V can be expressed by:  
V
v AINP v V  
REFM  
REFP  
(1)  
V
REFP  
10-Bit  
ADC  
AINP  
V
REFM  
Figure 33. Single-Ended Input Stage  
A differential operation is desired for many applications due to better signal-to-noise ration. Figure 34 shows a  
simplified model for the analog inputs AINM and AINP, which are configured for differential operation. The differential  
operation mode provides in terms of performance benefits over the single-ended mode and is therefore  
recommended for best performance. The THS1009 offers 1 differential analog input and in the single-ended mode  
2 analog inputs. If the analog input architecture is differential, common-mode noise and common-mode voltages can  
be rejected. Additional details for both modes are given below.  
V
REFP  
AINP  
+
V
ADC  
10-Bit  
ADC  
Σ
AINM  
V
REFM  
Figure 34. Differential Input Stage  
In comparison to the single-ended configuration it can be seen that the voltage, V  
, which is applied at the input  
can be calculated as follows:  
ADC  
of the ADC is the difference between the input AINP and AINM. The voltage V  
ADC  
(
)
V
+ ABS AINPAINM  
ADC  
(2)  
An advantage to single-ended operation is that the common-mode voltage  
AINM ) AINP  
V
+
CM  
2
(3)  
can be rejected in the differential configuration, if the following condition for the analog input voltages is true:  
AGND v AINM, AINP v AV  
DD  
(4)  
(5)  
1 V v V  
v 4 V  
CM  
26  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢄꢅ  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
SINGLE-ENDED MODE OF OPERATION  
The THS1009 can be configured for single-ended operation using dc or ac coupling. In either case, the input of the  
THS1009 should be driven from an operational amplifier that does not degrade the ADC performance. Because the  
THS1009 operates from a 5-V single supply, it is necessary to level-shift ground-based bipolar signals to comply with  
its input requirements. This can be achieved with dc- and ac-coupling.  
DC COUPLING  
An operational amplifier can be configured to shift the signal level according to the analog input voltage range of the  
THS1009. The analog input voltage range of the THS1009 goes from 1.5 V to 3.5 V. An operational amplifier can  
be used as shown in Figure 35.  
Figure 35 shows an example with the analog input signal in the range between 1 V and 1 V. The signal is shifted  
by an operational amplifier to the analog input range of the THS1009 (1.5 V to 3.5 V). The operational amplifier is  
configured as an inverting amplifier with a gain of 1. The required dc voltage of 1.25 V at the noninverting input is  
derived from the 2.5-V output reference REFOUT of the THS1009 by using a resistor divider. Therefore, the  
operational amplifier output voltage is centered at 2.5 V. The 10 µF tantalum capacitor is required for bypassing  
REFOUT. REFIN of the THS1009 must be connected directly to REFOUT in single-ended mode. The use of ratio  
matched, thin-film resistor networks minimizes gain and offset errors.  
3.5 V  
2.5 V  
1.5 V  
R
1
5 V  
1 V  
0 V  
R
1
THS1009  
AINP  
_
R
S
1 V  
+
C
1.25 V  
REFIN  
REFOUT  
+
R
R
10 µF  
2
2
Figure 35. Level-Shift for DC-Coupled Input  
DIFFERENTIAL MODE OF OPERATION  
For the differential mode of operation, a conversion from single-ended to differential is required. A conversion to  
differential signals can be achieved by using an RF-transformer, which provides a center tap. Best performance is  
achieved in differential mode.  
Mini Circuits  
T41  
THS1009  
49.9 Ω  
R
AINP  
C
C
200 Ω  
R
AINM  
REFOUT  
+
10 µF  
Figure 36. Transformer Coupled Input  
27  
www.ti.com  
SLAS287A AUGUST 2000 REVISED DECEMBER 2002  
MECHANICAL DATA  
DA (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
38 PINS SHOWN  
0,30  
0,19  
M
0,13  
0,65  
38  
20  
6,20  
8,40  
NOM 7,80  
0,15 NOM  
Gage Plane  
1
19  
0,25  
A
0°8°  
ā
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
28  
30  
32  
38  
DIM  
9,80  
9,60  
11,10  
10,90  
11,10  
10,90  
12,60  
12,40  
A MAX  
A MIN  
4040066/D 11/98  
NOTES:A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-153  
28  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
THS1009CDA  
THS1009CDAG4  
THS1009CDAR  
THS1009CDARG4  
THS1009IDA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DA  
32  
32  
32  
32  
32  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
DA  
DA  
DA  
DA  
46 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
THS1009IDAR  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
DA  
DA  
32  
32  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
THS1009IDARG4  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS002C – JANUARY 1995 – REVISED DECEMBER 1998  
DA (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
38 PINS SHOWN  
0,30  
0,19  
M
0,13  
0,65  
38  
20  
6,20  
8,40  
NOM 7,80  
0,15 NOM  
Gage Plane  
1
19  
0,25  
A
0°8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
30  
32  
38  
DIM  
11,10  
10,90  
11,10  
10,90  
12,60  
12,40  
A MAX  
A MIN  
4040066/D 11/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-153  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

THS1009CDARG4

10-BIT, 2 ANALOG INPUT, 8 MSPS, SIMULTANEOUS SAMPLING ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1009IDA

10-BIT, 2 ANALOG INPUT, 8 MSPS, SIMULTANEOUS SAMPLING ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1009IDAR

10-BIT, 2 ANALOG INPUT, 8 MSPS, SIMULTANEOUS SAMPLING ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1009IDARG4

10-BIT, 2 ANALOG INPUT, 8 MSPS, SIMULTANEOUS SAMPLING ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1009_14

Simultaneous Sampling of Two Single-Ended Signals or One Differential Signals or Combination of Both

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS10270RJ

Aluminium Housed Power Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MACOM

THS1030

2.7 V . 5.5 V, 10-BIT, 30 MSPS CMOS ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1030CDW

3-V TO 5.5-V, 10-BIT, 30MSPS CMOS ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1030CDWG4

3-V TO 5.5-V, 10-BIT, 30MSPS CMOS ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1030CDWR

3-V TO 5.5-V, 10-BIT, 30MSPS CMOS ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1030CDWRG4

3-V TO 5.5-V, 10-BIT, 30MSPS CMOS ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS1030CPW

3-V TO 5.5-V, 10-BIT, 30MSPS CMOS ANALOG-TO-DIGITAL CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI