THS6212 [TI]

高速差分宽带 PLC/HPLC 线路驱动器放大器;
THS6212
型号: THS6212
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高速差分宽带 PLC/HPLC 线路驱动器放大器

放大器 驱动 驱动器
文件: 总44页 (文件大小:3093K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS6212  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
THS6212 差分宽PLC 线路驱动器放大器  
1 特性  
3 说明  
• 低功耗:  
THS6212 是一款具有电流反馈架构的差分线路驱动器  
放大器。该器件专用于宽带电力线通信 (PLC) 线路驱  
动器应用运行速度飞快足以支持 14.5dBm 线路功  
率的传输在最30MHz 的频率下。  
– 满偏置模式23 mA  
– 中偏置模式17.5 mA  
– 低偏置模式11.9 mA  
– 低功耗关断模式  
THS6212 采用独特架构在更大限度降低静态电流的  
同时仍能实现超高线性度。满偏置条件下的差分失真在  
1MHz 为 –86-dBc10MHz 降至仅 –71  
dBc。这款放大器具有多种固定偏置设置对于无需放  
大器发挥全部性能的线路驱动器而言可显著节能。此  
还可以通过可调电流引脚 (IADJ) 进一步降低偏置  
电流从而实现更为出色的灵活性与节能效果。  
IADJ 引脚用于调节偏置电流  
• 低噪声:  
– 电压噪声2.5 nV/Hz  
– 反相电流噪声18 pA/Hz  
– 同相电流噪声1.4 pA/Hz  
• 低失真:  
– –86-dBc HD21MHz100Ω  
差分负载)  
– –101-dBc HD31MHz100Ω分负载)  
• 高输出电流>665 mA25Ω)  
• 宽输出摆幅:  
49 VPP (28-V100Ω分负载)  
• 宽带宽205 MHz (GDIFF = 10V/V)  
PSRR1MHz 频率下提>55 dB 的良好隔离  
• 宽电源范围10 V to 28 V  
49 VPP100Ω 差分负载的宽输出摆幅搭配 28-V 电  
源以及超过 650-mA 的电流驱动能力25Ω 负载),  
使得该器件拥有较宽的动态余量能够将失真限制在尽  
可能低的水平。  
THS6212 24 VQFN 封装。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
THS6212  
封装  
VQFN (24)  
5.00mm × 4.00mm  
• 过热保护175°C典型值)  
• 具有集成共模缓冲器的替代器件THS6222  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
高电压、高电流驱动  
宽带电力线通信  
Vs+  
R
S
D1  
THS6212  
R
T
R
F
R
P
R
100  
G
R
P
R
F
R
S
D2  
THS6212  
I
ADJ  
R
T
Vs-  
典型线路驱动器电路THS6212  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS758  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
Table of Contents  
7.4 Device Functional Modes..........................................24  
8 Application and Implementation..................................25  
8.1 Application Information............................................. 25  
8.2 Typical Applications.................................................. 25  
8.3 What To Do and What Not to Do...............................31  
9 Power Supply Recommendations................................31  
10 Layout...........................................................................32  
10.1 Layout Guidelines................................................... 32  
10.2 Layout Example...................................................... 34  
11 Device and Documentation Support..........................36  
11.1 Documentation Support.......................................... 36  
11.2 接收文档更新通知................................................... 36  
11.3 支持资源..................................................................36  
11.4 Trademarks............................................................. 36  
11.5 Electrostatic Discharge Caution..............................36  
11.6 术语表..................................................................... 36  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................5  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information ...................................................6  
6.5 Electrical Characteristics: VS = 12 V ..........................7  
6.6 Electrical Characteristics: VS = 28 V ..........................9  
6.7 Timing Requirements ...............................................10  
6.8 Typical Characteristics: VS = 12 V.............................11  
6.9 Typical Characteristics: VS = 28 V............................ 17  
7 Detailed Description......................................................20  
7.1 Overview...................................................................20  
7.2 Functional Block Diagram.........................................20  
7.3 Feature Description...................................................20  
Information.................................................................... 36  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (Novermber 2019) to Revision E (May 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将列表中的中偏置模式值17.7mA 更改17.5mA..................................................................................1  
• 将列表中的低偏置模式值12.2mA 更改11.9mA.................................................................................. 1  
• 将列表中的电压噪声值2.7nV/Hz 更改2.5nV/Hz ........................................................................ 1  
• 将列表中的反相电流噪声值17pA/Hz 更改18pA/Hz ................................................................... 1  
• 将列表中的同相电流噪声值1.2pA/Hz 更改1.4pA/Hz ................................................................. 1  
• 将列表中HD2 失真-100dBc 更改-86dBc.......................................................................................1  
• 将列表中HD3 失真-89dBc 更改-101dBc.......................................................................................1  
• 将列表中的输出电流> 416mA 更改> 665mA.....................................................................................1  
• 将列表中的输出摆幅43.2Vpp 更改49Vpp..........................................................................................1  
• 将列表中的带宽150MHz 更改205MHz.............................................................................................. 1  
• 将列表中PSRR 50dB 更改> 55dB................................................................................................ 1  
• 将列表中的过热保护170°C 更改175°C..............................................................................................1  
• 将差分失真更改HD2 并更新了部分的值.................................................................................................1  
• 将部分的输出摆幅43.2Vpp 更改49Vpp..............................................................................................1  
• 将部分的电源±12V 更改28V..............................................................................................................1  
• 将部分的电流驱动416mA 更改650mA...............................................................................................1  
• 从文档中删除YS 接合焊盘封装...................................................................................................................... 1  
• 更改了THS6212 的典型线路驱动器电................................................................................................1  
Removed YS die package and Bond Pad Functions table.................................................................................5  
Deleted Output current, IO from Absolute Maximum Ratings.............................................................................6  
Added Bias control pin voltage in Absolute Maximum Ratings ..........................................................................6  
Added Input voltage to all pins except VS+, VS-, and BIAS control in Absolute Maximum Ratings ..................6  
Added Input current limit in Absolute Maximum Ratings ................................................................................... 6  
Changed Maximum junction, TJ from 130 C to 125 C in Absolute Maximum Ratings ...................................... 6  
Deleted ESD MM in ESD Ratings ......................................................................................................................6  
Changed Operating junction temperature from 130°C to 125°C in Recommended Operating Conditions........ 6  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: THS6212  
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
Added Minimum ambient operating air temperature spec in Recommended Operating Conditions .................6  
Changed RΘJA from 33.2 °C/W to 42.3 °C/W in Thermal Information ...............................................................6  
Changed RΘJC(Top) from 31.7 °C/W to 32.8 °C/W in Thermal Information ........................................................ 6  
Changed RΘJB from 11.3 °C/W to 20.9 °C/W in Thermal Information ...............................................................6  
Changed ψJT from 0.4 °C/W to 3.8 °C/W in Thermal Information .....................................................................6  
Changed ψJB from 11.3 °C/W to 20.9 °C/W in Thermal Information .................................................................6  
Changed ψJC(bot) from 3.9 °C/W to 9.5 °C/W in Thermal Information ...............................................................6  
Added Electrical Characteristics: VS = 12V table................................................................................................7  
Deleted Electrical Characteristics: VS = ±6 V table............................................................................................7  
Added Electrical Characteristics: VS = 28V table ..............................................................................................9  
Deleted Deleted Electrical Characteristics: VS = ±12 V table.............................................................................9  
Changed tON from 1µs to 25ns in Timing Requirements ................................................................................. 10  
Changed tOFF from 1µs to 275ns in Timing Requirements ..............................................................................10  
Added Typical Characteristics: VS = 12 V.........................................................................................................11  
Deleted Typical Characteristics: VS = ±6 V (Full Bias)......................................................................................11  
Deleted Typical Characteristics: VS = ±6 V (Mid Bias)......................................................................................11  
Deleted Typical Characteristics: VS = ±6 V (Low Bias).....................................................................................11  
Added Typical Characteristics: VS = 28 V.........................................................................................................17  
Deleted Typical Characteristics: VS = ±12 V (Full Bias)....................................................................................17  
Deleted Typical Characteristics: VS = ±12 V (Mid Bias)....................................................................................17  
Deleted Typical Characteristics: VS = ±12 V (Low Bias)...................................................................................17  
Changed output swing from 43.2 Vpp to 49 Vpp in Overview section..............................................................20  
Changed current drive from 416 mA to 650 mA in Overview section...............................................................20  
Changed thermal protection junction temperature from 170°C to 175°C in Overview section......................... 20  
Deleted Output Current and Voltage section.................................................................................................... 20  
Added Output Voltage and Current Drive section.............................................................................................20  
Changed referenced figures for RS versus capacitive load in Driving Capacitive Loads section..................... 21  
Changed ±12-V supplies to 28-V supply in Distortion Performance section.................................................... 22  
Changed ±6-V supplies to 12-V supply in Distortion Performance section...................................................... 22  
Changed noise evaluation from 8.2.2 to 8-1 in Differential Noise Performance section......................... 22  
Added RS = 50 Ωin Differential Noise Performance section........................................................................... 22  
Changed 38.9 nV/Hz calculation to 53.3 nV/Hz in Differential Noise Performance section.................... 22  
Changed 7 nV/Hz calculation to 6.5 nV/Hz in Differential Noise Performance section........................... 22  
Changed output offset calculation to typical rather than worst case in DC Accuracy and Offset Control section  
..........................................................................................................................................................................24  
Changed quiescent current value from 23 mA to 19.5 mA in Wideband Current-Feedback Operation section...  
25  
Changed swing from 1.9 V from either rail to 49 Vpp in Wideband Current-Feedback Operation section.......25  
Changed current drive from 416 mA to 650 mA inWideband Current-Feedback Operation section................25  
Changed ± 6 V supply to 28 V supply inWideband Current-Feedback Operation section............................... 25  
Changed 140 MHz bandwidth to 285 MHz inWideband Current-Feedback Operation section........................25  
Changed Noninverting Differential I/O Amplifierfigure inWideband Current-Feedback Operation section.......25  
Changed Frequency Response and Harmonic Distortion figures in Application Curves section..................... 26  
Changed Dual-Supply Downstream Driver figure.............................................................................................27  
Changed supply voltages to ±14 V in Line Driver Headroom Requirements section....................................... 28  
Changed quiescent current value from 23 mA to 19.5 mA and ±12 V to ±14 V in Computing Total Driver  
Power for Line-Driving Applications .................................................................................................................30  
Changed 23 mA to 19.5 mA, 24 V to 28 V and 1003 mW to 11 mW in Computing Total Driver Power for Line-  
Driving Applications ......................................................................................................................................... 30  
Changed supply range from "±5 V to ±14 V" to "10 V to 28 V" in Power Supply Recommendations section.. 31  
Changed referenced figures for RS versus capacitive load in Driving Capacitive Loads section..................... 32  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
Deleted Wafer and Die Information section......................................................................................................32  
Changed ±12-V to 28-V in Layout Guidelines section......................................................................................32  
Changes from Revision C (May 2016) to Revision D (Novermber 2019)  
Page  
• 添加了最后两个要点................................................................................................................................... 1  
Added last paragraph to Overview section ......................................................................................................20  
Changed Dual-Supply Downstream Driver figure.............................................................................................27  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
5 Pin Configuration and Functions  
D1_IN+  
D2_IN+  
GND  
IADJ  
NC  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
D1_FB  
D2_FB  
D2_OUT  
NC  
Thermal  
Pad  
NC  
NC  
NC  
NC  
NC  
NC = no internal connection.  
5-1. RHF Package 24-Pin VQFN With Exposed Thermal Pad Top View  
5-1. Pin Functions(1)  
PIN  
I/O  
DESCRIPTION  
NAME  
BIAS-1  
BIAS-2  
D1_FB  
D2_FB  
D1_IN+  
D2_IN+  
D1_OUT  
D2_OUT  
GND(2)  
IADJ  
NO.  
23  
24  
19  
18  
1
I
I
Bias mode parallel control, LSB  
Bias mode parallel control, MSB  
Amplifier D1 inverting input  
Amplifier D2 inverting input  
Amplifier D1 noninverting input  
Amplifier D2 noninverting input  
Amplifier D1 output  
I
I
I
2
I
20  
17  
3
O
O
I/O  
I/O  
Amplifier D2 output  
Control pin ground reference  
Bias current adjustment pin  
No internal connection  
4
NC  
5-16  
22  
21  
I/O  
I/O  
Negative power-supply connection  
Positive power-supply connection  
VS–  
VS+  
(1) The THS6212 defaults to the shutdown (disable) state if a signal is not present on the bias pins.  
(2) The GND pin ranges from VSto (VS+ 5 V).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: THS6212  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
28  
14.5  
V
V
Supply voltage, VS = (VS+) (VS–  
)
Bias control pin voltage, referenced to GND pin  
All pins except VS+, VS, and BIAS control  
Differential input voltage (each amplifier), VID  
All input pins, current limit  
0
Voltage  
Current  
(VS+) + 0.5  
±2  
V
(VS) 0.5  
V
±10  
mA  
Continuous power dissipation(2)  
See Thermal Information table  
150  
Maximum junction, TJ (under any condition)(3)  
Maximum junction, TJ (continuous operation, long-term reliability)(4)  
Storage, Tstg  
125  
150  
Temperature  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The THS6212 incorporates a thermal pad on the underside of the device. This pad functions as a heatsink and must be connected to a  
thermally dissipating plane for proper power dissipation. Failure to do so can result in exceeding the maximum junction temperature,  
which can permanently damage the device.  
(3) The absolute maximum junction temperature under any condition is limited by the constraints of the silicon process.  
(4) The absolute maximum junction temperature for continuous operation is limited by the package constraints. Operation above this  
temperature can result in reduced reliability or lifetime of the device  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
10  
NOM  
MAX  
UNIT  
V
VS  
28  
Supply voltage, VS = (VS+) (VS–  
GND pin voltage  
)
GND  
TJ  
VS–  
V
VS+ 5  
125  
Operating junction temperature  
Ambient operating air temperature  
°C  
°C  
TA  
25  
85  
40  
6.4 Thermal Information  
THS6212  
THERMAL METRIC(1)  
RHF (VQFN)  
24 PINS  
42.3  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
32.8  
20.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.8  
YJB  
20.9  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.4 Thermal Information (continued)  
THS6212  
THERMAL METRIC(1)  
RHF (VQFN)  
24 PINS  
9.5  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics: VS = 12 V  
at TA 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 50 Ω, series isolation resistor (RS) = 2.5 Ω  
each, RF = 1.24 kΩ, RADJ = 0 , VO = D1_OUT D2_OUT, and full bias (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
250  
180  
AV = 5 V/V, RF = 1.5 kΩ, VO = 2 VPP  
AV = 10 V/V, RF = 1.24 kΩ, VO = 2 VPP  
AV = 15 V/V, RF = 1 kΩ, VO = 2 VPP  
SSBW  
Small-signal bandwidth  
MHz  
165  
0.1-dB bandwidth flatness  
Large-signal bandwidth  
17  
MHz  
MHz  
V/µs  
ns  
LSBW  
SR  
VO = 16 VPP  
195  
Slew rate (20% to 80%)  
VO = 16-V step  
VO = 2 VPP  
5500  
2.1  
Rise and fall time (10% to 90%)  
Full bias, f = 1 MHz  
Mid bias, f = 1 MHz  
80  
78  
78  
61  
61  
61  
90  
86  
83  
69  
65  
62  
2.5  
AV = 10 V/V,  
Low bias, f = 1 MHz  
VO = 2 VPP  
,
HD2  
2nd-order harmonic distortion  
dBc  
Full bias, f = 10 MHz  
Mid bias, f = 10 MHz  
Low bias, f = 10 MHz  
Full bias, f = 1 MHz  
Mid bias, f = 1 MHz  
Low bias, f = 1 MHz  
Full bias, f = 10 MHz  
Mid bias, f = 10 MHz  
Low bias, f = 10 MHz  
RL = 50 Ω  
AV = 10 V/V,  
VO = 2 VPP  
,
HD3  
3rd-order harmonic distortion  
dBc  
RL = 50 Ω  
en  
in+  
in-  
Differential input voltage noise  
Noninverting input current noise  
Inverting input current noise  
f 1 MHz, input-referred  
f 1 MHz, each amplifier  
f 1 MHz, each amplifier  
nV/Hz  
pA/Hz  
pA/Hz  
1.4  
18  
DC PERFORMANCE  
ZOL Open-loop transimpedance gain  
1300  
±12  
±16  
±11  
±1  
kΩ  
Input offset voltage (each amplifier)  
Noninverting input bias current  
Inverting input bias current  
mV  
TA = 40°C  
TA = 85°C  
±1  
µA  
µA  
TA = 40°C  
TA = 85°C  
±1  
±8  
±7  
TA = 40°C  
TA = 85°C  
±4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: THS6212  
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.5 Electrical Characteristics: VS = 12 V (continued)  
at TA 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 50 Ω, series isolation resistor (RS) = 2.5 Ω  
each, RF = 1.24 kΩ, RADJ = 0 , VO = D1_OUT D2_OUT, and full bias (unless otherwise noted)  
PARAMETER  
INPUT CHARACTERISTICS  
Common-mode input range  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Each input with respect to midsupply  
Each input  
±3.0  
64  
V
CMRR  
Common-mode rejection ratio  
67  
dB  
TA = 40°C  
TA = 85°C  
62  
Noninverting differential input  
resistance  
10 || 2  
43  
kΩ|| pF  
Inverting input resistance  
Ω
OUTPUT CHARACTERISTICS  
±9.7  
±9.3  
±8.4  
RL = 100 Ω, RS = 0 Ω  
RL = 50 Ω, RS = 0 Ω  
RL = 25 Ω, RS = 0 Ω  
VO  
Output voltage swing  
V
RL = 25 Ω, RS = 0 Ω, based on  
VO specification  
IO  
Output current (sourcing and sinking)  
±338  
mA  
Short-circuit output current  
±0.81  
0.03  
A
ZO  
Closed-loop output impedance  
f = 1 MHz, differential  
Ω
POWER SUPPLY  
10  
10  
12  
28  
V
28  
VS  
Operating voltage  
TA = 40°C to +85°C  
GND  
GND pin voltage  
VS–  
0
19.5  
15  
V
VS+ 5  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Differential  
IS+  
Quiescent current  
mA  
10.4  
0.8  
18.8  
14.4  
9.6  
IS–  
Quiescent current  
mA  
0.01  
0.8  
Current through GND pin  
mA  
dB  
dB  
+PSRR Positive power-supply rejection ratio  
Negative power-supply rejection ratio Differential  
83  
83  
PSRR  
BIAS CONTROL  
With respect to GND pin,  
TA = 40°C to +85°C  
Bias control pin voltage range  
0
3.3  
12  
V
V
Logic 1, with respect to GND pin,  
TA = 40°C to +85°C  
2.1  
Bias control pin logic threshold  
Bias control pin current(1)  
Logic 0, with respect to GND pin,  
TA = 40°C to +85°C  
0.8  
1
BIAS-1, BIAS-2 = 0.5 V (logic 0)  
BIAS-1, BIAS-2 = 3.3 V (logic 1)  
Off bias (BIAS-1 = 1, BIAS-2 = 1)  
9.6  
0.3  
µA  
Open-loop output impedance  
70 || 5  
MΩ|| pF  
(1) Current is considered positive out of the pin.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: THS6212  
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.6 Electrical Characteristics: VS = 28 V  
at TA 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 100 Ω, RF = 1.24 kΩ, RADJ = 0 Ω, VO =  
D1_OUT D2_OUT, and full bias (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
285  
205  
AV = 5 V/V, RF = 1.5 kΩ, VO = 2 VPP  
AV = 10 V/V, RF = 1.24 kΩ, VO = 2 VPP  
SSBW  
MHz  
Small-signal bandwidth, 3 dB  
0.1-dB bandwidth flatness  
Large-signal bandwidth  
Slew rate (20% to 80% level)  
Rise and fall time  
13  
MHz  
MHz  
V/µs  
ns  
LSBW  
SR  
VO = 40 VPP  
170  
VO = 40-V step  
VO = 2 VPP  
11,000  
2
Full bias, f = 1 MHz  
86  
79  
71  
63  
101  
88  
80  
65  
2.5  
AV = 10 V/V,  
Low bias, f = 1 MHz  
VO = 2 VPP  
,
HD2  
HD3  
2nd-order harmonic distortion  
dBc  
dBc  
Full bias, f = 10 MHz  
Low bias, f = 10 MHz  
Full bias, f = 1 MHz  
Low bias, f = 1 MHz  
Full bias, f = 10 MHz  
Low bias, f = 10 MHz  
RL = 100 Ω  
AV = 10 V/V,  
VO = 2 VPP  
,
3rd-order harmonic distortion  
Differential input voltage noise  
RL = 100 Ω  
en  
f 1 MHz, input-referred  
f 1 MHz  
nV/Hz  
pA/Hz  
Noninverting input current noise (each  
amplifier)  
in+  
1.7  
18  
Inverting input current noise (each  
amplifier)  
in-  
f 1 MHz  
pA/Hz  
DC PERFORMANCE  
ZOL Open-loop transimpedance gain  
1500  
±12  
40  
±0.5  
±1  
kΩ  
mV  
µV/°C  
mV  
µA  
Input offset voltage  
Input offset voltage drift  
TA = 40°C to +85°C  
Input offset voltage matching  
Noninverting input bias current  
Inverting input bias current  
Inverting input bias current matching  
Amplifier A to B  
±6  
µA  
±8  
µA  
INPUT CHARACTERISTICS  
Common-mode input range  
Each input  
Each input  
±9  
53  
±10  
65  
V
dB  
CMRR  
Common-mode rejection ratio  
Noninverting input resistance  
Inverting input resistance  
10 || 2  
38  
kΩ|| pF  
Ω
OUTPUT CHARACTERISTICS  
±24.5  
±12.3  
RL = 100 Ω  
RL = 25 Ω  
VO  
Output voltage swing(1)  
V
Output current (sourcing and sinking)  
IO  
±580  
±665  
mA  
RL = 25 Ω, based on VO specification  
(1)  
Short-circuit output current  
Output impedance  
1
A
ZO  
f = 1 MHz, differential  
0.01  
Ω
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: THS6212  
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.6 Electrical Characteristics: VS = 28 V (continued)  
at TA 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 100 Ω, RF = 1.24 kΩ, RADJ = 0 Ω, VO =  
D1_OUT D2_OUT, and full bias (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
10  
10  
12  
28  
V
VS  
Operating voltage  
Quiescent current  
28  
TA = 40°C to +85°C  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Differential  
23  
17.5  
11.9  
1.1  
22  
IS+  
mA  
1.3  
16.4  
10.8  
0.1  
1
IS–  
Quiescent current  
mA  
0.8  
mA  
dB  
dB  
Current through GND pin  
+PSRR Positive power-supply rejection ratio  
Negative power-supply rejection ratio Differential  
83  
77  
PSRR  
BIAS CONTROL  
With respect to GND pin,  
TA = 40°C to +85°C  
Bias control pin range  
0
3.3  
14.5  
V
V
Logic 1, with respect to GND pin,  
TA = 40°C to +85°C  
1.9  
Bias control pin logic threshold  
Bias control pin current(2)  
Logic 0, with respect to GND pin,  
TA = 40°C to +85°C  
0.8  
1
BIAS-1, BIAS-2 = 0.5 V (logic 0)  
BIAS-1, BIAS-2 = 3.3 V (logic 1)  
15  
10  
µA  
0.1  
(1) See 7.3.1 for output voltage vs output current characteristics.  
(2) Current is considered positive out of the pin.  
6.7 Timing Requirements  
MIN  
NOM  
25  
MAX UNIT  
tON  
Turnon time delay: time for output to start tracking the input  
Turnoff time delay: time for output to stop tracking the input  
ns  
ns  
tOFF  
275  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.8 Typical Characteristics: VS = 12 V  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
3
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
AV = 5 V/V, RF = 1.5 kW  
AV = 10 V/V, RF = 1.24 kW  
AV = 15 V/V, RF = 1 kW  
AV = 20 V/V, RF = 850 W  
-12  
-12  
AV = 10 V/V, RF = 1.24 kW  
AV = 15 V/V, RF = 1 kW  
-15  
-15  
10M  
100M  
Frequency (Hz)  
1G  
10M  
100M  
Frequency (Hz)  
D001  
D040  
VO = 2 VPP  
VO = 16 VPP  
6-1. Small-Signal Frequency Response  
6-2. Large-Signal Frequency Response  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
27  
Band 0  
Band 1  
Band 2  
Band 3  
TA = -40èC  
TA = 25èC  
TA = 85èC  
24  
21  
18  
15  
12  
9
6
10M  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
100M  
Frequency (Hz)  
1G  
D005  
SGCC HPLC profiles, crest factor = 5 V/V  
AV = 15 V/V, VO = 2 VPP  
6-3. Out-of-Band Suppression  
6-4. Small-Signal Frequency Response vs Temperature  
26  
23  
20  
17  
14  
11  
8
27  
24  
21  
18  
15  
RF = 100 W  
RF = 250 W  
RF = 500 W  
RF = 909 W  
RF = 1240 W  
RF = 250 W  
RF = 500 W  
RF = 700 W  
RF = 1000 W  
12  
5
10M  
9
10M  
100M  
Frequency (Hz)  
1G  
100M  
Frequency (Hz)  
1G  
D039  
D004  
AV = 10 V/V, VO = 2 VPP  
AV = 15 V/V, VO = 2 VPP  
6-5. Small-Signal Frequency Response vs RF  
6-6. Small-Signal Frequency Response vs RF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: THS6212  
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
20.5  
20.4  
20.3  
20.2  
20.1  
20  
24.1  
24  
23.9  
23.8  
23.7  
23.6  
23.5  
23.4  
23.3  
23.2  
23.1  
23  
19.9  
19.8  
19.7  
19.6  
19.5  
RF = 100 W  
RF = 250 W  
RF = 500 W  
RF = 700 W  
RF = 1000 W  
RF = 250 W  
RF = 500 W  
RF = 909 W  
RF = 1240 W  
10M  
100M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
1G  
D041  
D042  
AV = 10 V/V, VO = 2 VPP  
6-7. Small-Signal Gain Flatness vs RF  
AV = 15 V/V, VO = 2 VPP  
6-8. Small-Signal Gain Flatness vs RF  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
0
AV = 10 V/V,  
F = 1.24 kW  
AV = 15 V/V,  
R
RF = 1 kW  
-3  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-9  
CL = 22 pF, RS = 0 W  
CL = 33 pF, RS = 0 W  
CL = 47 pF, RS = 2 W  
CL = 100 pF, RS = 5 W  
CL = 100 pF, RS = 5 W  
-12  
-15  
10M  
100M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
D006  
D043  
VO = 100 mVPP  
VO = 16 VPP  
Frequency response is measured at the device output pin  
before the isolation resistor.  
6-9. Large-Signal Gain Flatness  
6-10. Small-Signal Frequency Response vs CLOAD  
23  
20  
17  
14  
11  
8
25  
22  
19  
16  
VO = 2 VPP  
VO = 5 VPP  
VO = 10 VPP  
VO = 16 VPP  
VO = 2 VPP  
VO = 5 VPP  
VO = 10 VPP  
VO = 16 VPP  
13  
5
10M  
10  
10M  
100M  
Frequency (Hz)  
100M  
Frequency (Hz)  
D007  
D008  
AV = 10 V/V  
.
AV = 15 V/V  
6-12. Large-Signal Frequency Response vs VO  
6-11. Large-Signal Frequency Response vs VO  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: THS6212  
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
21  
18  
15  
12  
9
25  
22  
19  
16  
13  
10  
Full-bias  
Mid-bias  
Low-bias  
Full-bias  
Mid-bias  
Low-bias  
10M  
100M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
D003  
D002  
AV = 15 V/V, VO = 2 VPP  
AV = 10 V/V, VO = 2 VPP  
6-14. Small-Signal Frequency Response vs Bias Modes  
6-13. Small-Signal Frequency Response vs Bias Modes  
26  
100  
10  
1
100  
10  
1
Full-bias  
Mid-bias  
Low-bias  
en  
in+  
in-  
23  
20  
17  
14  
11  
8
5
10M  
100M  
Frequency (Hz)  
1G  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D047  
D018  
AV = 15 V/V, VO = 16 VPP  
.
6-15. Large-Signal Frequency Response vs Bias Modes  
6-16. Input Voltage and Current Noise Density vs Frequency  
-45  
-75  
HD2, RL = 50W  
HD2  
HD3  
-50  
-77  
HD3, RL = 50W  
-55  
HD2, RL = 100W  
HD3, RL = 100W  
-79  
-81  
-83  
-85  
-87  
-89  
-91  
-93  
-95  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
1M  
10M  
Frequency (Hz)  
100M  
5
10  
Gain (V/V)  
20  
D009  
D014  
VO = 2 VPP  
f = 1 MHz, VO = 2 VPP  
6-17. Harmonic Distortion vs Frequency  
6-18. Harmonic Distortion vs Gain  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
HD2  
HD3  
HD2  
HD3  
0.5  
1
10  
20  
0.5  
1
10  
20  
Output Voltage (VPP  
)
Output Voltage (VPP)  
D010  
D011  
f = 1 MHz, AV = 10 V/V  
f = 10 MHz, AV = 10 V/V  
6-19. Harmonic Distortion vs VO  
6-20. Harmonic Distortion vs VO  
-60  
-65  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD2  
HD3  
HD2  
HD3  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
10  
100  
Load Resistance, RL (W)  
300  
10  
100  
Load Resistance, RL (W)  
300  
D012  
D013  
f = 1 MHz, VO = 2 VPP, AV = 10 V/V  
f = 10 MHz, VO = 2 VPP, AV = 10 V/V  
6-21. Harmonic Distortion vs RL  
6-22. Harmonic Distortion vs RL  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
15  
12.5  
10  
VIN ì 10 gain  
VO (AV = 10)  
IMD2  
IMD3  
7.5  
5
2.5  
0
-2.5  
-5  
-7.5  
-10  
-12.5  
-15  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
Time, 15 ms per division  
D015  
D023  
±12.2 kHz tone spacing, VO = 2 VPP per tone  
VIN = 2.8-VPP triangular waveform  
6-23. Intermodulation Distortion vs Frequency  
6-24. Overdrive Recovery  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
1.25  
9
D1OUT - D2OUT  
D1OUT  
D2OUT  
D1OUT - D2OUT  
D1OUT  
D2OUT  
1
0.75  
0.5  
7
5
3
0.25  
0
1
-1  
-3  
-5  
-7  
-9  
-0.25  
-0.5  
-0.75  
-1  
-1.25  
Time, 25 ns per division  
Time, 25 ns per division  
D046  
D019  
VO step = 16 VPP  
VO step = 2 VPP  
6-26. Large-Signal Pulse Response  
6-25. Small-Signal Pulse Response  
130  
15  
130  
120  
110  
100  
90  
15  
ZOL  
Phase  
ZOL  
Phase  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0
-15  
-15  
-30  
-30  
-45  
-45  
-60  
80  
-60  
-75  
70  
-75  
-90  
60  
-90  
-105  
-120  
-135  
-150  
-165  
-180  
50  
-105  
-120  
-135  
-150  
-165  
-180  
40  
30  
20  
10  
0
100  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
1G  
100  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
1G  
D016  
D036  
Full-bias simulation  
Mid-bias simulation  
6-27. Open-Loop Transimpedance Gain and Phase vs  
6-28. Open-Loop Transimpedance Gain and Phase vs  
Frequency  
Frequency  
130  
120  
110  
100  
90  
15  
1M  
ZOL  
Phase  
Full-bias  
Mid-bias  
Low-bias  
0
-15  
100k  
10k  
1k  
-30  
Shutdown  
-45  
80  
-60  
70  
-75  
60  
-90  
50  
-105  
-120  
-135  
-150  
-165  
-180  
100  
10  
40  
30  
20  
10  
0
1
100k  
100  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
1G  
1M  
10M  
Frequency (Hz)  
100M  
D037  
D017  
Low-bias simulation  
Simulation  
6-29. Open-Loop Transimpedance Gain and Phase vs  
6-30. Open-Loop Output Impedance vs Frequency  
Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
20  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
Full Bias  
Mid Bias  
Low Bias  
Power-down  
ICC, TA = -40°C  
ICC, TA = 25°C  
ICC, TA = 85°C  
IEE, TA = -40°C  
IEE, TA = 25°C  
IEE, TA = 85°C  
0
-5  
6
-10  
-15  
-20  
-25  
4
2
0
0
0.5  
1
1.5  
2
2.5  
R
3
3.5  
)
4
4.5  
5
5.5  
6
4
6
8
10 12 14 16 18 20 22 24 26 28  
Single-Supply Voltage, VS (V)  
ADJ(k  
RL = no load  
6-32. Quiescent Current vs RADJ  
RL = no load  
6-31. Quiescent Current vs Single-Supply Voltage  
20  
18  
16  
14  
12  
10  
8
160  
PSRR+  
PSRR-  
CMRR  
150  
140  
130  
120  
110  
100  
90  
80  
Full Bias  
Mid Bias  
Low Bias  
Power-down  
6
4
2
0
70  
60  
50  
40  
30  
1k  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
°
Ambient Temperature, TA ( C)  
D026  
RL = no load  
TJ = 50°C, simulation  
6-33. Quiescent Current vs Temperature  
6-34. PSRR and CMRR vs Frequency  
22  
20  
18  
16  
14  
12  
10  
8
8
7
B1, TA = -40(èC)  
B1, TA = 25(èC)  
B1, TA = 85(èC)  
B2, TA = -40(èC)  
B2, TA = 25(èC)  
B2, TA = 85(èC)  
B1, B2  
D1OUT - D2OUT  
D1OUT  
D2OUT  
6
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
1
2
3
4
5
6
7
Bias Pin Voltage (V)  
8
9
10 11 12  
Time, 25 ns per division  
D024  
D025  
B1 = full-bias to mid-bias transition with B2 = GND pin, B2 =  
full-bias to low-bias transition with B1 = GND pin, GND pin =  
VS–  
.
.
6-36. Full-Bias and Shutdown Mode Transition Timing  
6-35. Mode Transition Voltage Threshold  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.9 Typical Characteristics: VS = 28 V  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 100 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
3
23  
20  
17  
14  
11  
8
0
-3  
-6  
-9  
AV = 5 V/V, RF = 1.5 kW  
AV = 10 V/V, RF = 1.24 kW  
AV = 15 V/V, RF = 1 kW  
AV = 20 V/V, RF = 850 W  
RF = 500 W  
RF = 909 W  
RF = 1240 W  
-12  
-15  
10M  
5
10M  
100M  
Frequency (Hz)  
1G  
100M  
Frequency (Hz)  
1G  
D100  
D101  
VO = 2 VPP  
6-37. Small-Signal Frequency Response  
VO = 2 VPP  
6-38. Small-Signal Frequency Response vs RF  
23  
26  
20  
17  
14  
11  
8
23  
20  
17  
14  
VO = 2 VPP  
VO = 10 VPP  
VO = 20 VPP  
VO = 40 VPP  
VO = 2 VPP  
VO = 5 VPP  
VO = 10 VPP  
VO = 16 VPP  
11  
5
10M  
8
10M  
100M  
Frequency (Hz)  
1G  
100M  
Frequency (Hz)  
1G  
D103  
D104  
AV = 10 V/V  
AV = 15 V/V  
6-39. Large-Signal Frequency Response vs VO  
6-40. Large-Signal Frequency Response vs VO  
23  
-30  
Full-bias  
Mid-bias  
Low-bias  
IMD2  
IMD3  
-35  
-40  
20  
17  
14  
11  
8
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
5
10M  
100M  
Frequency (Hz)  
1G  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
D121  
D111  
VO = 40 VPP  
.
6-41. Large-Signal Frequency Response vs Bias Modes  
6-42. Intermodulation Distortion vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: THS6212  
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.9 Typical Characteristics: VS = 28 V (continued)  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 100 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-75  
-77  
-79  
-81  
-83  
-85  
-87  
-89  
-91  
-93  
-95  
HD2, RL = 50W  
HD3, RL = 50W  
HD2, RL = 100W  
HD3, RL = 100W  
HD2  
HD3  
1M  
10M  
Frequency (Hz)  
100M  
5
10  
Gain (V/V)  
20  
D105  
D110  
VO = 2 VPP  
f = 1 MHz, VO = 2 VPP RL = 50 Ω  
6-43. Harmonic Distortion vs Frequency  
6-44. Harmonic Distortion vs Gain  
-75  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
HD2  
HD3  
HD2  
HD3  
-80  
-85  
-90  
-95  
-100  
0.5  
1
10  
20  
0.5  
1
10  
20  
Output Voltage (VPP  
)
Output Voltage (VPP)  
D106  
D107  
f = 1 MHz, RL = 50 Ω  
f = 10 MHz, RL = 50 Ω  
6-45. Harmonic Distortion vs VO  
6-46. Harmonic Distortion vs VO  
-60  
-65  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD2  
HD3  
HD2  
HD3  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
10  
100  
Load Resistance, RL (W)  
300  
10  
100  
Load Resistance, RL (W)  
300  
D108  
D109  
f = 1 MHz, VO = 2 VPP  
f = 10 MHz, VO = 2 VPP  
6-47. Harmonic Distortion vs RL  
6-48. Harmonic Distortion vs RL  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6.9 Typical Characteristics: VS = 28 V (continued)  
At TA 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 100 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode (unless otherwise noted).  
1.25  
1
25  
20  
15  
10  
5
D1OUT - D2OUT  
D1OUT  
D2OUT  
D1OUT - D2OUT  
D1OUT  
D2OUT  
0.75  
0.5  
0.25  
0
0
-5  
-0.25  
-0.5  
-0.75  
-1  
-10  
-15  
-20  
-25  
-1.25  
Time, 25 ns per division  
Time, 25 ns per division  
D122  
D114  
VO step = 40 VPP  
VO step = 2 VPP  
6-50. Large-Signal Pulse Response  
6-49. Small-Signal Pulse Response  
22  
20  
18  
16  
14  
12  
10  
8
Full Bias  
Mid Bias  
Low Bias  
Power-down  
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
RADJ(k  
3
3.5  
)
4
4.5  
5
5.5  
6
.
6-51. Quiescent Current vs RADJ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
7 Detailed Description  
7.1 Overview  
The THS6212 is a differential line-driver amplifier with a current-feedback architecture. The device is targeted for  
use in line-driver applications (such as wide-band power-line communications) and is fast enough to support  
transmissions of 14.5-dBm line power up to 30 MHz.  
The THS6212 is designed as a single-channel solution that can be a drop-in replacement for dual-channel  
footprint packages. The package pinout is compatible with the pinout of the THS6214 dual, differential line driver,  
and provides an alternative for systems that only require a single-channel device.  
The architecture of the THS6212 is designed to provide maximum flexibility with multiple bias settings that are  
selectable based on application performance requirements, and also provides an external current pin (IADJ) to  
further adjust the bias current to the device. The wide output swing (49 VPP) and high current drive (650-mA) of  
the THS6212 make the device ideally suited for high-power, line-driving applications.  
The THS6212 features thermal protection that typically triggers at a junction temperature of 175°C. The device  
behavior is similar to the bias off mode when thermal shutdown is activated. The device resumes normal  
operation when the die junction temperature reaches approximately 145°C. The device may go in and out of  
thermal shutdown until the overload conditions are removed because of the unpredictable behavior of the  
overload and thermal characteristics.  
7.2 Functional Block Diagram  
VS+  
D1 IN+  
D1  
THS6212  
D1 OUT  
D1 FB  
BIAS-1  
BIAS-2  
IADJ  
BIAS  
GND  
D2 FB  
D2  
THS6212  
D2 OUT  
D2 IN+  
VS-  
7.3 Feature Description  
7.3.1 Output Voltage and Current Drive  
The THS6212 provides output voltage and current capabilities that are unsurpassed in a low-cost, monolithic op  
amp. The output voltage (under no load at room temperature) typically swings closer than 1.1 V to either supply  
rail and typically swings to within 1.1 V of either supply with a 100 Ω differential load. The THS6212 can deliver  
over 350 mA of current with a 25 Ωload.  
Good thermal design of the system is important, including use of heat sinks and active cooling methods, if the  
THS6212 is pushed to the limits of its output drive capabilities. 7-1 and 7-2 show the output drive of the  
THS6212 under two different sets of conditions where TA is approximately equal to TJ. In practical applications,  
TJ is often much higher than TA and is highly dependent on the device configuration, signal parameters, and  
PCB thermal design. In order to represent the full output drive capability of the THS6212 in 7-1 and 7-2, TJ  
TA is achieved by pulsing or sweeping the output current for a duration of less than 100 ms.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
6
5
1
0.8  
0.6  
0.4  
0.2  
0
Full-bias  
Mid-bias  
Low-bias  
4
3
2
Sourcing, TA = -40èC  
Sourcing, TA = 25èC  
Sourcing, TA = 85èC  
Sinking, TA = -40èC  
Sinking, TA = 25èC  
Sinking, TA = 85èC  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-700 -500 -300 -100 100  
300  
Output Current (mA)  
500  
700  
900  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
D045  
D022  
VS = 12 V, TJ TA 25°C  
VS = 12 V, TJ TA  
7-2. Linear Single-Ended Output Voltage vs IO  
7-1. Slammed Single-Ended Output Voltage vs IO  
and Temperature  
and Temperature  
In 7-1, the output voltages are differentially slammed to the rail and the output current is single-endedly  
sourced or sunk using a source measure unit (SMU) for less than 100 ms. The single-ended output voltage of  
each output is then measured prior to removing the load current. After removing the load current, the outputs are  
brought back to mid-supply before repeating the measurement for different load currents. This entire process is  
repeated for each ambient temperature. Under the slammed output voltage condition of 7-1, the output  
transistors are in saturation and the transistors start going into linear operation as the output swing is backed off  
for a given IO,  
In 7-2, the inputs are floated and the output voltages are allowed to settle to the mid-supply voltage. The load  
current is then single-endedly swept for sourcing (greater than 0 mA) and sinking (less than 0 mA) conditions  
and the single-ended output voltage is measured at each current-forcing condition. The current sweep is  
completed in a few seconds (approximately 3 to 4 seconds) so as not to significantly raise the junction  
temperature (TJ) of the device from the ambient temperature (TA). The output is not swinging and the output  
transistors are in linear operation in 7-2 until the current drawn exceeds the device capabilities, at which point  
the output voltage starts to deviate quickly from the no load output voltage.  
To maintain maximum output stage linearity, output short-circuit protection is not provided. This absence of short-  
circuit protection is normally not a problem because most applications include a series-matching resistor at the  
output that limits the internal power dissipation if the output side of this resistor is shorted to ground. However,  
shorting the output pin directly to the adjacent positive power-supply pin, in most cases, permanently damages  
the amplifier.  
7.3.2 Driving Capacitive Loads  
One of the most demanding and yet very common load conditions for an op amp is capacitive loading. Often, the  
capacitive load is the input of an ADCincluding additional external capacitance that can be recommended to  
improve the ADC linearity. A high-speed, high open-loop gain amplifier such as the THS6212 can be very  
susceptible to decreased stability and closed-loop response peaking when a capacitive load is placed directly on  
the output pin. When the amplifier open-loop output resistance is considered, this capacitive load introduces an  
additional pole in the signal path that can decrease the phase margin. One external solution to this problem is  
described in this section.  
When the primary considerations are frequency response flatness, pulse response fidelity, and distortion, the  
simplest and most effective solution is to isolate the capacitive load from the feedback loop by inserting a series  
isolation resistor between the amplifier output and the capacitive load. This series resistor does not eliminate the  
pole from the loop response, but shifts the pole and adds a zero at a higher frequency. The additional zero  
functions to cancel the phase lag from the capacitive load pole, thus increasing the phase margin and improving  
stability.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: THS6212  
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
The Typical Characteristics sections describe the recommended RS versus capacitive load (see 6-10) and the  
resulting frequency response at the load. Parasitic capacitive loads greater than 2 pF can begin to degrade  
device performance. Long printed-circuit board (PCB) traces, unmatched cables, and connections to multiple  
devices can easily cause this value to be exceeded. Always consider this effect carefully, and add the  
recommended series resistor as close as possible to the THS6212 output pin (see the Layout Guidelines  
section).  
7.3.3 Distortion Performance  
The THS6212 provides good distortion performance into a 100-Ω load on a 28-V supply. Relative to alternative  
solutions, the amplifier provides exceptional performance into lighter loads and operation on a 12 V supply.  
Generally, until the fundamental signal reaches very high frequency or power levels, the second harmonic  
dominates the distortion with a negligible third-harmonic component. Focusing then on the second harmonic,  
increasing the load impedance improves distortion directly. Remember that the total load includes the feedback  
networkin the noninverting configuration (see 8-1), this value is the sum of RF + RG, whereas in the  
inverting configuration this value is just RF. Providing an additional supply decoupling capacitor (0.01 µF)  
between the supply pins (for bipolar operation) also improves the second-order distortion slightly (from 3 dB to  
6 dB).  
In most op amps, increasing the output voltage swing directly increases harmonic distortion. The Typical  
Characteristics sections illustrate the second harmonic increasing at a little less than the expected 2x rate,  
whereas the third harmonic increases at a little less than the expected 3x rate. Where the test power doubles,  
the difference between the fundamental power and the second harmonic decreases less than the expected 6 dB,  
whereas the difference between the fundamental power and the third harmonic decreases by less than the  
expected 12 dB. This difference also appears in the two-tone, third-order intermodulation (IM3) spurious  
response curves. The third-order spurious levels are extremely low at low-output power levels. The output stage  
continues to hold the third-order spurious levels low even when the fundamental power reaches very high levels.  
7.3.4 Differential Noise Performance  
The THS6212 is designed to be used as a differential driver in high-performance applications. Therefore,  
analyzing the noise in such a configuration is important. 7-3 shows the op amp noise model for the differential  
configuration.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
I
N
E
N
TI Device  
R
S
4 kTR  
I
E
F
R
N
RS  
F
4 kTR  
S
R
G
2
E
O
4 kTR  
G
4 kTR  
F
R
F
I
N
TI Device  
E
I
R
N
S
N
E
RS  
4 kTR  
S
7-3. Differential Op Amp Noise Analysis Model  
As a reminder, the differential gain is expressed in 方程1:  
2 ´ RF  
GD = 1 +  
RG  
(1)  
(2)  
The output noise can be expressed as shown in 方程2:  
2
EO =  
2 ´ GD ´ eN2 + (iN ´ RS)2 + 4 kTRS + 2(iIRF)2 + 2(4 kTRFGD)  
Dividing this expression by the differential noise gain [GD = (1 + 2RF / RG)] gives the equivalent input-referred  
spot noise voltage at the noninverting input, as shown in 方程3.  
2
iIRF  
GD  
4 kTRF  
GD  
EO =  
2 ´ eN2 + (iN ´ RS)2 + 4 kTRS + 2  
+ 2  
(3)  
Evaluating these equations for the THS6212 circuit and component values of 8-1 with RS = 50 Ω, gives a  
total output spot noise voltage of 53.3 nV/Hz and a total equivalent input spot noise voltage of 6.5 nV/Hz.  
In order to minimize the output noise as a result of the noninverting input bias current noise, keeping the  
noninverting source impedance as low as possible is recommended.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: THS6212  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
7.3.5 DC Accuracy and Offset Control  
A current-feedback op amp such as the THS6212 provides exceptional bandwidth in high gains, giving fast pulse  
settling but only moderate dc accuracy. The Electrical Characteristics tables describe an input offset voltage that  
is comparable to high-speed, voltage-feedback amplifiers; however, the two input bias currents are somewhat  
higher and are unmatched. Although bias current cancellation techniques are very effective with most voltage-  
feedback op amps, these techniques do not generally reduce the output dc offset for wideband current-feedback  
op amps. Because the two input bias currents are unrelated in both magnitude and polarity, matching the input  
source impedance to reduce error contribution to the output is ineffective. Evaluating the configuration of 8-1,  
using a typical condition at 25°C input offset voltage and the two input bias currents, gives a typical output offset  
range equal to 方程4:  
(4)  
where  
NG = noninverting signal gain  
7.4 Device Functional Modes  
The THS6212 has four different functional modes set by the BIAS-1 and BIAS-2 pins. 7-1 shows the truth  
table for the device mode pin configuration and the associated description of each mode.  
7-1. BIAS-1 and BIAS-2 Logic Table  
BIAS-1  
BIAS-2  
FUNCTION  
DESCRIPTION  
0
1
0
0
Full-bias mode (100%)  
Mid-bias mode (75%)  
Amplifiers on with lowest distortion possible (default state)  
Amplifiers on with power savings and a reduction in distortion performance  
Amplifiers on with enhanced power savings and a reduction of overall  
performance  
0
1
1
1
Low-bias mode (50%)  
Shutdown mode  
Amplifiers off and output has high impedance  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The THS6212 is typically used to drive high output power applications with various load conditions. In the Typical  
Applications section, the amplifier is presented in a general-purpose, wideband, current-feedback configuration,  
and a more specific 100-Ω twisted pair cable line driver; however, the amplifier is also applicable for many  
different general-purpose and specific cable line-driving scenarios beyond what is shown in the Typical  
Applications section.  
8.2 Typical Applications  
8.2.1 Wideband Current-Feedback Operation  
The THS6212 provides the exceptional ac performance of a wideband current-feedback op amp with a highly  
linear, high-power output stage. Requiring only 19.5 mA of quiescent current, the THS6212 has an output swing  
of 49 Vpp (100-Ω load) coupled with over 650 mA current drive (25 Ω load). This low-output headroom  
requirement, along with biasing that is independent of the supply voltage, provides a remarkable 28-V supply  
operation. The THS6212 delivers greater than 285-MHz bandwidth driving a 2-VPP output into 100 Ω on a 28-V  
supply. Previous boosted output stage amplifiers typically suffer from very poor crossover distortion when the  
output current goes through zero. The THS6212 achieves a comparable power gain with improved linearity. The  
primary advantage of a current-feedback op amp over a voltage-feedback op amp is that ac performance  
(bandwidth and distortion) is relatively independent of signal gain. 8-1 shows the dc-coupled, gain of 10 V/V,  
dual power-supply circuit configuration used as the basis of the 28-V Electrical Characteristics tables and Typical  
Characteristics sections.  
Vs+  
D1  
THS6212  
R
F
1.24 k  
V
R
V
OUT  
R
R
IN  
L
G
F
274  
1.24 k  
D2  
THS6212  
2 ´ R  
V
OUT  
F
G
= 1 +  
=
DIFF  
R
V
IN  
G
Vs-  
8-1. Noninverting Differential I/O Amplifier  
8.2.1.1 Design Requirements  
The main design requirements for wideband current-feedback operation are to choose power supplies that  
satisfy common-mode requirements at the input and output of the device, and also to use a feedback resistor  
value that allows for the proper bandwidth when maintaining stability. These requirements and the proper  
solutions are described in the Detailed Design Procedure section. Using transformers and split power supplies  
can be required for certain applications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: THS6212  
 
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
8.2.1.2 Detailed Design Procedure  
For ease of test purposes in this design, the THS6212 input impedance is set to 50 Ω with a resistor to ground  
and the output impedance is set to 50 Ω with a series output resistor. Voltage swings reported in the Electrical  
Characteristics tables are taken directly at the input and output pins, whereas load powers (dBm) are defined at  
a matched 50-Ω load. For the circuit of 8-1, the total effective load is 100 Ω || 1.24 kΩ || 1.24 kΩ = 86.1 Ω.  
This approach allows a source termination impedance to be set at the input that is independent of the signal  
gain. For instance, simple differential filters can be included in the signal path right up to the noninverting inputs  
with no interaction with the gain setting. The differential signal gain for the circuit of 8-1 is given by 方程5:  
RF  
AD = 1 + 2 ´  
RG  
(5)  
where  
AD = differential gain  
A value of 274 Ωfor the AD = 10-V/V design is given by 8-1. The device bandwidth is primarily controlled with  
the feedback resistor value because the THS6212 is a current-feedback (CFB) amplifier; the differential gain,  
however, can be adjusted with considerable freedom using just the RG resistor. In fact, RG can be reduced by a  
reactive network that provides a very isolated shaping to the differential frequency response.  
Various combinations of single-supply or ac-coupled gain can also be delivered using the basic circuit of 8-1.  
Common-mode bias voltages on the two noninverting inputs pass on to the output with a gain of 1 V/V because  
an equal dc voltage at each inverting node does not create current through RG. This circuit does show a  
common-mode gain of 1 V/V from the input to output. The source connection must either remove this common-  
mode signal if undesired (using an input transformer can provide this function), or the common-mode voltage at  
the inputs can be used to set the output common-mode bias. If the low common-mode rejection of this circuit is a  
problem, the output interface can also be used to reject that common-mode signal. For instance, most modern  
differential input analog-to-digital converters (ADCs) reject common-mode signals very well, and a line-driver  
application through a transformer also attenuates the common-mode signal through to the line.  
8.2.1.3 Application Curves  
8-2 and 8-3 show the frequency response and distortion performance of the circuit in 8-1. The  
measurements are made with a load resistor (RL) of 100 Ω, and at room temperature. 8-2 is measured using  
the three different device power modes, and the distortion measurements in 8-3 are made at an output  
voltage level of 2 VPP  
.
21  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
HD2, RL = 50W  
HD3, RL = 50W  
HD2, RL = 100W  
HD3, RL = 100W  
Full-bias  
Mid-bias  
Low-bias  
18  
15  
12  
9
10M  
1M  
10M  
Frequency (Hz)  
100M  
100M  
Frequency (Hz)  
D009  
D002  
8-3. Harmonic Distortion  
8-2. Frequency Response  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
8.2.2 Dual-Supply Downstream Driver  
8-4 shows an example of a dual-supply downstream driver with a synthesized output impedance circuit. The  
THS6212 is configured as a differential gain stage to provide a signal drive to the primary winding of the  
transformer (a step-up transformer with a turns ratio of 1:n is shown in 8-4). The main advantage of this  
configuration is the cancellation of all even harmonic-distortion products. Another important advantage is that  
each amplifier must only swing half of the total output required driving the load.  
Vs+  
20  
D1  
THS6212  
R
R
M
F
0.1 µF  
2.2 k  
10  
1:1.1  
R
P
2.9 k  
2 k  
R
Z
LINE  
G
R
VIN  
P
1.4 k  
R
2.9 k  
L
100  
2 k  
R
R
M
F
0.1 µF  
10  
2.2 k  
D2  
THS6212  
20  
Vs-  
8-4. Dual-Supply Downstream Driver  
The analog front-end (AFE) signal is ac-coupled to the driver, and the noninverting input of each amplifier is  
biased to the mid-supply voltage (ground in this case). In addition to providing the proper biasing to the amplifier,  
this approach also provides a high-pass filtering with a corner frequency that is set at 5 kHz in this example.  
Because the signal bandwidth starts at 26 kHz, this high-pass filter does not generate any problems and has the  
advantage of filtering out unwanted lower frequencies.  
8.2.2.1 Design Requirements  
The main design requirements for 8-4 are to match the output impedance correctly, satisfy headroom  
requirements, and ensure that the circuit meets power driving requirements. These requirements are described  
in the Detailed Design Procedure section and include the required equations to properly implement the design.  
The design must be fully worked through before physical implementation because small changes in a single  
parameter can often have large effects on performance.  
8.2.2.2 Detailed Design Procedure  
For 8-4, the input signal is amplified with a gain set by 方程6:  
2 ´ RF  
GD = 1 +  
RG  
(6)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: THS6212  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
The two back-termination resistors (RM = 10 Ω, each) added at each terminal of the transformer make the  
impedance of the amplifier match the impedance of the line, and also provide a means of detecting the received  
signal for the receiver. The value of these resistors (RM) is a function of the line impedance and the transformer  
turns ratio (n), given by 方程7:  
ZLINE  
RM =  
2n2  
(7)  
8.2.2.2.1 Line Driver Headroom Requirements  
The first step in a transformer-coupled, twisted-pair driver design is to compute the peak-to-peak output voltage  
from the target specifications. This calculation is done using 方程8 to 方程11:  
2
VRMS  
PL = 10 ´ log  
(1 mW) ´ RL  
(8)  
where  
PL = power at the load  
VRMS = voltage at the load  
RL = load impedance  
These values produce the following:  
PL  
VRMS  
=
(1 mW) ´ RL ´ 10  
10  
VP = Crest Factor ´ VRMS = CF ´ VRMS  
where  
(9)  
(10)  
VP = peak voltage at the load  
CF = crest factor  
VLPP = 2 ´ CF ´ VRMS  
(11)  
where  
VLPP = peak-to-peak voltage at the load  
Consolidating 方程式 8 to 方程式 11 allows the required peak-to-peak voltage at the load to be expressed as a  
function of the crest factor, the load impedance, and the power at the load, as given by 方程12:  
PL  
VLPP = 2 ´ CF ´  
(1 mW) ´ RL ´ 10  
10  
(12)  
VLPP is usually computed for a nominal line impedance and can be taken as a fixed design target.  
The next step in the design is to compute the individual amplifier output voltage and currents as a function of  
peak-to-peak voltage on the line and transformer-turns ratio.  
When this turns ratio changes, the minimum allowed supply voltage also changes. The peak current in the  
amplifier output is given by 方程13:  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
2 ´ VLPP  
1
1
±IP =  
´
´
n
2
4 RM  
(13)  
where  
VPP is as defined in 方程12, and  
RM is as defined in 方程7 and 8-5  
R
V
M
2 V  
LPP  
LPP  
R
V
LPP  
V
=
L
PP  
n
n
R
M
8-5. Driver Peak Output Voltage  
With the previous information available, a supply voltage and the turns ratio desired for the transformer can now  
be selected, and the headroom for the THS6212 can be calculated.  
The model shown in 8-6 can be described with 方程14 and 方程15 as:  
1. The available output swing:  
VPP = VCC - (V1 + V2) - IP ´ (R1 + R2)  
(14)  
2. Or as the required supply voltage:  
VCC = VPP + (V1 + V2) + IP ´ (R1 + R2)  
(15)  
The minimum supply voltage for power and load requirements is given by 方程15.  
V1, V2, R1, and R2 are given in 8-1 for the ±14-V operation.  
V
CC  
R
1
V
1
V
TI Device  
OUT  
I
P
V
2
R
2
8-6. Line Driver Headroom Model  
8-1. Line Driver Headroom Model Values  
VS  
V1  
R1  
V2  
R2  
±14 V  
1 V  
1 V  
0.6 Ω  
1.2 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: THS6212  
 
 
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
When using a synthetic output impedance circuit (see 8-4), a significant drop in bandwidth occurs from the  
specification provided in the Electrical Characteristics tables. This apparent drop in bandwidth for the differential  
signal is a result of the apparent increase in the feedback transimpedance for each amplifier. This feedback  
transimpedance equation is given by 方程16:  
RS  
RL  
RS  
RP  
+
1 + 2 ´  
ZFB = RF ´  
RS  
RS  
RP  
RF  
RP  
+
-
1 + 2 ´  
RL  
(16)  
To increase the 0.1-dB flatness to the frequency of interest, adding a serial RC in parallel with the gain resistor  
may be needed, as shown in 8-7.  
R
S
D1  
THS6212  
R
F
R
P
R
M
Z
LINE  
V
R
G
IN  
R
R
100 W  
P
C
M
F
R
S
D2  
THS6212  
8-7. 0.1-dB Flatness Compensation Circuit  
8.2.2.2.2 Computing Total Driver Power for Line-Driving Applications  
The total internal power dissipation for the THS6212 in a line-driver application is the sum of the quiescent power  
and the output stage power. The THS6212 holds a relatively constant quiescent current versus supply voltage—  
giving a power contribution that is simply the quiescent current times the supply voltage used (the supply voltage  
is greater than the solution given in 方程式 15). The total output stage power can be computed with reference to  
8-8.  
VCC  
IP  
IAVG  
=
CF  
RT  
8-8. Output Stage Power Model  
The two output stages used to drive the load of 8-5 are shown as an H-Bridge in 8-8. The average current  
drawn from the supply into this H-Bridge and load is the peak current in the load given by 方程式 13 divided by  
the crest factor (CF) for the signal modulation. This total power from the supply is then reduced by the power in  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
RT, leaving the power dissipated internal to the drivers in the four output stage transistors. That power is simply  
the target line power used in 方程式 8 plus the power lost in the matching elements (RM). In the following  
examples, a perfect match is targeted giving the same power in the matching elements as in the load. The  
output stage power is then set by 方程17.  
IP  
POUT  
=
´ VCC - 2PL  
CF  
(17)  
(18)  
The total amplifier power is then given by 方程18:  
IP  
PTOT = IQ ´ VCC  
+
´ VCC - 2PL  
CF  
For the example given by 8-4, the peak current is 159 mA for a signal that requires a crest factor of 5.6 with a  
target line power of 20.5 dBm into a 100-Ωload (115 mW).  
With a typical quiescent current of 19.5 mA and a nominal supply voltage of ±14 V, the total internal power  
dissipation for the solution of 8-4 is given by 方程19:  
(19)  
8.3 What To Do and What Not to Do  
8.3.1 What To Do  
Include a thermal design at the beginning of the project.  
Use well-terminated transmission lines for all signals.  
Use solid metal layers for the power supplies.  
Keep signal lines as straight as possible.  
Use split supplies where required.  
8.3.2 What Not to Do  
Use a lower supply voltage than necessary.  
Use thin metal traces to supply power.  
Forget about the common-mode response of filters and transmission lines.  
9 Power Supply Recommendations  
The THS6212 is designed to operate optimally using split power supplies. The device has a very wide supply  
range of 10 V to 28 V to accommodate many different application scenarios. Choose power-supply voltages that  
allow for adequate swing on both the inputs and outputs of the amplifier to prevent affecting device performance.  
The ground pin provides the ground reference for the control pins and must be within VSto (VS+ 5 V) for  
proper operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: THS6212  
 
 
 
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the THS6212 requires careful attention  
to board layout parasitic and external component types. Recommendations that optimize performance include:  
1. Minimize parasitic capacitance to any ac ground for all signal I/O pins. Parasitic capacitance on the output  
and inverting input pins can cause instability; on the noninverting input, this capacitance can react with the  
source impedance to cause unintentional band limiting. To reduce unwanted capacitance, a window around  
the signal I/O pins must be opened in all ground and power planes around these pins. Otherwise, ground  
and power planes must be unbroken elsewhere on the board.  
2. Minimize the distance (less than 0.25 in, or 6.35 mm) from the power-supply pins to high-frequency 0.1-µF  
decoupling capacitors. At the device pins, the ground and power plane layout must not be in close proximity  
to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and  
the decoupling capacitors. The power-supply connections must always be decoupled with these capacitors.  
An optional supply decoupling capacitor across the two power supplies (for bipolar operation) improves  
second-harmonic distortion performance. Larger (2.2 µF to 6.8 µF) decoupling capacitors, effective at lower  
frequencies, must also be used on the main supply pins. These capacitors can be placed somewhat farther  
from the device and can be shared among several devices in the same area of the PCB.  
3. Careful selection and placement of external components preserve the high-frequency performance of the  
THS6212. Resistors must be of a very low reactance type. Surface-mount resistors work best and allow a  
tighter overall layout. Metal film and carbon composition, axially-leaded resistors can also provide good high-  
frequency performance.  
Again, keep leads and PCB trace length as short as possible. Never use wire-wound type resistors in a high-  
frequency application. Although the output pin and inverting input pin are the most sensitive to parasitic  
capacitance, always position the feedback and series output resistor, if any, as close as possible to the  
output pin. Other network components, such as noninverting input termination resistors, must also be placed  
close to the package. Where double-side component mounting is allowed, place the feedback resistor  
directly under the package on the other side of the board between the output and inverting input pins. The  
frequency response is primarily determined by the feedback resistor value as described in the Wideband  
Current-Feedback Operation Detailed Design Procedure section. Increasing the value reduces the  
bandwidth, whereas decreasing the value leads to a more peaked frequency response. The 1.24-kΩ  
feedback resistor used in the Typical Characteristics sections at a gain of 10 V/V on 28-V supplies is a good  
starting point for design. Note that a 1.5-kΩfeedback resistor, rather than a direct short, is recommended for  
a unity-gain follower application. A current-feedback op amp requires a feedback resistor to control stability  
even in the unity-gain follower configuration.  
4. Connections to other wideband devices on the board can be made with short direct traces or through  
onboard transmission lines. For short connections, consider the trace and the input to the next device as a  
lumped capacitive load. Relatively wide traces (50 mils to 100 mils [0.050 in to 0.100 in, or 1.27 mm to 2.54  
mm]) must be used, preferably with ground and power planes opened up around them. Estimate the total  
capacitive load and set RS from the recommended RS versus capacitive load plots (see 6-10) . Low  
parasitic capacitive loads (less than 5 pF) may not need an isolation resistor because the THS6212 is  
nominally compensated to operate with a 2-pF parasitic load. If a long trace is required, and the 6-dB signal  
loss intrinsic to a doubly-terminated transmission line is acceptable, implement a matched-impedance  
transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and  
stripline layout techniques). A 50-Ωenvironment is not necessary on board; in fact, a higher impedance  
environment improves distortion (see the distortion versus load plots). With a characteristic board trace  
impedance defined based on board material and trace dimensions, a matching series resistor into the trace  
from the output of the THS6212 is used, as well as a terminating shunt resistor at the input of the destination  
device. Remember also that the terminating impedance is the parallel combination of the shunt resistor and  
the input impedance of the destination device.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
This total effective impedance must be set to match the trace impedance. The high output voltage and  
current capability of the THS6212 allows multiple destination devices to be handled as separate  
transmission lines, each with their own series and shunt terminations. If the 6-dB attenuation of a doubly-  
terminated transmission line is unacceptable, a long trace can be series-terminated at the source end only.  
Treat the trace as a capacitive load in this case and set the series resistor value as shown in the  
recommended RS versus capacitive load plots. However, this configuration does not preserve signal integrity  
as well as a doubly-terminated line. If the input impedance of the destination device is low, there is some  
signal attenuation as a result of the voltage divider formed by the series output into the terminating  
impedance.  
5. Socketing a high-speed part such as the THS6212 is not recommended. The additional lead length and pin-  
to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network, and can  
make achieving a smooth, stable frequency response almost impossible. Best results are obtained by  
soldering the THS6212 directly onto the board.  
6. Solder the exposed thermal pad to a heat-spreading power or ground plane. This pad is electrically isolated  
from the die, but must be connected to a power or ground plane and not floated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
10.2 Layout Example  
Input Signal Routing  
Output Signal Routing  
10-1. THS6212EVM Top Layer Example  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: THS6212  
 
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
Resistors for the optional synthesized  
output impedance network.  
Closely Located Supply  
Decoupling Capacitor  
Approximate device footprint is  
on the reverse side.  
10-2. THS6212EVM Bottom Layer Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: THS6212  
THS6212  
www.ti.com.cn  
ZHCSEZ1E MAY 2016 REVISED MAY 2021  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, THS6214 Dual-Port, Differential, VDSL2 Line Driver Amplifiers data sheet  
Texas Instruments, THS6222 8-V to 32-V, Differential Broadband HPLC Line Driver With Common-Mode  
Buffer data sheet  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: THS6212  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THS6212IRHFR  
THS6212IRHFT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHF  
RHF  
24  
24  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
THS6212  
THS6212  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Oct-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS6212IRHFR  
THS6212IRHFR  
THS6212IRHFT  
THS6212IRHFT  
VQFN  
VQFN  
VQFN  
VQFN  
RHF  
RHF  
RHF  
RHF  
24  
24  
24  
24  
3000  
3000  
250  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.5  
4.3  
4.3  
4.3  
4.3  
5.3  
5.3  
5.3  
5.3  
1.1  
1.3  
1.3  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THS6212IRHFR  
THS6212IRHFR  
THS6212IRHFT  
THS6212IRHFT  
VQFN  
VQFN  
VQFN  
VQFN  
RHF  
RHF  
RHF  
RHF  
24  
24  
24  
24  
3000  
3000  
250  
338.0  
367.0  
210.0  
205.0  
355.0  
367.0  
185.0  
200.0  
50.0  
35.0  
35.0  
33.0  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHF0024A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
5.1  
4.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.65 0.1  
2X 2  
(0.1) TYP  
12  
EXPOSED  
8
THERMAL PAD  
20X 0.5  
7
13  
3.65 0.1  
2X  
3
25  
SYMM  
SEE TERMINAL  
DETAIL  
19  
1
0.30  
0.18  
24X  
0.1  
C B A  
PIN 1 ID  
(OPTIONAL)  
24  
20  
SYMM  
0.05  
0.5  
0.3  
24X  
4219064 /A 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.65)  
SYMM  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(3.65)  
(1.575)  
20X (0.5)  
25  
SYMM  
(4.8)  
(0.62)  
TYP  
(R0.05)  
TYP  
13  
7
(
0.2) TYP  
VIA  
8
12  
(1.025)  
TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219064 /A 04/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (1.17)  
(0.685) TYP  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(1.24)  
TYP  
20X (0.5)  
SYMM  
(4.8)  
25  
6X (1.04)  
13  
(R0.05) TYP  
7
METAL  
TYP  
12  
8
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219064 /A 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THS6212IRHFR

高速差分宽带 PLC/HPLC 线路驱动器放大器 | RHF | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6212IRHFT

高速差分宽带 PLC/HPLC 线路驱动器放大器 | RHF | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6214

Dual-Port, Differential, VDSL2 Line Driver Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6214IPWP

Dual-Port, Differential, VDSL2 Line Driver Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6214IPWPR

Dual-Port, Differential, VDSL2 Line Driver Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6214IRHFR

Dual-Port, Differential, VDSL2 Line Driver Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6214IRHFT

Dual-Port, Differential, VDSL2 Line Driver Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6222

具有共模缓冲器的差分宽带 PLC 和 HPLC 线路驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6222IRGTR

THS6222 8 V to 32 V, Differential HPLC Line Driver with Common-Mode Buffer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6222IRHFR

具有共模缓冲器的差分宽带 PLC 和 HPLC 线路驱动器 | RHF | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6222IRHFT

具有共模缓冲器的差分宽带 PLC 和 HPLC 线路驱动器 | RHF | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6222YS

具有共模缓冲器的差分宽带 PLC 和 HPLC 线路驱动器 | YS | 0 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI