THS3091IDGNR [TI]

单路、高电压、低失真电流反馈运算放大器 | DGN | 8 | -40 to 85;
THS3091IDGNR
型号: THS3091IDGNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单路、高电压、低失真电流反馈运算放大器 | DGN | 8 | -40 to 85

放大器 运算放大器
文件: 总31页 (文件大小:1059K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK  
OPERATIONAL AMPLIFIERS  
FEATURES  
DESCRIPTION  
Low Distortion  
The THS3091 and THS3095 are high-voltage,  
low-distortion, high-speed, current-feedback  
amplifiers designed to operate over a wide supply  
range of ±5 V to ±15 V for applications requiring  
large, linear output signals such as Pin, Power FET,  
and VDSL line drivers.  
– 77 dBc HD2 at 10 MHz, RL = 1 kΩ  
– 69 dBc HD3 at 10 MHz, RL = 1 kΩ  
Low Noise  
– 14 pA/Hz Noninverting Current Noise  
– 17 pA/Hz Inverting Current Noise  
– 2 nV/Hz Voltage Noise  
The THS3095 features a power-down pin (PD) that  
puts the amplifier in low power standby mode, and  
lowers the quiescent current from 9.5 mA to 500 µA.  
High Slew Rate: 7300 V/µs (G = 5, VO = 20 VPP  
Wide Bandwidth: 210 MHz (G = 2, RL = 100 )  
High Output Current Drive: ±250 mA  
Wide Supply Range: ±5 V to ±15 V  
Power-Down Feature: (THS3095 Only)  
)
The wide supply range combined with total harmonic  
distortion as low as -69 dBc at 10 MHz, in addition, to  
the high slew rate of 7300 V/µs makes the  
THS3091/5 ideally suited for high-voltage arbitrary  
waveform driver applications. Moreover, having the  
ability to handle large voltage swings driving into  
high-resistance and high-capacitance loads while  
maintaining good settling time performance makes  
the devices ideal for Pin driver and PowerFET driver  
applications.  
APPLICATIONS  
High-Voltage Arbitrary Waveform  
Power FET Driver  
Pin Driver  
VDSL Line Driver  
The THS3091 and THS3095 are offered in an 8-pin  
SOIC (D), and the 8-pin SOIC (DDA) packages with  
PowerPAD™.  
TYPICAL ARBITARY WAVEFORM  
GENERATOR OUTPUT DRIVE CIRCUIT  
TOTAL HARMONIC DISTORTION  
vs  
FREQUENCY  
−20  
G = 5,  
V
= 20 V  
PP  
O
R
R
= 1 k,  
= 100 ,  
= ±15 V  
F
L
−30  
−40  
+
THS3091  
V
S
V
= 10 V  
PP  
O
−50  
−60  
−70  
V
OUT  
+
IOUT1  
DAC5686  
IOUT2  
+
THS3091  
V
= 5 V  
PP  
O
THS4271  
−80  
−90  
V
= 2 V  
PP  
O
100 k  
1 M  
10 M  
100 M  
+
f − Frequency − Hz  
THS3091  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
UNLESS OTHERWISE NOTED this document contains PRO-  
DUCTION DATA information current as of publication date. Prod-  
ucts conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily  
include testing of all parameters.  
Copyright © 2003–2004, Texas Instruments Incorporated  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
TOP VIEW  
D, DDA  
TOP VIEW  
D, DDA  
THS3095  
THS3091  
NC  
NC  
REF  
PD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
IN−  
V
IN+  
V
V
V
IN−  
V
IN+  
V
V
S+  
S+  
OUT  
OUT  
V
S−  
NC  
V
S−  
NC  
NC = No Internal Connection  
NC = No Internal Connection  
See Note A.  
Note A: The devices with the power−down option defaults to the ON state if no signal is applied to the PD pin. Additionallly, the REF  
pin functional range is from V to (V − 4 V).  
S−  
S+  
ODERING INFORMATION  
PART NUMBER  
THS3091D  
PACKAGE TYPE  
TRANSPORT MEDIA, QUANTITY  
Rails, 75  
SOIC-8  
THS3091DR  
Tape and Reel, 2500  
Rails, 75  
THS3091DDA  
THS3091DDAR  
SOIC-8-PP(1)  
Tape and Reel, 2500  
Power-down  
THS3095D  
THS3095DR  
Rails, 75  
SOIC-8  
Tape and Reel, 2500  
Rails, 75  
THS3095DDA  
THS3095DDAR  
SOIC-8-PP(1)  
Tape and Reel, 2500  
(1) The PowerPAD is electrically isolated from all other pins.  
DISSIPATION RATING TABLE  
(2)  
POWER RATING  
TJ = 125°C  
PACKAGE  
ΘJC (°C/W)  
ΘJA (°C/W)(1)  
TA = 25°C  
1.02 W  
TA = 85°C  
410 mW  
873 mW  
D-8  
DDA-8(3)  
38.3  
9.2  
97.5  
45.8  
2.18 W  
(1) This data was taken using the JEDEC standard High-K test PCB.  
(2) Power rating is determined with a junction temperature of 125°C. This is the point where distortion starts to substantially increase.  
Thermal management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance and  
long-term reliability.  
(3) The THS3091 and THS3095 may incorporate a PowerPAD™ on the underside of the chip. This acts as a heatsink and must be  
connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction  
temperature which could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the  
PowerPAD™ thermally enhanced package.  
2
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
RECOMMENDED OPERATING CONDITIONS  
MIN  
±5  
MAX UNIT  
Dual supply  
Supply voltage  
±15  
V
Single supply  
10  
30  
TA Operating free-air temperature  
-40  
85  
°C  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature (unless otherwise noted)(1)  
UNIT  
33 V  
VS- to VS+ Supply voltage  
VI  
Input voltage  
± VS  
VID  
IO  
Differential input voltage  
± 4 V  
350 mA  
Output current  
Continuous power dissipation  
See Dissipation Ratings Table  
TJ  
Maximum junction temperature,  
150°C  
125°C  
(2)  
TJ  
Maximum junction temperature, continuous operation, long-term reliability  
Tstg  
Storage temperature  
-65°C to 150°C  
300°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
HBM  
ESD ratings CDM  
MM  
2000  
1500  
150  
(1) The absolute maximum ratings under any condition is limited by the constraints of the silicon process. Stresses above these ratings may  
cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.  
(2) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may  
result in reduced reliability and/or lifetime of the device.  
3
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
ELECTRICAL CHARACTERISTICS  
VS = ±15 V, RF = 1.21 k, RL = 100 , and G = 2 (unless otherwise noted)  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
0°C to -40°C to  
MIN/TYP/  
MAX  
25°C  
25°C  
UNIT  
70°C  
85°C  
AC PERFORMANCE  
G = 1, RF = 1.78 k, VO = 200 mVPP  
G = 2, RF = 1.21 k, VO = 200 mVPP  
G = 5, RF = 1 k, VO = 200 mVPP  
G = 10, RF = 866 , VO = 200 mVPP  
G = 2, RF = 1.21 k, VO = 200 mVPP  
G = 5, RF = 1 k, VO = 4 VPP  
G = 2, VO = 10-V step, RF = 1.21 kΩ  
G = 5, VO = 20-V step, RF = 1 kΩ  
G = 2, VO = 5-VPP, RF = 1.21 kΩ  
G = -2, VO = 2 VPP step  
235  
210  
190  
180  
95  
Small-signal bandwidth, -3 dB  
MHz  
TYP  
0.1-dB bandwidth flatness  
Large-signal bandwidth  
135  
5000  
7300  
5
Slew rate (25% to 75% level)  
V/µs  
ns  
TYP  
TYP  
TYP  
Rise and fall time  
Settling time to 0.1%  
Settling time to 0.01%  
Harmonic distortion  
42  
ns  
G = -2, VO = 2 VPP step  
72  
RL = 100Ω  
66  
77  
2nd Harmonic distortion  
3rd Harmonic distortion  
RL = 1 kΩ  
RL = 100 Ω  
RL = 1 kΩ  
G = 2, RF = 1.21 k,  
VO = 2 VPP, f = 10 MHz  
dBc  
TYP  
74  
69  
Input voltage noise  
f > 10 kHz  
f > 10 kHz  
f > 10 kHz  
2
nV / Hz  
pA / Hz  
pA / Hz  
TYP  
TYP  
TYP  
Noninverting input current noise  
Inverting input current noise  
14  
17  
NTSC  
PAL  
0.013%  
0.011%  
0.020°  
0.026°  
Differential gain  
G = 2, RL = 150 ,  
RF = 1.21 kΩ  
TYP  
NTSC  
PAL  
Differential phase  
DC PERFORMANCE  
Transimpedance  
VO = ±7.5 V, Gain = 1  
850  
0.9  
350  
3
300  
4
300  
4
kΩ  
mV  
MIN  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
Input offset voltage  
VCM = 0 V  
Average offset voltage drift  
Noninverting input bias current  
Average bias current drift  
Inverting input bias current  
Average bias current drift  
Input offset current  
±10  
20  
±10  
20  
µV/°C  
µA  
4
15  
15  
10  
VCM = 0 V  
VCM = 0 V  
VCM = 0 V  
±20  
20  
±20  
20  
nA/°C  
µA  
3.5  
1.7  
±20  
15  
±20  
15  
nA/°C  
µA  
Average offset current drift  
INPUT CHARACTERISTICS  
Common-mode input range  
Common-mode rejection ratio  
Noninverting input resistance  
Noninverting input capacitance  
Inverting input resistance  
Inverting input capacitance  
±20  
±20  
nA/°C  
±13.6  
78  
±13.3  
±13  
±13  
V
dB  
MΩ  
pF  
MIN  
MIN  
TYP  
TYP  
TYP  
TYP  
VCM = ±10 V  
68  
65  
65  
1.3  
0.1  
30  
1.4  
pF  
4
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
0°C to -40°C to  
MIN/TYP/  
MAX  
25°C  
25°C  
UNIT  
70°C  
85°C  
OUTPUT CHARACTERISTICS  
RL = 1 kΩ  
RL = 100 Ω  
RL = 40 Ω  
RL = 40 Ω  
±13.2  
±12.5  
280  
±12.8  
±12.1  
225  
±12.5  
±11.8  
200  
±12.5  
±11.8  
200  
Output voltage swing  
V
MIN  
Output current (sourcing)  
Output current (sinking)  
Output impedance  
mA  
mA  
MIN  
MIN  
TYP  
250  
200  
175  
175  
f = 1 MHz, Closed loop  
0.06  
POWER SUPPLY  
Specified operating voltage  
Maximum quiescent current  
Minimum quiescent current  
Power supply rejection (+PSRR)  
Power supply rejection (-PSRR)  
±15  
9.5  
9.5  
75  
±16  
10.5  
8.5  
70  
±16  
11  
8
±16  
11  
8
V
MAX  
MAX  
MIN  
MIN  
MIN  
mA  
mA  
dB  
dB  
VS+ = 15.5 V to 14.5 V, VS- = 15 V  
VS+ = 15 V, VS- = -15.5 V to -14.5 V  
65  
65  
65  
65  
73  
68  
POWER-DOWN CHARACTERISTICS (THS3095 ONLY)  
Enable, REF = 0 V  
Power-down voltage level  
V
MAX  
MAX  
MAX  
Power-down , REF = 0 V  
2  
500  
11  
Power-down quiescent current  
VPD quiescent current  
PD = 0V  
700  
15  
800  
20  
800  
20  
µA  
µA  
VPD = 0 V, REF = 0 V,  
VPD = 3.3 V, REF = 0 V  
90% of final value  
10% of final value  
11  
15  
20  
20  
Turnon time delay  
Turnoff time delay  
60  
µs  
TYP  
150  
5
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
ELECTRICAL CHARACTERISTICS  
VS = ±5 V, RF = 1.15 k, RL = 100 , and G = 2 (unless otherwise noted)  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
0°C to  
70°C  
-40°C to  
85°C  
MIN/TYP/  
MAX  
25°C  
25°C  
UNIT  
AC PERFORMANCE  
G = 1, RF = 1.78 k, VO = 200 mVPP  
G = 2, RF = 1.15 k, VO = 200 mVPP  
G = 5, RF = 1 k, VO = 200 mVPP  
G = 10, RF = 866 , VO = 200 mVPP  
G = 2, RF = 1.15 k, VO = 200 mVPP  
G = 2, RF = 1.15 k, VO = 4 VPP  
G = 2, VO= 5-V step, RF = 1.21 kΩ  
G = 5, VO= 5-V step, RF = 1 kΩ  
G = 2, VO = 5-V step, RF = 1.21 kΩ  
G = -2, VO = 2 VPP step  
190  
180  
160  
150  
65  
Small-signal bandwidth, -3 dB  
MHz  
TYP  
0.1-dB bandwidth flatness  
Large-signal bandwidth  
160  
1400  
1900  
5
Slew rate (25% to 75% level)  
V/µs  
ns  
TYP  
TYP  
TYP  
Rise and fall time  
Settling time to 0.1%  
Settling time to 0.01%  
Harmonic distortion  
35  
ns  
G = -2, VO = 2 VPP step  
73  
RL = 100 Ω  
77  
73  
2nd Harmonic distortion  
3rd Harmonic distortion  
RL = 1 kΩ  
RL = 100 Ω  
RL = 1 kΩ  
G = 2, RF = 1.15 k,  
VO = 2 VPP, f = 10 MHz  
dBc  
TYP  
70  
68  
Input voltage noise  
f > 10 kHz  
f > 10 kHz  
f > 10 kHz  
2
nV / Hz  
pA / Hz  
pA / Hz  
TYP  
TYP  
TYP  
Noninverting input current noise  
Inverting input current noise  
14  
17  
NTSC  
PAL  
0.027%  
0.025%  
0.04°  
0.05°  
Differential gain  
G = 2, RL = 150 ,  
RF = 1.15 kΩ  
TYP  
NTSC  
PAL  
Differential phase  
DC PERFORMANCE  
Transimpedance  
VO = ±2.5 V, Gain = 1  
700  
0.3  
250  
2
200  
3
200  
3
kΩ  
mV  
MIN  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
Input offset voltage  
VCM = 0 V  
Average offset voltage drift  
Noninverting input bias current  
Average bias current drift  
Inverting input bias current  
Average bias current drift  
Input offset current  
±10  
20  
±10  
20  
µV/°C  
µA  
2
5
1
15  
15  
10  
VCM = 0 V  
VCM = 0 V  
VCM = 0 V  
±20  
20  
±20  
20  
nA/°C  
µA  
±20  
15  
±20  
15  
nA/°C  
µA  
Average offset current drift  
INPUT CHARACTERISTICS  
Common-mode input range  
Common-mode rejection ratio  
Noninverting input resistance  
Noninverting input capacitance  
Inverting input resistance  
Inverting input capacitance  
±20  
±20  
nA/°C  
±3.6  
66  
±3.3  
±3  
±3  
V
dB  
MΩ  
pF  
MIN  
MIN  
TYP  
TYP  
TYP  
TYP  
VCM = ±2.0 V, VO = 0 V  
60  
57  
57  
1.1  
1.2  
32  
1.5  
pF  
6
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
0°C to  
70°C  
-40°C to  
85°C  
MIN/TYP/  
MAX  
25°C  
25°C  
UNIT  
OUTPUT CHARACTERISTICS  
RL = 1 kΩ  
RL = 100 Ω  
RL = 40 Ω  
RL = 40 Ω  
±3.4  
±3.1  
200  
180  
0.09  
±3.1  
±2.7  
160  
150  
±2.8  
±2.5  
140  
125  
±2.8  
±2.5  
140  
125  
Output voltage swing  
V
MIN  
Output current (sourcing)  
Output current (sinking)  
Output impedance  
mA  
mA  
MIN  
MIN  
TYP  
f = 1 MHz, Closed loop  
POWER SUPPLY  
Specified operating voltage  
Maximum quiescent current  
Minimum quiescent current  
Power supply rejection (+PSRR)  
Power supply rejection (-PSRR)  
±5  
8.2  
8.2  
73  
±4.5  
9
±4.5  
9.5  
6.5  
63  
±4.5  
9.5  
6.5  
63  
V
MAX  
MAX  
MIN  
MIN  
MIN  
mA  
mA  
dB  
dB  
7
VS+ = 5.5 V to 4.5 V, VS– = 5 V  
VS+ = 5 V, VS– = –4.5 V to -5.5 V  
68  
65  
71  
60  
60  
POWER-DOWN CHARACTERISTICS (THS3095 ONLY)  
Enable, REF = 0 V  
0.8  
2  
300  
11  
Power-down voltage level  
Power-down quiescent current  
VPD quiescent current  
V
MAX  
MAX  
MAX  
Power-down , REF = 0 V  
PD = 0V  
500  
15  
600  
20  
600  
20  
µA  
µA  
VPD = 0 V, REF = 0 V,  
VPD = 3.3 V, REF = 0 V  
90% of final value  
10% of final value  
11  
15  
20  
20  
Turnon time delay  
Turnoff time delay  
60  
µs  
TYP  
150  
7
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
±15-V GRAPHS  
FIGURE  
Noninverting small-signal frequency response  
Inverting small-signal frequency response  
0.1-dB gain flatness frequency response  
Noninverting large-signal frequency response  
Inverting large-signal frequency response  
Capacitive load frequency response  
Recommended RISO  
1, 2  
3
4
5
6
7
vs Capacitive load  
vs Frequency  
8
2nd Harmonic distortion  
3rd Harmonic distortion  
2nd Harmonic distortion  
3rd Harmonic distortion  
Harmonic distortion  
9, 11  
10, 12  
13  
vs Frequency  
vs Frequency  
vs Frequency  
14  
vs Output voltage swing  
vs Output voltage step  
vs Frequency  
15, 16  
17, 18, 19  
20  
Slew rate  
Noise  
Settling time  
21, 22  
23  
Quiescent current  
vs Supply voltage  
vs Frequency  
Quiescent current  
24  
Output voltage  
vs Load resistance  
vs Case temperature  
vs Case temperature  
vs Frequency  
25  
Input bias and offset current  
Input offset voltage  
26  
27  
Transimpedance  
28  
Rejection ratio  
vs Frequency  
29  
Noninverting small-signal transient response  
Inverting large-signal transient response  
Overdrive recovery time  
Differential gain  
30  
31, 32  
33  
vs Number of loads  
vs Number of loads  
vs Frequency  
34  
Differential phase  
35  
Closed-loop output impedance  
Power-down quiescent current  
Turnon and turnoff time delay  
36  
vs Supply voltage  
37  
38  
8
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TABLE OF GRAPHS  
±5-V GRAPHS  
FIGURE  
39  
Noninverting small-signal frequency response  
Inverting small-signal frequency response  
0.1-dB gain flatness frequency response  
Noninverting large-signal frequency response  
Inverting large-signal frequency response  
Settling time  
40  
41  
42  
43  
44  
2nd Harmonic distortion  
3rd Harmonic distortion  
vs Frequency  
45, 47  
46, 48  
49, 50  
51, 52, 53  
54  
vs Frequency  
Harmonic distortion  
vs Output voltage swing  
vs Output voltage step  
vs Frequency  
Slew rate  
Quiescent current  
Output voltage  
vs Load resistance  
vs Case temperature  
55  
Input bias and offset current  
Overdrive recovery time  
Rejection ratio  
56  
57  
vs Frequency  
58  
9
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±15 V)  
NONINVERTING SMALL-SIGNAL  
FREQUENCY RESPONSE  
NONINVERTING SMALL-SIGNAL  
FREQUENCY RESPONSE  
INVERTING SMALL-SIGNAL  
FREQUENCY RESPONSE  
24  
22  
20  
18  
16  
14  
12  
9
8
7
6
5
4
3
2
24  
22  
20  
18  
16  
14  
R
= 750  
F
G = −10, R = 866  
F
G = 10, R = 866  
F
G = −5, R = 909 Ω  
G = 5, R = 1 kΩ  
F
F
R =1.21kΩ  
F  
12  
10  
8
R
V
= 100 ,  
= 200 mV  
= ±15 V  
L
O
S
R
O
S
= 100 ,  
= 200 mV  
= ±15 V  
L
,
PP  
10  
8
V
V
,
PP  
V
R
= 1.5 kΩ  
F
6
6
4
G = 2, R = 1.21 kΩ  
G = −2, R = 1 kΩ  
F
F
4
Gain = 2,  
2
2
R
L
=100 ,  
0
−2  
−4  
0
V
V
= 200 mV ,  
PP  
= ±15 V  
O
S
1
0
G = −1, R = 1.05 kΩ  
G = 1, R = 1.78 kΩ  
F
−2  
−4  
F
1 M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
1 G  
10 M  
100 M  
1 G  
1 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 1.  
Figure 2.  
Figure 3.  
0.1-dB GAIN FLATNESS  
FREQUENCY RESPONSE  
NONINVERTING LARGE-SIGNAL  
FREQUENCY RESPONSE  
INVERTING LARGE-SIGNAL  
FREQUENCY RESPONSE  
16  
16  
14  
12  
10  
8
6.3  
G = −5, R = 909  
F
G = 5, R = 1 k  
Gain = 2,  
F
14  
12  
R
F
R
L
= 1.21 k,  
= 100 ,  
6.2  
6.1  
V
V
= 200 mV ,  
PP  
= ±15 V  
O
S
10  
8
G = −2, R = 1 kΩ  
F
6
6
5.9  
5.8  
5.7  
G = 2, R = 1.21 kΩ  
F
4
6
2
4
V
= 4 V ,  
PP  
O
0
V
R
V
= 4 V ,  
PP  
O
R
= 100 ,  
= ±15 V  
L
= 100 ,  
= ±15 V  
2
0
L
−2  
V
S
S
−4  
1 M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
1 G  
100 k  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
f − Frequency − Hz  
f - Frequency - Hz  
Figure 4.  
Figure 5.  
Figure 6.  
RECOMMENDED RISO  
vs  
CAPTIVATE LOAD  
2ND HARMONIC DISTORTION  
CAPACITIVE LOAD  
FREQUENCY RESPONSE  
vs  
FREQUENCY  
16  
14  
45  
−40  
R
= 38.3  
(ISO)  
C
Gain = 5,  
V
R
V
= 2 V ,  
PP  
= 100 ,  
= ±15 V  
O
−45  
−50  
−55  
−60  
= 10 pF  
L
40  
35  
30  
R
V
= 100 ,  
= ±15 V  
L
L
S
S
12  
10  
8
R
R
= 30.9 Ω  
(ISO)  
C
= 22 pF  
L
25  
20  
= 22.1 Ω  
G = 1, R = 1.78 kΩ  
(ISO)  
C
F
−65  
−70  
= 47 pF  
L
6
15  
10  
4
2
R
= 15.8 Ω  
= 100 pF  
(ISO)  
C
L
−75  
−80  
−85  
−90  
G = 2, R = 1.21 kΩ  
F
Gain = 5,  
0
R
L
= 100 Ω,  
=±15 V  
5
0
V
S
−2  
10 M  
100 M  
1 G  
10  
100  
100 k  
1 M  
10 M  
100 M  
f − Frequency − Hz  
C
L
− Capacitive Load − pF  
f − Frequency − Hz  
Figure 7.  
Figure 8.  
Figure 9.  
10  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±15 V) (continued)  
3RD HARMONIC DISTORTION  
2ND HARMONIC DISTORTION  
3RD HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−40  
−50  
−40  
-40  
-50  
V
R
V
= 2 V  
= 1 k,  
= ±15 V  
,
V
R
V
= 2 V ,  
PP  
= 100 ,  
= ±15 V  
O
PP  
V
R
V
= 2 V ,  
PP  
= 1 k,  
= ±15 V  
O
O
−45  
−50  
−55  
L
L
L
S
S
S
−60  
−70  
−80  
-60  
-70  
-80  
−60  
−65  
G = 1, R = 1.78 kΩ  
F
G = 1, R = 1.78 kΩ  
F
G = 1, R = 1.78 kΩ  
F
−70  
−75  
G = 2, R = 1.21 kΩ  
F
G = 2, R = 1.21 kΩ  
G = 2, R = 1.21 kΩ  
F
F
−80  
−85  
−90  
−90  
-90  
−100  
-100  
100 k  
1 M  
10 M  
100 M  
100 k  
1 M  
10 M  
100 M  
100 k  
1 M  
10 M  
100 M  
f − Frequency − Hz  
f − Frequency − Hz  
f - Frequency - Hz  
Figure 10.  
Figure 11.  
Figure 12.  
2ND HARMONIC DISTORTION  
3RD HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE SWING  
vs  
vs  
FREQUENCY  
FREQUENCY  
-60  
-65  
-70  
-75  
−30  
−40  
−30  
−40  
G = 5,  
G = 5,  
V
= 20 V  
PP  
R
F
R
L
V
= 1 k,  
= 100 ,  
= ±15 V  
R
F
R
L
V
= 1 k,  
= 100 ,  
= ±15 V  
O
HD2  
S
S
−50  
−60  
−50  
−60  
V
= 20 V  
PP  
O
-80  
-85  
-90  
HD3  
V
= 10 V  
PP  
−70  
−80  
−90  
O
−70  
−80  
−90  
Gain = 5,  
V
= 10 V  
PP  
O
R
R
= 1 k  
= 100 ,  
F
L
V
= 2 V  
PP  
O
f= 1 MHz  
= ±15 V  
-95  
V
S
V
= 2 V  
PP  
O
-100  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
0
2
4
6
8
10 12 14 16 18 20  
f − Frequency − Hz  
f − Frequency − Hz  
V
- Output Voltage Swing - V  
O
PP  
Figure 13.  
Figure 14.  
Figure 15.  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE SWING  
SLEW RATE  
vs  
OUTPUT VOLTAGE STEP  
SLEW RATE  
vs  
OUTPUT VOLTAGE STEP  
2000  
1800  
1600  
-40  
-50  
6000  
5000  
4000  
3000  
2000  
1000  
Gain = 5,  
Gain = 1  
Gain = 2  
R
R
= 1 k  
= 100 ,  
F
R
L
R
F
V
= 100  
= 1.78 kΩ  
= ±15 V  
R
L
R
F
V
= 100  
= 1.21 kΩ  
= ±15 V  
L
f= 8 MHz  
= ±15 V  
Rise  
S
V
S
1400  
1200  
S
HD2  
-60  
-70  
Fall  
1000  
800  
600  
400  
-80  
HD3  
Rise  
Fall  
6
-90  
200  
0
-100  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
7
8
9
10  
V
− Output Voltage − V  
O
PP  
V
- Output Voltage Swing - V  
V
- Output Voltage - V  
PP  
O
PP  
O
Figure 16.  
Figure 17.  
Figure 18.  
11  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±15 V) (continued)  
SLEW RATE  
vs  
OUTPUT VOLTAGE STEP  
NOISE  
vs  
FREQUENCY  
SETTLING TIME  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
1000  
100  
1.25  
1
Gain = 5  
R
R
V
= 100  
= 1 kΩ  
= ±15 V  
L
F
S
Rising Edge  
0.75  
0.5  
0.25  
0
Gain = -2  
I
n−  
Rise  
R
R
V
= 100  
=1 kΩ  
= ±15 V  
L
F
S
Fall  
-0.25  
-0.5  
I
n+  
10  
1
V
-0.75  
n
Falling Edge  
-1  
-1.25  
10  
100  
1 k  
10 k  
100 k  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
f − Frequency − Hz  
V
- Output Voltage - V  
t - Time - ns  
O
PP  
Figure 19.  
Figure 20.  
Figure 21.  
QUIESCENT CURRENT  
vs  
SUPPLY VOLTAGE  
QUIESCENT CURRENT  
vs  
SETTLING TIME  
FREQUENCY  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
10  
9.5  
9
22  
20  
T
= 85 °C  
A
Rising Edge  
T
= 25 °C  
18  
16  
14  
12  
A
V
= 4V  
PP  
O
V
8.5  
8
Gain = -2  
T
= −40 °C  
A
R
R
V
= 100  
= 1 kΩ  
= ±15 V  
L
F
S
10  
8
= 2V  
PP  
O
7.5  
6
4
2
0
Gain = 5  
7
6.5  
6
R
R
= 1 k,  
= 100 ,  
= ±15 V  
F
L
Falling Edge  
-3.5  
-4  
-4.5  
V
S
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
2
4
6
8
10  
12  
100 M  
1 G  
100 k  
10 M  
1 M  
t - Time - ns  
V
− Supply Voltage − ±V  
f − Frequency − Hz  
S
Figure 22.  
Figure 23.  
Figure 24.  
INPUT BIAS AND  
OFFSET CURRENT  
vs  
OUTPUT VOLTAGE  
vs  
LOAD RESISTANCE  
INPUT OFFSET VOLTAGE  
vs  
CASE TEMPERATURE  
CASE TEMPERATURE  
7
3
16  
12  
8
V
= ±15 V  
I
-
S
6.5  
6
IB  
2.5  
5.5  
5
2
4.5  
4
4
I
+
V
= ±15 V  
IB  
S
V
T
A
= ±15 V  
= -40 to 85°C  
S
1.5  
3.5  
3
0
-4  
2.5  
2
1
-8  
1.5  
1
V = ±5 V  
S
0.5  
I
-12  
-16  
OS  
0.5  
0
0
10  
100  
1000  
-40-30-20 -10  
0 10 20 30 40 50 60 70 80 90  
-40-30-20-10  
0 10 20 30 40 50 60 70 80 90  
R
L
- Load Resistance -  
T
C
- Case Temperature - °C  
T
C
- Case Temperature - °C  
Figure 25.  
Figure 26.  
Figure 27.  
12  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±15 V) (continued)  
TRANSIMPEDANCE  
vs  
REJECTION RATIO  
vs  
NONINVERTING SMALL-SIGNAL  
TRANSIENT RESPONSE  
FREQUENCY  
FREQUENCY  
70  
60  
50  
40  
30  
20  
0.3  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= ±15 V  
S
0.25  
V
= ±15 V and ±5 V  
S
Output  
0.2  
PSRR−  
0.15  
Input  
0.1  
0.05  
0
CMRR  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
Gain = 2  
= 100  
PSRR+  
R
R
L
1 kΩ  
F =  
V
= ±15 V  
S
10  
0
10  
0
100 k  
1 M  
10 M  
100 M  
1 G  
0
10 20 30 40 50 60 70  
100 k  
1 M  
10 M  
100 M  
1 G  
t - Time - ns  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 28.  
Figure 29.  
Figure 30.  
INVERTING LARGE-SIGNAL  
TRANSIENT RESPONSE  
INVERTING LARGE-SIGNAL  
TRANSIENT RESPONSE  
OVERDRIVE RECOVERY TIME  
20  
15  
10  
12  
6
5
4
Gain = 5,  
10  
8
Gain = -5  
3
2
1
R
R
= 100 ,  
= 1 k,  
= ±15 V  
Output  
L
F
S
4
R
R
= 100  
=909 Ω  
= ±15 V  
L
F
S
6
4
2
3
V
V
2
5
1
Input  
0
0
0
-2  
-4  
-6  
-8  
0
Input  
−1  
−2  
−3  
−4  
−5  
−6  
−5  
−1  
−10  
−2  
−3  
−4  
Gain = −5  
R
R
= 100  
L
−15  
−20  
909 Ω  
Output  
F =  
-10  
V
= ±15 V  
S
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
-12  
0
10 20 30 40 50 60 70  
0
5
10 15 20 25 30 35 40  
t − Time − µs  
t - Time - ns  
t − Time − ns  
Figure 31.  
Figure 32.  
Figure 33.  
CLOSED-LOOP OUTPUT  
IMPEDANCE  
vs  
DIFFERENTIAL GAIN  
vs  
NUMBER OF LOADS  
DIFFERENTIAL PHASE  
vs  
NUMBER OF LOADS  
FREQUENCY  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
100  
10  
1
Gain = 2  
Gain = 2  
Gain = 2,  
R
V
= 1.21 k  
= ±15 V  
F
S
R
V
= 1.21 k  
= ±15 V  
F
S
R = 5.11 ,  
ISO  
R
V
= 1.21 K,  
= ±15 V  
F
S
40 IRE - NTSC and Pal  
Worst Case ±100 IRE Ramp  
°
40 IRE − NTSC and Pal  
Worst Case ±100 IRE Ramp  
PAL  
PAL  
1.21 k1.21 kΩ  
NTSC  
0.1  
V
O
5.11 Ω  
+
NTSC  
0.01  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
1 M  
10 M  
100 M  
1 G  
Number of Loads - 150 Ω  
Number of Loads − 150 Ω  
f − Frequency − Hz  
Figure 34.  
Figure 35.  
Figure 36.  
13  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±15 V) (continued)  
POWER-DOWN QUIESCENT  
CURRENT  
vs  
TURNON AND TURNOFF  
TIME DELAY  
SUPPLY VOLTAGE  
600  
500  
6
5
Power-down Pulse  
4
3
2
1
0
T
= 85°C  
= 25°C  
A
Gain = 2,  
400  
300  
200  
V
= 0.1 Vdc  
I
R
L
= 100  
V
= ±15 V and ±5 V  
S
T
A
= -40°C  
0.3  
0.2  
T
A
0.1  
0
Output Voltage  
100  
0
−0.1  
0
1
2
3
4
5
6
7
3
4
5
6
7
8
9
10 11 12 13 14 15  
t − Time − ms  
V
- Supply Voltage - ±V  
S
Figure 37.  
Figure 38.  
14  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±5 V)  
NONINVERTING SMALL-SIGNAL  
FREQUENCY RESPONSE  
INVERTING SMALL-SIGNAL  
FREQUENCY RESPONSE  
0.1-dB GAIN FLATNESS  
FREQUENCY RESPONSE  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
6.3  
6.2  
6.1  
Gain = 2,  
G = 10, R = 909  
G = −10, R = 866  
F
F
R
R
V
= 1.21 k,  
= 100 ,  
= 200 mV  
F
L
,
O
S
PP  
G = 5, R = 1 kΩ  
G = −5, R = 909 Ω  
F
F
V
= ±5 V  
R
V
V
= 100 ,  
= 200 mV  
= ±5 V  
R
V
V
= 100 ,  
= 200 mV  
= ±5 V  
L
L
10  
8
.
.
PP  
6
O
S
PP  
O
S
6
4
6
5.9  
G = 2, R = 1.15 kΩ  
F
G = −2, R = 1 kΩ  
4
F
2
2
5.8  
5.7  
0
0
G =1, R = 1.5 kΩ  
F
-2  
-4  
G = −1, R = 1.05 Ω  
−2  
−4  
F
1 M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
1 G  
1 M  
10 M  
100 M  
f − Frequency − Hz  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 39.  
Figure 40.  
Figure 41.  
NONINVERTING LARGE-SIGNAL  
FREQUENCY RESPONSE  
INVERTING LARGE-SIGNAL  
FREQUENCY RESPONSE  
SETTLING TIME  
16  
14  
12  
10  
16  
14  
12  
10  
8
1.25  
1
G = −5, R = 909  
F
G = 5, R = 1 k  
F
Rising Edge  
0.75  
0.5  
0.25  
0
Gain = -2  
R
R
V
= 100  
= 1 kΩ  
= ±5 V  
L
F
6
8
6
4
G = −2, R = 1 kΩ  
G = 2, R = 1.15 kΩ  
F
F
4
-0.25  
-0.5  
-0.75  
-1  
S
2
0
R
L
= 100 ,  
R
V
= 100 ,  
L
Falling Edge  
V
V
= 4 V  
= ±5 V  
,
= 4 V  
,
2
0
O
S
PP  
O
PP  
−2  
−4  
V
= ±5 V  
S
-1.25  
1 M  
10 M  
100 M  
1 G  
0
1
2
3
4
5
6
7
8
9
10  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
f − Frequency − Hz  
t - Time - ns  
Figure 42.  
Figure 43.  
Figure 44.  
2ND HARMONIC DISTORTION  
3RD HARMONIC DISTORTION  
2ND HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−40  
−50  
-40  
−40  
−50  
V
R
V
= 2 V  
= 100 ,  
= ±5 V  
,
V
R
V
= 2 V ,  
PP  
= 1 k,  
= ±5 V  
O
PP  
O
V
R
V
= 2 V ,  
PP  
= 100 ,  
= ±5 V  
O
L
L
L
-50  
-60  
-70  
-80  
S
S
S
−60  
−70  
−80  
−60  
−70  
−80  
G = 1, R = 1.78 kΩ  
F
G = 1, R = 1.78 kΩ  
F
G = 1, R = 1.78 kΩ  
F
G = 2, R = 1.15 kΩ  
F
G = 2, R = 1.15 kΩ  
F
G = 2, R = 1.15 kΩ  
−90  
-90  
−90  
F
−100  
-100  
−100  
100 k  
1 M  
10 M  
100 M  
100 k  
1 M  
10 M  
100 M  
100 k  
1 M  
10 M  
100 M  
f − Frequency − Hz  
f - Frequency - Hz  
f − Frequency − Hz  
Figure 45.  
Figure 46.  
Figure 47.  
15  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±5 V) (continued)  
3RD HARMONIC DISTORTION  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE SWING  
vs  
vs  
FREQUENCY  
OUTPUT VOLTAGE SWING  
−40  
−50  
-20  
-30  
-40  
-50  
−20  
−30  
−40  
−50  
Gain = 5,  
V
R
V
= 2 V ,  
PP  
= 1 k,  
= ±5 V  
Gain = 5,  
O
R
R
= 1 k  
= 100 ,  
R
R
= 1 k  
= 100 ,  
F
F
L
L
L
S
f= 8 MHz  
= ±5 V  
f= 1 MHz  
= ±5 V  
V
V
S
S
−60  
−70  
−80  
HD3  
G = 1, R = 1.78 kΩ  
F
-60  
-70  
-80  
−60  
−70  
−80  
HD3  
HD2  
G = 2, R = 1.15 kΩ  
F
−90  
HD2  
-90  
−90  
−100  
-100  
−100  
100 k  
1 M  
10 M  
100 M  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
f − Frequency − Hz  
V
- Output Voltage Swing - V  
V
− Output Voltage Swing − V  
PP  
O
PP  
O
Figure 48.  
Figure 49.  
Figure 50.  
SLEW RATE  
vs  
OUTPUT VOLTAGE STEP  
SLEW RATE  
vs  
OUTPUT VOLTAGE STEP  
SLEW RATE  
vs  
OUTPUT VOLTAGE STEP  
1600  
1400  
1200  
1000  
800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
Gain = 1  
Gain = 1  
Gain = 5  
Fall  
R
R
V
= 100  
= 1.21 kΩ  
= ±5 V  
L
F
R
R
V
= 100  
= 1.78 kΩ  
= ±5 V  
L
F
S
R
R
= 100  
= 1 kΩ  
= ±5 V  
Fall  
L
F
S
S
V
Rise  
Rise  
Fall  
600  
400  
600  
600  
Rise  
1.5  
400  
200  
0
400  
200  
0
200  
0
0
0.5  
1
2
2.5  
3
3.5  
4
4.5  
5
0
1
2
3
4
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
− Output Voltage −V  
V
− Output Voltage −V  
V
- Output Voltage -V  
O
PP  
O
PP  
O
PP  
Figure 51.  
Figure 52.  
Figure 53.  
INPUT BIAS AND  
QUIESCENT CURRENT  
OUTPUT VOLTAGE  
vs  
LOAD RESISTANCE  
OFFSET CURRENT  
vs  
vs  
FREQUENCY  
CASE TEMPERATURE  
22  
20  
18  
16  
14  
12  
10  
8
8
3.5  
V
= ±5 V  
Gain = 5  
S
3
2.5  
7
6
5
4
3
2
R
R
= 1 k,  
= 100 ,  
= ±5 V  
F
L
2
1.5  
1
I
IB-  
V
S
V
= 4 V  
I
O
PP  
PP  
OS  
0.5  
V
T
A
= ±5 V  
= -40 to 85°C  
S
0
-0.5  
V
= 2 V  
O
-1  
-1.5  
6
I
IB+  
-2  
4
-2.5  
-3  
1
0
2
0
-3.5  
-40 -30 -20-10  
0
10 20 30 40 50 60 70 80 90  
100 k  
1 M  
10 M  
100 M  
1 G  
10  
100  
1000  
T - Case Temperature - °C  
C
f − Frequency − Hz  
R
L
- Load Resistance -  
Figure 54.  
Figure 55.  
Figure 56.  
16  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
TYPICAL CHARACTERISTICS (±5 V) (continued)  
REJECTION RATIO  
vs  
OVERDRIVE RECOVERY  
TIME  
FREQUENCY  
70  
60  
50  
40  
30  
20  
5
1
Gain = 5,  
V
= ±5 V  
S
4
3
2
1
0
0.8  
0.6  
0.4  
0.2  
R
R
V
= 100 ,  
= 1 k,  
= ±5 V  
L
F
S
PSRR-  
0
CMRR  
-0.2  
-1  
-0.4  
-0.6  
-2  
-3  
-4  
-5  
PSRR+  
-0.8  
-1  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1
100 k  
1 M  
10 M  
100 M  
t - Time - µs  
f - Frequency - Hz  
Figure 57.  
Figure 58.  
17  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
APPLICATION INFORMATION  
WIDEBAND, NONINVERTING OPERATION  
Current-feedback amplifiers are highly dependent on  
the feedback resistor RF for maximum performance  
and stability. Table 1 shows the optimal gain-setting  
resistors RF and RG at different gains to give  
maximum bandwidth with minimal peaking in the  
frequency response. Higher bandwidths can be  
achieved, at the expense of added peaking in the  
frequency response, by using even lower values for  
RF. Conversely, increasing RF decreases the  
bandwidth, but stability is improved.  
The THS3091/5 are unity gain stable 235-MHz  
current-feedback operational amplifiers, designed to  
operate from a ±5-V to ±15-V power supply.  
Figure 59 shows the THS3091 in a noninverting gain  
of 2-V/V configuration typically used to generate the  
performance curves. Most of the curves were  
characterized using signal sources with 50-source  
impedance, and with measurement equipment  
presenting a 50-load impedance.  
Table 1. Recommended Resistor Values for  
Optimum Frequency Response  
15 V  
+V  
S
THS3091 and THS3095 RF and RG values for minimal peaking  
+
with RL = 100 Ω  
0.1 µF  
49.9 Ω  
6.8 µF  
50-Source  
49.9 Ω  
SUPPLY VOLTAGE  
GAIN (V/V)  
RG ()  
RF ()  
(V)  
+
V
I
±15  
1.78 k  
1.78 k  
1.21 k  
1.15 k  
1 k  
THS3091  
_
1
±5  
50-LOAD  
R
F
±15  
1.21 k  
1.15 k  
249  
2
5
1.21 kΩ  
±5  
1.21 kΩ  
R
G
0.1 µF  
6.8 µF  
±15  
+
±5  
249  
1 k  
±15  
95.3  
95.3  
1.05 k  
499  
866  
−V  
S
10  
±5  
866  
−15 V  
–1  
–2  
±15 and ±5  
±15 and ±5  
±15 and ±5  
±15 and ±5  
1.05 k  
1 k  
Figure 59. Wideband, Noninverting Gain  
Configuration  
–5  
182  
909  
–10  
86.6  
866  
18  
 
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
WIDEBAND, INVERTING OPERATION  
+V  
S
Figure 60 shows the THS3091 in a typical inverting  
gain configuration where the input and output  
impedances and signal gain from Figure 59 are  
retained in an inverting circuit configuration.  
50-Source  
+
49.9 Ω  
50-LOAD  
V
I
THS3091  
49.9 Ω  
R
T
_
15 V  
+V  
S
+V  
2
S
R
F
+
1.21 kΩ  
R
G
0.1 µF  
49.9 Ω  
6.8 µF  
1.21 kΩ  
+
THS3091  
+V  
2
S
_
R
F
50-LOAD  
1 kΩ  
50-Source  
R
G
V
S
R
F
50-Source  
R
G
_
V
I
499 Ω  
1 kΩ  
49.9 Ω  
50-LOAD  
V
I
R
M
499 Ω  
R
T
THS3091  
0.1 µF  
6.8 µF  
56.2 Ω  
56.2 Ω  
+
+
+V  
2
+V  
2
S
S
−V  
S
−15 V  
Figure 61. DC-Coupled, Single-Supply Operation  
Figure 60. Wideband, Inverting Gain  
Configuration  
Video Distribution  
SINGLE-SUPPLY OPERATION  
The wide bandwidth, high slew rate, and high output  
drive current of the THS3091/5 matches the demands  
for video distribution for delivering video signals down  
multiple cables. To ensure high signal quality with  
minimal degradation of performance, a 0.1-dB gain  
flatness should be at least 7x the passband  
frequency to minimize group delay variations from the  
amplifier. A high slew rate minimizes distortion of the  
video signal, and supports component video and  
RGB video signals that require fast transition times  
and fast settling times for high signal quality.  
The THS3091/5 have the capability to operate from a  
single-supply voltage ranging from 10 V to 30 V.  
When operating from a single power supply, biasing  
the input and output at mid-supply allows for the  
maximum output voltage swing. The circuits shown in  
Figure 61 show inverting and noninverting amplifiers  
configured for single-supply operations.  
1.21 kΩ  
1.21 kΩ  
15 V  
75-Transmission Line  
V
O(1)  
75 Ω  
+
V
I
−15 V  
75 Ω  
n Lines  
75 Ω  
V
O(n)  
75 Ω  
75 Ω  
Figure 62. Video Distribution Amplifier  
Application  
19  
 
 
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
Driving Capacitive Loads  
Placing a small series resistor, RISO, between the  
amplifier’s output and the capacitive load, as shown  
in Figure 64, is an easy way of isolating the load  
capacitance.  
Applications such as FET line drivers can be highly  
capacitive and cause stability problems for  
high-speed amplifiers.  
Using a ferrite chip in place of RISO, as shown in  
Figure 65, is another approach of isolating the output  
of the amplifier. The ferrite's impedance characteristic  
versus frequency is useful to maintain the  
low-frequency load independence of the amplifier  
while isolating the phase shift caused by the capaci-  
tance at high frequency. Use a ferrite with similar  
impedance to RISO, 20 - 50 , at 100 MHz and low  
impedance at dc.  
Figure 63 through Figure 68 show recommended  
methods for driving capacitive loads. The basic idea  
is to use a resistor or ferrite chip to isolate the phase  
shift at high frequency caused by the capacitive load  
from the amplifier’s feedback path. See Figure 63 for  
recommended resistor values versus capacitive load.  
45  
Gain = 5,  
40  
R
L
= 100 ,  
= ±15 V  
V
S
35  
30  
Figure 66 shows another method used to maintain  
the low-frequency load independence of the amplifier  
while isolating the phase shift caused by the capaci-  
tance at high frequency. At low frequency, feedback  
is mainly from the load side of RISO. At high fre-  
quency, the feedback is mainly via the 27-pF  
capacitor. The resistor RIN in series with the negative  
input is used to stabilize the amplifier and should be  
equal to the recommended value of RF at unity gain.  
Replacing RIN with a ferrite of similar impedance at  
about 100 MHz as shown in Figure 67 gives similar  
results with reduced dc offset and low-frequency  
noise. (See the ADDITIONAL REFERENCE MA-  
TERIAL section for expanding the usability of cur-  
rent-feedback amplifiers.)  
25  
20  
15  
10  
5
0
10  
100  
C
L
− Capacitive Load − pF  
Figure 63. Recommended RISO vs Capacitive Load  
1 kΩ  
R
F
V
S
249 Ω  
100-LOAD  
1 kΩ  
_
+
5.11 Ω  
27 pF  
V
R
ISO  
R
IN  
1 µF  
−V  
S
S
R
1 kΩ  
G
100-LOAD  
49.9 Ω  
_
5.11 Ω  
V
S
249 Ω  
+
1 µF  
−V  
S
Figure 64.  
49.9 Ω  
V
S
1 kΩ  
Figure 66.  
V
S
249 Ω  
Ferrite Bead  
_
+
100-LOAD  
1 µF  
−V  
S
49.9 Ω  
V
S
Figure 65.  
20  
 
 
 
 
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
R
F
V
S
V
S
1 kΩ  
5.11  
+
27 pF  
V
_
F
IN  
−V  
S
S
R
FB  
G
100-LOAD  
_
5.11 Ω  
866 Ω  
249 Ω  
+
191 Ω  
866 Ω  
1 µF  
−V  
S
49.9 Ω  
V
S
V
S
_
5.11 Ω  
Figure 67.  
+
−V  
−V  
S
S
Figure 68 is shown using two amplifiers in parallel to  
double the output drive current to larger capacitive  
loads. This technique is used when more output  
current is needed to charge and discharge the load  
faster like when driving large FET transistors.  
Figure 69. PowerFET Drive Circuit  
SAVING POWER WITH POWER-DOWN  
FUNCTIONALITY AND SETTING  
THRESHOLD LEVELS WITH THE  
REFERENCE PIN  
1 k  
V
S
249 Ω  
The THS3095 features a power-down pin (PD) which  
lowers the quiescent current from 9.5 mA down to  
500 µA, ideal for reducing system power.  
_
+
5.11 Ω  
24.9 Ω  
−V  
S
The power-down pin of the amplifier defaults to the  
negative supply voltage in the absence of an applied  
voltage, putting the amplifier in the power-on mode of  
operation. To turn off the amplifier in an effort to  
conserve power, the power-down pin can be driven  
towards the positive rail. The threshold voltages for  
power-on and power-down are relative to the supply  
rails and are given in the specification tables. Below  
the Enable Threshold Voltage, the device is on.  
Above the Disable Threshold Voltage, the device is  
off. Behavior in between these threshold voltages is  
not specified.  
1 kΩ  
V
S
V
S
1 nF  
249 Ω  
_
+
5.11 Ω  
24.9 Ω  
−V  
S
Figure 68.  
Figure 69 shows a push-pull FET driver circuit typical  
of ultrasound applications with isolation resistors to  
isolate the gate capacitance from the amplifier.  
Note that this power-down functionality is just that;  
the amplifier consumes less power in power-down  
mode. The power-down mode is not intended to  
provide a high-impedance output. In other words, the  
power-down functionality is not intended to allow use  
as a 3-state bus driver. When in power-down mode,  
the impedance looking back into the output of the  
amplifier is dominated by the feedback and  
gain-setting resistors, but the output impedance of the  
device itself varies depending on the voltage applied  
to the outputs.  
Figure 70 shows the total system output impedance  
which includes the amplifier output impedance in  
parallel with the feedback plus gain resistors, which  
cumulate to 2380 . Figure 59 shows this circuit  
configuration for reference.  
21  
 
 
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
PERFORMANCE  
2500  
V
= ±15 V and ±5 V  
S
Achieving  
optimum  
performance  
with  
a
high-frequency amplifier, like the THS3091/5, re-  
quires careful attention to board layout parasitic and  
external component types.  
2000  
1500  
1000  
Recommendations that optimize performance include:  
Minimize parasitic capacitance to any ac ground  
for all of the signal I/O pins. Parasitic capacitance  
on the output and input pins can cause instability.  
To reduce unwanted capacitance, a window  
around the signal I/O pins should be opened in all  
of the ground and power planes around those  
pins. Otherwise, ground and power planes should  
be unbroken elsewhere on the board.  
1.21 k1.21 kΩ  
V
O
50 Ω  
+
500  
0
100 k  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
Figure 70. Power-down Output Impedance vs  
Frequency  
Minimize the distance (< 0.25 in.) from the power  
supply pins to high-frequency 0.1-µF and 100-pF  
decoupling capacitors. At the device pins, the  
ground and power plane layout should not be in  
close proximity to the signal I/O pins. Avoid  
narrow power and ground traces to minimize  
inductance between the pins and the decoupling  
capacitors. The power supply connections should  
always be decoupled with these capacitors.  
Larger (6.8 µF or more) tantalum decoupling  
capacitors, effective at lower frequency, should  
also be used on the main supply pins. These may  
be placed somewhat farther from the device and  
may be shared among several devices in the  
same area of the PC board.  
As with most current feedback amplifiers, the internal  
architecture places some limitations on the system  
when in power-down mode. Most notably is the fact  
that the amplifier actually turns ON if there is a ±0.7 V  
or greater difference between the two input nodes  
(V+ and V-) of the amplifier. If this difference exceeds  
±0.7 V, the output of the amplifier creates an output  
voltage  
equal  
to  
approximately  
[(V+ - V-) -0.7 V]×Gain. This also implies that if a  
voltage is applied to the output while in power-down  
mode, the V- node voltage is equal to  
V
O(applied)× RG/(RF + RG). For low gain configurations  
and a large applied voltage at the output, the  
amplifier may actually turn ON due to the  
aforementioned behavior.  
Careful selection and placement of external  
components  
preserve  
the  
high-frequency  
performance of the THS3091/5. Resistors should  
be a low reactance type. Surface-mount resistors  
work best and allow a tighter overall layout.  
Again, keep their leads and PC board trace  
length as short as possible. Never use wirebound  
type resistors in a high-frequency application.  
Because the output pin and inverting input pins  
are the most sensitive to parasitic capacitance,  
always position the feedback and series output  
resistors, if any, as close as possible to the  
inverting input pins and output pins. Other net-  
work components, such as input termination re-  
sistors, should be placed close to the gain-setting  
resistors. Even with a low parasitic capacitance  
The time delays associated with turning the device on  
and off are specified as the time it takes for the  
amplifier to reach either 10% or 90% of the final  
output voltage. The time delays are in the order of  
microseconds because the amplifier moves in and out  
of the linear mode of operation in these transitions.  
POWER-DOWN REFERENCE PIN  
OPERATION  
In addition to the power-down pin, the THS3095  
features a reference pin (REF) which allows the user  
to control the enable or disable power-down voltage  
levels applied to the PD pin. In most split-supply  
applications, the reference pin is connected to  
ground. In either case, the user needs to be aware of  
voltage-level thresholds that apply to the power-down  
pin. The usable range at the REF pin is from VS- to  
(VS+ - 4 V).  
shunting  
the  
external  
resistors,  
excessively high resistor values can create sig-  
nificant time constants that can degrade perform-  
ance. Good axial metal-film or surface-mount  
resistors have approximately 0.2 pF in shunt with  
the resistor. For resistor values > 2 k, this  
parasitic capacitance can add a pole and/or a  
zero that can effect circuit operation. Keep re-  
sistor values as low as possible, consistent with  
load-driving considerations.  
PRINTED-CIRCUIT BOARD LAYOUT  
TECHNIQUES FOR OPTIMAL  
Connections to other wideband devices on the  
board may be made with short direct traces or  
22  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
through onboard transmission lines. For short  
connections, consider the trace and the input to  
the next device as a lumped capacitive load.  
Relatively wide traces (50 mils to 100 mils)  
should be used, preferably with ground and  
power planes opened up around them. Estimate  
the total capacitive load and determine if isolation  
resistors on the outputs are necessary. Low  
parasitic capacitive loads (< 4 pF) may not need  
an RS because the THS3091/5 are nominally  
compensated to operate with a 2-pF parasitic  
load. Higher parasitic capacitive loads without an  
RS are allowed as the signal gain increases  
(increasing the unloaded phase margin). If a long  
trace is required, and the 6-dB signal loss intrin-  
sic to a doubly terminated transmission line is  
acceptable, implement a matched impedance  
transmission line using microstrip or stripline  
techniques (consult an ECL design handbook for  
microstrip and stripline layout techniques). A  
50-environment is not necessary onboard, and  
in the lead frame being exposed as a thermal pad on  
the underside of the package [see Figure 71(c)].  
Because this thermal pad has direct thermal contact  
with the die, excellent thermal performance can be  
achieved by providing a good thermal path away from  
the thermal pad. Note that devices such as the  
THS3091/5 have no electrical connection between  
the PowerPAD and the die.  
The PowerPAD package allows for both assembly  
and thermal management in one manufacturing oper-  
ation. During the surface-mount solder operation  
(when the leads are being soldered), the thermal pad  
can also be soldered to a copper area underneath the  
package. Through the use of thermal paths within this  
copper area, heat can be conducted away from the  
package into either  
heat-dissipating device.  
a ground plane or other  
The PowerPAD package represents a breakthrough  
in combining the small area and ease of assembly of  
surface mount with the, heretofore, awkward  
mechanical methods of heatsinking.  
in fact,  
a
higher impedance environment  
improves distortion as shown in the distortion  
versus load plots. With a characteristic board  
trace impedance based on board material and  
trace dimensions, a matching series resistor into  
the trace from the output of the THS3091/5 is  
used as well as a terminating shunt resistor at the  
input of the destination device. Remember also  
that the terminating impedance is the parallel  
combination of the shunt resistor and the input  
impedance of the destination device; this total  
effective impedance should be set to match the  
trace impedance. If the 6-dB attenuation of a  
doubly terminated transmission line is unaccept-  
able, a long trace can be series-terminated at the  
source end only. Treat the trace as a capacitive  
load in this case. This does not preserve signal  
integrity as well as a doubly terminated line. If the  
input impedance of the destination device is low,  
there is some signal attenuation due to the  
voltage divider formed by the series output into  
the terminating impedance.  
DIE  
Thermal  
Pad  
Side View (a)  
DIE  
End View (b)  
Bottom View (c)  
Figure 71. Views of Thermal Enhanced Package  
Although there are many ways to properly heatsink  
the PowerPAD package, the following steps illustrate  
the recommended approach.  
0.300  
0.100  
0.035  
0.026  
0.010  
Pin 1  
0.030  
Socketing a high-speed part like the THS3091/5  
is not recommended. The additional lead length  
and pin-to-pin capacitance introduced by the  
socket can create an extremely troublesome  
parasitic network which can make it almost im-  
possible to achieve a smooth, stable frequency  
response. Best results are obtained by soldering  
the THS3091/5 parts directly onto the board.  
0.060  
0.060  
0.140  
0.050  
0.176  
0.035  
0.080  
0.010  
vias  
All Units in Inches  
PowerPAD™ DESIGN CONSIDERATIONS  
Top View  
The  
THS3091/5  
are  
available  
in  
a
Figure 72. DDA PowerPAD PCB Etch and Via  
Pattern  
thermally-enhanced PowerPAD family of packages.  
These packages are constructed using a downset  
leadframe on which the die is mounted [see Fig-  
ure 71(a) and Figure 71(b)]. This arrangement results  
23  
 
 
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
PowerPAD™ LAYOUT CONSIDERATIONS  
POWER DISSIPATION AND THERMAL  
CONSIDERATIONS  
1. PCB with a top-side etch pattern is shown in  
Figure 72. There should be etch for the leads as  
well as etch for the thermal pad.  
The THS3091/5 incorporates automatic thermal  
shutoff protection. This protection circuitry shuts down  
the amplifier if the junction temperature exceeds  
approximately 160°C. When the junction temperature  
reduces to approximately 140°C, the amplifier turns  
on again. But, for maximum performance and  
reliability, the designer must ensure that the design  
does not exeed a junction temperature of 125°C.  
Between 125°C and 150°C, damage does not occur,  
but the performance of the amplifier begins to de-  
grade and long-term reliability suffers. The thermal  
characteristics of the device are dictated by the  
package and the PC board. Maximum power dissi-  
pation for a given package can be calculated using  
the following formula.  
2. Place 13 holes in the area of the thermal pad.  
These holes should be 10 mils in diameter. Keep  
them small so that solder wicking through the  
holes is not a problem during reflow.  
3. Additional vias may be placed anywhere along  
the thermal plane outside of the thermal pad  
area. This helps dissipate the heat generated by  
the THS3091/5 IC. These additional vias may be  
larger than the 10-mil diameter vias directly under  
the thermal pad. They can be larger because  
they are not in the thermal pad area to be  
soldered so that wicking is not a problem.  
4. Connect all holes to the internal ground plane.  
Note that the PowerPAD is electrically isolated  
from the silicon and all leads. Connecting the  
PowerPAD to any potential voltage such as VS- is  
acceptable as there is no electrical connection to  
the silicon.  
Tmax TA  
qJA  
PDmax  
+
where:  
P
Dmax  
is the maximum power dissipation in the amplifier (W).  
T
T
θ
is the absolute maximum junction temperature (°C).  
max  
5. When connecting these holes to the ground  
plane, do not use the typical web or spoke via  
connection methodology. Web connections have  
a high thermal resistance connection that is  
useful for slowing the heat transfer during  
soldering operations. This makes the soldering of  
vias that have plane connections easier. In this  
application, however, low thermal resistance is  
desired for the most efficient heat transfer. There-  
fore, the holes under the THS3091/5 PowerPAD  
package should make their connection to the  
internal ground plane with a complete connection  
around the entire circumference of the  
plated-through hole.  
is the ambient temperature (°C).  
= θ + θ  
A
JA  
JC  
CA  
θ
is the thermal coefficient from the silicon junctions to the  
JC  
case (°C/W).  
θ
is the thermal coefficient from the case to ambient air  
CA  
(°C/W).  
For systems where heat dissipation is more critical,  
the THS3091 and THS3095 are offered in an 8-pin  
SOIC (DDA) with PowerPAD package. The thermal  
coefficient for the PowerPAD packages are substan-  
tially improved over the traditional SOIC. Maximum  
power dissipation levels are depicted in the graph for  
the available packages. The data for the PowerPAD  
packages assume a board layout that follows the  
PowerPAD layout guidelines referenced above and  
detailed in the PowerPAD application note (literature  
number SLMA002). The following graph also illus-  
trates the effect of not soldering the PowerPAD to a  
PCB. The thermal impedance increases substantially  
which may cause serious heat and performance  
issues. Be sure to always solder the PowerPAD to  
the PCB for optimum performance.  
6. The top-side solder mask should leave the ter-  
minals of the package and the thermal pad area  
with its 13 holes exposed. The bottom-side solder  
mask should cover the 13 holes of the thermal  
pad area. This prevents solder from being pulled  
away from the thermal pad area during the reflow  
process.  
7. Apply solder paste to the exposed thermal pad  
area and all of the IC terminals.  
8. With these preparatory steps in place, the IC is  
simply placed in position and run through the  
solder reflow operation as any standard  
surface-mount component. This results in a part  
that is properly installed.  
24  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
DESIGN TOOLS  
4
Τ
J
= 125°C  
3.5  
Evaluation  
Fixtures,  
Spice  
Models,  
and  
θ
= 45.8°C/W  
Application Support  
JA  
3
2.5  
2
Texas Instruments is committed to providing its  
customers with the highest quality of applications  
support. To support this goal, an evaluation board  
has been developed for the THS3091/5 operational  
amplifier. The board is easy to use, allowing for  
straightforward evaluation of the device. The evalu-  
ation board can be ordered through the Texas  
Instruments Web site, www.ti.com, or through your  
local Texas Instruments sales representative.  
θ
= 58.4°C/W  
JA  
θ
= 95°C/W  
JA  
1.5  
1
0.5  
θ
= 158°C/W  
JA  
0
−40  
−20  
0
20  
40  
60  
80  
100  
T
− Free-Air Temperature − °C  
A
Computer simulation of circuit performance using  
SPICE is often useful when analyzing the perform-  
ance of analog circuits and systems. This is particu-  
larly true for video and RF-amplifier circuits where  
parasitic capacitance and inductance can have a  
major effect on circuit performance. A SPICE model  
for the THS3091/5 is available through the Texas  
Instruments Web site (www.ti.com). The Product  
Information Center (PIC) is also available for design  
assistance and detailed product information. These  
models do a good job of predicting small-signal ac  
and transient performance under a wide variety of  
operating conditions. They are not intended to model  
the distortion characteristics of the amplifier, nor do  
they attempt to distinguish between the package  
types in their small-signal ac performance. Detailed  
information about what is and is not modeled is  
contained in the model file itself.  
Results are With No Air Flow and PCB Size = 3”x 3”  
θJ = 45.8°C/W for 8-Pin SOIC w/PowerPAD (DDA)  
θJ = 58.4°C/W for 8-Pin MSOP w/PowerPAD (DGN)  
θJ = 95°C/W for 8-Pin SOIC High−K Test PCB (D)  
θJ = 158°C/W for 8-Pin MSOP w/PowerPAD w/o Solder  
A
A
A
A
Figure 73. Maximum Power Distribution vs  
Ambient Temperature  
When determining whether or not the device satisfies  
the maximum power dissipation requirement, it is  
important to consider not only quiescent power  
dissipation, but also dynamic power dissipation. Often  
times, this is difficult to quantify because the signal  
pattern is inconsistent, but an estimate of the RMS  
power dissipation can provide visibility into a possible  
problem.  
25  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
PIN8  
(2)  
REF  
R9  
(2)  
C10  
(2)  
(2)  
(2)  
JP2  
JP1  
C9  
J4  
VS−  
J5  
GND  
J6  
VS+  
TP1  
TP2  
(2) THS3095 EVM Only  
FB2  
FB1  
VS−  
VS+  
+
C3  
6.8 µF  
C7  
0.1 µF  
C4  
0.1 µF  
C6  
6.8 µF  
+
J1  
J2  
R3  
R4  
1 kΩ  
PIN8  
249 Ω  
R1  
0 Ω  
R5  
VS+  
REF  
Open  
R7  
7
8
1
J3  
2
3
6
49.9 Ω  
4
R8  
Open  
R6  
Open  
5
R2  
49.9 Ω  
VS−  
THS3091DDA or THS3095DDA  
Figure 76. THS3091 EVM Board Layout  
Figure 74. THS3091 EVM Circuit Configuration  
(Second and Third Layers)  
Figure 75. THS3091 EVM Board Layout  
(Top Layer)  
Figure 77. THS3091 EVM Board Layout  
(Bottom Layer)  
26  
THS3091  
THS3095  
www.ti.com  
SLOS423CSEPTEMBER 2003REVISED AUGUST 2004  
Table 2. Bill of Materials  
THS3091DDA and THS3095DDA EVM(1)  
SMD  
SIZE  
REFERENCE  
DESIGNATOR  
PCB  
QTY  
MANUFACTURER'S  
DISTRIBUTOR'S  
PART NUMBER  
ITEM  
DESCRIPTION  
PART NUMBER  
(Steward) HI1206N800R-00  
(AVX) TAJD685K050R  
1
2
Bead, Ferrite, 3 A, 80  
Cap, 6.8 µF, Tanatalum, 50 V, 10%  
Cap, 0.1 µF, ceramic, X7R, 50 V  
Cap, 0.1 µF, ceramic, X7R, 50 V  
Resistor, 0 , 1/8 W, 1%  
Resistor, 249 , 1/8 W, 1%  
Resistor, 1 k, 1/8 W, 1%  
Open  
1206  
D
FB1, FB2  
C3, C6  
C9, C10  
C4, C7  
R9  
2
2
(Digi-Key) 240-1010-1-ND  
(Garrett) TAJD685K050R  
(Garrett) 08055C104KAT2A  
(Garrett) 08055C104KAT2A  
(Garrett) RK73Z2ALTD  
3
0805  
0805  
0805  
0805  
0805  
1206  
1206  
1206  
2512  
2(2)  
2
(AVX) 08055C104KAT2A  
(AVX) 08055C104KAT2A  
(KOA) RK73Z2ALTD  
4
5
1(2)  
1
6
R3  
(KOA) RK73H2ALTD2490F  
(KOA) RK73H2ALTD1001F  
(Garrett) RK73H2ALTD2490F  
(Garrett) RK73H2ALTD1001F  
7
R4  
1
8
R8  
1
9
Resistor, 0 , 1/4 W, 1%  
Resistor, 49.9 , 1/4 W, 1%  
Open  
R1  
1
(KOA) RK73Z2BLTD  
(Garrett) RK73Z2BLTD  
10  
11  
R2, R7  
R5, R6  
2
(KOA) RK73Z2BLTD49R9F  
(Garrett) RK73Z2BLTD49R9F  
2
Header, 0.1-inch centers,  
0.025-inch square pins  
(2)  
12  
13  
14  
15  
16  
JP1, JP2  
J1, J2, J3  
J4, J5, J6  
TP1, TP2  
2
(Sullins) PZC36SAAN  
(Amphenol) 901-144-8RFX  
(SPC) 813  
(Digi-Key) S1011-36-ND  
(Newark) 01F2208  
(Newark) 39N867  
Connector, SMA PCB Jack  
3
3
2
4
Jack, banana receptacle,  
0.25-inch. dia. hole  
Test point, black  
(Keystone) 5001  
(Digi-Key) 5001K-ND  
(Newark) 89F1934  
Standoff, 4-40 hex,  
0.625-inch length  
(Keystone) 1808  
Screw, Phillips, 4-40,  
0.25-inch  
17  
18  
19  
4
1
1
SHR-0440-016-SN  
IC, THS3091(3)  
IC, THS3095(2)  
(TI) THS3091DDA(3)  
(TI) THS3095DDA(2)  
U1  
(TI) EDGE # 6446289 Rev. A(3)  
(TI) EDGE # 6446290 Rev. A(2)  
Board, printed-circuit  
(1) All items are designated for both the THS3091DDA and THS3095 EVMs unless otherwise noted.  
(2) THS3095 EVM only.  
(3) THS3091 EVM only.  
ADDITIONAL REFERENCE MATERIAL  
PowerPAD™ Made Easy, application brief (SLMA004)  
PowerPAD™ Thermally Enhanced Package, technical brief (SLMA002)  
Voltage Feedback vs Current Feedback Amplifiers, (SLVA051)  
Current Feedback Analysis and Compensation (SLOA021)  
Current Feedback Amplifiers: Review, Stability, and Application (SBOA081)  
Effect of Parasitic Capacitance in Op Amp Circuits (SLOA013)  
Expanding the Usability of Current-Feedback Amplifiers, 3Q 2003 Analog Applications Journal  
(www.ti.com/sc/analogapps).  
27  
THERMAL PAD MECHANICAL DATA  
www.ti.com  
DDA (R-PDSO-G8)  
THERMAL INFORMATION  
This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached directly to an  
external heatsink. When the thermal pad is soldered directly to the printed circuit board (PCB), the PCB can be  
used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a  
ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from  
the integrated circuit (IC).  
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities,  
refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002  
and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are  
available at www.ti.com.  
The exposed thermal pad dimensions for this package are shown in the following illustration.  
8
5
Exposed Thermal Pad  
2,85  
1,27  
1
4
2,85  
1,27  
Top View  
NOTE: All linear dimensions are in millimeters  
PPTD042  
Exposed Thermal Pad Dimensions  
PowerPAD is a trademark of Texas Instruments  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

THS3092

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3092D

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3092DDA

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3092DDAG3

双路高电压、低失真电流反馈运算放大器 | DDA | 8 | -40 to 85
TI

THS3092DDAR

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3092DG4

Dual- High-Voltage, Low Distortion, Current-Feedback Operational Amplifier 8-SOIC -40 to 85
TI

THS3092DR

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3092DRG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8
TI

THS3095

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3095D

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3095DDA

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI

THS3095DDAG4

HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS
TI