THS3491IDDAT [TI]

900-MHz high-power-output current-feedback amplifier | DDA | 8 | -40 to 85;
THS3491IDDAT
型号: THS3491IDDAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

900-MHz high-power-output current-feedback amplifier | DDA | 8 | -40 to 85

文件: 总53页 (文件大小:3653K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS3491  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
THS3491 900MHz500mA 高功率输出电流反馈放大器  
1 特性  
3 说明  
• 带宽:  
THS3491 电流反馈放大器 (CFA) 可以为在从直流到大  
100MHz 负载为 100Ω的高输出功率水平实  
现最低失真的应用提供更出色的性能。尽管该电流反馈  
设计的额定增益为 5V/V但它能够在宽增益范围内保  
持几乎恒定的带宽和失真。  
900MHzVO = 2VPPAV = 5V/V)  
320MHzVO = 10VPPAV = 5V/V)  
• 压摆率8000V/µs (VO = 20VPP  
• 输入电压噪声1.7nV/Hz  
)
• 双极电源电压范围±7V ±16V  
• 单电源电压范围14 V 32 V  
• 输出摆幅28VPP±16V 电源100Ω)  
• 线性输出电流±420 mA典型值)  
16.8mA 修整后的电源电流低温度系数)  
HD2 HD375dBc50MHzVO =  
10VPP100Ω)  
8000V/µs 的压摆率能够以低失真和 100MHz 的频率为  
严苛的负载提供 10VPP 的输出。900MHz、小信号带  
宽能够以 10V 阶跃以及小于 1.3ns 的上升和下降时间  
提供小于 1.5% 的低过冲。大于 500mA 的峰值输出电  
流驱动值能够以快速的信号驱动高电容负载。  
通过使用 VQFN-16 (RGT) 封装新设计能实现超低失  
8 引脚 HSOIC (DDA) 封装具有 PowerPAD  
• 上升和下降时间1.3ns10V 阶跃)  
• 过冲1.5%10V 阶跃AV = 5V/V)  
• 电流限制和热关断保护  
可升级现有的 THS3091 THS3095 设计。与传  
统的 THS3091 THS3095 选项相比THS3491 的  
更低输出余量能够在相同±15V 电源下提供更大的输  
出摆幅。  
• 关断特性  
2 应用  
封装信息(1)(2)  
• 高电压任意波形发生器  
封装尺寸标称值)  
器件型号  
THS3491  
封装  
LCD 测试仪的信号发生器  
• 用LCR 表的输出驱动器  
• 功FET 驱动器  
RGTVQFN163.00mm × 3.00mm  
DDAHSOIC84.89mm × 3.90mm  
• 高容性负载压电元件驱动器  
VDSL 线路驱动器  
• 以引脚兼容的方式THS3095 (DDA) 进行升级  
器件信息  
芯片尺寸标称值)  
器件型号  
THS3491  
封装  
1.02 mm × 1.06 mm  
裸片  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
(2) 请参阅器件比较表  
+VS  
œVS  
0
HD2  
HD3  
VOUT = 10 VPP  
-10  
15 V  
œ15 V  
143  
576 ꢀ  
-20  
-30  
-40  
-50  
+VS  
œ
High power gain of  
5 V/V output driver  
with load sharing  
40.2 ꢀ  
+
THS3491  
THS3217  
Output  
50-Ω  
Load  
-60  
-70  
œVS  
49.9 ꢀ  
30 ꢀ  
Passive  
Filter  
143 ꢀ  
576 ꢀ  
-80  
13 VPP maximum  
available at  
matched 50-Ω  
load  
250 ꢀ  
+VS  
-90  
œ
40.2 ꢀ  
-100  
0.1  
+
1
10  
Frequency (MHz)  
100 200  
THS3491  
D071  
œVS  
谐波失真与频率间的关系  
典型的任意波形发生器输出驱动电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS875  
 
 
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
Table of Contents  
9.2 Functional Block Diagram.........................................24  
9.3 Feature Description...................................................25  
9.4 Device Functional Modes..........................................27  
10 Application and Implementation................................30  
10.1 Application Information........................................... 30  
10.2 Typical Application.................................................. 32  
10.3 Power Supply Recommendations...........................34  
10.4 Layout..................................................................... 35  
11 Device and Documentation Support..........................40  
11.1 Documentation Support.......................................... 40  
11.2 接收文档更新通知................................................... 40  
11.3 支持资源..................................................................40  
11.4 Trademarks............................................................. 40  
11.5 静电放电警告...........................................................40  
11.6 术语表..................................................................... 40  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................4  
6 Pin Configuration and Functions...................................5  
7 Bare Die Information....................................................... 6  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings........................................ 7  
8.2 ESD Ratings............................................................... 7  
8.3 Recommended Operating Conditions.........................7  
8.4 Thermal Information....................................................7  
8.5 Electrical Characteristics: VS = ±15 V......................... 8  
8.6 Electrical Characteristics: VS = ±7.5 V...................... 11  
8.7 Typical Characteristics: ±15 V...................................13  
8.8 Typical Characteristics: ±7.5 V..................................20  
9 Detailed Description......................................................24  
9.1 Overview...................................................................24  
Information.................................................................... 40  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (July 2018) to Revision C (February 2023)  
Page  
• 向数据表添加了裸片封装详细信息......................................................................................................................1  
Removed bipolar-supply operating range and single-supply operating range specifications from Electrical  
Characteristics: VS = ±15 V ............................................................................................................................... 8  
Added new test level A2 that is clarifies what is tested for die sales..................................................................8  
Changes from Revision A (March 2018) to Revision B (July 2018)  
Page  
• 将典型的任意波形发生器输出驱动电中的电阻值49.9Ω40.2Ω.....................................................1  
• 将典型的任意波形发生器输出驱动电中的电阻值24.9Ω30Ω........................................................1  
Changed TA = 25°C to TA 25°C in Electrical Characteristics: ±15 V condition statement............................... 8  
Changed 100% tested at 25°C to 100% tested at 25°C in the footnote of Electrical Characteristics: ±15 V ...  
8
Added DDA package only in Test Conditions column for "VOS" specification.....................................................8  
Added new VOS specifiction line for RGT package.............................................................................................8  
Added min/max values to RFB_TRACE specification ............................................................................................8  
Changed units from: pF || kto: k|| pF and changed typical spec accordingly.............................................. 8  
Added min/max values to TJ_SENSE 25value specification............................................................................. 8  
Changed TJ_SENSE temperature coefficient specification's typical value from 3 mV/to 3.2 mV/................ 8  
Added min/max values to TJ_SENSE input impedance specification....................................................................8  
Changed "TA = 25°C" to "TA 25°C" in Electrical Characteristics: ±7.5 V condition statement....................... 11  
Changed "100% tested at 25°C" to "100% tested at 25°C" in the footnote of Electrical Characteristics: ±7.5  
V .......................................................................................................................................................................11  
Added "DDA package only" in Test Conditions column for "VOS" specification ............................................... 11  
Added new VOS specifiction line for RGT package...........................................................................................11  
Changed units from "pF || k" to "k|| pF" and changed typical values accordingly ......................................11  
Added min/max values to "TJ_SENSE 25value" specification.........................................................................11  
Added min/max values to "TJ_SENSE input impedance" specification................................................................11  
Changed "TA = 25°C" to "TA 25°C" in Typical Characteristics: ±15 V condition statement............................13  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: THS3491  
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
Changed ZOL low frequency value from 160 dB to 138 dB in Open-Loop Transimpedance Gain and Phase vs  
Frequency ........................................................................................................................................................13  
Changed Overdrive Recovery Time grid lines and added gain information..................................................... 13  
Added TJ_SENSE Voltage vs Ambient Temperature ..........................................................................................13  
Changed "TA = 25°C" to "TA 25°C" in Typical Characteristics: ±7.5 V condition statement...........................20  
Changed Overdrive Recovery Time grid lines and added gain information..................................................... 20  
Corrected polarity of negative supply capacitor in Wideband Noninverting Gain Configuration (5 V/V) ......... 27  
Corrected negative supply capacitor polarity in Wideband Inverting Gain Configuration (5 V/V) ....................28  
Added "RISO" to "1 Ω" in Driving a Large Capacitive Load Using an Output Series Isolation Resistor ...........30  
Added 1-kΩresistor to Driving a Large Capacitive Load Using an Output Series Isolation Resistor .............30  
Changed supply values from ±15 V to ±7.5 V in Video Distribution Amplifier Application ...............................31  
Changed RS2 values from 100 Ωto 40.2 Ωin Load-Sharing Driver Application ............................................32  
Added 30-Ωresistor to Load-Sharing Driver Application ................................................................................32  
Added text to Design Requirements and Detailed Design Procedure sections ...............................................33  
Added Application Curves section ...................................................................................................................34  
Changes from Revision * (August 2017) to Revision A (March 2018)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
5 Device Comparison Table  
HD2/3,  
LINEAR  
OUTPUT  
CURRENT  
(mA)  
INPUT NOISE  
Vn  
(nV/Hz)  
SSBW,  
AV = 5  
(MHz)  
MAXIMUM ICC  
AT 25°C  
SUPPLY, VS  
10 VPP AT 50 MHz, SLEW RATE  
DEVICE  
(V)  
G = 5 V/V  
(dBc)  
(V/µs)  
(mA)  
THS3491  
THS3095  
THS3001  
THS3061  
±15  
±15  
±15  
±15  
900  
190  
350  
260  
17.3  
9.5  
9
1.7  
1.6  
1.6  
2.6  
7100(1)  
1200(2)  
1400(3)  
1060(4)  
±420  
±250  
±120  
±140  
76/75  
40/42  
N/A  
8.3  
N/A  
(1) Slew rate from FPBW of 320 MHz, 10 VPP  
(2) Slew rate from FPBW of 135 MHz, 4 VPP  
(3) Slew rate from FPBW of 32 MHz, 20 VPP  
(4) Slew rate from FPBW of 120 MHz, 4 VPP  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
6 Pin Configuration and Functions  
PD  
16  
NC  
15  
+VS  
14  
+VS  
13  
REF  
VINœ  
VIN+  
œVS  
1
2
3
4
8
7
6
5
PD  
1
2
3
4
12  
11  
10  
9
NC  
FB  
NC  
+VS  
VOUT  
VOUT  
VOUT  
NC  
œ
+
NC  
VINœ  
VIN+  
NC - no internal connection  
6-1. DDA Package, 8-Pin HSOIC With PowerPAD  
5
6
7
8
GND TJ_SENSE œVS  
œVS  
(Top View)  
NC - no internal connection  
6-2. RGT Package, 16-Pin VQFN With Exposed  
Thermal Pad (Top View)  
6-1. Pin Functions  
PIN (1)  
HSOIC  
TYPE (2)  
DESCRIPTION  
NAME  
FB  
VQFN  
1
5
O
Input side feedback pin  
GND  
GND  
Ground, PD logic reference on the VQFN-16 (RGT) package  
No connect (there is no internal connection). Recommended connection to  
a heat spreading plane, typically GND.  
NC  
5
8
1
2, 9, 12, 15  
Amplifier power down: low = amplifier disabled, high (default) = amplifier  
enabled  
PD  
16  
I
I
PD logic reference on the SOIC-8 (DDA) package. Typically connected to  
GND.  
REF  
TJ _SENSE  
VIN–  
VIN+  
6
3
O
I
Voltage proportional to die temperature  
Inverting input  
2
3
4
I
Noninverting input  
VOUT  
VS  
6
10, 11  
7, 8  
13, 14  
O
P
P
Amplifier output  
4
Negative power supply  
Positive power supply  
+VS  
7
Thermal pad. Electrically isolated from the device. Recommended  
connection to a heat spreading plane, typically GND.  
Thermal pad  
(1) Both packages include a backside thermal pad. The thermal pad can be connected to a heat spreading plane that can be at any  
voltage because the device die is electrically isolated from this metal plate. The thermal pad can also be unused (not connected to any  
heat spreading plane or voltage) giving higher thermal impedance.  
(2) GND = ground, I = input, O = output, P = power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
7 Bare Die Information  
DIE THICKNESS  
BACKSIDE FINISH  
BACKSIDE POTENTIAL  
BOND PAD METALLIZATION BOND PAD DIMENSIONS  
Wafer backside is electrically  
connected to -VS  
Silicon with backgrind  
Al  
76.0 µm × 76.0 µm  
15 mils (381 μm)  
55.31  
19  
18  
17  
16 15  
14  
1
2
3
13  
12  
11  
10  
4
5
6
7
8
9
0
0
1.57  
Bond Pad Coordinates in Microns  
NAME  
FB  
PAD NUMBER  
X MIN  
26.9  
26.9  
26.9  
180  
Y MIN  
X MAX  
103  
Y MAX  
963  
1
2
887  
VIN-  
VIN+  
REF  
DNC  
TJ_SENSE  
-VS  
549  
103  
625  
3
211  
103  
287  
4
23.7  
23.7  
23.7  
23.7  
23.7  
23.7  
292  
256  
99.7  
99.7  
99.7  
99.7  
99.7  
99.7  
368  
5
431  
507  
6
601  
677  
7
760  
836  
-VS  
8
862  
938  
-VS  
9
993  
1069  
1298  
1298  
1298  
1298  
1069  
938  
-VS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1222  
1222  
1222  
1222  
993  
VOUT  
VOUT  
+VS  
459  
535  
639  
715  
806  
882  
+VS  
1074  
1074  
1074  
1074  
1074  
1074  
1150  
1150  
1150  
1150  
1150  
1150  
+VS  
862  
+VS  
760  
836  
DNC  
PD  
601  
677  
431  
507  
REF  
180  
256  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: THS3491  
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
33  
UNIT  
V
Supply voltage, (+VS) (VS)  
Supply voltage turnon, turnoff maximum dV/dT (2)  
1
V/µs  
Voltage  
Input/output voltage range  
(+VS) + 0.5  
±0.5  
±10  
(VS) 0.5  
V
Differential input voltage  
Continuous input current (3)  
Current  
mA  
Continuous output current (3)  
±100  
150  
Maximum  
(4)  
Junction temperature, TJ  
Continuous operation, long-term reliability  
125  
Temperature  
°C  
(5)  
Storage temperature, Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Stay below this dV/dT supply turnon and turnoff edge rate to make sure that the edge-triggered ESD absorption device across the  
supply pins remains open. Exceeding this supply edge rate may transiently show a short circuit across the supplies.  
(3) Long-term continuous current for electro-migration limits.  
(4) Thermal shutdown at approximately 160°C junction temperature and recovery at approximately 145°C.  
(5) See the MSL or reflow rating information provided with the material or see https://www.ti.com for the latest information.  
8.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±7  
NOM  
±15  
30  
MAX  
±16  
32  
UNIT  
V
Dual-supply  
(+VS) (–  
VS)  
Supply voltage  
Single-supply  
14  
TA  
Operating free-air temperature  
85  
°C  
40  
8.4 Thermal Information  
THS3491  
THERMAL METRIC(1)  
DDA (HSOIC)  
8 PINS  
44.5  
RGT (VQFN)  
8 PINS  
49.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
66.8  
55.4  
19.2  
23.1  
6.4  
1.8  
ψJT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
19.5  
23.2  
ψJB  
RθJC(bot)  
7.5  
7.8  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and IC Package ThermalMetrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: THS3491  
 
 
 
 
 
 
 
 
 
 
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.5 Electrical Characteristics: VS = ±15 V  
at +VS = +15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V, and RGT  
package: RF = 576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
Test  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Level(1)  
SSBW  
LSBW  
Small-signal bandwidth  
Large-signal bandwidth  
Bandwidth for 0.2-dB flatness  
Slew rate (20% 80%)  
Overshoot and undershoot  
Rise and fall time  
VO = 2 VPP, < 0.5-dB peaking  
VO = 10 VPP, < 1-dB peaking  
VO = 2 VPP  
900  
320  
MHz  
MHz  
MHz  
V/µs  
C
C
C
C
C
C
C
350  
SR  
VO = 20 VPP  
8000  
1.5%  
1.3  
VO = 10-V step (input tr/tf = 1.0 ns)  
VO = 10-V step (input tr/tf = 1.0 ns)  
VO = 10-V step (input tr/tf = 1.0 ns)  
f = 20 MHz, VO = 10 VPP  
f = 50 MHz, VO = 10 VPP  
f = 70 MHz, VO = 10 VPP  
f = 100 MHz, VO = 10 VPP  
f = 20 MHz, VO = 20 VPP  
f = 50 MHz, VO = 20 VPP  
f = 70 MHz, VO = 20 VPP  
f = 100 MHz, VO = 20 VPP  
f = 20 MHz, VO = 10 VPP  
f = 50 MHz, VO = 10 VPP  
f = 70 MHz, VO = 10 VPP  
f = 100 MHz, VO = 10 VPP  
f = 20 MHz, VO = 20 VPP  
f = 50 MHz, VO = 20 VPP  
f = 70 MHz, VO = 20 VPP  
f = 100 MHz, VO = 20 VPP  
tr/tf  
ts  
ns  
ns  
Settling time to 0.1%  
7
78  
76  
68  
60  
75  
65  
61  
51  
81  
75  
61  
51  
64  
55  
48  
47  
HD2  
Second-order harmonic distortion  
dBc  
C
HD3  
Third-order harmonic distortion  
dBc  
dBc  
C
C
2nd-order two-tone intermodulation f = 20 MHz, VO = 5 VPP per tone,  
distortion 100-kHz tone spacing  
IMD2  
79  
3rd-order two-tone intermodulation f = 20 MHz, VO = 5 VPP per tone,  
IMD3  
en  
dBc  
C
C
C
68  
1.7  
distortion  
100-kHz tone spacing  
Input-referred voltage noise  
f 100 kHz  
nV/Hz  
pA/Hz  
Noninverting, input-referred current  
noise  
inp  
15  
f 100 kHz  
Inverting, input-referred current  
noise  
inn  
20  
1
C
C
f 100 kHz  
pA/Hz  
ZOUT  
Closed-loop output impedance  
f = 50 MHz  
Ω
DC PERFORMANCE  
ZOL  
Open-loop transimpedance gain  
5
2  
8
1
A1  
A1  
A1  
B
VO = ±10 V, RLOAD = 500 Ω  
DDA package only  
MΩ  
mV  
2
VOS  
Input offset voltage  
RGT package & DIE sales  
40°C TJ +125°C  
1
2.5  
mV  
2.5  
Input offset voltage drift(2)  
3
µV/°C  
µA  
IB+  
Noninverting input bias current(3)  
7
A1  
7  
2  
Noninverting input bias current  
drift(2)  
nA/°C  
µA  
B
40°C TJ +125°C  
8  
7  
IB-  
Inverting input bias current(3)  
20  
A1  
20  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.5 Electrical Characteristics: VS = ±15 V (continued)  
at +VS = +15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V, and RGT  
package: RF = 576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
Test  
PARAMETER  
TEST CONDITIONS  
40°C TJ +125°C  
MIN  
TYP  
116  
1.5  
MAX UNIT  
Level(1)  
Inverting input bias current drift(2)  
nA/°C  
B
Internal trace resistance to  
feedback pin  
RFB_TRACE  
RGT only, pins 10 and 11 to pin 1  
f = DC  
1.1  
69  
1.9  
A2  
A1  
Ω
CMRR  
INPUT  
HRIN  
Common-mode rejection ratio  
75  
dB  
Headroom to either supply  
Noninverting input impedance  
Inverting input impedance  
CMRR > 60 dB  
4.1  
4.3  
18  
V
kΩ|| pF  
Ω
A2  
C
ZIN+  
Closed-loop measurement  
Open-loop measurement  
50 || 1.2  
8
ZIN-  
15  
B
OUTPUT  
HROUT  
Headroom to either supply  
Maximum current output  
1.2  
1.5  
1.7  
V
A1  
A2  
RLOAD = 24 Ω, VO = ±12.67 V,  
magnitude, both polarities  
IoutMAX  
480  
520  
550  
mA  
RLOAD = 24 Ω, VO = ±9.4 V,  
ZOL > 1 MΩ, source and sink  
IoutLINEAR  
Linear output current  
380  
500  
550  
420  
540  
mA  
mA  
A2  
B
Peak output current in transition  
(transition peak at zero-crossing  
VO = 0 V, RO < 0.5 Ω, magnitude,  
both polarities  
IoutPEAK  
IOUT  
)
VS = ±9 V, VO = ±6 V, magnitude,  
both polarities  
ISC  
Output short-circuit current  
DC output impedance  
620  
mA  
B
C
ZOUT  
Closed-loop (±50 mA)  
0.17  
Ω
POWER SUPPLY  
VS = ±15 V, No load  
VS = ±16 V, No load  
VS = ±7 V, No load  
16.1  
16.2  
15.2  
16.7  
16.8  
15.8  
17.3  
17.4  
16.3  
mA  
mA  
mA  
A1  
A2  
A1  
IQ  
Quiescent current  
VS = ±15 V, TJ = 40°C to +125°C,  
No load  
IQ TC  
5
82  
80  
µA/°C  
dB  
B
PSRR+  
PSRR–  
Positive power supply rejection ratio  
78  
77  
A1  
A1  
+VS ± 1.5 V, VS  
+VS, VS ± 1.5 V  
Negative power supply rejection  
ratio  
dB  
POWER DOWN  
REFRANGE REF pin voltage range  
IREF_BIAS  
GND +Vs 5  
Do NOT float the REF pin.  
V
A2  
A2  
Vs  
V
REF = 0 V, PD = REF + 3 V,  
positive out of the pin.  
REF pin bias current  
35  
46  
52  
µA  
VIL  
VIH  
Disable voltage threshold  
Enable voltage threshold  
REF = 0 V, guaranteed off below  
REF = 0 V, guaranteed on above  
0.8  
V
V
A1  
A1  
1.5  
17  
PD = REF = GND,  
positive out of the pin.  
PD LOW_BIAS PD pin low input bias current  
PD HIGH_BIAS PD pin high input bias current  
21  
0
25  
1
µA  
µA  
A2  
A2  
PD = REF + 3 V, REF = GND,  
positive out of the pin.  
1  
IQ_OFF_+VS  
IQ_OFF_VS  
tON  
+Vs disabled supply current  
Vs disabled supply current  
Turnon time delay  
650  
600  
780  
723  
50  
880  
820  
µA  
µA  
ns  
µs  
A1  
A2  
C
DC output to 90% of final value  
DC output to 10% of final value  
tOFF  
Turnoff time delay  
4
C
JUNCTION-TEMPERATURE SENSE, TJ_SENSE (QFN-16 ONLY, PIN 6)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.5 Electrical Characteristics: VS = ±15 V (continued)  
at +VS = +15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V, and RGT  
package: RF = 576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
Test  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Level(1)  
Device disabled (22°C to 32°C ATE  
ambient temperature)  
TJ_ SENSE 25°C value  
0.915  
1.06  
1.15  
V
A2  
TJ_ SENSE temperature coefficient  
TJ_ SENSE input impedance  
TJ = 0°C to 125°C  
3.2  
35  
mV/°C  
B
Internally connected to REF pin  
32.4  
38  
A2  
kΩ  
(1) Test levels (all values set by characterization and simulation): (A1) 100% tested at 25°C for all devices, overtemperature limits by  
characterization and simulation; (A2) 100% tested at 25°C for packaged devices, not tested in production for die sales (B) Not  
tested in production, limits set by characterization and simulation; (C) Typical value only for information;  
(2) Input offset voltage drift and input bias current drift are average values calculated by taking data at the end points, computing the  
difference, and dividing by the temperature range.  
(3) Current is considered positive out of the pin.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.6 Electrical Characteristics: VS = ±7.5 V  
at +VS = +7.5 V, VS = 7.5 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V, and RGT  
package: RF = 576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
Test  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Level(1)  
SSBW  
LSBW  
SR  
Small-signal bandwidth  
VO = 2 VPP, < 0.5-dB peaking  
VO = 5 VPP, < 1-dB peaking  
VO = 10 VPP  
800  
550  
MHz  
MHz  
V/µs  
dBc  
C
C
C
C
C
C
Large-signal bandwidth  
Slew rate (20%-80%)  
6000  
83  
78  
1.7  
HD2  
HD3  
en  
Second-order harmonic distortion  
Third-order harmonic distortion  
Input-referred voltage noise  
f = 20 MHz, VO = 5 VPP  
f = 20 MHz, VO = 5 VPP  
dBc  
f 100 kHz  
f 100 kHz  
nV/Hz  
pA/Hz  
Noninverting, input-referred current  
noise  
inp  
15  
C
Inverting, input-referred current  
noise  
inn  
20  
1
C
C
f = 100 kHz  
pA/Hz  
ZOUT  
Closed-loop output impedance  
f = 50 MHz  
Ω
DC PERFORMANCE  
ZOL  
Open-loop transimpedance gain  
6
2  
14  
1
A1  
A1  
A1  
B
VO = ±2.5 V, RLOAD = 500 Ω  
DDA package limits  
MΩ  
2
mV  
mV  
VOS  
Input offset voltage  
RGT package & die sales limits  
40°C TJ +125°C  
1
2.5  
2.5  
Input offset-voltage drift(2)  
3
µV/°C  
µA  
IB+  
Noninverting input bias current(3)  
-2  
7
A1  
7  
Noninverting input bias current  
drift(2)  
nA/°C  
B
40°C TJ +125°C  
40°C TJ +125°C  
10  
IB–  
Inverting input bias current(3)  
19  
µA  
A1  
B
19  
6  
Inverting input bias current drift(2)  
nA/°C  
112  
INPUT  
ZIN+  
Noninverting input impedance  
Inverting input impedance  
Headroom to either supply  
Closed-loop measurement  
Open-loop measurement  
CMRR > 60 dB  
35 || 1.2  
C
C
B
kΩ|| pF  
ZIN–  
15  
Ω
HRIN  
4.1  
4.3  
1.7  
V
OUTPUT  
HROUT  
Headroom to either supply  
Linear output current  
1.2  
1.5  
V
A1  
A2  
RLOAD = 24 Ω, VO = ±5 V,  
ZOL > 1 MΩ, source and sink  
IoutLINEAR  
200  
230  
mA  
POWER SUPPLY  
IQ  
Quiescent current  
No load  
15.2  
15.8  
16.4  
mA  
A1  
POWER DOWN  
REFRANGE  
IREF_BIAS  
REF pin voltage range  
Do NOT float the REF pin.  
V
B
Vs GND +Vs 5 V  
REF = 0 V, PD = REF + 3 V,  
positive out of the pin  
REF pin bias current  
35  
37  
52  
µA  
A2  
VIL  
VIH  
Disable voltage threshold  
Enable voltage threshold  
REF = 0 V, guaranteed off below  
REF = 0 V, guaranteed on above  
0.8  
V
V
A1  
A1  
1.5  
17  
PD = REF = GND,  
positive out of the pin.  
PD LOW_BIAS PD pin low input bias current  
PD HIGH_BIAS PD pin high input bias current  
21  
0
25  
1
µA  
µA  
A2  
A2  
PD = REF + 3 V, REF = GND,  
positive out of the pin.  
1  
IQ_OFF_+VS  
IQ_OFF_VS  
+Vs disabled supply current  
600  
550  
700  
642  
850  
770  
µA  
µA  
A1  
A2  
Vs disabled supply current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: THS3491  
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.6 Electrical Characteristics: VS = ±7.5 V (continued)  
at +VS = +7.5 V, VS = 7.5 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V, and RGT  
package: RF = 576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
Test  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Level(1)  
JUNCTION-TEMPERATURE SENSE, TJ_SENSE (QFN-16 ONLY, PIN 6)  
Device disabled (22°C to 32°C ATE  
ambient temperature)  
TJ_ SENSE 25°C value  
0.915  
32.4  
1.06  
1.15  
38  
V
A2  
TJ_SENSE temperature coefficient  
TJ_SENSE input impedance  
TJ = 0°C to 125°C  
3.2  
35  
mV/°C  
B
B
Internally connected to REF pin  
kΩ  
(1) Test levels (all values set by characterization and simulation): (A1) 100% tested at 25°C for all devices, overtemperature limits by  
characterization and simulation; (A2) 100% tested at 25°C for packaged devices, not tested in production for die sales (B) Not tested  
in production, limits set by characterization and simulation; (C) Typical value only for information;  
(2) Input offset voltage drift and input bias current drift are average values calculated by taking data at the end points, computing the  
difference, and dividing by the temperature range.  
(3) Current is considered positive out of the pin.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.7 Typical Characteristics: ±15 V  
at +VS = 15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V. RGT package : RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
3
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
G = 2 V/V, RF = 976  
G = 5 V/V, RF = 576  
G = 10 V/V, RF = 499  
W
W
W
W
G = 2 V/V, RF = 2100  
W
G = 5 V/V, RF = 798  
G = 10 V/V, RF = 704  
G = 20 V/V, RF = 564  
W
-12  
-15  
-12  
-15  
W
W
G = 20 V/V, RF = 383  
1
10  
100  
Frequency (MHz)  
1000  
4000  
1
10  
100  
Frequency (MHz)  
1000  
4000  
D001  
D006  
VO = 2 VPP  
RGT package  
VO = 2 VPP  
DDA package  
8-1. Noninverting Small-Signal Frequency Response  
8-2. Noninverting Small-Signal Frequency Response  
3
18  
0
-3  
15  
12  
9
-6  
-9  
6
VO = 2 VPP  
VO = 5 VPP  
-12  
G = -2 V/V, RF = 604  
G = -5 V/V, RF = 576  
G = -10 V/V, RF = 549  
W
W
VO = 10 VPP  
VO = 20 VPP  
VO = 26 VPP  
3
0
-15  
-18  
W
10  
100  
Frequency (MHz)  
1000  
4000  
1
10  
100  
Frequency (MHz)  
1000  
4000  
D018  
D002  
VO = 2 VPP  
RGT package; see 9.4.4 section for more details  
8-4. Frequency Response vs Output Swing  
8-3. Inverting Small-Signal Frequency Response  
18  
18  
15  
12  
9
15  
12  
9
6
3
0
6
RS = 20-W, CL = 10 pF  
RS = 15-W, CL = 22 pF  
RS = 10-W, CL = 47 pF  
RS = 7.5-W, CL = 100 pF  
T = -40èC  
T = 25èC  
T = 85èC  
T = 105èC  
-3  
-6  
-9  
3
0
10  
100  
Frequency (MHz)  
1000  
4000  
10  
100  
Frequency (MHz)  
1000  
4000  
D016  
D017  
VO = 2 VPP  
RGT package  
RGT package; see 10-1 for setup information  
8-5. Frequency Response vs CLOAD  
8-6. Frequency Response vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.7 Typical Characteristics: ±15 V (continued)  
at +VS = 15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V. RGT package : RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VO = 2 VPP  
VO = 10 VPP  
VO = 20 VPP  
VO = 2 VPP  
VO = 10 VPP  
VO = 20 VPP  
0.1  
1
10  
Frequency (MHz)  
100 200  
0.1  
1
10  
Frequency (MHz)  
100 200  
D065  
D066  
DDA package  
DDA package  
8-7. HD2 vs Frequency  
8-8. HD3 vs Frequency  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
G = 5 V/V  
G = -5 V/V  
G = 2 V/V  
G = 5 V/V  
G = -5 V/V  
G = 2 V/V  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0.1  
1
10  
Frequency (MHz)  
100  
500  
0.1  
1
10  
Frequency (MHz)  
100  
500  
D007  
D008  
VO = 2 VPP  
RGT package  
VO = 2 VPP  
RGT package  
8-9. HD2 vs Frequency  
8-10. HD3 vs Frequency  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
G = 5 V/V, VO = 10 VPP  
G = 5 V/V, VO = 10 VPP  
G = -5 V/V, VO = 10 VPP  
G = 5 V/V, VO = 20 VPP  
G = -5 V/V, VO = 20 VPP  
G = -5 V/V, VO = 10 VPP  
G = 5 V/V, VO = 20 VPP  
G = -5 V/V, VO = 20 VPP  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0.1  
1
10  
Frequency (MHz)  
100 200  
0.1  
1
10  
Frequency (MHz)  
100 200  
D009  
D010  
8-11. HD2 vs Frequency Across Output Swing  
8-12. HD3 vs Frequency Across Output Swing  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: THS3491  
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.7 Typical Characteristics: ±15 V (continued)  
at +VS = 15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V. RGT package : RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
0
-10  
0
-10  
f = 10 MHz, RL = 100 W  
f = 100 MHz, RL = 100 W  
f = 10 MHz, RL = 1 kW  
f = 100 MHz, RL = 1 kW  
f = 10 MHz, RL = 100 W  
f = 100 MHz, RL = 100 W  
f = 10 MHz, RL = 1 kW  
f = 100 MHz, RL = 1 kW  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Voltage Swing (VPP  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Voltage Swing (VPP  
)
)
D011  
D012  
8-13. HD2 vs Output Swing  
8-14. HD3 vs Output Swing  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-30  
-40  
T = -40èC  
T = -40èC  
T = 25èC  
T = 85èC  
T = 105èC  
T = 25èC  
T = 85èC  
T = 105èC  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0.1  
1
10  
Frequency (MHz)  
100  
500  
0.1  
1
10  
Frequency (MHz)  
100  
500  
D013  
D014  
VO = 2 VPP  
VO = 2 VPP  
8-15. HD2 vs Frequency Across Temperature  
8-16. HD3 vs Frequency Across Temperature  
-10  
-30  
HD2  
HD3  
-20  
-30  
-40  
-50  
-40  
-60  
-50  
-70  
-60  
-80  
-70  
-90  
-80  
-100  
-110  
-120  
-90  
IMD2  
IMD3  
-100  
-110  
0.1  
1
10  
Frequency (MHz)  
100  
500  
1
10  
Frequency (MHz)  
100  
500  
D015  
D038  
VO = 2 VPP  
VO = 5 VPP per tone  
±100-kHz frequency spacing  
RLoad = 1 kΩ  
8-18. Intermodulation Distortion vs Frequency  
8-17. Harmonic Distortion vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.7 Typical Characteristics: ±15 V (continued)  
at +VS = 15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V. RGT package : RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f = 20 MHz  
f = 50 MHz  
f = 100 MHz  
f = 20 MHz  
f = 50 MHz  
f = 100 MHz  
2
4
6
Output Voltage Swing per tone (VPP  
8
10  
)
12  
2
4
6
Output Voltage Swing per tone (VPP)  
8
10  
12  
D061  
D062  
±100-kHz frequency spacing  
±100-kHz frequency spacing  
8-19. IMD2 vs Output Voltage Swing  
8-20. IMD3 vs Output Voltage Swing  
1000  
1000  
140  
0
Vn  
Inp  
Inm  
ZOL (dBW)  
Phase (deg)  
130  
120  
110  
100  
90  
-15  
-30  
-45  
100  
10  
1
100  
10  
1
-60  
-75  
80  
-90  
70  
-105  
-120  
-135  
-150  
60  
50  
40  
100  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
1G  
100  
1000  
10000 100000  
Frequency (Hz)  
1000000  
1E+7  
D072  
D003  
8-21. Spot Input Noise vs Frequency  
No load  
8-22. Open-Loop Transimpedance Gain and Phase vs  
Frequency  
6
5
12  
VIN  
VOUT  
VIN  
VOUT  
10  
8
4
3
6
4
2
1
2
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-2  
-4  
-6  
-8  
-10  
-12  
Time (4 nsec/div)  
Time (4 nsec/div)  
D005  
D004  
VO = 10 VPP  
VO = 20 VPP  
8-23. G = 5 V/V Pulse Response  
8-24. G = 5 V/V Pulse Response  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.7 Typical Characteristics: ±15 V (continued)  
at +VS = 15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V. RGT package : RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
6
5
12  
10  
8
VIN  
VOUT  
VIN  
VOUT  
4
3
6
2
4
1
2
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-2  
-4  
-6  
-8  
-10  
-12  
Time (4 nsec/div)  
Time (4 nsec/div)  
D032  
D033  
VO = 10 VPP  
VO = 20 VPP  
8-25. G = 5 V/V Pulse Response  
8-26. G = 5 V/V Pulse Response  
500  
100  
16  
4.8  
VOUT (AV = +5)  
VIN x 5 gain  
14  
12  
10  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
4.2  
3.6  
3
2.4  
1.8  
1.2  
0.6  
0
-0.6  
-1.2  
-1.8  
-2.4  
-3  
-3.6  
-4.2  
-4.8  
10  
1
0.1  
0.05  
10  
100  
Frequency (MHz)  
1000  
Time (100 nsec/div)  
D019  
D021  
8-27. Output Impedance vs Frequency  
8-28. Overdrive Recovery Time  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
17.6  
17.2  
16.8  
16.4  
16  
15.6  
15.2  
14.8  
14.4  
14  
TA = -40èC  
TA = 25èC  
TA = 85èC  
G = 5 V/V  
G = -5 V/V  
12 14 16 18 20 22 24 26 28 30 32 34  
Single-supply Voltage VS (V)  
0.1  
1
10  
100  
Frequency (MHz)  
D041  
D031  
8-30. Quiescent Current vs Supply Voltage  
VIN = 2 VPP  
8-29. Shutdown Feedthrough vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.7 Typical Characteristics: ±15 V (continued)  
at +VS = 15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V. RGT package : RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
15  
12  
9
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
30-V Supply  
15-V Supply  
6
Source, TA = -40èC  
Source, TA = 25èC  
Source, TA = 85èC  
Sink, TA = -40èC  
Sink, TA = 25èC  
3
0
-3  
-6  
-9  
-12  
-15  
Sink, TA = 85èC  
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
IOUT (mA)  
D043  
D045  
Input Offset Voltage (mV)  
A. Measured with devices soldered on TI EVM. Devices not  
turned off at any read points but load applied for a few  
milliseconds to measure VOUT and then removed.  
8-31. Output Voltage Swing vs Output Current  
7100 units at each supply  
8-32. Input Offset Voltage Distribution  
5000  
4000  
3750  
3500  
3250  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
30-V Supply  
15-V Supply  
30-V Supply  
15-V Supply  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
500  
250  
0
0
-20 -16 -12 -8  
-4  
0
4
8
12 16 20  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
Inverting IB (mA)  
Non-inverting IB (mA)  
D046  
D047  
7100 units at each supply  
7100 units at each supply  
8-34. Noninverting IB Distribution  
8-33. Inverting IB Distribution  
2
1.8  
1.6  
1.4  
1.2  
1
15  
12.5  
10  
7.5  
5
2.5  
0
-2.5  
-5  
0.8  
0.6  
0.4  
0.2  
0
-7.5  
-10  
-12.5  
-15  
-17.5  
-20  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA Temperature (èC)  
D048  
D050  
Flash tested to keep TJ as close to TA as possible  
Flash tested to keep TJ as close to TA as possible  
8-35. Input Offset Voltage Over Temperature  
8-36. Inverting IB Over Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.7 Typical Characteristics: ±15 V (continued)  
at +VS = 15 V, VS = 15 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V. RGT package : RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
-0.5  
-1  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30-V Supply  
15-V Supply  
-1.5  
-2  
-2.5  
-3  
-3.5  
-4  
-4.5  
-5  
-5.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA Temperature (èC)  
-10 -8  
-6  
-4  
-2  
0
2
4
6
8
10  
Input Offset Voltage Drift (mV/èC)  
D051  
D052  
Flash tested to keep TJ as close to TA as possible  
90 units at each supply  
8-37. Noninverting IB Over Temperature  
8-38. Input Offset Voltage Drift Histogram  
45  
40  
35  
30  
25  
20  
15  
10  
5
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
30-V Supply  
15-V Supply  
30-V Supply  
15-V Supply  
6
3
0
0
-165 -150 -135 -120 -105 -90 -75 -60 -45 -30 -15  
-Ib Drift (nA/èC)  
0
-40 -35 -30 -25 -20 -15 -10 -5  
+Ib Drift (nA/èC)  
0
5
10 15  
D053  
D054  
90 units at each supply  
90 units at each supply  
8-40. Noninverting IB Drift Histogram  
8-39. Inverting IB Drift Histogram  
1.35  
1.3  
1.25  
1.2  
1.15  
1.1  
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature TA (èC)  
D075  
Device in shutdown mode to minimize self-heating, RGT package  
8-41. TJ_SENSE Voltage vs Ambient Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.8 Typical Characteristics: ±7.5 V  
at +VS = 7.5 V, VS = 7.5 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V RGT package: RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-12  
-15  
-18  
G = 2, RF = 976-W  
G = 5, RF = 576-W  
G = 10, RF = 499-W  
G = 20, RF = 383-W  
G = -2 V/V, RF = 832  
G = -5 V/V, RF = 749  
G = -10 V/V, RF = 719  
W
W
W
10  
100  
Frequency (MHz)  
1000  
4000  
10  
100  
Frequency (MHz)  
1000  
4000  
D023  
D068  
VO = 2 VPP  
VO = 2 VPP  
8-42. Noninverting Small-Signal Frequency Response  
8-43. Inverting Small-Signal Frequency Response  
-20  
-20  
G = 5 V/V  
G = -5 V/V  
G = 2 V/V  
G = 5 V/V  
G = -5 V/V  
G = 2 V/V  
-30  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0.1  
1
10  
Frequency (MHz)  
100  
500  
0.1  
1
10  
Frequency (MHz)  
100  
500  
D024  
D025  
VO = 2 VPP  
VO = 2 VPP  
8-44. HD2 vs Frequency  
8-45. HD3 vs Frequency  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
VO = 5 VPP  
VO = 10 VPP  
VO = 5 VPP  
VO = 10 VPP  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0.1  
1
10  
Frequency (MHz)  
100 200  
0.1  
1
10  
Frequency (MHz)  
100 200  
D026  
D027  
8-46. HD2 vs Frequency Across Output Swing  
8-47. HD3 vs Frequency Across Output Swing  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.8 Typical Characteristics: ±7.5 V (continued)  
at +VS = 7.5 V, VS = 7.5 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V RGT package: RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
0
-10  
0
-10  
f = 10 MHz, RL = 100 W  
f = 100 MHz, RL = 100 W  
f = 10 MHz, RL = 1 kW  
f = 100 MHz, RL = 1 kW  
f = 10 MHz, RL = 100 W  
f = 100 MHz, RL = 100 W  
f = 10 MHz, RL = 1 kW  
f = 100 MHz, RL = 1 kW  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
1
2
3
4
Output Voltage Swing (VPP  
5
6
7
8
9
10 11 12  
0
1
2
3
4
Output Voltage Swing (VPP)  
5
6
7
8
9
10 11 12  
)
D028  
D029  
8-48. HD2 vs Output Swing  
8-49. HD3 vs Output Swing  
-30  
-40  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
HD2  
HD3  
IMD2  
IMD3  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0.1  
1
10  
Frequency (MHz)  
100  
500  
1
10  
Frequency (MHz)  
100  
500  
D030  
D039  
VO = 2.5 VPP per tone  
±100-kHz frequency spacing  
VO = 2 VPP  
8-50. Harmonic Distortion vs Frequency  
RLOAD = 1 kΩ  
8-51. Intermodulation Distortion vs Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
f = 20 MHz  
f = 50 MHz  
f = 100 MHz  
f = 20 MHz  
f = 50 MHz  
f = 100 MHz  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
1
2
Output Voltage Swing per tone (VPP  
3
4
5
)
6
0
1
2
Output Voltage Swing per tone (VPP  
3
4
5
)
6
D063  
D064  
±100-kHz frequency spacing  
±100-kHz frequency spacing  
8-52. IMD2 vs Output Voltage Swing  
8-53. IMD3 vs Output Voltage Swing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.8 Typical Characteristics: ±7.5 V (continued)  
at +VS = 7.5 V, VS = 7.5 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V RGT package: RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
3
2.5  
2
6
5
VIN  
VOUT  
VIN  
VOUT  
4
1.5  
1
3
2
0.5  
0
1
0
-0.5  
-1  
-1  
-2  
-3  
-4  
-5  
-6  
-1.5  
-2  
-2.5  
-3  
Time (4 nsec/div)  
Time (4 nsec/div)  
D034  
D035  
VO = 5 VPP  
VO = 10 VPP  
8-54. G = 5 V/V Pulse Response  
8-55. G = 5 V/V Pulse Response  
3
2.5  
2
6
5
VIN  
VOUT  
VIN  
VOUT  
4
1.5  
1
3
2
0.5  
0
1
0
-0.5  
-1  
-1  
-2  
-3  
-4  
-5  
-6  
-1.5  
-2  
-2.5  
-3  
Time (4 nsec/div)  
Time (4 nsec/div)  
D036  
D037  
VO = 5 VPP  
VO = 10 VPP  
8-56. G = 5 V/V Pulse Response  
8-57. G = 5 V/V Pulse Response  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
8.8 Typical Characteristics: ±7.5 V (continued)  
at +VS = 7.5 V, VS = 7.5 V, TA 25°C, RLOAD = 100 Ωto midsupply, noninverting gain (G) = 5 V/V RGT package: RF =  
576 Ω, RG = 143 Ω, or DDA package: RF = 798 Ω, RG = 200 Ω(unless otherwise noted)  
8
7
6
5
4
3
2
1
0
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
7
6
VOUT (AV = +5)  
VIN x 5 gain  
5
4
3
Source, TA = -40èC  
Source, TA = 25èC  
Source, TA = 85èC  
Sink, TA = -40èC  
Sink, TA = 25èC  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-1.8  
-2.1  
-2.4  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
Sink, TA = 85èC  
0
50 100 150 200 250 300 350 400 450 500 550 600  
IOUT (mA)  
Time (100 nsec/div)  
D022  
D044  
8-58. Overdrive Recovery Time  
Measured with devices soldered on TI EVM. Devices not  
turned off at any read points but load applied for a few msec  
to measure VOUT and then removed.  
8-59. Output Voltage Swing vs Output Current  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA Temperature (èC)  
D049  
Flash tested to keep TJ as close to TA as possible  
8-60. Input Offset Voltage Over Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
9 Detailed Description  
9.1 Overview  
The THS3491 is a high-voltage, low-distortion, high-speed, current-feedback amplifier designed to operate over  
a wide supply range of ±7 V to ±16 V for applications requiring large, linear output swings such as arbitrary  
waveform generators.  
The THS3491 features a power-down pin that puts the amplifier in low power standby mode and lowers the  
quiescent current from 16.7 mA to 750 µA.  
The RGT package also features a feedback pin (pin 1). Internally on the die this pin is connected to the  
amplifier's output. This feedback pin arrangement minimizes the PCB trace lengths in the feedback path for the  
connection from the feedback resistor to the inverting input and output pins. This in turn minimizes the board  
parasitics in the feedback path, thus allowing to maximize bandwidth with minimal peaking.  
9.2 Functional Block Diagram  
VSIG  
VIN+  
+
VREF  
(1 + RF/RG)VSIG  
.(s)  
VO  
VREF  
THS3491  
ZINœ  
VINœ  
ZOL(s)×Ierr  
œ
Ierr  
RF  
AV = VO/VIN+ = 1 + (RF/RG)  
RG  
VREF  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
9.3 Feature Description  
9.3.1 Power-Down (PD) Pin  
The THS3491 features a power-down ( PD) pin that lowers the quiescent current from 16.7 mA down to 750 µA,  
which is designed to reduce system power.  
The power-down pin of the amplifier defaults to 2 V below the positive supply voltage in the absence of an  
externally applied voltage, which places the amplifier in the power-on mode of operation. To turn off the amplifier  
in an effort to conserve power, the power-down pin can be pulled low. The PD pin threshold voltages are  
specified with respect to the REF pin voltage. The threshold voltages for power on and power down are relative  
to the REF pin and are shown in the 8.5 and 8.6 tables. Above the enable threshold voltage, the device is  
on. Below the disable threshold voltage, the device is off. The behavior is not specified between these threshold  
voltages.  
This power-down functionality helps the amplifier consume less power in power-down mode. Power-down mode  
is not intended to provide a high-impedance output. The power-down functionality is not intended for use as a tri-  
state bus driver. In power-down mode, the impedance looking back into the output of the amplifier is dominated  
by the feedback and gain-setting resistors, but the output impedance of the device varies depending on the  
voltage applied to the outputs.  
As with most current-feedback amplifiers, the internal architecture places limitations on the system in power-  
down mode. The most common limitation is that the amplifier turns on if there is a ±1 V or greater difference  
between the two input nodes (VIN+ and VIN) of the amplifier. If this difference exceeds ±1 V, the amplifier  
creates an output voltage equal to approximately [(VIN+ VIN) 0.7 V] × gain. Conversely if a voltage is  
applied to the output while in power-down mode, the VINnode voltage is equal to VO(applied) × RG / (RF + RG).  
For low-gain configurations and a large applied voltage at the output, the amplifier may turn on because of the  
aforementioned behavior.  
The time delays associated with turning the device on and off are specified as the time it takes for the amplifier  
to reach 10% or 90% of the final output voltage. The time delays are in nanoseconds during power on and  
microseconds during power off because the amplifier moves out of linear operating mode for power-off  
conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: THS3491  
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
9.3.2 Power-Down Reference (REF) Pin  
In addition to the power-down pin, the DDA package features a reference pin (REF) that allows control over the  
enable or disable power-down voltage levels applied to the PD pin. This reference pin is explicitly pinned out on  
the DDA package as the REF pin. However, on the RGT package, the reference pin refers to pin 5 (GND), which  
must be connected to GND. In most split-supply applications, the reference pin is connected to ground. In either  
case, be aware of voltage-level thresholds that apply to the power-down pin. 9-1 provides examples and  
shows the relationship between the reference voltage and the power-down thresholds. In 9-1, the threshold  
levels are derived by the conditions that follow:  
PD REF + 0.8 V (Disable)  
PD REF + 1.5 V (Enable)  
where the usable range at the REF pin is:  
VSVREF (VS+ 5 V)  
9-1. Example Power-Down Threshold Voltage Levels  
SUPPLY  
VOLTAGE (V)  
REFERENCE PIN  
VOLTAGE (V)  
ENABLE  
LEVEL (V)  
DISABLE  
LEVEL (V)  
±15, ±7, 30  
0
2
1.5  
3.5  
0.8  
2.8  
±15  
±15  
±7  
2  
1
0.5  
2.5  
1.2  
1.8  
±7  
0.5  
1  
15  
7
0.2  
15.8  
7.8  
30  
16.5  
8.5  
14  
The recommended operating mode is to tie the REF pin to ground for single and split-supply operations, which  
sets the enable and disable thresholds to 1.5 V and 0.8 V, respectively.  
The REF pin must be tied to a valid potential within the recommended operating range of (VS V(REF) +VS  
5 V). Although the PD pin can be floated, TI does not recommend floating the PD pin in case stray signals  
couple into the pin and cause unintended turnon or turnoff device behavior. However, if the PD pin is left  
unterminated, the PD pin floats to 2 V below the positive rail and the device remains enabled. As a result, the  
THS3491 DDA package is a drop-in replacement for the THS3091 DDA pinout if the REF pin (pin 1) is tied to a  
valid potential. If balanced, split supplies are used (±VS) and the REF and PD pins are grounded, the device is  
disabled.  
9.3.3 Internal Junction Temperature Sense (TJ_SENSE) Pin  
The RGT package includes an internal, junction-temperature sense pin (TJ_SENSE). This pin is a temperature-  
dependent current source from the positive supply into one side of the internal resistor, where the other side of  
the internal resistor is connected to pin 5 (GND), the PD logic reference pin on the die. For simplicity, and to  
keep the TJ_SENSE output ground referenced, tie pin 5 to ground (internally, the PD logic reference pin). If pin 5 is  
tied to a voltage in the same range as the REF pin voltage for the DDA package, the output of the TJ_SENSE  
voltage and input threshold voltages of the PD pin are level shifted.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: THS3491  
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
9.4 Device Functional Modes  
9.4.1 Wideband Noninverting Operation  
The THS3491 is a 900-MHz current-feedback operational amplifier that is designed to operate from a power  
supply of ±7 V to ±16 V.  
9-1 shows the THS3491 in a noninverting gain configuration of 5 V/V which is used to generate the majority of  
the performance curves. Most of the curves are characterized using signal sources with a 50-Ω source  
impedance and measurement equipment presenting a 50-Ωload impedance.  
15 V  
+
0.1 F  
6.8 F  
RG  
RF  
143  
576 ꢀ  
49.9 ꢀ  
œ
50-Ω Source  
VI  
+
THS3491  
50-Ω Load  
6.8 F  
RT  
49.9 ꢀ  
0.1 F  
+
œ15 V  
9-1. Wideband Noninverting Gain Configuration (5 V/V)  
Current-feedback amplifiers are highly dependent on the RF feedback resistor for maximum performance and  
stability. 9-2 provides the optimal resistor values for RF and RG at different gains to achieve maximum  
bandwidth with minimal peaking in the frequency response. Use lower RF values for higher bandwidth. Note that  
this can cause additional peaking and a reduction in phase margin. Conversely, increasing RF decreases the  
bandwidth but phase margin increases and stability improves. To gain further insight on the feedback and  
stability analysis of current-feedback amplifiers like the THS3491, see the Current-feedback Amplifiers section of  
TI Precision Labs.  
9-2. Recommended Resistor Values for Minimum Peaking and Optimal Frequency Response  
With RLOAD = 100 Ω  
RGT PACKAGE  
DDA PACKAGE  
GAIN (V/V)  
RG (Ω)  
976  
RF (Ω)  
976  
RG (Ω)  
2.1k  
RF (Ω)  
2.1k  
798  
2
5
143  
576  
200  
10  
20  
54.9  
20  
499  
78.7  
29.4  
704  
383  
564  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: THS3491  
 
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
9.4.2 Wideband, Inverting Operation  
9-2 shows the THS3491 in a typical inverting gain configuration where the input and output impedances and  
signal gain from 9-1 are retained in an inverting circuit configuration.  
15 V  
+
0.1 F  
6.8 F  
RG  
RF  
50-Ω Source  
115  
576 ꢀ  
VI  
RT  
88.7 ꢀ  
49.9 ꢀ  
œ
+
THS3491  
50-Ω Load  
6.8 F  
49.9 ꢀ  
0.1 F  
+
œ15 V  
9-2. Wideband Inverting Gain Configuration (5 V/V)  
9.4.3 Single-Supply Operation  
The THS3491 operates from a single-supply voltage ranging from 14 V to 32 V. When operating from a single  
power supply, biasing the input and output at midsupply allows for the maximum output voltage swing. 9-3  
shows circuits that display noninverting (a) and inverting (b) amplifiers that are configured for single-supply  
operation.  
a) Noninverting Gain Configuration  
+VS  
+VS  
2
+
0.1 F  
6.8 F  
RG  
RF  
143  
576 ꢀ  
49.9 ꢀ  
œ
50-Ω Source  
+
VI  
THS3491  
50-Ω Load  
RT  
49.9 ꢀ  
+VS  
2
+VS  
b) Inverting Gain Configuration  
+
0.1 F  
6.8 F  
RG  
RF  
50-Ω Source  
115 ꢀ  
576 ꢀ  
VI  
RT  
49.9 ꢀ  
œ
88.7 ꢀ  
+
+VS  
2
THS3491  
50-Ω Load  
49.9 ꢀ  
+VS  
2
9-3. DC-Coupled, Single-Supply Operation  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
9.4.4 Maximum Recommended Output Voltage  
The THS3491 is designed to produce better than 40 dB SFDR while driving a 100-MHz, 20-Vpp signal into a 100-  
Ω load. To accomplish this, the geometries of certain signal path transistors must be limited. As a result of this  
limitation, some internal devices begin to saturate when large signal levels are input at frequencies greater than  
100 MHz. When these devices saturate, the loop opens and the amplifier is no longer in linear operation. This  
appears as a gain step-up in the frequency response curve. To avoid this phenomenon, applications must  
comply with the recommended linear operating region shown in 9-4. 9-4 shows the maximum output  
voltage vs frequency that is permitted to keep the amplifier in linear operation.  
30  
VS = ê 15V  
VS = ê 7.5V  
25  
20  
15  
10  
5
0
1
10  
100  
Frequency (MHz)  
1000  
D020  
9-4. Maximum Recommended Output Voltage vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: THS3491  
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
10.1.1 Driving Capacitive Loads  
Applications such as power JFET and MOSFET (power FET) drivers are highly capacitive and cause stability  
problems for high-speed amplifiers.  
10-1 and 10-2 show recommended methods for driving capacitive loads. The basic idea is to use a resistor  
or ferrite chip to isolate the phase shift at high frequency caused by the capacitive load from the amplifier  
feedback path. The output impedance of the amplifier in conjunction with CLOAD introduces a pole in the open-  
loop transimpedance gain response and if the pole is at a frequency lower than the non-dominant pole of the  
amplifier, then this results in a reduced loop gain and a reduced phase margin. The isolation resistor introduces  
a zero in the response, which counteracts the effect of the pole. The location of the zero is dependent on the  
values of RISO and CLOAD. 8-5 shows examples of the recommended RISO values to achieve flat frequency  
response while driving certain capacitive loads. See Effect of Parasitic Capacitance in Op Amp Circuits for a  
detailed analysis of selecting isolation resistor values while driving capacitive loads.  
143  
576 ꢀ  
+VS  
œ
RISO  
1 ꢀ  
+
VI  
THS3491  
RLOAD  
CLOAD  
49.9 ꢀ  
1 kꢀ  
1 F  
œVS  
10-1. Driving a Large Capacitive Load Using an Output Series Isolation Resistor  
Placing a small series resistor (RISO) between the output of the amplifier and the capacitive load as 10-1  
shows is a simple way to isolate the load capacitance.  
10-2 shows two amplifiers in parallel to double the output drive current in order to drive larger capacitive  
loads. This technique is used when more output current is required to charge and discharge the load faster, such  
as driving large FET transistors.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
143  
24.9 ꢀ  
143 ꢀ  
576 ꢀ  
+VS  
œ
2.49 ꢀ  
+
THS3491  
œVS  
576 ꢀ  
1 nF  
VS  
+VS  
œ
2.49 ꢀ  
24.9 ꢀ  
+
THS3491  
œVS  
10-2. Driving a Large Capacitive Load Using Two Parallel Amplifier Channels  
10-3 shows a push-pull FET driver circuit commonly used in ultrasound applications with isolation resistors to  
isolate the gate capacitance from the amplifier.  
+VS  
+VS  
THS3491  
+
œ
2.49  
œVS  
576 ꢀ  
286 ꢀ  
576 ꢀ  
+VS  
œ
2.49 ꢀ  
+
THS3491  
œVS  
œVS  
10-3. Power FET Drive Circuit  
10.1.2 Video Distribution  
The wide bandwidth, high slew rate, and high output drive current of the THS3491 meets the demands for video  
distribution by delivering video signals down multiple cables. For high signal quality with minimal degradation of  
performance, use a 0.1-dB gain flatness that is at least seven times the pass-band frequency to minimize group  
delay variations from the amplifier. A high slew rate minimizes distortion of the video signal and supports  
component video and RGB video signals that require fast transition and settling times for high signal quality.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
7.5 V  
976  
976 ꢀ  
75-Ω Transmission Line  
75 ꢀ  
VO(1)  
œ
+
VI  
THS3491  
75 ꢀ  
n
75 ꢀ  
Lines  
75 ꢀ  
VO(n)  
œ7.5 V  
75 ꢀ  
10-4. Video Distribution Amplifier Application  
10.2 Typical Application  
The fundamental concept of load sharing is to drive a load using two or more of the same operational amplifier.  
Each amplifier is driven by the same source. 10-5 shows two THS3491 amplifiers sharing the same load. This  
concept effectively reduces the current load of each amplifier by 1/N, where N is the number of amplifiers.  
a) Single THS3491 Amplifier Driving a Transmission Line  
RG1  
143  
RF1  
576 ꢀ  
15 V  
50-Ω Transmission Line  
(TL1)  
RS3  
50 ꢀ  
RSOURCE  
50 ꢀ  
VOUT  
-
+
U3  
THS3491  
RLOAD  
50 ꢀ  
+
RT3  
50 ꢀ  
œ15 V  
VIN  
b) Two THS3491 Amplifiers Driving a Transmission Line  
RG1  
143 ꢀ  
RF1  
576 ꢀ  
15 V  
RS2  
40.2 ꢀ  
-
+
U1  
THS3491  
RT1  
100 ꢀ  
œ15 V  
RT  
30 ꢀ  
50-Ω Transmission Line (TL2)  
RSOURCE  
50 ꢀ  
VOUT  
RG2  
143 ꢀ  
RF2  
576 ꢀ  
RLOAD  
50 ꢀ  
+
15 V  
VIN  
RS2  
40.2 ꢀ  
œ
+
U2  
THS3491  
RT2  
100 ꢀ  
œ15 V  
10-5. Load-Sharing Driver Application  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
10.2.1 Design Requirements  
Use two THS3491 amplifiers in a parallel load-sharing circuit to improve distortion performance.  
10-1. Design Parameters  
DESIGN PARAMETER  
VO (At amplifier output)  
RLOAD  
VALUE  
20 VPP  
100 Ω  
Gain flatness at 100 MHz  
Less than 0.5 dB  
10.2.2 Detailed Design Procedure  
In addition to providing higher output current drive to the load, the load-sharing configuration provides improved  
distortion performance. In many cases, an operational amplifier shows greater distortion performance as the load  
current decreases (that is, for higher resistive loads) until the feedback resistor dominates the current load. In a  
load-sharing configuration of N amplifiers in parallel, the equivalent current load that each amplifier drives is 1/N  
times the total load current. For example, in a two amplifier load- sharing configuration with matching resistance  
(see 10-5) driving a resistive load (RLOAD), the total series resistance (RTOT_SERIES) at the output of the  
amplifiers is 2 x RLOAD and each amplifier drives 2 x RLOAD. The total series resistance in the two-amplifier  
configuration shown in 10-5 is the parallel combination of RS2 resistors in series with RT resistor (RTOT_SERIES  
= RS2 || RS2 + RT). Such configuration of resistors at the output allows for fault detection if the load is shorted to  
GND and can be used for filtering the signal going to the load.  
10-5 shows two circuits: one of a single THS3491 amplifier driving a double-terminated, 50-Ω cable and one  
of two THS3491 amplifiers in a load-sharing configuration. In the load-sharing configuration, the two 40.2-Ω  
series output resistors act in parallel and in conjunction with the 30-Ω terminating resistor provide 50-Ω back-  
matching to the 50-Ωcable.  
10-6 shows the normalized frequency response for the two-amplifier load-sharing configuration. The total  
load, RTOT_LOAD, for the configuration is the sum of RTOT_SERIES and RLOAD which is 100 Ω for the two-amplifier  
configuration in 10-5. 10-7 shows the distortion performance of the two-amplifier configuration.  
Benefit of the multiple amplifier's in load-sharing configuration becomes even more evident when the total load  
increases. 10-8 and 10-9 show the HD2 and HD3 performance, respectively, in two, three, and four  
amplifier configurations when the RTOT_LOAD = 20 Ω. HD2 improves by almost 13 dB and 24 dB, respectively in  
the three and four amplifier configuration from the two-amplifier configuration, and HD3 shows an improvement  
of almost 15 and 19 dB in the three and four amplifier configurations, respectively.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: THS3491  
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
10.2.3 Application Curves  
3
2
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
HD2  
HD3  
1
10  
Frequency (MHz)  
100  
10  
100  
Frequency (MHz)  
D081  
D081  
VO (amplifier output) = 20 VPP  
VO (amplifier output) = 20 VPP  
RTOT_LOAD = 100 Ω  
RTOT_LOAD = 100 Ω  
10-7. Distortion Of Two-Amplifier Configuration  
10-6. Frequency Response Of Two-Amplifier  
Configuration in 10-5 (Gain = 5 V/V, Measured At  
in 10-5 (Gain = 5 V/V, Measured At VOUT  
)
VOUT  
)
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-30  
2 x THS3491  
3 x THS3491  
4 x THS3491  
2 x THS3491  
3 x THS3491  
4 x THS3491  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
1
10  
Frequency (MHz)  
1
10  
Frequency (MHz)  
D083  
D084  
VO (amplifier output) = 20 VPP  
RTOT_LOAD = 20 Ω  
VO (amplifier output) = 20 VPP  
RTOT_LOAD = 20 Ω  
10-8. HD2 For Amplifier Load-Sharing  
10-9. HD2 For Amplifier Load-Sharing  
Configuration (Gain = 5 V/V)  
Configuration (Gain = 5 V/V)  
10.3 Power Supply Recommendations  
The THS3491 operates from a single supply or with dual supplies if the input common-mode voltage range  
(CMIR) has the required headroom (4.3 V) to either supply rail. Supplies must be decoupled with low inductance  
(often ceramic) capacitors to ground less than 0.5 inches from the device pins. TI recommends using ground  
planes, and as in most high-speed devices, removing ground planes close to device sensitive pins such as input  
pins is advisable. An optional supply decoupling capacitor across the two power supplies (for split-supply  
operation) improves second harmonic distortion performance.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
10.4 Layout  
10.4.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the THS3491 requires careful attention  
to board layout parasitic and external component types.  
Recommendations that optimize performance include:  
Minimize parasitic capacitance to any AC ground for all of the signal I/O pins. Parasitic capacitance on the  
output and input pins can cause instability. To reduce unwanted capacitance, a window around the signal I/O  
pins must be opened in all of the ground and power planes around those pins. Otherwise, ground and power  
planes must be unbroken elsewhere on the board.  
Minimize the distance (< 0.25 of an inch [6.35 mm] from the power supply pins to high-frequency 0.1-μF and  
100-pF decoupling capacitors. At the device pins, the ground and power plane layout must not be in close  
proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the  
pins and the decoupling capacitors. The power supply connections must always be decoupled with these  
capacitors Use larger tantalum decoupling capacitors (with a value of 6.8 µF or more) that are effective at  
lower frequencies on the main supply pins. These can be placed further from the device and can be shared  
among several devices in the same area of the printed circuit board (PCB).  
Careful selection and placement of external components preserve the high-frequency performance of the  
THS3491. Resistors must be a low reactance type. Surface-mount resistors work best and allow a tighter  
overall layout. Keep leads and PCB trace length as short as possible. Never use wire-bound type resistors in  
a high-frequency application. Because the output pin and inverting input pins are the most sensitive to  
parasitic capacitance, always position the feedback and series output resistors, if any, as close to the  
inverting input pins and output pins as possible, respectively. Place other network components such as input  
termination resistors close to the gain setting resistors. Even with a low parasitic capacitance shunting the  
external resistors, excessively high resistor values create significant time constants constraints? that can  
degrade performance. Good axial metal film or surface-mount resistors feature approximately 0.2 pF  
capacitance in shunt with the resistor. For resistor values greater than 2 kΩ, this parasitic capacitance adds a  
pole or a zero that can effect circuit operation. Keep resistor values as low as possible and consistent with  
load-driving considerations.  
Make connections to other wideband devices on the board with short direct traces or through onboard  
transmission lines. For short connections, consider the trace and the input to the next device as a lumped  
capacitive load. Use relatively wide traces of 0.05 inch to 0.1 inch (1.3 mm to 2.54 mm), preferably with open  
ground and power planes around the traces. Estimate the total capacitive load and determine if isolation  
resistors on the outputs are required. Low parasitic capacitive loads ( less than 4 pF) may not require series  
resistance because the THS3491 is nominally compensated to operate with a 2-pF parasitic load. Higher  
parasitic capacitive loads without a series resistance are allowed as the signal gain increases (increasing the  
unloaded phase margin). If a long trace is required and the 6-dB signal loss intrinsic to a twice-terminated  
transmission line is acceptable, implement a matched impedance transmission line using microstrip or  
stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques).  
A 50-Ωenvironment is not required onboard, and a higher impedance environment improves distortion as  
shown in the distortion versus load plots; see 8-7 and 8-8. With a characteristic board trace impedance  
based on board material and trace dimensions, a matching series resistor into the trace from the output of the  
THS3491 is used. A terminating shunt resistor at the input of the destination device is also used. The  
terminating impedance is the parallel combination of the shunt resistor and the input impedance of the  
destination device. This total effective impedance must be set to match the trace impedance.  
If the 6-dB attenuation of a twice-terminated transmission line is unacceptable, a long trace can be series  
terminated at the source end only. Treat the trace as a capacitive load in this case. This termination does not  
preserve signal integrity as well as a twice-terminated line. If the input impedance of the destination device is  
low, there is some signal attenuation because of the voltage divider formed by the series output into the  
terminating impedance.  
Do not socket a high-speed device like the THS3491. The socket introduces additional lead lengths and pin-  
to-pin capacitance, which can create a troublesome parasitic network. This can make it achieving a smooth,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: THS3491  
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
stable frequency response impossible. Obtain better results by soldering the THS3491 devices directly onto  
the board.  
10.4.1.1 PowerPAD™ Integrated Circuit Package Design Considerations (DDA Package Only)  
The THS3491 is available in a thermally-enhanced PowerPAD integrated circuit package. These packages are  
constructed using a downset leadframe on which the die is mounted, as shown in the (a) and (b) sections of 图  
10-10. This arrangement results in the lead frame that is exposed as a thermal pad on the underside of the  
package, a shown in 10-10(c). Because this thermal pad directly contacts the die, achieve efficient thermal  
performance by providing a good thermal path away from the thermal pad. Devices such as the THS3491 have  
no electrical connection between the PowerPAD and the die.  
The PowerPAD integrated circuit package allows for assembly and thermal management in one manufacturing  
operation. During the surface-mount solder operation (when the leads are soldered), the thermal pad can be  
soldered to a copper area underneath the package. By using thermal paths within this copper area, heat is  
conducted away from the package into a ground plane or other heat-dissipating device.  
The PowerPAD integrated circuit package represents a breakthrough in combining the small area and ease of  
assembly of surface mount with the, heretofore, awkward mechanical methods of heatsinking.  
DIE  
Thermal  
Pad  
Side View (a)  
DIE  
End View (b)  
Bottom View (c)  
10-10. Views of Thermally Enhanced Package  
Although there are many ways to properly heat sink the PowerPAD integrated circuit package, see 10.4.1.1.1  
for the recommended approach.  
10.4.1.1.1 PowerPAD™ Integrated Circuit Package Layout Considerations  
The DDA package top-side etch and via pattern is shown in 10-11.  
0.300  
(7,62)  
0.100  
(2,54)  
0.026  
(0,66)  
0.035  
(0,89)  
0.010  
(0,254)  
0.030  
(0,732)  
0.176  
(4,47)  
0.060  
(1,52)  
0.140  
(3,56)  
0.050  
(1,27)  
0.060  
(1,52)  
0.035  
(0,89)  
0.080  
(2,03)  
0.010  
(0.254)  
vias  
All Units in inches (millimeters)  
10-11. DDA PowerPAD™ Integrated Circuit Package PCB Etch and Via Pattern  
1. Use etch for the leads and the thermal pad.  
2. Place 13 vias in the thermal pad area. These vias must be 0.01 inch (0.254 mm) in diameter. Keep the vias  
small so that solder wicking through the vias is not a problem during reflow.  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area, and help  
dissipate the heat generated by the THS3491 device. These additional vias may be larger than the 0.01-inch  
(0.254 mm) diameter vias directly under the thermal pad because they are not in the area that requires  
soldering. As a result, wicking is not a problem.  
4. Connect all vias to the internal ground plane. The PowerPAD integrated circuit package is electrically  
isolated from the silicon and all leads. Connecting the PowerPAD integrated circuit package to any potential  
voltage such as VS is acceptable because there is no electrical connection to the silicon.  
5. When connecting these vias to the ground plane, do not use the typical web or spoke through connection  
methodology. Web and spoke connections have a high thermal resistance that slows the heat transfer during  
soldering . Avoiding these connection methods makes the soldering of vias that have plane connections  
easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer.  
Therefore, the vias under the THS3491 PowerPAD integrated circuit package must connect to the internal  
ground plane with a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask must leave the pins of the package and the thermal pad area with the 13 vias  
exposed.  
7. Apply solder paste to the exposed thermal pad area and all of the device pins.  
8. With these preparatory steps in place, the device is placed in position and run through the solder reflow  
operation as any standard surface-mount component. This results in a device that is properly installed.  
10.4.1.1.2 Power Dissipation and Thermal Considerations  
The THS3491 includes automatic thermal shutoff protection. This protection circuitry shuts down the amplifier if  
the junction temperature exceeds approximately 160°C. When the junction temperature decreases to  
approximately 145°C, the amplifier turns on again. However, for maximum performance and reliability, make sure  
that the design does not exceed a junction temperature of 125°C. Between 125°C and 150°C, damage does not  
occur, but the performance of the amplifier begins to degrade and long-term reliability suffers. The package and  
the PCB dictate the thermal characteristics of the device. Maximum power dissipation for a particular package is  
calculated using the following formula.  
Tmax - TA  
PDmax  
=
qJA  
(1)  
where  
PDmax is the maximum power dissipation in the amplifier (W).  
Tmax is the absolute maximum junction temperature (°C).  
TA is the ambient temperature (°C).  
• θJA = θJC + θCA  
• θJC is the thermal coefficient from the silicon junctions to the case (°C/W).  
• θCA is the thermal coefficient from the case to ambient air (°C/W).  
The thermal coefficient for the PowerPAD integrated circuit packages are substantially improved over the  
traditional SOIC package. The data for the PowerPAD packages assume a board layout that follows the  
PowerPAD package layout guidelines referenced above and detailed in PowerPADThermally Enhanced  
Package. Maximum power dissipation levels are shown in Comparison of θJA for Various Packages. If the  
PowerPAD integrated circuit package is not soldered to the PCB, the thermal impedance increases substantially  
and may cause serious heat and performance issues. Take care to always solder the PowerPAD integrated  
circuit package to the PCB for optimum performance.  
When determining whether or not the device satisfies the maximum power dissipation requirement, make sure to  
consider not only quiescent power dissipation, but dynamic power dissipation. Often times, this dissipation is  
difficult to quantify because the signal pattern is inconsistent, but an estimate of the RMS power dissipation  
provides visibility into a possible problem.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
10.4.2 Layout Example  
THS3491RGT thermal pad  
directly on top of blind vias  
Rout pad closer to  
the device output  
Blind Vias to GND to help with  
heat dissipation out of the board  
Power Connection with Vias  
to the internal power plane  
10-12. RGT Package Layout Example  
GND trace cut-out underneath the device inputs  
and output from PCB second layer to the fourth  
layer in-order to reduce PCB parasitic capacitance  
10-13. Ground Trace Cutout Beneath the Device Inputs and Output  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
Heat Sink attach on the  
bottom layer directly  
underneath the device  
Blind Vias to GND to help with  
heat dissipation of the board  
10-14. Heat Sink Attachment to Bottom Layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: THS3491  
THS3491  
www.ti.com.cn  
ZHCSHX6C AUGUST 2017 REVISED FEBRUARY 2023  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, PowerPAD™ Made Easy  
Texas Instruments, PowerPAD™ Thermally Enhanced Package  
Texas Instruments, Voltage Feedback vs Current Feedback Op Amps  
Texas Instruments, Current Feedback Amplifier Analysis and Compensation  
Texas Instruments, Current Feedback Amplifiers: Review, Stability Analysis, and Applications  
Texas Instruments, Effect of Parasitic Capacitance in Op Amp Circuits  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
PowerPADis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: THS3491  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THS3491IDDAR  
THS3491IDDAT  
THS3491IRGTR  
THS3491IRGTT  
THS3491YR  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
RGT  
RGT  
Y
8
8
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
HS3491  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAU  
NIPDAU  
Call TI  
HS3491  
HS3491  
HS3491  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
16  
16  
0
DIESALE  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Mar-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS3491IDDAR  
THS3491IDDAT  
SO  
PowerPAD  
DDA  
DDA  
8
8
2500  
250  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
SO  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
PowerPAD  
THS3491IRGTR  
THS3491IRGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
2500  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THS3491IDDAR  
THS3491IDDAT  
THS3491IRGTR  
THS3491IRGTT  
SO PowerPAD  
SO PowerPAD  
VQFN  
DDA  
DDA  
RGT  
RGT  
8
8
2500  
250  
366.0  
366.0  
346.0  
210.0  
364.0  
364.0  
346.0  
185.0  
50.0  
50.0  
33.0  
35.0  
16  
16  
2500  
250  
VQFN  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016P  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.15  
2.85  
B
A
PIN 1 INDEX AREA  
3.15  
2.85  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.66 0.1  
(0.1) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(45 X 0.35)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4228232/A 11/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016P  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.66)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4228232/A 11/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016P  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.51)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
84% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4228232/A 11/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THS3491IRGTR

900-MHz high-power-output current-feedback amplifier | RGT | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3491IRGTT

900-MHz high-power-output current-feedback amplifier | RGT | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS3491YR

900MHz 高功率输出电流反馈放大器 | Y | 0 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4

EURO TERMINAL BLOCKS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

THS4001

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4001CD

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4001CDG4

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4001CDR

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4001CDRG4

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4001D

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4001EVM

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS4001ID

270-MHz HIGH-SPEED AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI