THS4500CDRG4 [TI]

OP-AMP, 0uV OFFSET-MAX, 300MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8;
THS4500CDRG4
型号: THS4500CDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

OP-AMP, 0uV OFFSET-MAX, 300MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8

放大器 光电二极管
文件: 总46页 (文件大小:1258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS4500  
THS4501  
DGN-8 DGK-8  
D-8  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
WIDEBAND, LOW-DISTORTION, FULLY DIFFERENTIAL AMPLIFIERS  
1
FEATURES  
APPLICATIONS  
High Linearity Analog-to-Digital Converter  
Preamplifier  
Wireless Communication Receiver Chains  
Single-Ended to Differential Conversion  
Differential Line Driver  
23  
Fully Differential Architecture  
Bandwidth: 370 MHz  
Slew Rate: 2800 V/µs  
IMD3: –90 dBc at 30 MHz  
OIP3: 49 dBm at 30 MHz  
Output Common-Mode Control  
Active Filtering of Differential Signals  
Wide Power-Supply Voltage Range: 5 V, ±5 V,  
12 V, 15 V  
1
8
V
IN+  
V
IN−  
2
7
V
PD  
V
OCM  
Input Common-Mode Range Shifted to Include  
Negative Power-Supply Rail  
3
4
6
5
V
S+  
S−  
Power-Down Capability (THS4500)  
Evaluation Module Available  
V
OUT+  
V
OUT−  
RELATED DEVICES  
DESCRIPTION  
DEVICE(1)  
THS4500/1  
THS4502/3  
THS4120/1  
THS4130/1  
THS4140/1  
THS4150/1  
DESCRIPTION  
The THS4500 and THS4501 are high-performance  
fully differential amplifiers from Texas Instruments.  
The THS4500, featuring power-down capability, and  
the THS4501, without power-down capability, set new  
performance standards for fully differential amplifiers  
with unsurpassed linearity, supporting 14-bit  
operation through 40 MHz. Package options include  
the SOIC-8 and the MSOP-8 with PowerPAD™ for a  
smaller footprint, enhanced ac performance, and  
improved thermal dissipation capability.  
370 MHz, 2800 V/µs, VICR Includes VS–  
370 MHz, 2800 V/µs, Centered VICR  
3.3 V, 100 MHz, 43 V/µs, 3.7 nV/Hz  
±15 V, 150 MHz, 51 V/µs, 1.3 nV/Hz  
±15 V, 160 MHz, 450 V/µs, 6.5 nV/Hz  
±15 V, 150 MHz, 650 V/µs, 7.6 nV/Hz  
(1) Even-numbered devices feature power-down capability.  
10 pF  
APPLICATION CIRCUIT DIAGRAM  
THIRD-ORDER INTERMODULATION  
DISTORTION  
392 Ω  
−62  
10  
12  
5 V  
V
= 5 V  
S
−68  
−74  
−80  
5 V  
0.1 µF  
10 µF  
50 Ω  
374 Ω  
56.2 Ω  
24.9 Ω  
24.9 Ω  
V
= ±5 V  
+
S
ADC  
12 Bit/80 MSps  
IN  
V
OCM  
V
S
IN  
+
V
ref  
392 Ω  
1 µF  
V
+
S+  
374 Ω  
50 Ω  
−86  
−92  
14  
16  
V
OUT  
V
OCM  
800 Ω  
2.5 V  
56.2 Ω  
V
+
S
402 Ω  
V
402 Ω  
S−  
392 Ω  
392 Ω  
−98  
50  
10  
20  
30  
40  
60  
70  
80  
90  
100  
10 pF  
f − Frequency − MHz  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments, Incorporated.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2002–2008, Texas Instruments Incorporated  
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
UNIT  
Supply voltage, VS  
Input voltage, VI  
16.5 V  
±VS  
(2)  
Output current, IO  
150 mA  
Differential input voltage, VID  
Continuous power dissipation  
Maximum junction temperature, TJ  
4 V  
See Dissipation Rating Table  
+150°C  
(3)  
Maximum junction temperature, continuous operation, long-term reliability, TJ  
+125°C  
C suffix  
I suffix  
0°C to +70°C  
–40°C to +85°C  
–65°C to +150°C  
+300°C  
(4)  
Operating free-air temperature range, TA  
Storage temperature range, Tstg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
HBM  
CDM  
MM  
4000 V  
ESD rating:  
1000 V  
100 V  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) The THS4500/1 may incorporate a PowerPAD on the underside of the chip. This acts as a heat sink and must be connected to a  
thermally dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature  
which could permanently damage the device. See TI technical briefs SLMA002 and SLMA004 for more information about utilizing the  
PowerPAD thermally-enhanced package.  
(3) The absolute maximum temperature under any condition is limited by the constraints of the silicon process.  
(4) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may  
result in reduced reliability and/or lifetime of the device.  
DISSIPATION RATINGS TABLE  
POWER RATING(2)  
(1)  
θJC  
θJA  
PACKAGE  
(°C/W)  
(°C/W)  
T
A +25°C  
TA = +85°C  
410 mW  
685 mW  
154 mW  
D (8-pin)  
38.3  
4.7  
97.5  
58.4  
260  
1.02 W  
DGN (8-pin)  
DGK (8-pin)  
1.71 W  
54.2  
385 mW  
(1) This data was taken using the JEDEC standard High-K test PCB.  
(2) Power rating is determined with a junction temperature of +125°C. This is the point where distortion starts to substantially increase.  
Thermal management of the final PCB should strive to keep the junction temperature at or below +125°C for best performance and  
long-term reliability.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
NOM  
±5  
MAX  
±7.5  
15  
UNIT  
Dual supply  
Single supply  
C suffix  
Supply voltage  
V
4.5  
0
5
+70  
+85  
Operating free- air temperature, TA  
°C  
I suffix  
–40  
2
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
PACKAGE/ORDERING INFORMATION(1)  
ORDERABLE PACKAGE AND NUMBER  
PLASTIC MSOP(2)  
TEMPERATURE  
PLASTIC MSOP(2)  
PLASTIC SMALL  
OUTLINE (D)  
PowerPAD  
DGN  
SYMBOL  
BFB  
DGK  
SYMBOL  
ATVB  
ATW  
THS4500CD  
THS4501CD  
THS4500ID  
THS4501ID  
THS4500CDGN  
THS4501CDGN  
THS4500IDGN  
THS4501IDGN  
THS4500CDGK  
THS4501CDGK  
THS4500IDGK  
THS4501IDGK  
0°C to +70°C  
BFD  
BFC  
ASV  
–40°C to +85°C  
BFE  
ASW  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) All packages are available taped and reeled. The R suffix standard quantity is 2500. The T suffix standard quantity is 250 (for example,  
THS4501DT).  
PIN ASSIGNMENTS  
D, DGN, DGK  
D, DGN, DGK  
THS4500  
(TOP VIEW)  
THS4501  
(TOP VIEW)  
VIN-  
VOCM  
VS+  
VIN+  
PD  
VIN-  
VIN+  
NC  
1
8
1
8
VOCM  
2
7
2
7
VS+  
3
4
6
5
3
4
6
5
VS-  
VS-  
VOUT+  
VOUT-  
VOUT+  
VOUT-  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): THS4500 THS4501  
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = ±5 V  
RF = RG = 392 , RL = 800 , G = +1, and single-ended input, unless otherwise noted.  
THS4500 AND THS4501  
TYP  
OVER TEMPERATURE  
MIN/  
TYP/  
MAX  
PARAMETER  
TEST CONDITIONS  
0°C to  
+70°C  
–40°C to  
+85°C  
+25°C  
+25°C  
UNITS  
AC PERFORMANCE  
G = +1, PIN = –20 dBm, RF = 392 Ω  
G = +2, PIN = –30 dBm, RF = 1 kΩ  
G = +5, PIN = –30 dBm, RF = 2.4 kΩ  
G = +10, PIN = –30 dBm, RF = 5.1 kΩ  
G > +10  
370  
175  
70  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Small-signal bandwidth  
30  
Gain-bandwidth product  
Bandwidth for 0.1-dB flatness  
Large-signal bandwidth  
Slew rate  
300  
150  
220  
2800  
0.4  
PIN = –20 dBm  
VP = 2 V  
4 VPP Step  
Rise time  
2 VPP Step  
Fall time  
2 VPP Step  
0.5  
ns  
Settling time to 0.01%  
0.1%  
VO = 4 VPP  
8.3  
ns  
VO = 4 VPP  
6.3  
ns  
Harmonic distortion  
G = +1, VO = 2 VPP  
f = 8 MHz  
–82  
–71  
–97  
–74  
dBc  
dBc  
dBc  
dBc  
2nd harmonic  
3rd harmonic  
f = 30 MHz  
f = 8 MHz  
f = 30 MHz  
Third-order intermodulation  
distortion  
VO= 2 VPP, fC= 30 MHz, RF = 392 ,  
–90  
49  
dBc  
Typ  
Typ  
200 kHz tone spacing  
fC = 30 MHz, RF = 392 ,  
Referenced to 50 Ω  
Third-order output intercept point  
dBm  
Input voltage noise  
f > 1 MHz  
f > 100 kHz  
7
nV/Hz Typ  
pA/Hz Typ  
Input current noise  
1.7  
60  
Overdrive recovery time  
DC PERFORMANCE  
Open-loop voltage gain  
Input offset voltage  
Overdrive = 5.5 V  
ns  
Typ  
55  
–4  
52  
50  
–8/0  
±10  
5
50  
–9/+1  
±10  
5.2  
dB  
mV  
Min  
Max  
Typ  
Max  
Typ  
Max  
Typ  
–7/–1  
Average offset voltage drift  
Input bias current  
µV/°C  
µA  
4
4.6  
1
Average bias current drift  
Input offset current  
±10  
2
±10  
2
nA/°C  
µA  
0.5  
Average offset current drift  
INPUT  
±40  
±40  
nA/°C  
Common-mode input range  
Common-mode rejection ratio  
Input impedance  
–5.7/2.6 –5.4/2.3  
–5.1/2  
70  
–5.1/2  
70  
V
Min  
Min  
80  
74  
dB  
107 || 1  
|| pF Typ  
OUTPUT  
Differential output voltage swing  
Differential output current drive  
Output balance error  
RL = 1 kΩ  
RL = 20 Ω  
±8  
±7.6  
110  
±7.4  
100  
±7.4  
100  
V
Min  
Min  
Typ  
120  
–58  
mA  
dB  
PIN = –20 dBm, f = 100 kHz  
Closed-loop output impedance  
(single-ended)  
f = 1 MHz  
0.1  
Typ  
4
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
ELECTRICAL CHARACTERISTICS: VS = ±5 V (continued)  
RF = RG = 392 , RL = 800 , G = +1, and single-ended input, unless otherwise noted.  
THS4500 AND THS4501  
TYP  
OVER TEMPERATURE  
MIN/  
TYP/  
MAX  
PARAMETER  
TEST CONDITIONS  
0°C to  
+70°C  
–40°C to  
+85°C  
+25°C  
+25°C  
UNITS  
OUTPUT COMMON-MODE VOLTAGE CONTROL  
Small-signal bandwidth  
Slew rate  
RL = 400 Ω  
180  
92  
MHz  
V/µs  
V/V  
V/V  
mV  
µA  
Typ  
Typ  
Min  
Max  
Max  
Max  
Min  
2 VPP Step  
Minimum gain  
1
0.98  
1.02  
0.98  
1.02  
0.98  
1.02  
Maximum gain  
1
Common-mode offset voltage  
–0.4  
100  
±4  
–4.6/+3.8 –6.6/+5.8 –7.6/+6.8  
Input bias current  
VOCM = 2.5 V  
150  
170  
170  
Input voltage range  
±3.7  
±3.4  
±3.4  
V
Input impedance  
25 || 1  
0
k|| pF Typ  
Maximum default voltage  
Minimum default voltage  
POWER SUPPLY  
VOCM left floating  
VOCM left floating  
0.05  
0.10  
0.10  
V
V
Max  
Min  
0
–0.05  
–0.10  
–0.10  
Specified operating voltage  
Maximum quiescent current  
Minimum quiescent current  
Power-supply rejection (±PSRR)  
POWER-DOWN (THS4500 ONLY)  
Enable voltage threshold  
Disable voltage threshold  
Power-down quiescent current  
Input bias current  
±5  
23  
23  
80  
7.5  
28  
18  
76  
7.5  
32  
14  
73  
7.5  
34  
12  
70  
V
Max  
Max  
Min  
Min  
mA  
mA  
dB  
Device enabled ON above –2.9 V  
Device disabled OFF below –4.3 V  
–2.9  
–4.3  
1000  
240  
V
V
Min  
Max  
Max  
Max  
800  
200  
1200  
260  
1200  
260  
µA  
µA  
Input impedance  
50 || 1  
1000  
800  
k|| pF Typ  
Turn-on time delay  
ns  
ns  
Typ  
Typ  
Turn-off time delay  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = 5 V  
RF = RG = 392 , RL = 800 , G = +1, and single-ended input, unless otherwise noted.  
THS4500 AND THS4501  
TYP  
OVER TEMPERATURE  
MIN/T  
YP/M  
AX  
PARAMETER  
TEST CONDITIONS  
0°C to  
+70°C  
–40°C to  
+85°C  
+25°C  
+25°C  
UNITS  
AC PERFORMANCE  
G = +1, PIN = –20 dBm, RF = 392 Ω  
G = +2, PIN = –30 dBm, RF = 1 kΩ  
G = +5, PIN = –30 dBm, RF = 2.4 kΩ  
G = +10, PIN = –30 dBm, RF = 5.1 kΩ  
G > +10  
320  
160  
60  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Small-signal bandwidth  
30  
Gain-bandwidth product  
Bandwidth for 0.1-dB flatness  
Large-signal bandwidth  
Slew rate  
300  
180  
200  
1300  
0.5  
PIN = –20 dBm  
VP = 1 V  
2 VPP Step  
Rise time  
2 VPP Step  
Fall time  
2 VPP Step  
0.6  
ns  
Settling time to 0.01%  
0.1%  
VO = 2 V Step  
13.1  
8.3  
ns  
VO = 2 V Step  
ns  
Harmonic distortion  
G = +1, VO = 2 VPP  
f = 8 MHz,  
–80  
–55  
–76  
–60  
7
dBc  
dBc  
2nd harmonic  
3rd harmonic  
f = 30 MHz  
f = 8 MHz  
dBc  
f = 30 MHz  
dBc  
Input voltage noise  
f > 1 MHz  
nV/Hz  
pA/Hz  
ns  
Input current noise  
f > 100 kHz  
1.7  
60  
Overdrive recovery time  
DC PERFORMANCE  
Open-loop voltage gain  
Input offset voltage  
Overdrive = 5.5 V  
54  
–4  
51  
49  
–8/0  
±10  
5
49  
–9/+1  
±10  
5.2  
dB  
mV  
Min  
Max  
Typ  
Max  
Typ  
Max  
Typ  
–7/–1  
Average offset voltage drift  
Input bias current  
µV/°C  
µA  
4
4.6  
0.7  
Average bias current drift  
Input offset current  
±10  
1.2  
±20  
±10  
1.2  
nA/°C  
µA  
0.5  
Average offset current drift  
INPUT  
±20  
nA/°C  
Common-mode input range  
Common-mode rejection ratio  
Input Impedance  
–0.7/2.6 –0.4/2.3  
–0.1/2  
70  
–0.1/2  
70  
V
Min  
Min  
Typ  
80  
74  
dB  
107 || 1  
|| pF  
OUTPUT  
Differential output voltage swing  
Output current drive  
Output balance error  
RL = 1 k, Referenced to 2.5 V  
RL = 20 Ω  
±3.3  
100  
–58  
±3  
90  
±2.8  
80  
±2.8  
80  
V
Min  
Min  
Typ  
mA  
dB  
PIN = –20 dBm, f = 100 kHz  
Closed-loop output impedance  
(single-ended)  
f = 1 MHz  
0.1  
Typ  
6
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
ELECTRICAL CHARACTERISTICS: VS = 5 V (continued)  
RF = RG = 392 , RL = 800 , G = +1, and single-ended input, unless otherwise noted.  
THS4500 AND THS4501  
TYP  
OVER TEMPERATURE  
MIN/T  
YP/M  
AX  
PARAMETER  
TEST CONDITIONS  
0°C to  
+70°C  
–40°C to  
+85°C  
+25°C  
+25°C  
UNITS  
OUTPUT COMMON-MODE VOLTAGE CONTROL  
Small-signal bandwidth  
Slew rate  
RL = 400 Ω  
180  
80  
MHz  
V/µs  
V/V  
V/V  
mV  
µA  
Typ  
Typ  
Min  
Max  
Max  
Max  
Min  
Typ  
Max  
Min  
2 VPP Step  
Minimum gain  
1
0.98  
1.02  
0.98  
1.02  
0.98  
1.02  
Maximum gain  
1
Common-mode offset voltage  
0.4  
1
–2.6/3.4 –4.2/5.4 –5.6/6.4  
Input bias current  
VOCM = 2.5 V  
2
3
3
Input voltage range  
1/4  
25 || 1  
2.5  
2.5  
1.2/3.8  
1.3/3.7  
1.3/3.7  
V
Input impedance  
k|| pF  
V
Maximum default voltage  
Minimum default voltage  
POWER SUPPLY  
VOCM left floating  
VOCM left floating  
2.55  
2.45  
2.6  
2.4  
2.6  
2.4  
V
Specified operating voltage  
Maximum quiescent current  
Minimum quiescent current  
Power-supply rejection (+PSRR)  
POWER -DOWN (THS4500 ONLY)  
Enable voltage threshold  
Disable voltage threshold  
Power-down quiescent current  
Input bias current  
5
15  
25  
16  
72  
15  
29  
12  
69  
15  
31  
10  
66  
V
Max  
Max  
Min  
Min  
20  
20  
75  
mA  
mA  
dB  
Device enabled ON above 2.1 V  
Device disabled OFF below 0.7 V  
2.1  
0.7  
V
V
Min  
Max  
Max  
Max  
Typ  
Typ  
Typ  
600  
100  
800  
125  
1200  
140  
1200  
140  
µA  
µA  
Input impedance  
50 || 1  
1000  
800  
k|| pF  
ns  
Turn-on time delay  
Turn-off time delay  
ns  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS  
Table of Graphs (±5 V)  
FIGURE  
Small-signal unity-gain frequency response  
1
Small-signal frequency response  
2
0.1-dB gain flatness frequency response  
3
4
Large-signal frequency response  
Harmonic distortion (single-ended input to differential output)  
Harmonic distortion (differential input to differential output)  
Harmonic distortion (single-ended input to differential output)  
Harmonic distortion (differential input to differential output)  
Harmonic distortion (single-ended input to differential output)  
Harmonic distortion (differential input to differential output)  
vs Frequency  
5, 7, 13, 15  
6, 8, 14, 16  
9, 11, 17, 19  
10, 12, 18, 20  
21  
vs Frequency  
vs Output voltage swing  
vs Output voltage swing  
vs Load resistance  
vs Load resistance  
22  
Third-order intermodulation distortion  
(single-ended input to differential output)  
vs Frequency  
23  
Third-order output intercept point  
Slew rate  
vs Frequency  
24  
25  
vs Differential output voltage step  
Settling time  
26, 27  
28  
Large-signal transient response  
Small-signal transient response  
Overdrive recovery  
29  
30, 31  
32  
Voltage and current noise  
Rejection ratios  
vs Frequency  
vs Frequency  
33  
Rejection ratios  
vs Case temperature  
vs Frequency  
34  
Output balance error  
Open-loop gain and phase  
Open-loop gain  
35  
vs Frequency  
36  
vs Case temperature  
vs Case temperature  
vs Supply voltage  
vs Case temperature  
vs Input common-mode range  
vs Case temperature  
37  
Input bias offset current  
Quiescent current  
38  
39  
Input offset voltage  
40  
Common-mode rejection ratio  
Output drive  
41  
42  
Harmonic distortion  
(single-ended and differential input to differential output)  
vs Output common-mode voltage  
43  
Small-signal frequency response at VOCM  
Output offset voltage at VOCM  
44  
45  
46  
47  
48  
49  
50  
vs Output common-mode voltage  
vs Power-down voltage  
Quiescent current  
Turn-on and turn-off delay times  
Single-ended output impedance in power-down  
vs Frequency  
vs Case temperature  
vs Supply voltage  
Power-down quiescent current  
8
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
Table of Graphs (5 V)  
FIGURE  
Small-signal unity-gain frequency response  
Small-signal frequency response  
0.1-dB gain flatness frequency response  
Large-signal frequency response  
Harmonic distortion (single-ended input to differential output)  
Harmonic distortion (differential input to differential output)  
Harmonic distortion (single-ended input to differential output)  
Harmonic distortion (differential input to differential output)  
Harmonic distortion (single-ended input to differential output)  
Harmonic distortion (differential input to differential output)  
Third-order intermodulation distortion  
Third-order intercept point  
51  
52  
53  
54  
vs Frequency  
55, 57, 63, 65  
vs Frequency  
56, 58, 64, 66  
vs Output voltage swing  
vs Output voltage swing  
vs Load resistance  
vs Load resistance  
vs Frequency  
59, 61, 67, 69  
60, 62, 68, 70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
vs Frequency  
Slew rate  
vs Differential output voltage step  
Large-signal transient response  
Small-signal transient response  
Voltage and current noise  
vs Frequency  
Rejection ratios  
vs Frequency  
Rejection ratios  
vs Case temperature  
vs Frequency  
Output balance error  
Open-loop gain and phase  
vs Frequency  
Open-loop gain  
vs Case temperature  
vs Case temperature  
vs Supply voltage  
Input bias offset current  
Quiescent current  
Input offset voltage  
vs Case temperature  
vs Input common-mode range  
vs Case temperature  
vs Output common-mode voltage  
Common-mode rejection ratio  
Output drive  
Harmonic distortion (single-ended and differential input)  
Small-signal frequency response at VOCM  
Output offset voltage  
vs Output common-mode voltage  
vs Power-down voltage  
Quiescent current  
Turn-on and turn-off delay times  
Single-ended output impedance in power-down  
vs Frequency  
vs Case temperature  
vs Supply voltage  
Power-down quiescent current  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: ±5 V  
SMALL-SIGNAL UNITY-GAIN  
FREQUENCY RESPONSE  
SMALL-SIGNAL FREQUENCY  
RESPONSE  
0.1-dB GAIN FLATNESS FREQUENCY  
RESPONSE  
0.3  
1
22  
20  
18  
16  
14  
12  
10  
Gain = 1  
Gain = 10, R = 5.1 kΩ  
f
0.5  
R
= 800 Ω  
= −20 dBm  
= ±5 V  
L
0.2  
0.1  
0
P
V
IN  
S
0
−0.5  
−1  
Gain = 5, R = 2.4 kΩ  
f
R = 499 Ω  
f
−1.5  
−2  
8
6
4
2
R = 392 Ω  
f
Gain = 2, R = 1 kΩ  
f
Gain = 1  
−0.1  
−2.5  
−3  
R
L
= 800  
R = 392 Ω  
f
R
P
V
= 800 Ω  
= −30 dBm  
= ±5 V  
−0.2  
−0.3  
L
P
V
= −20 dBm  
= ±5 V  
IN  
S
−3.5  
−4  
IN  
S
0
−2  
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 1.  
Figure 2.  
Figure 3.  
LARGE-SIGNAL FREQUENCY  
RESPONSE  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
1
0
0
0
Single-Ended Input to  
Differential Output  
Gain = 1  
Differential Input to  
Differential Output  
Gain = 1  
−10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
R
= 800  
R = 800  
L
R = 392 Ω  
f
L
R = 392 Ω  
f
V
V
= 1 V  
= ±5 V  
V
V
= 1 V  
PP  
= ±5 V  
−1  
−2  
O
S
PP  
O
S
Gain = 1  
HD2  
R
L
= 800  
HD2  
10  
R = 392 Ω  
−3  
−4  
f
P
V
= 10 dBm  
= ±5 V  
IN  
S
−90  
−90  
HD3  
HD3  
−100  
−100  
0.1  
1
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 4.  
Figure 5.  
Figure 6.  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
0
0
−10  
−20  
0
−10  
−20  
Single-Ended Input to  
Differential Output  
Gain = 1  
Single-Ended Input to  
Differential Output  
Gain = 1  
= 800  
R = 392 Ω  
Differential Input to  
Differential Output  
Gain = 1  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
R
= 800  
R
R = 800  
L
R = 392 Ω  
f
L
L
−30  
−40  
−30  
−40  
R = 392 Ω  
f
f
f= 8 MHz  
V
V
= 2 V  
= ±5 V  
V
V
= 2 V  
PP  
= ±5 V  
O
S
PP  
O
S
V
= ±5 V  
S
−50  
−60  
−70  
−80  
−50  
−60  
−70  
−80  
HD2  
HD2  
10  
HD2  
10  
HD3  
−90  
−90  
HD3  
4
HD3  
−100  
−100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4.5  
5
0.1  
1
100  
0.1  
1
100  
V
− Output Voltage Swing − V  
f − Frequency − MHz  
f − Frequency − MHz  
O
Figure 7.  
Figure 8.  
Figure 9.  
10  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
TYPICAL CHARACTERISTICS: ±5 V (continued)  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
0
0
0
Differential Input to  
Differential Output  
Gain = 1  
Single-Ended Input to  
Differential Output  
Gain = 1  
Differentia Input to  
Differential Output  
Gain = 1  
−10  
−10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
R
L
= 800  
R
L
= 800  
R = 800  
L
R = 499 Ω  
R = 392 Ω  
R = 392 Ω  
f
f
f
f= 8 MHz  
f= 30 MHz  
f= 30 MHz  
V = ±5 V  
S
V
= ±5 V  
V
= ±5 V  
S
S
HD2  
HD2  
HD2  
HD3  
HD3  
3
HD3  
4.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3.5  
4
4.5  
5
V
− Output Voltage Swing − V  
V
− Output Voltage Swing − V  
V − Output Voltage Swing − V  
O
O
O
Figure 10.  
Figure 11.  
Figure 12.  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
0
0
−10  
−20  
0
Differential Input to  
Differential Output  
Gain = 2  
Single-Ended Input to  
Differential Output  
Gain = 2  
= 800  
R = 1 kΩ  
Single-Ended Input to  
Differential Output  
Gain = 2  
−10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
R
= 800  
R
R = 800  
L
R = 1 kΩ  
f
L
L
−30  
−40  
−50  
R = 1 kΩ  
f
f
V
V
= 1 V  
PP  
= ±5 V  
V
V
= 1 V  
= ±5 V  
V
V
= 2 V  
PP  
= ±5 V  
O
S
O
S
PP  
O
S
HD2  
−60  
−70  
−80  
HD2  
HD2  
HD3  
HD3  
−90  
HD3  
−100  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 13.  
Figure 14.  
Figure 15.  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
0
0
0
Differential Input to  
Differential Output  
Gain = 2  
Single-Ended Input to  
Differential Output  
Gain = 2  
Single-Ended Input to  
Differential Output  
Gain = 2  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−10  
−10  
−20  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
R
L
= 800  
R
L
= 800  
R = 800  
L
−30  
−40  
−50  
R = 1 kΩ  
R = 1 kΩ  
R = 1 kΩ  
f
f
f
V
V
= 2 V  
PP  
= ±5 V  
f= 8 MHz  
f= 8 MHz  
V = ±5 V  
S
O
S
V
= ±5 V  
S
HD2  
−60  
−70  
−80  
HD2  
2.5  
HD2  
HD3  
−90  
HD3  
3.5  
HD3  
3.5  
−100  
0
0.5  
1
1.5  
2
3
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
4
4.5  
5
0.1  
1
10  
100  
f − Frequency − MHz  
V
− Output Voltage Swing − V  
V
− Output Voltage Swing − V  
O
O
Figure 16.  
Figure 17.  
Figure 18.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: ±5 V (continued)  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs LOAD RESISTANCE  
0
0
0
Single-Ended Input to  
Differential Output  
Gain = 2  
Differentia Input to  
Differential Output  
Gain = 2  
Single-Ended Input to  
Differential Output  
Gain = 1  
−10  
−10  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−20  
−30  
−40  
−50  
R
L
= 800  
R = 800  
L
V
= 2 V  
PP  
O
R = 1 kΩ  
R = 1 kΩ  
R = 392  
f
f
f
f= 30 MHz  
f= 8 MHz  
V = ±5 V  
S
f= 30 MHz  
V
= ±5 V  
V
= ±5 V  
S
S
HD2  
HD2  
−60  
−70  
−80  
HD2  
HD3  
HD3  
3.5  
HD3  
3.5  
−90  
−100  
0
0.5  
1
1.5  
2
2.5  
3
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
4
4.5  
5
0
400  
800  
1200  
1600  
V
− Output Voltage Swing − V  
V
− Output Voltage Swing − V  
O
R
L
− Load Resistance − Ω  
O
Figure 19.  
Figure 20.  
Figure 21.  
HARMONIC DISTORTION  
vs LOAD RESISTANCE  
THIRD-ORDER INTERMODULATION  
DISTORTION vs FREQUENCY  
THIRD-ORDER OUTPUT INTERCEPT  
POINT vs FREQUENCY  
55  
−50  
0
Single-Ended Input to  
Differential Output  
Gain = 1  
Differential Input to  
Differential Output  
Gain = 1  
Gain = 1  
−10  
R
F
= 392 W  
50  
45  
40  
−60  
−70  
−80  
−20  
−30  
−40  
−50  
V
= 2 V  
O
S
PP  
R
L
= 800  
V
= 2 V  
PP  
O
V
= ± 5 V  
R = 392 Ω  
R = 392  
f
f
V
V
= 2 V  
PP  
= ±5 V  
f= 30 MHz  
O
S
V
= ±5 V  
S
−60  
−70  
−80  
HD2  
35  
30  
−90  
HD3  
−90  
−100  
−100  
10  
100  
0
20  
40  
60  
80  
100  
120  
0
400  
800  
1200  
1600  
f − Frequency − MHz  
f - Frequency - MHz  
R
L
− Load Resistance − Ω  
Figure 22.  
Figure 23.  
Figure 24.  
SLEW RATE vs DIFFERENTIAL  
OUTPUT VOLTAGE STEP  
SETTLING TIME  
SETTLING TIME  
3000  
2500  
2000  
1500  
1.5  
0.8  
0.6  
0.4  
0.2  
0
Gain = 1  
Rising Edge  
Rising Edge  
R
L
= 800  
1.0  
0.5  
R = 392 Ω  
f
V
= ±5 V  
S
Gain = 1  
Gain = 1  
= 800  
R
R
= 800 W  
= 499 W  
R
L
L
R = 499 Ω  
F
f
f = 1 MHz  
= ±5 V  
f= 1 MHz  
0
-0.5  
-1.0  
V
V
= ±5 V  
S
S
−0.2  
−0.4  
1000  
500  
0
Falling Edge  
Falling Edge  
−0.6  
−0.8  
-1.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
5
10  
15  
20  
0
2
4
6
8
10  
12  
14  
t - Time - ns  
t − Time − ns  
V
− Differential Output Voltage Step − V  
O
Figure 25.  
Figure 26.  
Figure 27.  
12  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
TYPICAL CHARACTERISTICS: ±5 V (continued)  
LARGE-SIGNAL TRANSIENT  
RESPONSE  
SMALL-SIGNAL TRANSIENT  
RESPONSE  
OVERDRIVE RECOVERY  
0.4  
0.3  
0.2  
0.1  
2.5  
2
5
4
3
2
Gain = 4  
= 800  
R = 499 Ω  
Overdrive = 4.5 V  
= ±5 V  
S
R
1.5  
L
1.5  
f
1
1
2
1
V
Gain = 1  
Gain = 1  
0.5  
R
L
= 800  
R
L
= 800  
0.5  
0
R = 499 Ω  
R = 499 Ω  
f
f
0
0
0
−0.5  
−1  
t /t = 300 ps  
t /t = 300 ps  
r
f
r
f
V
= ±5 V  
V
= ±5 V  
−0.5  
S
S
−1  
−0.1  
−1  
−2  
−3  
−0.2  
−0.3  
−0.4  
−1.5  
−1.5  
−2  
−2  
−4  
−5  
−2.5  
−100  
0
100  
200  
300  
400  
500  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
−100  
0
100  
200  
300  
400  
500  
t − Time − ns  
t − Time − ns  
t − Time − µs  
Figure 28.  
Figure 29.  
Figure 30.  
VOLTAGE AND CURRENT NOISE  
vs FREQUENCY  
REJECTION RATIOS  
vs FREQUENCY  
OVERDRIVE RECOVERY  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
V
= ±5 V  
S
PSRR+  
Source  
CMMR  
V
n
PSRR−  
10  
0
−50  
I
n
Sink  
R
= 800  
= ±5 V  
L
−100  
−150  
V
S
1
0.01 0.1  
−10  
1
10  
100 1000 10 k  
−40302010 0 10 20 30 40 50 60 70 80 90  
0.1  
1
10  
100  
f − Frequency − MHz  
f − Frequency − kHz  
Case Temperature − °C  
Figure 31.  
Figure 32.  
Figure 33.  
REJECTION RATIOS  
vs CASE TEMPERATURE  
OUTPUT BALANCE ERROR  
vs FREQUENCY  
OPEN-LOOP GAIN AND PHASE  
vs FREQUENCY  
0
120  
100  
60  
30  
P
R
= 10 dBm  
= 800  
Gain  
P
R
V
= −30 dBm  
= 800  
= ±5 V  
IN  
IN  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
CMMR  
L
L
50  
40  
30  
20  
0
R = 392 Ω  
V
f
S
PSRR+  
= ±5 V  
S
80  
60  
40  
20  
0
−30  
−60  
−90  
Phase  
−120  
−150  
10  
0
R
= 800  
= ±5 V  
L
V
S
0.1  
1
10  
100  
−40302010  
0 10 20 30 40 50 60 70 80 90  
0.01  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
Case Temperature − °C  
f − Frequency − MHz  
Figure 34.  
Figure 35.  
Figure 36.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: ±5 V (continued)  
OPEN-LOOP GAIN  
INPUT BIAS AND OFFSET CURRENT  
QUIESCENT CURRENT  
vs SUPPLY VOLTAGE  
vs CASE TEMPERATURE  
vs CASE TEMPERATURE  
35  
30  
25  
20  
15  
10  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
3.4  
3.3  
0
V
= ±5 V  
S
T = 85°C  
A
I
R
V
= 800  
= ±5 V  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
IB−  
L
S
T
A
= 25°C  
3.2  
3.1  
I
IB+  
T
A
= −40°C  
3
2.9  
−0.06  
−0.07  
−0.08  
−0.09  
2.8  
2.7  
I
OS  
2.6  
2.5  
5
0
−403020100 10 20 30 40 50 60 70 80 90  
Case Temperature − °C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
−40302010 0 10 20 30 40 50 60 70 80 90  
Case Temperature − °C  
V
− Supply Voltage − ±V  
S
Figure 37.  
Figure 38.  
Figure 39.  
INPUT OFFSET VOLTAGE  
vs CASE TEMPERATURE  
COMMON-MODE REJECTION RATIO  
vs INPUT COMMON-MODE RANGE  
110  
OUTPUT DRIVE  
vs CASE TEMPERATURE  
7
200  
V
= ±5 V  
S
V
= ±5 V  
V = ±5 V  
S
S
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Source  
150  
100  
50  
6
5
4
3
2
0
−50  
1
0
Sink  
−100  
−150  
0
−10  
−4030−20−10 0 10 20 30 40 50 60 70 80 90  
−40302010 0 10 20 30 40 50 60 70 80 90  
−6 −5 −4 −3 −2 −1  
0
1
2
3
4
5
6
Case Temperature − °C  
Case Temperature − °C  
Input Common-Mode Voltage Range − V  
Figure 40.  
Figure 41.  
Figure 42.  
HARMONIC DISTORTION  
vs OUTPUT COMMON-MODE  
VOLTAGE  
OUTPUT OFFSET VOLTAGE AT VOCM  
vs OUTPUT COMMON-MODE  
VOLTAGE  
SMALL-SIGNAL FREQUENCY  
RESPONSE AT VOCM  
0
600  
Single-Ended and Differential  
Input to Differential Output  
3
2
−10  
Gain = 1  
R = 800  
L
400  
200  
Gain = 1, V = 2 V  
O
PP  
−20  
R = 392 Ω  
f= 8 MHz, R = 392  
f
f
−30  
−40  
−50  
−60  
V
= ±5 V  
P
V
= −20 dBm  
= ±5 V  
S
IN  
1
S
HD2-SE  
0
0
HD2  
-Diff  
HD3-SE  
HD3-Diff  
−200  
−70  
−80  
−1  
−400  
−600  
−2  
−3  
−90  
−100  
−3.5 −2.5 −1.5 −0.5 0.5  
1.5  
2.5 3.5  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
1
10  
100  
1000  
V
− Output Common-Mode Voltage − V  
OC  
V
− Output Common-Mode Voltage − V  
OC  
f − Frequency − MHz  
Figure 43.  
Figure 44.  
Figure 45.  
14  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
TYPICAL CHARACTERISTICS: ±5 V (continued)  
QUIESCENT CURRENT  
vs POWER-DOWN VOLTAGE  
TURN-ON AND TURN-OFF DELAY  
TIME  
SINGLE-ENDED OUTPUT IMPEDANCE  
IN POWER-DOWN vs FREQUENCY  
800  
30  
25  
20  
15  
10  
0.03  
700  
600  
500  
400  
0.02  
0.01  
Current  
0
0
−1  
−2  
−3  
−4  
300  
Gain = 1  
R
L
= 800  
5
200  
R = 392 Ω  
f
P
V
= −1 dBm  
= ±5 V  
IN  
S
0
100  
0
−5  
−6  
−5  
−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5  
0
0.1  
1
10  
100  
1000  
0 0.5 1 1.5 2 2.5  
3
100.5101 102  
103  
f − Frequency − MHz  
Power-Down Voltage − V  
t − Time − ms  
Figure 46.  
Figure 47.  
Figure 48.  
POWER-DOWN QUIESCENT  
CURRENT vs CASE TEMPERATURE  
POWER-DOWN QUIESCENT  
CURRENT vs SUPPLY VOLTAGE  
1000  
900  
800  
700  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
R
L
= 800  
R
= 800  
= ±5 V  
L
V
S
600  
500  
400  
300  
200  
100  
0
100  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5  
−4030−2010 0 10 20 30 40 50 60 70 80 90  
V
− Supply Voltage − ±V  
Case Temperature − °C  
S
Figure 49.  
Figure 50.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: 5 V  
SMALL-SIGNAL UNITY-GAIN  
FREQUENCY RESPONSE  
SMALL-SIGNAL FREQUENCY  
RESPONSE  
0.1-dB GAIN FLATNESS FREQUENCY  
RESPONSE  
0.2  
1
0
22  
20  
18  
16  
14  
12  
10  
Gain = 10, R = 5.1 kΩ  
f
R = 499 Ω  
f
0.1  
0
Gain = 5, R = 2.4 kΩ  
f
R = 392 Ω  
f
−1  
−2  
−0.1  
−0.2  
8
6
4
2
Gain = 2, R = 1 kΩ  
f
Gain = 1  
−0.3  
R
L
= 800  
Gain = 1  
R = 392 Ω  
−3  
−4  
f
R
= 800 Ω  
= −20 dBm  
= 5 V  
L
R
= 800 Ω  
= −30 dBm  
= 5 V  
L
P
V
= −20 dBm  
= 5 V  
−0.4  
−0.5  
IN  
S
P
V
IN  
S
P
V
IN  
S
0
−2  
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 51.  
Figure 52.  
Figure 53.  
LARGE-SIGNAL FREQUENCY  
RESPONSE  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
0
0
1
Single-Ended Input to  
Differential Output  
Gain = 1  
Differential Input to  
Differential Output  
Gain = 1  
−10  
−10  
−20  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
0
R
L
= 800  
R
L
= 800  
−30  
−40  
R = 392 Ω  
R = 392 Ω  
f
f
V
V
= 1 V  
= 5 V  
V
V
= 1 V  
= 5 V  
O
S
PP  
−1  
O
S
PP  
−50  
−60  
−70  
−80  
−2  
−3  
−4  
HD2  
HD2  
Gain = 1  
R
L
= 800  
R = 392 Ω  
f
HD3  
P
V
= 10 dBm  
= 5 V  
HD3  
IN  
S
−90  
−100  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
0.1  
1
10  
100  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 54.  
Figure 55.  
Figure 56.  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
0
0
0
Differential Input to  
Differential Output  
Gain = 1  
Single-Ended Input to  
Differential Output  
Gain = 1  
Single-Ended Input to  
Differential Output  
Gain = 1  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−10  
−20  
−30  
−40  
−10  
−20  
−30  
−40  
−50  
−60  
R
= 800  
R
= 800  
L
L
R
= 800  
L
R = 499 Ω  
R = 392 Ω  
f
f
R = 392 Ω  
f
V
V
= 2 V  
= 5 V  
V
V
= 2 V  
= 5 V  
O
S
PP  
O
S
PP  
f= 8 MHz  
V
= 5 V  
S
−50  
−60  
−70  
−80  
HD3  
HD3  
HD3  
−70  
−80  
HD2  
HD2  
HD2  
2.5  
−90  
−90  
−90  
−100  
−100  
−100  
0.1  
1
10  
100  
0.1  
1
10  
100  
0
0.5  
1
1.5  
2
3
f − Frequency − MHz  
f − Frequency − MHz  
V
− Output Voltage Swing − V  
O
Figure 57.  
Figure 58.  
Figure 59.  
16  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
TYPICAL CHARACTERISTICS: 5 V (continued)  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
0
−10  
−20  
0
−10  
−20  
0
−10  
−20  
Single-Ended Input to  
Differential Output  
Gain = 1  
Differentia Input to  
Differential Output  
Gain = 1  
Differentia Input to  
Differential Output  
Gain = 1  
R
L
= 800  
R
L
= 800  
R = 800  
L
R = 392 Ω  
f = 30 MHz  
−30  
−40  
−50  
−60  
−30  
−40  
−50  
−60  
−30  
−40  
−50  
−60  
R = 392 Ω  
f= 8 MHz  
R = 392 Ω  
f= 30 MHz  
V = 5 V  
S
f
f
f
HD3  
HD3  
V
= 5 V  
V
= 5 V  
S
S
HD2  
HD2  
HD3  
−70  
−80  
−70  
−80  
−70  
−80  
HD2  
−90  
−90  
−90  
−100  
−100  
−100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
V
− Output Voltage Swing − V  
V
− Output Voltage Swing − V  
V − Output Voltage Swing − V  
O
O
O
Figure 60.  
Figure 61.  
Figure 62.  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs FREQUENCY  
0
0
−10  
−20  
0
Differential Input to  
Differential Output  
Gain = 2  
Single-Ended Input to  
Differential Output  
Gain = 2  
Single-Ended Input to  
Differential Output  
Gain = 2  
−10  
−10  
−20  
−30  
−20  
−30  
R
= 800  
R
= 800  
R = 800  
L
R = 1 kΩ  
f
L
L
−30  
−40  
−50  
R = 1 kΩ  
R = 1 kΩ  
f
f
V
V
= 1 V  
= 5 V  
V
V
= 1 V  
= 5 V  
V
V
= 2 V  
= 5 V  
O
S
PP  
O
S
PP  
O
S
PP  
−40  
−40  
−50  
−60  
−50  
−60  
HD2  
HD3  
−60  
−70  
−80  
HD3  
−70  
−80  
−70  
HD2  
−80  
−90  
HD2  
HD3  
−90  
−90  
−100  
−100  
−100  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 63.  
Figure 64.  
Figure 65.  
HARMONIC DISTORTION  
vs FREQUENCY  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
0
0
0
Single-Ended Input to  
Differential Output  
Gain = 2  
Differential Input to  
Differential Output  
Gain = 2  
Differential Input to  
Differential Output  
Gain = 2  
−10  
−10  
−20  
10  
20  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
R
L
= 800  
R
L
= 800  
R
R
= 800 W  
= 1 kW  
L
R = 1 kΩ  
R = 1 kΩ  
−30  
−40  
−50  
−60  
30  
40  
50  
60  
f
f
F
f = 8 MHz  
V
V
= 2 V  
= 5 V  
f = 8 MHz  
= 5 V  
O
S
PP  
V
= 5 V  
V
S
S
HD3  
HD3  
HD3  
−70  
−80  
70  
80  
HD2  
HD2  
2.5  
HD2  
−90  
90  
−100  
100  
0
0.5  
1
1.5  
2
3
0.1  
1
10  
100  
0
0.5  
1
1.5  
2
2.5  
3
f − Frequency − MHz  
V
− Output Voltage Swing − V  
V
- Output Voltage Swing - V  
O
O
Figure 66.  
Figure 67.  
Figure 68.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: 5 V (continued)  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs OUTPUT VOLTAGE SWING  
HARMONIC DISTORTION  
vs LOAD RESISTANCE  
0
−10  
−20  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
Single-Ended Input to  
Differential Output  
Gain = 1  
Single-Ended Input to  
Differential Output  
Gain = 2  
Differential Input to  
Differential Output  
Gain = 2  
10  
20  
V
= 2 V  
PP  
R
L
= 800  
O
R
R
= 800 W  
= 1 kW  
L
R = 392  
R = 1 kΩ  
−30  
−40  
−50  
−60  
30  
40  
50  
60  
f
f
F
f= 30 MHz  
f = 30 MHz  
f = 30 MHz  
= 5 V  
V
= 5 V  
V
= 5 V  
S
V
S
S
HD2  
HD3  
HD2  
HD3  
HD2  
HD3  
−70  
−80  
70  
80  
−90  
90  
−90  
−100  
100  
−100  
0
400  
800  
1200  
1600  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
V
− Output Voltage Swing − V  
R
L
− Load Resistance − Ω  
V
- Output Voltage Swing - V  
O
O
Figure 69.  
Figure 70.  
Figure 71.  
HARMONIC DISTORTION  
vs LOAD RESISTANCE  
THIRD-ORDER INTERMODULATION  
DISTORTION vs FREQUENCY  
THIRD-ORDER OUTPUT INTERCEPT  
POINT vs FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
55  
−50  
Differential Input to  
Differential Output  
Gain = 1  
Single-Ended Input to  
Differential Output  
Gain = 1  
Gain = 1  
= 2 V  
V
O
PP  
50  
45  
40  
R
R
V
= 392 W  
= 800 W  
= 5 V  
−60  
−70  
−80  
F
L
V
= 2 V  
PP  
V
= 2 V  
PP  
O
O
R
F
= 392 W  
R = 392 Ω  
f
S
f = 30 MHz  
= 5 V  
R
V
= 800 Ω  
= 5 V  
L
V
S
S
HD2  
HD3  
35  
30  
−90  
−100  
-100  
0
400  
800  
1200  
1600  
0
20  
40  
60  
80  
100  
120  
10  
100  
R
- Load Resistance - W  
f − Frequency − MHz  
f - Frequency - MHz  
L
Figure 72.  
Figure 73.  
Figure 74.  
SLEW RATE vs DIFFERENTIAL  
OUTPUT VOLTAGE STEP  
LARGE-SIGNAL TRANSIENT  
RESPONSE  
SMALL-SIGNAL TRANSIENT  
RESPONSE  
1400  
1200  
1000  
800  
600  
400  
200  
0
2
0.4  
0.3  
0.2  
Gain = 1  
1.5  
R
L
= 800  
R = 392 Ω  
f
1
V
= 5 V  
S
Gain = 1  
Gain = 1  
R = 800  
L
R = 392 Ω  
f
0.5  
0.1  
0
R
L
= 800  
R = 392 Ω  
f
0
−0.5  
−1  
t /t = 300 ps  
r
f
t /t = 300 ps  
r
f
V
= 5 V  
S
V
= 5 V  
S
−0.1  
−0.2  
−0.3  
−0.4  
−1.5  
−2  
−100  
0
100  
200  
300  
400  
500  
0
0.5  
1
1.5  
2
2.5  
3
−100  
0
100  
t − Time − ns  
200  
300  
400  
500  
t − Time − ns  
V
− Differential Output Voltage Step − V  
O
Figure 75.  
Figure 76.  
Figure 77.  
18  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
TYPICAL CHARACTERISTICS: 5 V (continued)  
VOLTAGE AND CURRENT NOISEvs  
FREQUENCY  
REJECTION RATIOS  
vs FREQUENCY  
REJECTION RATIOS  
vs CASE TEMPERATURE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
120  
100  
PSRR+  
CMMR  
PSRR−  
80  
60  
40  
CMMR  
PSRR+  
V
n
PSRR−  
10  
I
n
20  
0
R
V
= 800  
= 5 V  
R
V
= 800  
= 5 V  
L
L
S
S
1
0.01 0.1  
−10  
−40302010 0 10 20 30 40 50 60 70 80 90  
1
10  
100 1000 10 k  
0.1  
1
10  
100  
Case Temperature − °C  
f − Frequency − MHz  
f − Frequency − kHz  
Figure 78.  
Figure 79.  
Figure 80.  
OUTPUT BALANCE ERROR  
vs FREQUENCY  
OPEN-LOOP GAIN AND PHASE  
vs FREQUENCY  
OPEN-LOOP GAIN  
vs CASE TEMPERATURE  
0
60  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
30  
R = 800  
L
Gain  
P
R
V
= −30 dBm  
= 800  
= 5 V  
P
= −20 dBm  
IN  
IN  
−10  
−20  
−30  
−40  
−50  
V
= 5 V  
S
R
L
= 800  
L
50  
40  
30  
20  
0
R = 499 Ω  
S
f
V
= 5 V  
S
−30  
−60  
−90  
Phase  
−120  
−150  
10  
0
−60  
−70  
−403020100 10 20 30 40 50 60 70 80 90  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
Case Temperature − °C  
f − Frequency − MHz  
Figure 81.  
Figure 82.  
Figure 83.  
INPUT BIAS AND OFFSET CURRENT  
QUIESCENT CURRENT  
vs SUPPLY VOLTAGE  
INPUT OFFSET VOLTAGE  
vs CASE TEMPERATURE  
vs CASE TEMPERATURE  
3.75  
3.5  
0
35  
30  
25  
20  
15  
10  
4
V
= 5 V  
T
A
= 85°C  
S
V
= 5 V  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
−0.06  
−0.07  
−0.08  
S
3.5  
3
I
IB+  
T
A
= 25°C  
3.25  
3
I
IB−  
T
A
= −40°C  
2.75  
2.5  
2.5  
2
I
OS  
2.25  
1.5  
2
1
0.5  
0
1.75  
5
0
−0.09  
−0.1  
1.5  
1.25  
−40302010 0 10 20 30 40 50 60 70 80 90  
−4030−20−10 0 10 20 30 40 50 60 70 80 90  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Case Temperature − °C  
Case Temperature − °C  
V
− Supply Voltage − ±V  
S
Figure 84.  
Figure 85.  
Figure 86.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS: 5 V (continued)  
HARMONIC DISTORTION  
COMMON-MODE REJECTION RATIO  
vs INPUT COMMON-MODE RANGE  
OUTPUT DRIVE  
vs OUTPUT COMMON-MODE  
VOLTAGE  
vs CASE TEMPERATURE  
0
110  
100  
90  
150  
100  
50  
Single-Ended and  
Differential Input  
Gain = 1  
V
= 5 V  
S
Source  
V
= 5 V  
S
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
V
= 2 V  
O PP  
80  
R = 392  
f
70  
f= 8 MHz, V = 5 V  
S
60  
50  
0
HD3-SE  
and Diff  
40  
30  
−50  
20  
10  
−100  
−150  
Sink  
HD2-SE  
HD2-Diff  
0
−10  
−40302010  
0 10 20 30 40 50 60 70 80 90  
1
1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5  
−1  
0
1
2
3
4
5
V
− Output Common-Mode Voltage − V  
Input Common-Mode Range − V  
Case Temperature − °C  
OCM  
Figure 87.  
Figure 88.  
Figure 89.  
SMALL-SIGNAL FREQUENCY  
RESPONSE AT VOCM  
OUTPUT OFFSET VOLTAGE vs  
QUIESCENT CURRENT  
OUTPUT COMMON-MODE VOLTAGE  
vs POWER-DOWN VOLTAGE  
800  
25  
20  
4
3
V
= 5 V  
S
Gain = 1  
600  
400  
200  
R
L
= 800  
R = 392 Ω  
f
P
V
= −20 dBm  
= 5 V  
IN  
2
S
15  
10  
5
1
0
0
−200  
−400  
−600  
−800  
−1  
−2  
−3  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5  
0.1  
1
10  
100  
1000  
Power-down Voltage − V  
V
− Output Common-Mode Voltage − V  
OC  
f − Frequency − MHz  
Figure 90.  
Figure 91.  
Figure 92.  
TURN-ON AND TURN-OFF DELAY  
TIME  
SINGLE-ENDED OUTPUT IMPEDANCE  
IN POWER-DOWN vs FREQUENCY  
POWER-DOWN QUIESCENT  
CURRENT vs CASE TEMPERATURE  
1100  
800  
700  
600  
500  
0.03  
R
= 800  
= 5 V  
L
1000  
900  
800  
700  
0.02  
V
S
0.01  
Current  
0
0
600  
500  
400  
300  
200  
−1  
400  
300  
−2  
−3  
−4  
Gain = 1  
= 400  
R = 499 Ω  
f
R
L
200  
P
V
= −1 dBm  
= 5 V  
IN  
S
100  
0
100  
0
0.1  
−5  
−6  
−4030−2010 0 10 20 30 40 50 60 70 80 90  
1
10  
100  
1000  
0 0.5 1 1.5 2 2.5  
3
100.5101 102  
103  
f − Frequency − MHz  
Case Temperature − °C  
t − Time − ms  
Figure 93.  
Figure 94.  
Figure 95.  
20  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
TYPICAL CHARACTERISTICS: 5 V (continued)  
POWER-DOWN QUIESCENT  
CURRENT vs SUPPLY VOLTAGE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5  
V
− Supply Voltage − V  
S
Figure 96.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): THS4500 THS4501  
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
APPLICATION INFORMATION  
FULLY DIFFERENTIAL AMPLIFIER  
TERMINAL FUNCTIONS  
FULLY DIFFERENTIAL AMPLIFIERS  
Fully differential amplifiers are typically packaged in  
eight-pin packages, as shown in Figure 97. The  
device pins include two inputs (VIN+, VIN–), two  
outputs (VOUT–, VOUT+), two power supplies (VS+, VS–),  
an output common-mode control pin (VOCM), and an  
optional power-down pin (PD).  
Differential signaling offers a number of performance  
advantages in high-speed analog signal processing  
systems,  
including  
immunity  
to  
external  
common-mode noise, suppression of even-order  
nonlinearities, and increased dynamic range. Fully  
differential amplifiers not only serve as the primary  
means of providing gain to a differential signal chain,  
but also provide a monolithic solution for converting  
single-ended signals into differential signals for  
easier, higher performance processing. The THS4500  
family of amplifiers contains products in Texas  
Instruments' expanding line of high-performance, fully  
differential amplifiers. Information on fully differential  
amplifier fundamentals, as well as implementation  
specific information, is presented in the Applications  
Section of this data sheet to provide a better  
understanding of the operation of the THS4500 family  
of devices, and to simplify the design process for  
designs using these amplifiers.  
VIN-  
VOCM  
VS+  
VIN+  
PD  
1
8
2
7
3
4
6
5
VS-  
VOUT+  
VOUT-  
Figure 97. Fully Differential Amplifier Pin Diagram  
A standard configuration for the device is shown in  
Figure 97. The functionality of a fully differential  
amplifier can be imagined as two inverting amplifiers  
that share a common noninverting terminal (though  
the voltage is not necessarily fixed). For more  
information on the basic theory of operation for fully  
differential amplifiers, refer to the Texas Instruments  
application note Fully Differential Amplifiers, literature  
number SLOA054, available for download at  
www.ti.com.  
APPLICATIONS SECTION  
Fully Differential Amplifier Terminal Functions  
Input Common-Mode Voltage Range and the  
THS4500 Family  
Choosing the Proper Value for the Feedback and  
Gain Resistors  
Application Circuits Using Fully Differential  
Amplifiers  
Key Design Considerations for Interfacing to an  
Analog-to-Digital Converter  
Setting the Output Common-Mode Voltage With  
the VOCM Input  
INPUT COMMON-MODE VOLTAGE RANGE  
AND THE THS4500 FAMILY  
The key difference between the THS4500/1 and the  
THS4502/3 is the input common-mode range for the  
four devices. The THS4502 and THS4503 have an  
input common-mode range that is centered around  
midrail, and the THS4500 and THS4501 have an  
input common-mode range that is shifted to include  
the negative power-supply rail. Selection of one or  
the other amplifier is determined by the nature of the  
application. Specifically, the THS4500 and THS4501  
are designed for use in single-supply applications  
where the input signal is ground-referenced, as  
depicted in Figure 98. The THS4502 and THS4503  
are designed for use in single-supply or split-supply  
applications where the input signal is centered  
between the power-supply voltages, as depicted in  
Figure 99.  
Saving Power with Power-Down Functionality  
Linearity:  
Definitions,  
Terminology,  
Circuit  
Techniques, and Design Tradeoffs  
An Abbreviated Analysis of Noise in Fully  
Differential Amplifiers  
Printed-Circuit Board Layout Techniques for  
Optimal Performance  
Power Dissipation and Thermal Considerations  
Power Supply Decoupling Techniques and  
Recommendations  
Evaluation  
Fixtures,  
Spice  
Models,  
and  
Applications Support  
Additional Reference Material  
22  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
 
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
VIN)(1–β)–VIN–(1–β) ) 2VOCMβ  
+
R
G1  
R
F1  
R
S
VOUT)  
2β  
(1)  
+V  
S
R
T
–VIN)(1–β) ) VIN–(1–β) ) 2VOCMβ  
2β  
V
S
VOUT–  
+
(2)  
(3)  
+
-
V
OCM  
VN + VIN–(1–β) ) VOUT)  
β
+
-
Where:  
RG  
β +  
R
R
F2  
G2  
RF ) RG  
(4)  
(5)  
VP + VIN)(1–β) ) VOUT–β  
Figure 98. Application Circuit for the THS4500 and  
THS4501, Featuring Single-Supply Operation With  
a Ground-Reference Input Signal  
NOTE: The equations denote the device inputs as VN and VP, and  
the circuit inputs as VIN+ and VIN–  
.
R
G
R
F
R
G1  
R
F1  
R
S
V
IN+  
+V  
S
R
T
V
P
V
S
V
V
+
OUT-  
-
+
-
V
OCM  
+
V
OCM  
-
+
OUT+  
-
V
N
-V  
S
V
IN-  
R
G
R
F
R
G2  
R
F2  
Figure 100. Diagram For Input Common-Mode  
Range Equations  
Figure 99. Application Circuit for the THS4500 and  
THS4501, Featuring Split-Supply Operation With  
an Input Signal Referenced at the Midrail  
Table 1 and Table 2 depict the input common-mode  
range requirements for two different input scenarios,  
an input referenced around the negative rail and an  
input referenced around midrail. The tables highlight  
the differing requirements on input common-mode  
range, and illustrate the reasoning to choose either  
the THS4500/1 or the THS4502/3. For signals  
referenced around the negative power supply, the  
THS4500/1 should be chosen because its input  
common-mode range includes the negative supply  
rail. For all other situations, the THS4502/3 offers  
slightly improved distortion and noise performance for  
applications with input signals centered between the  
power-supply rails.  
Equation 1 through Equation 5 are used to calculate  
the required input common-mode range for a given  
set of input conditions.  
The equations allow calculation of the input  
common-mode range requirements, given information  
about the input signal, the output voltage swing, the  
gain, and the output common-mode voltage.  
Calculating the maximum and minimum voltage  
required for VN and VP (the amplifier input nodes)  
determines whether or not the input common-mode  
range is violated or not. Four equations are required:  
two calculate the output voltages and two calculate  
the node voltages at VN and VP (note that only one of  
these nodes needs calculation, because the amplifier  
forces a virtual short between the two nodes).  
Table 1. Negative-Rail Referenced  
Gain  
(V/V)  
VIN+  
(V)  
VIN–  
(V)  
VIN  
(VPP  
VOCM  
(V)  
VOD  
(VPP)  
VNMIN  
(V)  
VNMAX  
(V)  
)
1
2
4
8
–2.0 to 2.0  
–1.0 to 1.0  
–0.5 to 0.5  
–0.25 to 0.25  
0
0
0
0
4
2
2.5  
2.5  
2.5  
2.5  
4
4
4
4
0.75  
0.5  
1.75  
1.167  
0.7  
1
0.3  
0.5  
0.167  
0.389  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): THS4500 THS4501  
 
 
 
 
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
Table 2. Midrail Referenced  
Gain  
(V/V)  
VIN+  
(V)  
VIN–  
(V)  
VIN  
(VPP  
VOCM  
(V)  
VOD  
(VPP)  
VNMIN  
(V)  
VNMAX  
(V)  
)
1
2
4
8
0.5 to 4.5  
1.5 to 3.5  
2.0 to 3.0  
2.25 to 2.75  
2.5  
2.5  
2.5  
2.5  
4
2
2.5  
2.5  
2.5  
2.5  
4
4
4
4
2
3
2.16  
2.3  
2.83  
2.7  
1
0.5  
2.389  
2.61  
CHOOSING THE PROPER VALUE FOR THE  
FEEDBACK AND GAIN RESISTORS  
BASIC DESIGN CONSIDERATIONS  
The circuits in Figure 98 through Figure 100 are used  
to highlight basic design considerations for fully  
differential amplifier circuit designs.  
The selection of feedback and gain resistors impacts  
circuit performance in a number of ways. The values  
presented in this section provide the optimum  
high-frequency performance (lowest distortion, flat  
frequency response). Since the THS4500 family of  
amplifiers is developed with a voltage feedback  
architecture, the choice of resistor values does not  
have a dominant effect on bandwidth, unlike a  
current-feedback amplifier. However, resistor choices  
do have second-order effects. For optimal  
performance, the following feedback resistor values  
are recommended. In higher gain configurations (gain  
greater than two), the feedback resistor values have  
much less effect on the high-frequency performance.  
Example feedback and gain resistor values are given  
in the section on basic design considerations  
(Table 3).  
Table 3. Resistor Values for Balanced Operation  
in Various Gain Configurations  
R2 and R4  
VOD  
ǒ Ǔ  
VIN  
R1 ()  
R3 ()  
RT ()  
Gain  
()  
1
1
392  
499  
412  
523  
215  
665  
274  
681  
147  
698  
383  
487  
187  
634  
249  
649  
118  
681  
54.9  
53.6  
60.4  
52.3  
56.2  
52.3  
64.9  
52.3  
2
392  
2
1.3 k  
1.3 k  
3.32 k  
1.3 k  
6.81 k  
5
5
10  
10  
Amplifier loading, noise, and the flatness of the  
frequency response are three design parameters that  
should be considered when selecting feedback  
resistors. Larger resistor values contribute more noise  
and can induce peaking in the ac response in low  
gain configurations; smaller resistor values can load  
the amplifier more heavily, resulting in a reduction in  
distortion performance. In addition, feedback resistor  
values, coupled with gain requirements, determine  
the value of the gain resistors and directly impact the  
input impedance of the entire circuit. While there are  
no strict rules about resistor selection, these trends  
can provide qualitative design guidance.  
Equations for calculating fully differential amplifier  
resistor values in order to obtain balanced operation  
in the presence of a 50-source impedance are  
given in Equation 6 through Equation 9.  
R2  
R1  
1
K +  
R2 + R4  
RT +  
K
1–  
2(1)K)  
1
RS  
ǒ
TǓ  
R3  
R3 + R1 * Rs || R  
(6)  
(7)  
R3 ) RT || RS  
R3 ) RT || RS ) R4  
R1  
R1 ) R2  
β1 +  
β2 +  
VOD  
VS  
1–β2  
β1 ) β2  
RT  
RT ) RS  
+ 2ǒ Ǔǒ Ǔ  
APPLICATION CIRCUITS USING FULLY  
DIFFERENTIAL AMPLIFIERS  
(8)  
(9)  
VOD  
VIN  
1–β2  
+ 2ǒ Ǔ  
β1 ) β2  
Fully differential amplifiers provide designers with a  
great deal of flexibility in  
a
wide variety of  
applications. This section provides an overview of  
some common circuit configurations and gives some  
design guidelines. Designing the interface to an  
analog-to-digital converter (ADC), driving lines  
differentially, and filtering with fully differential  
amplifiers are a few of the circuits that are covered.  
For more detailed information about balance in fully  
differential amplifiers, see the application report, Fully  
Differential Amplifiers (SLOA054), referenced at the  
end of this data sheet.  
24  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
 
 
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
INTERFACING TO AN ANALOG-TO-DIGITAL  
CONVERTER  
Decouple the VOCM pin to eliminate the antenna  
effect. VOCM is a high-impedance node that can  
act as an antenna. A large decoupling capacitor  
on this node eliminates this problem.  
Know the input common-mode range. If the input  
signal is referenced around the negative  
power-supply rail (for example, around ground on  
The THS4500 family of amplifiers are designed  
specifically  
to  
interface  
to  
today's  
highest-performance ADCs. This section highlights  
the key concerns when interfacing to an ADC and  
provides example interface circuits.  
a
single 5 V supply), then the THS4500/1  
There are several key design concerns when  
interfacing to an analog-to-digital converter:  
accommodates the input signal. If the input signal  
is referenced around midrail, choose the  
THS4502/3 for the best operation.  
Terminate the input source properly. In  
high-frequency receiver chains, the source that  
feeds the fully differential amplifier requires a  
specific load impedance (that is, 50 ).  
Packaging makes  
a
difference at higher  
frequencies. If possible, choose the smaller,  
thermally-enhanced MSOP package for the best  
performance. As  
temperatures provide better performance. If  
possible, use thermally-enhanced package,  
even if the power dissipation is relatively small  
compared to the maximum power dissipation  
rating to achieve the best results.  
Understand the effect of the load impedance seen  
by the fully differential amplifier when performing  
system-level intercept point calculations. Lighter  
loads (such as those presented by an ADC) allow  
smaller intercept points to support the same level  
of intermodulation distortion performance.  
a
rule, lower junction  
Design a symmetric printed circuit board (PCB)  
layout. Even-order distortion products are heavily  
influenced by layout, and careful attention to a  
symmetric layout minimizes these distortion  
products.  
Minimize inductance in power-supply decoupling  
traces and components. Poor power-supply  
decoupling can have a dramatic effect on circuit  
performance. Since the outputs are differential,  
differential currents exist in the power-supply pins.  
Thus, decoupling capacitors should be placed in a  
manner that minimizes the impedance of the  
current loop.  
a
EXAMPLE ANALOG-TO-DIGITAL  
CONVERTER DRIVER CIRCUITS  
Use separate analog and digital power supplies  
and grounds. Noise (bounce) in the power  
supplies (created by digital switching currents) can  
couple directly into the signal path, and  
power-supply noise can create higher distortion  
products as well.  
Use care when filtering. While an RC low-pass  
filter may be desirable on the output of the  
amplifier to filter broadband noise, the excess  
loading can negatively impact the amplifier  
linearity. Filtering in the feedback path does not  
have this effect.  
AC-coupling allows easier circuit design. If  
dc-coupling is required, be aware of the excess  
power dissipation that can occur due to  
level-shifting the output through the output  
common-mode voltage control.  
Do not terminate the output unless required. Many  
open-loop, class-A amplifiers require 50-Ω  
termination for proper operation, but closed-loop  
fully differential amplifiers drive a specific output  
voltage regardless of the load impedance present.  
The THS4500 family of devices is designed to drive  
high-performance ADCs with extremely high linearity,  
allowing for the maximum effective number of bits at  
the output of the data converter. Two representative  
circuits shown below highlight single-supply operation  
and split supply operation, respectively. Specific  
feedback resistor, gain resistor, and feedback  
capacitor values are not shown, as these values  
depend on the frequency of interest. Information on  
calculating these values can be found in the  
applications material above.  
C
F
R
S
R
G
R
F
5 V  
V
R
T
S
5 V  
10 mF 0.1 mF  
R
R
ISO  
+
IN  
-
ADS5410  
V
OCM  
+
12-Bit/80 MSPS  
IN  
-
CM  
1 mF  
THS4503  
ISO  
Terminating the output of  
amplifier with a heavy load adversely affects the  
amplifier linearity.  
a fully differential  
10 mF 0.1 mF  
5
V
R
G
0.1 mF  
R
F
Comprehend the VOCM input drive requirements.  
Determine if the ADC voltage reference can  
provide the required amount of current to move  
VOCM to the desired value. A buffer may be  
needed.  
C
F
Figure 101. Using the THS4503 With the ADS5410  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): THS4500 THS4501  
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
FILTERING WITH FULLY DIFFERENTIAL  
AMPLIFIERS  
C
F
R
S
R
G
R
F
Similar to single-ended counterparts, fully differential  
amplifiers have the ability to couple filtering  
functionality with voltage gain. Numerous filter  
topologies can be based on fully differential  
amplifiers. Several of these are outlined in the  
application report A Differential Circuit Collection  
(literature number SLOA064), referenced at the end  
of this data sheet. The circuit below depicts a simple,  
two-pole, low-pass filter applicable to many different  
types of systems. The first pole is set by the resistors  
and capacitors in the feedback paths, and the second  
pole is set by the isolation resistors and the capacitor  
across the outputs of the isolation resistors.  
5 V  
V
R
S
T
5 V  
10 mF 0.1 mF  
R
ISO  
+
ADS5421  
-
IN  
V
OCM  
+
14-Bit/40 MSPS  
IN  
-
CM  
1 mF  
THS4501  
R
ISO  
R
G
R
F
C
F
0.1 mF  
Figure 102. Using the THS4501 With the ADS5421  
FULLY DIFFERENTIAL LINE DRIVERS  
C
F1  
R
G1  
R
F1  
R
S
R
R
The THS4500 family of amplifiers can be used as  
high-frequency, high-swing differential line drivers.  
ISO  
R
T
V
S
+
-
V
C
O
The high power-supply voltage rating (16.5  
V
+
-
absolute maximum) allows operation on a single 12-V  
or a single 15-V supply. The high supply voltage,  
coupled with the ability to provide differential outputs,  
enables the ability to drive 26 VPP into reasonably  
heavy loads (250 or greater). The circuit in  
Figure 103 illustrates the THS4500 family of devices  
used as high-speed line drivers. For line driver  
applications, close attention must be paid to thermal  
design constraints because of the typically high level  
of power dissipation.  
R
G2  
ISO  
R
F2  
C
F2  
Figure 104. A Two-Pole, Low-Pass Filter Design  
Using a Fully Differential Amplifier With Poles  
Located at: P1 = (2πRFCF)–1 in Hz and  
P2 = (4πRISOC)–1 in Hz  
C
G
R
R
F
R
G
S
Often, filters like these are used to eliminate  
broadband noise and out-of-band distortion products  
in signal acquisition systems. It should be noted that  
the increased load placed on the output of the  
15 V  
C
R
S
T
R
R
ISO  
V
S
+
-
V
OCM  
R
V
DD  
L
THS4500/2  
+
-
0.1 mF  
amplifier by the second low-pass filter has  
a
ISO  
V
C
S
detrimental effect on the distortion performance. The  
preferred method of filtering is to use the feedback  
network, as the typically smaller capacitances  
required at these points in the circuit do not load the  
amplifier nearly as heavily in the passband.  
R
F
= 26 V  
PP  
OD  
R
G
C
G
Figure 103. Fully Differential Line Driver With High  
Output Swing  
26  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
SETTING THE OUTPUT COMMON-MODE  
VOLTAGE WITH THE VOCM INPUT  
Since the VOCM pin provides the ability to set an  
output common-mode voltage, the ability for  
increased power dissipation exists. While this  
possibility does not pose a performance problem for  
the amplifier, it can cause additional power  
dissipation of which the system designer should be  
aware. The circuit shown in Figure 106 demonstrates  
an example of this phenomenon. For a device  
operating on a single 5-V supply with an input signal  
referenced around ground and an output  
common-mode voltage of 2.5 V, a dc potential exists  
between the outputs and the inputs of the device. The  
amplifier sources current into the feedback network in  
order to provide the circuit with the proper operating  
point. While there are no serious effects on the circuit  
performance, the extra power dissipation may need to  
be included in the system power budget.  
The output common-mode voltage pin provides a  
critical function to the fully differential amplifier; it  
accepts an input voltage and reproduces that input  
voltage as the output common-mode voltage. In other  
words, the VOCM input provides the ability to level-shift  
the outputs to any voltage inside the output voltage  
swing of the amplifier.  
A description of the input circuitry of the VOCM pin is  
shown in Figure 105 to facilitate an easier  
understanding of the VOCM interface requirements.  
The VOCM pin has two 50-kresistors between the  
power supply rails to set the default output  
common-mode voltage to midrail. A voltage applied to  
the VOCM pin alters the output common-mode voltage  
as long as the source has the ability to provide  
enough current to overdrive the two 50-kresistors.  
This phenomenon is depicted in the VOCM equivalent  
circuit diagram. Current drive is especially important  
when using the reference voltage of an  
analog-to-digital converter to drive VOCM. Output  
current drive capabilities differ from part to part, so a  
voltage buffer may be necessary in some  
applications.  
V
OCM  
I
1
=
R
F1  
+R + R || R  
G1 S T  
DC Current Path to Ground  
R
G1  
R
F1  
R
S
2.5-V DC  
5 V  
R
T
V
S
+
-
R
L
V
OCM  
= 2.5 V  
+
-
V
S+  
R = 50 kW  
R = 50 kW  
2.5-V DC  
R
R
F2  
G2  
2 V  
- V - V  
S+ S-  
OCM  
I
IN  
=
DC Current Path to Ground  
V
OCM  
R
V
OCM  
I
IN  
I
2
=
R
+ R  
G2  
F2  
Figure 106. Depiction of DC Power Dissipation  
Caused By Output Level-Shifting in a DC-Coupled  
Circuit  
V
S-  
Figure 105. Equivalent Input Circuit for VOCM  
By design, the input signal applied to the VOCM pin  
propagates to the outputs as a common-mode signal.  
As shown in Figure 105, the VOCM input has a high  
impedance associated with it, dictated by the two  
50-kresistors. While the high impedance allows for  
relaxed drive requirements, it also allows the pin and  
any associated PCB traces to act as an antenna. For  
this reason, a decoupling capacitor is recommended  
on this node for the sole purpose of filtering any  
high-frequency noise that could couple into the signal  
path through the VOCM circuitry. A 0.1-µF or 1-µF  
capacitance is a reasonable value for eliminating a  
great deal of broadband interference, but additional,  
tuned decoupling capacitors should be considered if a  
specific source of electromagnetic or radio frequency  
interference is present elsewhere in the system.  
Information on the ac performance (bandwidth, slew  
rate) of the VOCM circuitry is included in the Electrical  
Characteristics and Typical Characterisitcs sections.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): THS4500 THS4501  
 
 
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
SAVING POWER WITH POWER-DOWN  
FUNCTIONALITY  
Intercept points are specifications that have long  
been used as key design criteria in the RF  
communications world as  
a
metric for the  
The THS4500 family of fully differential amplifiers  
contains devices that come with and without the  
power-down option. Even-numbered devices have  
power-down capability, which is described in detail  
here.  
intermodulation distortion performance of a device in  
the signal chain (for example, amplifiers, mixers,  
etc.). Use of the intercept point, rather than strictly the  
intermodulation distortion, allows for simpler  
system-level calculations. Intercept points, like noise  
figures, can be easily cascaded back and forth  
through a signal chain to determine the overall  
receiver chain intermodulation distortion performance.  
The relationship between intermodulation distortion  
and intercept point is depicted in Figure 107 and  
Figure 108.  
The power-down pin of the amplifiers defaults to the  
positive supply voltage in the absence of an applied  
voltage (that is, an internal pull-up resistor is present),  
putting the amplifier in the power-on mode of  
operation. To turn off the amplifier in an effort to  
conserve power, the power-down pin can be driven  
towards the negative rail. The threshold voltages for  
power-on and power-down are relative to the supply  
rails and given in the specification tables. Above the  
enable threshold voltage, the device is on. Below the  
disable threshold voltage, the device is off. Behavior  
between these threshold voltages is not specified.  
P
O
P
O
f = f − f1  
c
c
Note that this power-down functionality is just that;  
the amplifier consumes less power in power-down  
mode. The power-down mode is not intended to  
provide a high-impedance output. In other words, the  
power-down functionality is not intended to allow use  
as a 3-state bus driver. When in power-down mode,  
the impedance looking back into the output of the  
amplifier is dominated by the feedback and gain  
setting resistors.  
f = f2 − f  
c
c
IMD = P − P  
O
3
S
P
S
P
S
f − 3f f1  
f
f2  
f + 3f  
c
c
c
The time delays associated with turning the device on  
and off are specified as the time it takes for the  
amplifier to reach 50% of the nominal quiescent  
current. The time delays are on the order of  
microseconds because the amplifier moves in and out  
of the linear mode of operation in these transitions.  
f − Frequency − MHz  
Figure 107. 2-Tone and 3rd-Order Intermodulation  
Products  
LINEARITY: DEFINITIONS, TERMINOLOGY,  
CIRCUIT TECHNIQUES, AND DESIGN  
TRADEOFFS  
The  
THS4500  
family  
of  
devices  
features  
unprecedented distortion performance for monolithic  
fully differential amplifiers. This section focuses on  
the fundamentals of distortion, circuit techniques for  
reducing nonlinearity, and methods for equating  
distortion of fully differential amplifiers to desired  
linearity specifications in RF receiver chains.  
Amplifiers are generally thought of as linear devices.  
In other words, the output of an amplifier is a linearly  
scaled version of the input signal applied to it. In  
reality, however, amplifier transfer functions are  
nonlinear. Minimizing amplifier nonlinearity is  
primary design goal in many applications.  
a
28  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
Ť
Ť
ǒ Ǔwhere  
IMD3  
2
OIP3 + PO )  
P
OUT  
(10)  
(dBm)  
V2Pdiff  
P + 10 logǒ Ǔ  
1X  
O
2RL   0.001  
OIP  
3
NOTE: P is the output power of a single tone, R is the  
o
L
differentialload resistance, and V  
is the differential  
P(diff)  
peak voltage for a single tone.  
(11)  
P
O
As can be seen in the equations, when a higher  
impedance is used, the same level of intermodulation  
distortion performance results in a lower intercept  
point. Therefore, it is important to understand the  
impedance seen by the output of the fully differential  
amplifier when selecting a minimum intercept point.  
Figure 109 shows the relationship between the strict  
definition of an intercept point with a normalized, or  
equivalent, intercept point for the THS4500.  
IMD  
IIP  
3
P
IN  
3
(dBm)  
3X  
P
S
60  
Normalized to 200  
Figure 108. Graphical Representation of 2-Tone  
and 3rd-Order Intercept Point  
55  
Normalized to 50 Ω  
50  
45  
40  
35  
Due to the intercept point ease-of-use in system level  
calculations for receiver chains, it has become the  
specification of choice for guiding distortion-related  
design decisions. Traditionally, these systems use  
primarily class-A, single-ended RF amplifiers as gain  
blocks. These RF amplifiers are typically designed to  
operate in a 50-environment, just like the rest of  
the receiver chain. Since intercept points are given in  
dBm, this implies an associated impedance (50 ).  
OIP R = 800 Ω  
3
L
30  
25  
Gain = 1  
R = 392 Ω  
f
V
= ± 5 V  
S
20  
15  
Tone Spacing = 200 kHz  
0
10 20 30 40 50 60 70 80 90 100  
f − Frequency − MHz  
However, with a fully differential amplifier, the output  
does not require termination as an RF amplifier  
would. Because closed-loop amplifiers deliver signals  
to the outputs regardless of the impedance present, it  
is important to comprehend this feature when  
evaluating the intercept point of a fully differential  
amplifier. The THS4500 series of devices yields  
optimum distortion performance when loaded with  
200 to 1 k, very similar to the input impedance of  
an analog-to-digital converter over its input frequency  
band. As a result, terminating the input of the ADC to  
Figure 109. Equivalent 3rd-Order Intercept Point  
for the THS4500  
Comparing specifications between different device  
types becomes easier when a common impedance  
level is assumed. For this reason, the intercept points  
on the THS4500 family of devices are reported  
normalized to a 50-load impedance.  
AN ANALYSIS OF NOISE IN FULLY  
DIFFERENTIAL AMPLIFIERS  
50  
can actually be detrimental to system  
performance.  
Noise analysis in fully differential amplifiers is  
analogous to noise analysis in single-ended  
amplifiers; the same concepts apply. Figure 110  
shows a generic circuit diagram consisting of a  
voltage source, a termination resistor, two gain  
setting resistors, two feedback resistors, and a fully  
differential amplifier is shown, including all the  
relevant noise sources. From this circuit, the noise  
factor (F) and noise figure (NF) are calculated. The  
figures indicate the appropriate scaling factor for each  
of the noise sources in two different cases. The first  
case includes the termination resistor, and the  
This discontinuity between open-loop, class-A  
amplifiers and closed-loop, class-AB amplifiers  
becomes apparent when comparing the intercept  
points of the two types of devices. Equation 10 gives  
the definition of an intercept point, relative to the  
intermodulation distortion.  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): THS4500 THS4501  
 
 
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
second, simplified case assumes that the voltage  
source is properly terminated by the gain-setting  
resistors. With these scaling factors, the amplifier  
input noise power (NA) can be calculated by summing  
each individual noise source with its scaling factor.  
The noise delivered to the amplifier by the source (NI)  
and input noise power are used to calculate the noise  
factor and noise figure as shown in Equation 23  
through Equation 27.  
Scaling Factors for Individual Noise Sources  
Asseming No Termination Resistance is Used  
(that is, RT is Open)  
N : Fully Differential Amplifier; termination = 2R  
A
g
Noise  
Source  
Scale Factor  
2
Rg  
ȡRg  
ȣ
Rs  
Ȥ
)
2
(e )  
ni  
R
ȧ
f
ȧ
Rg )  
Ȣ
2
(18)  
(19)  
(20)  
e
g
e
f
2
(i )  
ni  
R
g
R
f
2
R
N
i
N
A
g
2
2
R
g
(i )  
ii  
2
S
e
i
n
ǒRgǓ  
2   
N
4kTR  
N
S
i
f
Rf  
o
(21)  
(22)  
2
ȣ
ȧ
R
+
s
Rg  
ȧR )  
o
ȡ
R
fully-diff  
amp  
t
i
ni  
2   
N
4kTR  
o
R
g
s
2
g
e
s
Ȣ
Ȥ
e
t
Input Noise With a Termination Resistor  
i
ii  
2
e
g
e
f
ȡ
ȣ
R
g
R
f
2RtRg  
N + 4kTR ȧ  
ȧ
ȧ
Rt)2Rg  
s
ȧ
i
2RtRg  
R )  
ȧ s R )2R ȧ  
g
t
Figure 110. Noise Sources in a Fully Differential  
Amplifier Circuit  
Ȣ
Ȥ
(23)  
Input Noise Assuming No Termination Resistor  
Scaling Factors for Individual Noise Sources  
Assuming a Finite Value Termination Resistor  
N : Fully Differential Amplifier  
A
2
2RG  
Ni = 4kTRS  
RS + 2RG  
(24)  
Noise  
Source  
Scale Factor  
Noise Factor and Noise Figure Calculations  
NA = S(Noise Source ´ Scale Factor)  
2
(25)  
ȡR  
ȧR  
ȣ
ȧ
Ȥ
Rg  
RsRt  
NA  
F = 1 +  
NI  
g
)
2
(e )  
ni  
f
Rg )  
(26)  
(27)  
ǒ
Ǔ
2 Rs)Rt  
Ȣ
(12)  
(13)  
(14)  
NF + 10 log (F)  
2
R
2
(i )  
ni  
g
2
R
2
(i )  
ii  
g
2
2RsRG  
ȡ
ȣ
Rs)2Rg  
4kTR  
t
ȧ
ȢRt )  
ȧ
2RsRg  
Ȥ
Rs)2Rg  
(15)  
(16)  
2
ǒRgǓ  
2   
4kTR  
f
Rf  
2
ȡ
Rg  
RsRt  
ȣ
4kTR  
2   
g
ȧ
ȧ
Ǔ
t Ȥ  
Rg )  
ǒ
2 Rs)R  
Ȣ
(17)  
30  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
PRINTED CIRCUIT BOARD LAYOUT  
TECHNIQUES FOR OPTIMAL  
PERFORMANCE  
values greater than 2.0 k, this parasitic  
capacitance can add a pole and/or a zero below  
400 MHz that can affect circuit operation. Keep  
resistor values as low as possible, consistent with  
load driving considerations.  
Achieving optimum performance with high frequency  
amplifier-like devices in the THS4500 family requires  
careful attention to PCB layout parasitic and external  
component types.  
Connections to other wideband devices on the  
board may be made with short direct traces or  
through onboard transmission lines. For short  
connections, consider the trace and the input to  
the next device as a lumped capacitive load.  
Relatively wide traces (50 mils to 100 mils, or 1.27  
mm to 2.54 mm) should be used, preferably with  
ground and power planes opened up around  
them. Estimate the total capacitive load and  
determine if isolation resistors on the outputs are  
necessary. Low parasitic capacitive loads (less  
than 4 pF) may not need an RS since the  
THS4500 family is nominally compensated to  
operate with a 2-pF parasitic load. Higher parasitic  
capacitive loads without an RS are allowed as the  
signal gain increases (increasing the unloaded  
phase margin). If a long trace is required, and the  
6-dB signal loss intrinsic to a doubly-terminated  
transmission line is acceptable, implement a  
matched impedance transmission line using  
microstrip or stripline techniques (consult an ECL  
design handbook for microstrip and stripline layout  
techniques).  
Recommendations that optimize performance include:  
Minimize parasitic capacitance to any ac ground  
for all of the signal I/O pins. Parasitic capacitance  
on the output and input pins can cause instability.  
To reduce unwanted capacitance,  
a window  
around the signal I/O pins should be opened in all  
of the ground and power planes around those  
pins. Otherwise, ground and power planes should  
be unbroken elsewhere on the board.  
Minimize the distance (< 0.25”, 6.35 mm) from the  
power-supply pins to high frequency 0.1-µF  
decoupling capacitors. At the device pins, the  
ground and power-plane layout should not be in  
close proximity to the signal I/O pins. Avoid  
narrow power and ground traces to minimize  
inductance between the pins and the decoupling  
capacitors. The power supply connections should  
always be decoupled with these capacitors.  
Larger (6.8 µF or more) tantalum decoupling  
capacitors, effective at lower frequency, should  
also be used on the main supply pins. These may  
be placed somewhat farther from the device and  
may be shared among several devices in the  
same area of the PCB. The primary goal is to  
A 50-environment is normally not necessary  
onboard, and in fact,  
a higher impedance  
environment improves distortion as shown in the  
distortion versus load plots. With a characteristic  
board trace impedance defined based onboard  
material and trace dimensions, a matching series  
resistor into the trace from the output of the  
THS4500 family is used as well as a terminating  
shunt resistor at the input of the destination  
device.  
Remember also that the terminating impedance is  
the parallel combination of the shunt resistor and  
the input impedance of the destination device: this  
total effective impedance should be set to match  
the trace impedance. If the 6-dB attenuation of a  
minimize  
differential-current return paths.  
Careful selection and placement of external  
components preserve the high-frequency  
performance of the THS4500 family. Resistors  
should be very low reactance type.  
the  
impedance  
seen  
in  
the  
a
Surface-mount resistors work best and allow a  
tighter overall layout. Metal-film and carbon  
composition, axially-leaded resistors can also  
provide good high frequency performance. Again,  
keep the leads and PCB trace length as short as  
possible. Never use wirewound type resistors in a  
high-frequency application. Since the output pin  
and inverting input pins are the most sensitive to  
parasitic capacitance, always position the  
feedback and series output resistors, if any, as  
close as possible to the inverting input pins and  
output pins. Other network components, such as  
input termination resistors, should be placed close  
to the gain-setting resistors. Even with a low  
parasitic capacitance shunting the external  
resistors, excessively high resistor values can  
create significant time constants that can degrade  
doubly-terminated  
unacceptable,  
transmission  
long trace  
line  
can  
is  
be  
a
series-terminated at the source end only. Treat  
the trace as a capacitive load in this case. This  
configuration does not preserve signal integrity as  
well as a doubly-terminated line. If the input  
impedance of the destination device is low, there  
is some signal attenuation due to the voltage  
divider formed by the series output into the  
terminating impedance.  
Socketing a high-speed part such as the THS4500  
family is not recommended. The additional lead  
length and pin-to-pin capacitance introduced by  
the socket can create an extremely troublesome  
parasitic network that can make it almost  
performance.  
Good  
axial  
metal-film  
or  
surface-mount resistors have approximately  
0.2 pF in shunt with the resistor. For resistor  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): THS4500 THS4501  
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
impossible to achieve a smooth, stable frequency  
response. Best results are obtained by soldering  
0.205  
the THS4500 family parts directly onto the board.  
0.060  
0.017  
PowerPAD DESIGN CONSIDERATIONS  
Pin 1  
0.013  
The  
THS4500  
family  
is  
available  
in  
a
thermally-enhanced PowerPAD set of packages.  
These packages are constructed using a downset  
leadframe upon which the die is mounted [see  
Figure 111(a) and Figure 111(b)]. This arrangement  
results in the lead frame being exposed as a thermal  
pad on the underside of the package [see  
Figure 111(c)]. Because this thermal pad has direct  
thermal contact with the die, excellent thermal  
performance can be achieved by providing a good  
thermal path away from the thermal pad.  
0.030  
0.075  
0.025 0.094  
0.035  
0.040  
0.010  
vias  
Top View  
Figure 112. PowerPAD PCB Etch and Via Pattern  
PowerPAD PCB LAYOUT CONSIDERATIONS  
1. Prepare the PCB with a top side etch pattern as  
shown in Figure 112. There should be etch for  
the leads as well as etch for the thermal pad.  
The PowerPAD package allows for both assembly  
and thermal management in one manufacturing  
operation. During the surface-mount solder operation  
(when the leads are being soldered), the thermal pad  
can also be soldered to a copper area underneath the  
package. Through the use of thermal paths within this  
copper area, heat can be conducted away from the  
package into either a ground plane or other heat  
dissipating device.  
2. Place five holes in the area of the thermal pad.  
These holes should be 13 mils (0.33 mm) in  
diameter. Keep them small so that solder wicking  
through the holes is not a problem during reflow.  
The PowerPAD package represents a breakthrough  
in combining the small area and ease of assembly of  
surface mount with the, heretofore, awkward  
mechanical methods of heatsinking.  
3. Additional vias may be placed anywhere along  
the thermal plane outside of the thermal pad  
area. These holes help dissipate the heat  
generated by the THS4500 family IC. These  
additional vias may be larger than the 13-mil  
diameter vias directly under the thermal pad.  
They can be larger because they are not in the  
thermal pad area to be soldered so that wicking  
is not a problem.  
DIE  
Thermal  
Pad  
Side View (a)  
DIE  
4. Connect all holes to the internal ground plane.  
End View (b)  
Bottom View (c)  
5. When connecting these holes to the ground  
plane, do not use the typical web or spoke via  
connection methodology. Web connections have  
a high thermal resistance connection that is  
useful for slowing the heat transfer during  
soldering operations. This transfer slowing makes  
the soldering of vias that have plane connections  
easier. In this application, however, low thermal  
resistance is desired for the most efficient heat  
transfer. Therefore, the holes under the THS4500  
family PowerPAD package should make their  
connection to the internal ground plane with a  
Figure 111. Views of PowerPAD,  
Thermally-Enhanced Package  
Although there are many ways to properly heatsink  
the PowerPAD package, the following steps illustrate  
the recommended approach.  
complete  
connection  
around  
the  
entire  
circumference of the plated-through hole.  
32  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
 
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
6. The top-side solder mask should leave the  
terminals of the package and the thermal pad  
area with its five holes exposed. The bottom-side  
solder mask should cover the five holes of the  
thermal pad area. This configuration prevents  
solder from being pulled away from the thermal  
pad area during the reflow process.  
Figure 113 for the two packages. The data for the  
DGN package assumes a board layout that follows  
the PowerPAD layout guidelines referenced above  
and detailed in the PowerPAD application notes in  
the Additional Reference Material section at the end  
of the data sheet.  
3.5  
7. Apply solder paste to the exposed thermal pad  
area and all of the IC terminals.  
8-Pin DGN Package  
3
8. With these preparatory steps in place, the IC is  
simply placed in position and run through the  
solder reflow operation as any standard  
surface-mount component. This process results  
in a part that is properly installed.  
2.5  
2
8-Pin D Package  
1.5  
1
POWER DISSIPATION AND THERMAL  
CONSIDERATIONS  
0.5  
0
The THS4500 family of devices does not incorporate  
automatic thermal shutoff protection, so the designer  
must take care to ensure that the design does not  
violate the absolute maximum junction temperature of  
the device. Failure may result if the absolute  
maximum junction temperature of +150°C is  
−40  
−20  
0
20  
40  
60  
80  
T
− Ambient Temperature − °C  
A
θ
θ
Τ
= 170°C/W for 8-Pin SOIC (D)  
= 58.4°C/W for 8-Pin MSOP (DGN)  
= 150°C, No Airflow  
JA  
JA  
J
exceeded. For best performance, design for  
a
Figure 113. Maximum Power Dissipation vs  
Ambient Temperature  
maximum junction temperature of +125°C. Between  
+125°C and +150°C, damage does not occur, but the  
performance of the amplifier begins to degrade.  
When determining whether or not the device satisfies  
the maximum power dissipation requirement, it is  
important to not only consider quiescent power  
dissipation, but also dynamic power dissipation. Often  
times, this consideration is difficult to quantify  
because the signal pattern is inconsistent; an  
estimate of the RMS power dissipation can provide  
visibility into a possible problem.  
The thermal characteristics of the device are dictated  
by the package and the PCB. Maximum power  
dissipation for a given package can be calculated  
using the following formula.  
TMAX - TA  
PDmax  
=
qJA  
(28)  
Where:  
DRIVING CAPACITIVE LOADS  
PDmax is the maximum power dissipation in the  
amplifier (W).  
TMAX is the absolute maximum junction  
temperature (°C).  
TA is the ambient temperature (°C).  
θJA = θJC + θCA  
θJC is the thermal coefficient from the silicon  
junctions to the case (°C/W).  
θCA is the thermal coefficient from the case to  
ambient air (°C/W).  
High-speed amplifiers are typically not well-suited for  
driving large capacitive loads. If necessary, however,  
the load capacitance should be isolated by two  
isolation resistors in series with the output. The  
requisite isolation resistor size depends on the value  
of the capacitance, but 10 to 25 is a good place  
to begin the optimization process. Larger isolation  
resistors decrease the amount of peaking in the  
frequency response induced by the capacitive load,  
but this decreased peaking comes at the expense ofa  
larger voltage drop across the resistors, increasing  
the output swing requirements of the system.  
For systems where heat dissipation is more critical,  
the THS4500 family of devices is offered in an  
MSOP-8 package with PowerPAD. The thermal  
coefficient for the MSOP PowerPAD package is  
substantially improved over the traditional SOIC.  
Maximum power dissipation levels are depicted in  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): THS4500 THS4501  
 
THS4500  
THS4501  
SLOS350EAPRIL 2002REVISED MAY 2008.............................................................................................................................................................. www.ti.com  
THS4501 product folder on the Texas Instruments  
R
F
web site, www.ti.com, or through your local Texas  
Instruments sales representative. A schematic for the  
evaluation board is shown in Figure 115 with the  
default component values. Unpopulated footprints are  
shown to provide insight into design flexibility.  
V
S
R
G
R
S
R
R
ISO  
+
-
V
S
C
L
R
T
+
-
ISO  
-V  
S
C4  
C0805  
Riso = 10 - 25 W  
R4  
R
F
R0805  
PD  
R
G
V
S
U1  
J2  
J1  
C5  
C0805  
THS450X  
4
J2  
J3  
3
C1  
R6  
R2  
7
1
8
_
R0805  
C0805  
C2  
R1206  
R0805  
R0805  
C7  
C0805  
R0805  
R1  
J3  
Figure 114. Use of Isolation Resistors With a  
Capacitive Load  
+
5
C0805  
R3  
6
R7  
2
PwrPad  
C6  
C0805  
-V  
S
V
OCM  
R5 R0805  
C3  
POWER-SUPPLY DECOUPLING  
TECHNIQUES AND RECOMMENDATIONS  
C0805  
J2  
J4  
R8  
Power-supply decoupling is a critical aspect of any  
high-performance amplifier design process. Careful  
decoupling provides higher quality ac performance  
(most notably improved distortion performance). The  
following guidelines ensure the highest level of  
performance.  
4
5
3
1
R0805  
R9  
R0805  
R11  
R1206  
J3  
R0805  
6
R9  
T1  
Figure 115. Simplified Schematic of the  
Evaluation Board  
1. Place decoupling capacitors as close to the  
power-supply inputs as possible, with the goal of  
minimizing the inductance of the path from  
ground to the power supply.  
Computer simulation of circuit performance using  
SPICE is often useful when analyzing the  
performance of analog circuits and systems. This  
practice is particularly true for video and RF amplifier  
circuits where parasitic capacitance and inductance  
can have a major effect on circuit performance. A  
SPICE model for the THS4500 family of devices is  
available through either the Texas Instruments web  
site (www.ti.com) or as one model on a disk from the  
Texas Instruments Product Information Center  
(1-800-548-6132). The PIC is also available for  
design assistance and detailed product information at  
this number. These models do a good job of  
predicting small-signal ac and transient performance  
under a wide variety of operating conditions. They are  
not intended to model the distortion characteristics of  
the amplifier, nor do they attempt to distinguish  
between the package types in their small-signal ac  
performance. Detailed information about what is and  
is not modeled is contained in the model file itself.  
2. Placement priority should be as follows: smaller  
capacitors should be closer to the device.  
3. Use of solid power and ground planes is  
recommended to reduce the inductance along  
power-supply return current paths.  
4. Recommended  
values  
for  
power-supply  
decoupling include 10-µF and 0.1-µF capacitors  
for each supply. A 1000-pF capacitor can be  
used across the supplies as well for extremely  
high frequency return currents, but often is not  
required.  
EVALUATION FIXTURES, SPICE MODELS,  
AND APPLICATIONS SUPPORT  
Texas Instruments is committed to providing its  
customers with the highest quality of applications  
support. To support this goal, an evaluation board  
has been developed for the THS4500 family of fully  
differential amplifiers. The evaluation board can be  
obtained by ordering through the THS4500 or  
34  
Submit Documentation Feedback  
Copyright © 2002–2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4500 THS4501  
 
 
THS4500  
THS4501  
www.ti.com .............................................................................................................................................................. SLOS350EAPRIL 2002REVISED MAY 2008  
ADDITIONAL REFERENCE MATERIAL  
PowerPAD Made Easy, application brief, Texas Instruments Literature Number SLMA004.  
PowerPAD Thermally-Enhanced Package, technical brief, Texas Instruments Literature Number SLMA002.  
Karki, James. Fully Differential Amplifiers. application report, Texas Instruments Literature Number  
SLOA054D.  
Karki, James. Fully Differential Amplifiers Applications: Line Termination, Driving High-Speed ADCs, and  
Differential Transmission Lines. Texas Instruments Analog Applications Journal, February 2001.  
Carter, Bruce. A Differential Op-Amp Circuit Collection. application report, Texas Instruments Literature  
Number SLOA064.  
Carter, Bruce. Differential Op-Amp Single-Supply Design Technique, application report, Texas Instruments  
Literature Number SLOA072.  
Karki, James. Designing for Low Distortion with High-Speed Op Amps. Texas Instruments Analog  
Applications Journal, July 2001.  
Revision History  
Changes from Revision D (January 2004) to Revision E ............................................................................................... Page  
Updated document format ..................................................................................................................................................... 1  
Clarified cross-references throughout the document............................................................................................................. 1  
Added footnote 1 to Package/Ordering Information table ..................................................................................................... 3  
Changed x-axis of Figure 27................................................................................................................................................ 12  
Updated crossreferences for Figure 97 in first two paragraphs of the Fully Differential Amplifier Terminal Functions  
section.................................................................................................................................................................................. 22  
Added available for download at www.ti.com and end of second paragraph of the Fully Differential Amplifier  
Terminal Functions section.................................................................................................................................................. 22  
Changed allow for calculation of to are used to calculate in second paragraph of Input Common-Mode Voltage  
Range and the THS4500 Family section............................................................................................................................. 22  
Clarified last sentence of third paragraph of Input Common-Mode Voltage Range and the THS4500 Family section ...... 22  
Changed two to four in first sentence of Input Common-Mode Voltage Range and the THS4500 Family section ............ 22  
Corrected title of Basic Design Considerations section....................................................................................................... 24  
Clarified cross-references of the circuits mentioned in the first sentence of the Basic Design Considerations section ..... 24  
Deleted figure from Basic Design Considerations section................................................................................................... 24  
Corrected cross-references in first sentence of Basic Design Considerations section ....................................................... 24  
Clarified the Interfacing to an Analog-to-Digital Converter section...................................................................................... 25  
Removed cross-reference to nonexistant tble in second paragraph of Setting the Output Common-Mode Voltage  
with the VOCM Input section.................................................................................................................................................. 27  
Added caption titles to figures in the Linearity: Definitions, Terminology, Circuit Techniques, and Design Treadeoffs  
section.................................................................................................................................................................................. 28  
Changed THS4502 to THS4500 in seventh paragraph of Linearity: Definitions, Terminology, Circuit Techniques, and  
Design Treadeoffs section ................................................................................................................................................... 28  
Corrected spelling in title of An Analysis of Noise in Fully Differential Amplifiers section................................................... 29  
Added 6.35 mm to second bullet of Printed Circuit Board Layout Techniques for Optimal Performance list ..................... 31  
Added 1.27 mm to 2.54 mm to fourth bullet of Printed Circuit Board Layout Techniques for Optimal Performance list .... 31  
Added 0.33 mm to second list item in the PowerPAD PCB Layout Considerations section............................................... 32  
Changed title of Figure 115 ................................................................................................................................................. 34  
Copyright © 2002–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): THS4500 THS4501  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Aug-2009  
PACKAGING INFORMATION  
Orderable Device  
THS4500CD  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500CDG4  
THS4500CDGK  
THS4500CDGKG4  
THS4500CDGKR  
THS4500CDGKRG4  
THS4500CDGN  
SOIC  
MSOP  
MSOP  
MSOP  
MSOP  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DGK  
DGK  
DGK  
DGK  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500CDGNG4  
THS4500CDGNR  
THS4500CDGNRG4  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500ID  
THS4500IDG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
D
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500IDGK  
THS4500IDGKG4  
THS4500IDGKR  
THS4500IDGKRG4  
THS4500IDGN  
MSOP  
MSOP  
MSOP  
MSOP  
DGK  
DGK  
DGK  
DGK  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500IDGNG4  
THS4500IDGNR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500IDGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500IDR  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4500IDRG4  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Aug-2009  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
THS4501CD  
THS4501CDG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4501CDGK  
THS4501CDGKG4  
THS4501CDGKR  
THS4501CDGKRG4  
THS4501CDGN  
MSOP  
MSOP  
MSOP  
MSOP  
DGK  
DGK  
DGK  
DGK  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4501CDGNG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4501ID  
THS4501IDG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
D
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4501IDGK  
THS4501IDGKG4  
THS4501IDGKR  
THS4501IDGKRG4  
THS4501IDGN  
MSOP  
MSOP  
MSOP  
MSOP  
DGK  
DGK  
DGK  
DGK  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4501IDGNG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4501IDR  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
THS4501IDRG4  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Aug-2009  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS4500CDGKR  
THS4500CDGNR  
MSOP  
DGK  
DGN  
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.2  
5.2  
3.3  
3.3  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
MSOP-  
Power  
PAD  
THS4500IDGKR  
THS4500IDGNR  
MSOP  
DGK  
DGN  
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.2  
5.2  
3.3  
3.3  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
MSOP-  
Power  
PAD  
THS4500IDR  
THS4501CDGKR  
THS4501IDGKR  
THS4501IDR  
SOIC  
MSOP  
MSOP  
SOIC  
D
8
8
8
8
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
6.4  
5.2  
5.2  
6.4  
5.2  
3.3  
3.3  
5.2  
2.1  
1.6  
1.6  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
DGK  
DGK  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THS4500CDGKR  
THS4500CDGNR  
THS4500IDGKR  
THS4500IDGNR  
THS4500IDR  
MSOP  
MSOP-PowerPAD  
MSOP  
DGK  
DGN  
DGK  
DGN  
D
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
338.1  
338.1  
338.1  
338.1  
346.0  
338.1  
338.1  
346.0  
340.5  
340.5  
340.5  
340.5  
346.0  
340.5  
340.5  
346.0  
21.1  
21.1  
21.1  
21.1  
29.0  
21.1  
21.1  
29.0  
MSOP-PowerPAD  
SOIC  
THS4501CDGKR  
THS4501IDGKR  
THS4501IDR  
MSOP  
DGK  
DGK  
D
MSOP  
SOIC  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

THS4500CDT

IC OP-AMP, 0 uV OFFSET-MAX, 300 MHz BAND WIDTH, PDSO8, PLASTIC, MSOP-8, Operational Amplifier
TI

THS4500ID

WIDEBAND, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIERS
TI

THS4500IDGK

WIDEBAND, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIERS
TI

THS4500IDGKG4

OP-AMP, 1000uV OFFSET-MAX, 300MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MSOP-8
TI

THS4500IDGKR

暂无描述
TI

THS4500IDGKRG4

OP-AMP, 1000uV OFFSET-MAX, 300MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MSOP-8
TI

THS4500IDGKT

OP-AMP, 1000uV OFFSET-MAX, 300MHz BAND WIDTH, PDSO8, PLASTIC, MSOP-8
TI

THS4500IDGN

WIDEBAND, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIERS
TI

THS4500IDGNG4

具有断电功能的 15V 高速全差分放大器 | DGN | 8 | -40 to 85
TI

THS4500IDGNR

具有断电功能的 15V 高速全差分放大器 | DGN | 8 | -40 to 85
TI

THS4500IDGNT

OP-AMP, 1000uV OFFSET-MAX, 300MHz BAND WIDTH, PDSO8, PLASTIC, MSOP-8
TI

THS4500IDR

High-Speed Fully Differential Amplifier, +/-5 V 8-SOIC -40 to 85
TI