THS3112ID [TI]

双路、低噪声、高输出电流、110MHz 放大器 | D | 8 | -40 to 85;
THS3112ID
型号: THS3112ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、低噪声、高输出电流、110MHz 放大器 | D | 8 | -40 to 85

放大器 光电二极管
文件: 总20页 (文件大小:663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢃꢄ ꢅꢅ  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
SLOS382 − SEPTEMBER 2001  
D
Line Drivers  
FEATURES  
D
D
Motor Drivers  
Piezo Drivers  
D
Low Noise  
− 2.9 pA/Hz Noninverting Current Noise  
− 10.8 pA/Hz Inverting Current Noise  
− 2.2 nV/Hz Voltage Noise  
DESCRIPTION  
The THS3122/5 are low-noise, high-speed current  
feedback amplifiers, with high output current drive. This  
makes them ideal for any application that requires low  
distortion over a wide frequency with heavy loads. The  
THS3122/5 can drive four serially terminated video  
lines while maintaining a differential gain error less than  
0.03%.  
D
D
High Output Current, 450 mA  
High Speed  
− 128 MHz , −3 dB BW(R = 50 , R = 470 )  
L
F
− 1550 V/µs Slew Rate (G = 2, R = 50 )  
L
D
D
D
D
Wide Output Swing  
− 26 V Output Voltage, R = 50 Ω  
PP  
L
Low Distortion  
The high output drive capability of the THS3122/5  
enables the devices to drive 50-loads with low  
distortion over a wide range of output voltages:  
− -80 dBc (1 MHz, 2 V , G = 2)  
PP  
Low Power Shutdown Mode (THS3125)  
− 370-µA Shutdown Supply Current  
Standard SOIC, SOIC PowerPAD, and  
TSSOP PowerPAD Package  
−80 −dBc THD at 2 V  
−75 −dBc THD at 8 V  
PP  
PP  
The THS3122/5 can operate from 5 V to 15 V supply  
voltages while drawing as little as 7.2 mA of supply  
current per channel. They offer a low power shutdown  
mode, reducing the supply current to only 370 µA. The  
THS3122/5 are packaged in a standard SOIC, SOIC  
PowerPAD, and TSSOP PowerPAD packages.  
APPLICATIONS  
D
Video Distribution  
Instrumentation  
D
VOLTAGE NOISE AND CURRENT NOISE  
vs  
THS3125  
SOIC (D) AND  
THS3122  
SOIC (D) AND  
FREQUENCY  
100  
V
T
A
=
5 V to 15 V  
SOIC PowerPAD(DDA) PACKAGE  
TSSOP PowerPAD(PWP) PACKAGE  
CC  
= 25°C  
(TOP VIEW)  
(TOP VIEW)  
I
n−  
1 OUT  
1 IN−  
1 IN+  
V
CC+  
1
2
3
4
8
7
6
5
1 OUT  
1 IN−  
1 IN+  
V
CC+  
1
2
3
4
5
6
7
14  
2 OUT  
2 IN−  
2 IN+  
13 2 OUT  
12 2 IN−  
11 2 IN+  
I
10  
n+  
V
CC−  
V
CC−  
N/C  
10  
9
V
N/C  
n
GND  
N/C  
SHUTDOWN  
N/C  
8
1
0.01  
0.1  
1
10  
100  
f − Frequency − kHz  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
ꢀꢧ  
Copyright 2001, Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢝ ꢞꢱ ꢠꢟ ꢢ ꢪꢪ ꢨꢢ ꢡ ꢢ ꢔ ꢧ ꢣ ꢧ ꢡ ꢤ ꢬ  
1
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢅ  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
SLOS382 − SEPTEMBER 2001  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
EVALUATION  
MODULES  
T
A
SOIC-8  
(D)  
SOIC-8 PowerPAD  
(DDA)  
SOIC-14  
(D)  
TSSOP-14  
(PWP)  
0°C to 70°C  
THS3122CD  
THS3122ID  
THS3122CDDA  
THS3122IDDA  
THS3125CD  
THS3125ID  
THS3125CPWP  
THS3125IPWP  
THS3122EVM  
THS3125EVM  
40°C to 85°C  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 V  
CC+  
CC−  
Input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
CC  
Output current (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 mA  
Differential input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V  
Maximum junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Total power dissipation at (or below) 25°C free-air temperature . . . . . . . . . . . See Dissipation Ratings Table  
Operating free-air temperature, T : Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Storage temperature, T : Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 125°C  
stg  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 125°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: The THS3122 and THS3125 may incorporate a PowerPADon the underside of the chip. This acts as a heatsink and must be  
connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction  
temperature which could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the  
PowerPADthermally enhanced package.  
DISSIPATION RATING TABLE  
T
= 25°C  
A
PACKAGE  
θ
JA  
POWER RATING  
D-8  
DDA  
D-14  
PWP  
95°C/W  
1.32 W  
67°C/W  
1.87 W  
66.6°C/W  
1.88 W  
37.5°C/W  
3.3 W  
This data was taken using the JEDEC proposed high-K test PCB.  
For the JEDEC low-K test PCB, the θ is168°C/W for the D-8  
JA  
package and 122.3°C/W for the D-14 package.  
recommended operating conditions  
MIN NOM  
MAX  
15  
UNIT  
Dual supply  
5
10  
0
Supply voltage, V  
CC+  
to V  
CC−  
V
Single supply  
30  
C-suffix  
70  
Operating free-air temperature, T  
°C  
A
I-suffix  
−40  
2
85  
High level (device shutdown)  
Low level (device active)  
Shutdown pin input levels, relative to the GND pin  
V
0.8  
2
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢅ  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
SLOS382 − SEPTEMBER 2001  
electrical characteristics over recommended operating free-air temperature range, T = 25°C,  
A
V
= 15 V, R = 750 , R = 100 (unless otherwise noted)  
F L  
CC  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
138  
160  
126  
128  
20  
MAX  
UNIT  
V
=
=
=
=
=
=
=
=
=
=
=
=
=
5 V  
R
= 50 ,  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
F
R
R
= 50 Ω  
= 50 Ω  
L
L
G = 1  
V
V
V
V
V
V
V
V
V
V
V
V
15 V  
5 V  
Small-signal bandwidth (3 dB)  
R
=470 ,  
G = 2  
F
MHz  
15 V  
5 V  
BW  
R
= 470 ,  
G = 2  
F
Bandwidth (0.1 dB)  
15 V  
5 V  
30  
V
V
V
= 4 V  
47  
O(PP)  
O(pp)  
O
Full power bandwidth  
G = −1  
G = 2  
MHz  
V/µs  
ns  
= 20 V  
15 V  
15 V  
5 V  
64  
= 10 V  
1550  
500  
1000  
53  
PP  
SR  
Slew rate (see Note 2), G=8  
Settling time to 0.1%  
R
= 680 Ω  
F
V
O
= 5 V  
PP  
15 V  
5 V  
V
V
= 2 V  
= 5 V  
O
PP  
t
s
G = −1  
15 V  
64  
O
PP  
NOTE 2: Slew rate is defined from the 25% to the 75% output levels.  
noise/distortion performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
80  
UNIT  
V
= 2 V  
= 8 V  
= 2 V  
= 5 V  
G = 2,  
R
= 470 Ω,  
O(PP)  
O(PP)  
O(PP)  
O(PP)  
F
V
CC  
=
15 V, f = 1 MHz  
V
V
V
75  
THD  
Total harmonic distortion  
dBc  
77  
G = 2,  
R
= 470 Ω,  
F
V
V
=
=
5 V, f = 1 MHz  
CC  
76  
V
n
Input voltage noise  
5 V, 15 V  
f = 10 kHz  
2.2  
2.9  
nV/Hz  
pA/Hz  
CC  
Noninverting Input  
Inverting Input  
I
n
Input current noise  
Crosstalk  
V
CC  
=
5 V, 15 V  
f = 10 kHz  
10.8  
67  
67  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
=
=
5 V  
G = 2,  
f = 1 MHz,  
PP  
dBc  
V
O
= 2 V  
15 V  
5 V  
0.01%  
G = 2,  
R = 150 Ω  
L
Differential gain error  
Differential phase error  
15 V  
5 V  
0.01%  
0.011°  
0.011°  
40 IRE modulation  
100 IRE Ramp  
NTSC and PAL  
15 V  
3
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢅ  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
SLOS382 − SEPTEMBER 2001  
electrical characteristics over recommended operating free-air temperature range, T = 25°C,  
A
V
= 15 V, R = 750 , R = 100 (unless otherwise noted) (continued)  
CC  
F
L
dc performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
T
= 25°C  
4.4  
6
8
2
3
A
Input offset voltage  
V
V
V
V
= 0 V,  
= 0 V,  
T
A
= full range  
= 25°C  
IC  
O
mV  
T
A
0.4  
V
IO  
=
=
5 V,  
15 V  
CC  
CC  
Channel offset voltage matching  
Offset drift  
T
A
= full range  
= full range  
= 25°C  
T
A
10  
6
µV/°C  
T
A
23  
30  
2
V
V
V
V
= 0 V,  
= 0 V,  
IN− Input bias current  
IN+ Input bias current  
IC  
O
CC  
CC  
T
A
= full range  
= 25°C  
I
I
µA  
IB  
=
=
5 V,  
15 V  
T
A
0.33  
5.4  
T
A
= full range  
3
V
V
V
V
= 0 V,  
= 0 V,  
IC  
O
CC  
CC  
T
A
= 25°C  
22  
30  
Input offset current  
µA  
IO  
=
=
5 V,  
15 V  
T
A
= full range  
= 1 k,  
L
V
CC  
V
CC  
=
=
5 V,  
15 V  
Z
OL  
Open loop transimpedance  
R
1
MΩ  
input characteristics  
PARAMETER  
TEST CONDITIONS  
= 5 V  
MIN  
2.5  
12.5  
58  
TYP  
2.7  
MAX  
UNIT  
V
V
V
CC  
CC  
CC  
V
ICR  
Input common-mode voltage range  
T
= full range  
V
A
=
15 V  
12.7  
62  
T
A
= 25°C  
=
5 V,  
V = −2.5 V to 2.5 V  
T
= full range  
= 25°C  
56  
I
A
CMRR Common-mode rejection ratio  
dB  
T
A
63  
67  
V
CC  
= 15 V,  
V = −12.5 V to 12.5 V  
I
T
A
= full range  
60  
IN+  
IN−  
1.5  
15  
2
MΩ  
R
C
Input resistance  
I
i
Input capacitance  
pF  
output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4.1  
4
MAX  
UNIT  
G = 4, V = 1.06 V,  
I
R
= 1 k,  
T
= 25°C  
V
L
A
V
=
5 V  
CC  
T
A
= 25°C  
3.8  
3.7  
G = 4, V = 1.025 V,  
I
R
R
= 50 ,  
= 1 k,  
L
L
V
CC  
=
5 V  
T
A
= full range  
V
V
O
Output voltage swing  
G = 4, V = 3.6 V,  
I
T
A
= 25°C  
14.2  
13.3  
V
CC  
=
15 V  
T
A
= 25°C  
12  
G = 4, V = 3.325 V,  
I
R
R
R
= 50 ,  
= 10 ,  
= 25 ,  
V
L
L
L
V
CC  
=
15 V  
T
A
= full range  
11.5  
G = 4, V = 1.025 V,  
I
T
A
= 25°C  
200  
360  
280  
mA  
V
CC  
=
5 V  
I
O
Output current drive  
Output resistance  
G = 4, V = 3.325 V,  
I
T
A
= 25°C  
= 25°C  
440  
14  
mA  
V
CC  
= 15 V  
r
open loop  
T
A
o
4
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢅ  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
SLOS382 − SEPTEMBER 2001  
electrical characteristics over recommended operating free-air temperature range, T = 25°C,  
A
V
= 15 V, R = 750 , R = 100 (unless otherwise noted) (continued)  
F L  
CC  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
9
UNIT  
T
= 25°C  
7.2  
A
V
CC  
V
CC  
V
CC  
V
CC  
=
=
=
=
5V  
T
A
= full range  
= 25°C  
10  
Quiescent current (per channel)  
Power supply rejection ratio  
I
mA  
CC  
T
A
8.4  
60  
73  
10.5  
11.5  
15 V  
T
A
= full range  
= 25°C  
T
A
53  
50  
68  
66  
5 V 1 V  
15 V 1 V  
T
= full range  
= 25°C  
A
PSRR  
dB  
T
A
T
A
= full range  
shutdown characteristics (THS3125 only)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
370  
200  
500  
18  
MAX  
UNIT  
µA  
ns  
I
t
t
I
I
Shutdown quiescent current (per channel)  
Disable time (see Note 3)  
V
= 3.3 V  
500  
CC(SHDN)  
(SHDN)  
DIS  
= 0 V  
GND  
CC  
Enable time (see Note 3)  
ns  
EN  
V
= 5 V to 15 V  
Shutdown pin low level leakage current  
Shutdown pin high level leakage current  
V
V
= 0 V  
25  
µA  
µA  
IL(SHDN)  
IH(SHDN)  
(SHDN)  
= 3.3 V  
110  
130  
(SHDN)  
NOTE 3: Disable/enable time is defined as the time from when the shutdown signal is applied to the SHDN pin to when the supply current has  
reached half of its final value.  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Small signal closed loop gain  
Small and large signal output  
vs Frequency  
1 − 10  
11, 12  
13, 14, 15  
16, 17  
18  
vs Frequency  
vs Frequency  
Harmonic distortion  
vs Peak−to−peak output voltage  
vs Frequency  
V , I  
Voltage noise and current noise  
Common-mode rejection ratio  
Crosstalk  
n
n
CMRR  
vs Frequency  
19  
vs Frequency  
20  
Z
Output impedance  
Slew rate  
vs Frequency  
21  
o
SR  
vs Output voltage step  
vs Free-air temperature  
vs Common-mode input voltage  
vs Free-air temperature  
vs Load current  
22  
23  
V
Input offset voltage  
IO  
24  
I
B
Input bias current  
Output voltage  
25  
V
26  
O
vs Free-air temperature  
vs Supply voltage  
27  
Quiescent current  
28  
I
Shutdown supply current  
Differential gain and phase error  
Shutdown response  
vs Free-air temperature  
vs 75 serially terminated loads  
29  
CC  
30, 31  
32  
Small signal pulse response  
Large signal pulse response  
33, 34  
35, 36  
5
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢅ  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
SLOS382 − SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
SMALL SIGNAL CLOSED LOOP GAIN  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
6
3
2
R
= 330 Ω  
F
R
= 470 Ω  
F
3
0
0
1
R
= 680 Ω  
= 500 Ω  
−3  
−6  
F
R
= 680 Ω  
= 500 Ω  
F
−3  
0
R
F
R
= 750 Ω  
= 560 Ω  
−6  
F
R
−9  
F
R = 330 Ω  
F
−1  
−9  
R
−12  
−15  
−18  
−21  
−24  
−27  
−30  
F
−2  
−3  
−4  
−5  
−6  
−12  
−15  
−18  
−21  
−24  
−27  
−30  
G = −1,  
G = −1,  
G = 1,  
V
= 15 V,  
V
=
5 V,  
V
=
5 V,  
R = 50 Ω  
L
CC  
CC  
CC  
R
= 50 Ω  
R
= 50 Ω  
L
L
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 1  
Figure 2  
Figure 3  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
9
3
9
R
= 470 Ω  
F
R
= 430 Ω  
F
R
= 430 Ω  
F
3
6
3
0
−3  
R
= 500 Ω  
F
R
= 500 Ω  
= 470 Ω  
F
R
= 560 Ω  
R
= 470 Ω  
F
F
6
0
R
F
R
= 750 Ω  
F
0
−6  
−3  
−9  
G = 2,  
−3  
−6  
G = 2,  
G = 1,  
V
=
5 V,  
V
=
15 V,  
R = 50 Ω  
L
V
=
15 V,  
CC  
CC  
CC  
R
= 50 Ω  
R
= 50 Ω  
L
L
−6  
0.1  
−12  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 4  
Figure 5  
Figure 6  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
15  
15  
15  
R
= 200 Ω  
R
= 200 Ω  
F
F
12  
12  
9
12  
9
6
R
R
= 200 Ω  
F
9
6
R
= 270 Ω  
F
R
= 270 Ω  
6
F
3
R
= 390 Ω  
3
F
R
= 390 Ω  
F
= 470 Ω  
= 560 Ω  
F
0
3
0
−3  
−6  
−3  
−6  
−9  
−12  
−15  
−18  
0
R
F
−3  
−9  
G = 4,  
−6  
G = 4,  
−12  
V
R
= 5 V,  
= 50 Ω  
V
=
5 V,  
V
R
=
15 V,  
CC  
L
CC  
CC  
L
−15  
−18  
−9  
R
= 50 Ω  
= 50 Ω  
L
−12  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 7  
Figure 8  
Figure 9  
6
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢅ  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
SLOS382 − SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
SMALL AND LARGE SIGNAL OUTPUT  
vs  
SMALL AND LARGE SIGNAL OUTPUT  
vs  
SMALL SIGNAL CLOSED LOOP GAIN  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
18  
18  
15  
G = 2, V  
=
5 V,  
G = 2, V  
=
15 V,  
CC  
CC  
4 V  
4 V  
PP  
R
= 200 Ω  
PP  
F
R
= 680 , R = 50 Ω  
R
= 680 ,R = 50 Ω  
L
L
12  
9
L
L
12  
6
12  
6
2 V  
1 V  
2 V  
1 V  
PP  
PP  
PP  
PP  
PP  
PP  
R
= 470 Ω  
F
6
0
0
−6  
3
0.5 V  
0.5 V  
R
= 560 Ω  
F
−6  
−12  
0
0.25 V  
0.25 V  
PP  
PP  
−3  
−12  
0.125 V  
0.125 V  
−6  
PP  
PP  
−18  
−24  
V
R
=
15 V,  
−18  
−24  
CC  
L
−9  
= 50 Ω  
−12  
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 10  
Figure 11  
Figure 12  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
0
0
−10  
−20  
−30  
−40  
−50  
0
G = 2,  
G = 2,  
G = 2,  
−10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
V
V
=
5 V,  
= 2 V,  
V
V
=
15 V,  
= 8 V,  
= 470 ,  
= 50 Ω  
V
V
=
15 V,  
= 2 V,  
CC  
O(PP)  
CC  
O(PP)  
CC  
O(PP)  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
3rd Harmonic  
R
R
= 470 ,  
R
R
R
R
= 470 ,  
= 50 Ω  
F
L
F
L
F
L
2nd Harmonic  
= 50 Ω  
5th Harmonic  
3rd Harmonic  
5th Harmonic  
3rd Harmonic  
−60  
−70  
2nd Harmonic  
5th Harmonic  
2nd Harmonic  
−80  
4th Harmonic  
10 100  
−90  
4th Harmonic  
10  
−90  
4th Harmonic  
−100  
−100  
0.1  
1
100  
0.1  
1
10  
0.1  
1
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 13  
Figure 14  
Figure 15  
HARMONIC DISTORTION  
vs  
PEAK-TO-PEAK OUTPUT VOLTAGE  
HARMONIC DISTORTION  
vs  
PEAK-TO-PEAK OUTPUT VOLTAGE  
VOLTAGE NOISE AND CURRENT NOISE  
vs  
FREQUENCY  
0
0
100  
G = 2,  
G = 2,  
V
T
=
5 V to 15 V  
CC  
A
−10  
−20  
−30  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
V
=
5 V,  
V
=
15 V,  
= 25°C  
CC  
CC  
f = 1 MHz,  
f = 1 MHz,  
R
R
= 470 ,  
= 50 Ω  
R
R
= 470 ,  
= 50 Ω  
F
L
F
L
I
n−  
−40  
−50  
−60  
−70  
5th Harmonic  
I
10  
n+  
5th Harmonic  
2nd Harmonic  
2nd Harmonic  
3rd Harmonic  
3rd Harmonic  
V
n
−80  
−90  
4th Harmonic  
2.5 3.5  
4th Harmonic  
−100  
1
0
0.5  
1
1.5  
2
3
4
4.5 5  
0
1
2
3
4
5
6
7
8
9
0.01  
0.1  
1
10  
100  
V
− Peak-to-Peak Output Voltage − V  
V
− Peak-to-Peak Output Voltage − V  
PP  
PP  
f − Frequency − kHz  
Figure 16  
Figure 17  
Figure 18  
7
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢅ  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
SLOS382 − SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
vs  
CROSSTALK  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
100  
10  
80  
0
G = 2,  
V
R
= 5 V, 15 V  
CC  
= 1 k,  
−10  
−20  
−30  
−40  
−50  
−60  
70  
V
=
5 V, 15 V  
= 470 ,  
= 50 Ω,  
CC  
F
V
= 15 V  
CC  
R
R
F
L
60  
50  
40  
30  
20  
V
= 5 V  
CC  
1
0.1  
G = 2,  
R
R
T
A
= 470 ,  
= 50 Ω,  
= 25°C  
F
L
10  
0
−70  
−80  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 19  
Figure 20  
Figure 21  
SLEW RATE  
vs  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
OUTPUT VOLTAGE STEP  
FREE-AIR TEMPERATURE  
COMMON-MODE INPUT VOLTAGE  
0
1
2
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
= 15 V,  
V
V
= 15 V,  
= 0 V,  
G = 2,  
CC  
CC  
CM  
1.5  
1
R
T
= 100 Ω,  
= 25°C  
R
R
T
A
= 470 ,  
= 50 Ω,  
= 25°C  
L
A
F
L
R
= 100 Ω  
L
2
V
= 15 V  
0.5  
0
CC  
3
4
−0.5  
−1  
5
V
=
6
5 V  
CC  
6
7
−1.5  
−2  
−40  
−15  
10  
35  
60  
85  
0
1
2
3
4
5
7
8
9
10  
−15  
−10  
−5  
0
5
10  
15  
T
A
− Free-Air Temperature − °C  
V
− Output Voltage Step − V  
V
− Common-Mode Input Voltage − V  
O
CM  
Figure 22  
Figure 23  
Figure 24  
INPUT BIAS CURRENT  
vs  
QUIESCENT CURRENT  
vs  
OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
LOAD CURRENT  
12  
10  
8
15  
12  
10  
8
V
=
15 V, I  
IB+  
CC  
V
=
15 V  
CC  
14  
13  
12  
11  
10  
V
=
15 V, I  
IB−  
CC  
6
V
= 5 V  
CC  
6
V
=
5 V, I  
IB+  
CC  
4
4
V
=
5 V, I  
IB−  
CC  
2
V
R
T
A
= 15 V,  
= 330 Ω,  
= 25°C  
CC  
F
2
0
0
−2  
−40  
−15  
10  
35  
60  
85  
0
50 100 150 200 250 300 350 400 450  
− Load Current − mA  
−40  
−15  
10  
35  
60  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
I
L
Figure 25  
Figure 26  
Figure 27  
8
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢅ  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
SLOS382 − SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
QUIESCENT CURRENT  
vs  
SHUTDOWN SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
12  
10  
450  
400  
350  
300  
250  
200  
150  
100  
V
= 3.3 V  
SD  
85 °C  
R
= 750 Ω  
F
V
=
15 V  
CC  
8
6
4
2
0
25 °C  
−40 °C  
V
=
5 V  
CC  
50  
0
0
2.5  
5
7.5  
10  
12.5  
15  
−40  
−15  
10  
35  
60  
85  
V
− Supply Voltage −  
V
T
A
− Free-Air Temperature − °C  
CC  
Figure 28  
Figure 29  
DIFFERENTIAL PHASE AND GAIN ERROR  
DIFFERENTIAL PHASE AND GAIN ERROR  
vs  
vs  
75 SERIALLY TERMINATED LOADS  
75 SERIALLY TERMINATED LOADS  
0.07  
0.08  
0.35  
0.35  
V
= 15 V,  
V
= 5 V,  
CC  
G = 2,  
CC  
G = 2,  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.3  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
40 IRE Modulation  
100 IRE Ramp  
NTSC  
40 IRE Modulation  
100 IRE Ramp  
NTSC  
0.06  
0.05  
0.04  
0.03  
0.02  
0.25  
0.2  
Gain Error  
Gain Error  
Phase Error  
Phase Error  
0.15  
0.1  
0.05  
0
0.01  
0
0.01  
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
75 Serially Terminated Loads  
75 Serially Terminated Loads  
Figure 30  
Figure 31  
THS3125  
SHUTDOWN RESPONSE  
SMALL SIGNAL PULSE RESPONSE  
SMALL SIGNAL PULSE RESPONSE  
5
4
3
2
1
0
0.3  
0.3  
V = 15 V  
CC  
G = 8  
0.2  
0.1  
0
0.2  
0.1  
R
R
= 330 Ω  
= 100 Ω  
F
L
0
2
−0.1  
−0.2  
−0.3  
−0.1  
1.5  
1
V
= 5 V,  
V
= 15 V,  
CC  
G = 2,  
CC  
G = 2,  
−0.2  
−0.3  
0.5  
0
R
R
= 470 ,  
= 50 Ω  
R
R
= 470 ,  
= 50 Ω  
F
L
F
L
0
1
2
3
4
5
6
7
8
9
10  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
t − Time − µs  
t − Time − ns  
t − Time − ns  
Figure 32  
Figure 33  
Figure 34  
9
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢅ  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
SLOS382 − SEPTEMBER 2001  
TYPICAL CHARACTERISTICS  
LARGE SIGNAL PULSE RESPONSE  
3
LARGE SIGNAL PULSE RESPONSE  
3
2
2
1
1
0
0
−1  
−2  
−3  
−1  
−2  
−3  
V
= 5 V,  
CC  
G = 2,  
V
= 15 V,  
CC  
G = 2,  
R
R
= 470 ,  
= 50 Ω  
F
L
R
R
= 470 ,  
= 50 Ω  
F
L
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
t − Time − ns  
t − Time − ns  
Figure 36  
Figure 35  
10  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢅ  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
SLOS382 − SEPTEMBER 2001  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°ā8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
11  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢅ  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
SLOS382 − SEPTEMBER 2001  
MECHANICAL INFORMATION  
DDA (S−PDSO−G8)  
Power PADt PLASTIC SMALL-OUTLINE  
0,49  
0,35  
M
0,10  
1,27  
8
5
Thermal Pad  
(See Note D)  
0,20 NOM  
3,99  
3,81  
6,20  
5,84  
Gage Plane  
0,25  
1
4
4,98  
4,80  
0°−8°  
0,89  
0,41  
1,68 MAX  
Seating Plane  
0,10  
1,55  
1,40  
0,13  
0,03  
4202561/A 02/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
PowerPAD is a trademark of Texas Instruments.  
12  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢅ  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
SLOS382 − SEPTEMBER 2001  
MECHANICAL INFORMATION  
PWP (R-PDSO-G**)  
PowerPADPLASTIC SMALL-OUTLINE PACKAGE  
20-PIN SHOWN  
0,30  
0,19  
0,65  
20  
M
0,10  
11  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°ā8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/E 03/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusions.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically  
and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments.  
13  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2005  
PACKAGING INFORMATION  
Orderable Device  
THS3122CD  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS3122CDDA  
SO  
Power  
PAD  
DDA  
DDA  
8
75  
TBD  
Call TI  
Level-1-235C-UNLIM  
THS3122CDDAR  
ACTIVE  
SO  
Power  
PAD  
8
2500  
TBD  
Call TI  
Level-1-235C-UNLIM  
THS3122CDG4  
THS3122CDR  
THS3122CDRG4  
THS3122ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS3122IDDA  
SO  
Power  
PAD  
DDA  
75  
TBD  
Call TI  
Level-1-235C-UNLIM  
THS3122IDDAR  
ACTIVE  
SO  
Power  
PAD  
DDA  
8
2500  
TBD  
Call TI  
Level-1-235C-UNLIM  
THS3122IDR  
THS3122IDRG4  
THS3125CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS3125CDG4  
THS3125CDR  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS3125CDRG4  
THS3125CPWP  
THS3125CPWPG4  
THS3125CPWPR  
THS3125CPWPRG4  
THS3125ID  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
PWP  
PWP  
PWP  
D
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS3125IDR  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS3125IDRG4  
THS3125IPWP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
HTSSOP  
PWP  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2005  
Orderable Device  
THS3125IPWPG4  
THS3125IPWPR  
THS3125IPWPRG4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HTSSOP  
PWP  
14  
14  
14  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
HTSSOP  
HTSSOP  
PWP  
PWP  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

THS3112IDDA

双路、低噪声、高输出电流、110MHz 放大器 | DDA | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3112IDDAG3

Dual, Low-Noise, High Output Current, 110-MHz Amplifier 8-SO PowerPAD -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3112IDDAR

双路、低噪声、高输出电流、110MHz 放大器 | DDA | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3112IDDARG3

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, GREEN, PLASTIC, SOP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3112IDG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, GREEN, PLASITC, MS-012AA, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3112IDRG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, GREEN, PLASITC, MS-012AA, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3115

LOW-NOISE, HIGH-SPEED CURRENT FEEDBACK AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BB

THS3115

具有关断状态的双路低噪声高输出电流的 110MHz 放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3115CD

Dual, Low-Noise, High Output Current, 110-MHz Amplifier with Shutdown 14-SOIC 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3115CDG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASITC, MS-012AB, SOIC-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3115CDR

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASITC, MS-012AB, SOIC-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3115CDRG4

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, GREEN, PLASITC, MS-012AB, SOIC-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI