THS6222IRGTR [TI]

THS6222 8 V to 32 V, Differential HPLC Line Driver with Common-Mode Buffer;
THS6222IRGTR
型号: THS6222IRGTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

THS6222 8 V to 32 V, Differential HPLC Line Driver with Common-Mode Buffer

文件: 总46页 (文件大小:3618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS6222
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
THS6222 8 V to 32 V, Differential HPLC Line Driver with Common-Mode Buffer  
1 Features  
3 Description  
Supply range (VS): 8 V to 32 V  
Integrated midsupply common-mode buffer  
Large-signal bandwidth: 195 MHz (VO = 16 VPP  
Slew rate (16 V step): 5500 V/µs  
Low distortion (VS = 12 V, 50 Ω load):  
– HD2: –80 dBc (1 MHz)  
The THS6222 is a differential line-driver amplifier with  
a current-feedback architecture manufactured using  
Texas Instruments' proprietary, high-speed, silicon-  
germanium (SiGe) process. The device is targeted for  
use in broadband, high-speed, power line  
communications (HPLC) line driver applications that  
require high linearity when driving heavy line loads.  
)
– HD3: –90 dBc (1 MHz)  
The unique architecture of the THS6222 uses minimal  
quiescent current while achieving very high linearity.  
The amplifier has an adjustable current pin (IADJ) that  
sets the nominal current consumption along with the  
multiple bias modes that allow for enhanced power  
savings where the full performance of the amplifier is  
not required. Shutdown bias mode provides further  
power savings during receive mode in time division  
multiplexed (TDM) systems while maintaining high  
output impedance. The integrated midsupply  
Output current: 338 mA (VS = 12 V, 25 Ω load)  
Wide output swing (VS = 12 V):  
– 19.4 VPP (100 Ω load)  
– 18.6 VPP (50 Ω load)  
Adjustable power modes:  
– Full-bias mode: 19.5 mA  
– Mid-bias mode: 15 mA  
– Low-bias mode: 10.4 mA  
– Low-power shutdown mode  
– IADJ pin for variable bias  
common-mode  
buffer  
eliminates  
external  
components, reducing system cost and board space.  
Integrated overtemperature protection  
Pin-compatible with the 24-pin THS6212 VQFN  
The wide output swing of 57 VPP (100 Ω load) with  
32-V power supplies, coupled with over 650 mA  
current drive (25 Ω load), allows for wide dynamic  
range that keeps distortion minimal.  
2 Applications  
SGCC HPLC line drivers  
Smart meters  
Data concentrators  
Power line communications gateways  
Home networking PLC  
Differential DSL line drivers  
The THS6222 is available in a 24-pin VQFN package  
with exposed thermal pad and is specified for  
operation from –40°C to +85°C ambient temperature.  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
5.00 mm × 4.00 mm  
1261.00 µm × 1641.00 µm  
3.0 mm × 3.0 mm  
VQFN (24)  
THS6222  
Wafer Sale (19)  
VQFN (16)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
1-bit power mode control  
Full-bias / shutdown  
+12 V  
THS6222  
BIAS  
2
BIAS  
1
IADJ  
VS+  
+12 V  
AV =  
10 V/V  
Bias Current Control  
100 nF  
RS1  
2.49  
PLC ASIC  
D1  
IN+  
100 nF  
+
D1  
VS+  
OUT  
œ
RF1  
1.24 kꢀ  
1:1  
RT1  
249 ꢀ  
5 kꢀ  
CM  
Buffer  
D1  
INt  
520 ꢀ  
5 kꢀ  
Optional  
Thermal  
Protection  
RG  
274 ꢀ  
50 ꢀ  
Power Line  
RL  
50 ꢀ  
VCM  
DAC  
f
100 nF  
+12 V  
D2  
INt  
RT2  
249 ꢀ  
RF2  
1.24 kꢀ  
œ
D2  
OUT  
VSœ  
D2  
IN+  
+
RS2  
2.49 ꢀ  
100 nF  
100 nF  
D
GND  
VSt  
GND  
GND  
Typical Line-Driver Circuit Using the THS6222  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics: VS = 12 V ..........................6  
6.6 Electrical Characteristics: VS = 32 V ..........................8  
6.7 Timing Requirements ...............................................10  
6.8 Typical Characteristics: VS = 12 V............................ 10  
6.9 Typical Characteristics: VS = 32 V............................ 17  
7 Detailed Description......................................................20  
7.1 Overview...................................................................20  
7.2 Functional Block Diagram.........................................20  
7.3 Feature Description...................................................21  
7.4 Device Functional Modes..........................................26  
8 Application and Implementation..................................26  
8.1 Application Information............................................. 26  
8.2 Typical Applications.................................................. 26  
8.3 What to Do and What Not to Do............................... 29  
9 Power Supply Recommendations................................29  
10 Layout...........................................................................30  
10.1 Layout Guidelines................................................... 30  
10.2 Wafer and Die Information...................................... 31  
10.3 Layout Examples.................................................... 33  
11 Device and Documentation Support..........................34  
11.1 Development Support............................................. 34  
11.2 Documentation Support.......................................... 34  
11.3 Receiving Notification of Documentation Updates..34  
11.4 Support Resources................................................. 34  
11.5 Trademarks............................................................. 34  
11.6 Electrostatic Discharge Caution..............................34  
11.7 Glossary..................................................................34  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 34  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (April 2020) to Revision C (November 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document .................1  
Added VQFN (16) Package to the Device Information table.............................................................................. 1  
Updated the RHF package in the Pin Configuration and Functions section.......................................................3  
Added the RGT package in the Pin Configuration and Functions section..........................................................3  
Changes from Revision A (December 2019) to Revision B (April 2020)  
Page  
Added Wafer Sale Package and Body Size (NOM) to the Device Information table .........................................1  
Added the YS Die bondpad and functions..........................................................................................................3  
Updated Table 1 BIAS-1 and BIAS-2 Logic Table.............................................................................................26  
Added Wafer and Die Information section........................................................................................................ 31  
Changes from Revision * (August 2019) to Revision A (December 2019)  
Page  
Changed device status from advance information to production data ...............................................................1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: THS6222  
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
5 Pin Configuration and Functions  
D1_IN+  
D2_IN+  
DGND  
IADJ  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
D2_IN–  
D2_OUT  
NC  
D1_IN+  
D2_IN+  
DGND  
IADJ  
1
2
3
4
12  
11  
10  
9
D1_OUT  
D1_IN–  
D2_IN–  
D2_OUT  
Thermal Pad  
Thermal Pad  
NC  
VCM  
NC  
NC  
NC  
Not to scale  
Not to scale  
NC = no internal connection.  
Figure 5-2. RGT Package  
Figure 5-1. RHF Package  
24-Pin VQFN With Exposed Thermal Pad  
Top View  
16-Pin VQFN With Exposed Thermal Pad  
Top View  
Table 5-1. Pin Functions  
PIN  
RHF  
23  
24  
19  
18  
1
TYPE(1)  
DESCRIPTION  
NAME  
BIAS-1(2)  
BIAS-2(2)  
D1_IN–  
D2_IN–  
D1_IN+  
D2_IN+  
D1_OUT  
D2_OUT  
DGND(3)  
IADJ  
RGT  
15  
16  
11  
10  
1
I
I
Bias mode control, LSB  
Bias mode control, MSB  
I
Amplifier D1 inverting input  
Amplifier D2 inverting input  
Amplifier D1 noninverting input  
Amplifier D2 noninverting input  
Amplifier D1 output  
I
I
2
2
I
20  
17  
3
12  
9
O
O
I
Amplifier D2 output  
3
Ground reference for bias control pins  
Bias current adjustment pin  
No internal connection  
4
4
I
NC  
6-16  
5
6
O
P
P
VCM  
5
Common-mode buffer output  
Negative power-supply connection  
Positive power-supply connection  
VS–  
22  
21  
7, 14  
8, 13  
VS+  
Electrically connected to die substrate and VS–. Connect to VS– on the printed  
circuit board (PCB) for best performance.  
Thermal Pad  
P
(1) I = input, O = output, and P = power,  
(2) The THS6222 defaults to the shutdown (disable) state if a signal is not present on the bias pins.  
(3) The DGND pin ranges from VS– to (VS+ – 5 V).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: THS6222  
 
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
19  
18  
17  
16  
15  
14  
THS6222  
13  
D1_OUT  
12  
11  
D1_OUT (OPT)  
D1_INœ  
1
D1_IN+  
PAD #1  
10  
9
D2_INœ  
2
3
4
5
D2_IN+  
DGND  
IADJ  
D2_OUT (OPT)  
8
7
D2_OUT  
VS+  
VCM  
6
Figure 5-3. YS Die  
19-Pad Wafer Sale  
Top View  
Bond Pad Functions  
PAD  
Type(1)  
DESCRIPTION  
NAME  
NO.  
BIAS-1(2)  
BIAS-2(2)  
D1_IN–  
D2_IN–  
D1_IN+  
D2_IN+  
D1_OUT  
18  
I
I
Bias mode parallel control, LSB  
Bias mode parallel control, MSB  
Amplifier D1 inverting input  
19  
11  
I
10  
I
Amplifier D2 inverting input  
1
I
Amplifier D1 noninverting input  
Amplifier D2 noninverting input  
2
I
13  
O
O
O
O
I
Amplifier D1 output (must be used for D1 output)  
D1_OUT (OPT)  
D2_OUT  
D2_OUT (OPT)  
DGND(3)  
IADJ  
12  
Optional amplifier D1 output (pad can be left unconnected or connected to pad 13)  
Amplifier D2 output (must be used for D2 output)  
Optional amplifier D2 output (can be left unconnected or connected to pad 8)  
Ground reference for bias control pins  
8
9
3
4
5
I
Bias current adjustment pin  
VCM  
O
P
P
Common-mode buffer output  
VS–  
6, 16, 17  
7, 14, 15  
Negative power-supply connection  
VS+  
Positive power-supply connection  
Backside  
Must be connected to the lowest voltage potential on the die (generally VS–)  
(1) I = input, O = output, and P = power.  
(2) The THS6222 defaults to the shutdown (disable) state if a signal is not present on the bias pins.  
(3) The DGND pin ranges from VS– to (VS+ – 5 V).  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
(2)  
Supply voltage, VS = (VS+) – (VS–  
)
33  
V
V
V
V
Bias control pin voltage, referenced to DGND  
Common-mode voltage, VCM  
0
16.5  
Voltage  
See Common-Mode Buffer  
(VS–) – 0.5 (VS+) + 0.5  
All pins except VS+, VS–, VCM, and BIAS control  
Maximum junction, TJ (under any condition)  
Maximum junction, TJ (continuous operation, long-term reliability)(3)  
Storage, Tstg  
150  
125  
150  
Temperature  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent device damage. These are stress ratings only,  
which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Refer to Breakdown Supply Voltage for breakdown test results.  
(3) The absolute maximum junction temperature for continuous operation is limited by the package constraints. Operation above this  
temperature can result in reduced reliability or lifetime of the device. THS6222 has thermal protection that shuts down the device at  
approximately 175°C junction temperature and recovery at approximately 145°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±3500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
NOM  
MAX  
32  
UNIT  
V
VS  
Supply voltage, VS = (VS+) – (VS–  
)
DGND  
TA  
DGND pin voltage  
VS–  
–40  
VS+ – 5  
85  
V
Ambient operating air temperature  
25  
°C  
6.4 Thermal Information  
THS6222  
THERMAL METRIC(1)  
RHF (VQFN)  
24 PINS  
43.4  
RGT (VQFN)  
16 PINS  
48.4  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
35  
55.1  
21.3  
22.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.3  
1.6  
YJB  
21.2  
22.6  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: THS6222  
 
 
 
 
 
 
 
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
THS6222  
THERMAL METRIC(1)  
RHF (VQFN)  
24 PINS  
9.3  
RGT (VQFN)  
16 PINS  
8.6  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics: VS = 12 V  
at TA ≈ 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 50 Ω, series isolation resistor (RS) = 2.5 Ω  
each, RF = 1.24 kΩ, RADJ = 0 Ω, VCM = open, VO = D1_OUT – D2_OUT, and full bias (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
AV = 5 V/V, RF = 1.5 kΩ, VO = 2 VPP  
AV = 10 V/V, RF = 1.24 kΩ, VO = 2 VPP  
AV = 15 V/V, RF = 1 kΩ, VO = 2 VPP  
250  
180  
165  
17  
SSBW  
Small-signal bandwidth  
MHz  
0.1-dB bandwidth flatness  
Large-signal bandwidth  
MHz  
MHz  
V/µs  
ns  
LSBW  
SR  
VO = 16 VPP  
195  
5500  
2.1  
Slew rate (20% to 80%)  
VO = 16-V step  
VO = 2 VPP  
Rise and fall time (10% to 90%)  
Full bias, f = 1 MHz  
Mid bias, f = 1 MHz  
–80  
–78  
–78  
–61  
–61  
–61  
–90  
–86  
–83  
–69  
–65  
–62  
AV = 10 V/V,  
Low bias, f = 1 MHz  
HD2  
2nd-order harmonic distortion  
VO = 2 VPP  
RL = 50 Ω  
,
dBc  
Full bias, f = 10 MHz  
Mid bias, f = 10 MHz  
Low bias, f = 10 MHz  
Full bias, f = 1 MHz  
Mid bias, f = 1 MHz  
Low bias, f = 1 MHz  
Full bias, f = 10 MHz  
Mid bias, f = 10 MHz  
Low bias, f = 10 MHz  
AV = 10 V/V,  
HD3  
3rd-order harmonic distortion  
Differential input voltage noise  
VO = 2 VPP  
RL = 50 Ω  
,
dBc  
f ≥ 1 MHz, input-referred, with and  
without 100 nF noise-decoupling  
capacitor on VCM pin  
en  
2.5  
nV/√Hz  
in+  
in-  
Noninverting input current noise  
Inverting input current noise  
f ≥ 1 MHz, each amplifier  
f ≥ 1 MHz, each amplifier  
1.4  
18  
pA/√Hz  
pA/√Hz  
DC PERFORMANCE  
ZOL Open-loop transimpedance gain  
1300  
±12  
±16  
±11  
±1  
kΩ  
Input offset voltage (each amplifier)  
Noninverting input bias current  
Inverting input bias current  
TA = –40°C  
TA = 85°C  
mV  
TA = –40°C  
TA = 85°C  
±1  
µA  
µA  
±1  
±8  
TA = –40°C  
TA = 85°C  
±7  
±4  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.5 Electrical Characteristics: VS = 12 V (continued)  
at TA ≈ 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 50 Ω, series isolation resistor (RS) = 2.5 Ω  
each, RF = 1.24 kΩ, RADJ = 0 Ω, VCM = open, VO = D1_OUT – D2_OUT, and full bias (unless otherwise noted)  
PARAMETER  
INPUT CHARACTERISTICS  
Common-mode input range  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Each input with respect to midsupply  
±3.0  
64  
V
Each input  
TA = –40°C  
TA = 85°C  
CMRR  
Common-mode rejection ratio  
67  
dB  
62  
Noninverting differential input  
resistance  
10 || 2  
43  
kΩ || pF  
Ω
Inverting input resistance  
COMMON-MODE BUFFER CHARACTERISTICS  
Voltage at VCM with respect to  
midsupply  
±2.5  
VCM-OS Common-mode offset voltage  
mV  
TA = –40°C  
TA = 85°C  
±5  
±1  
With and without 100-nF VCM noise-  
decoupling capacitor, f ≥ 50 kHz  
Common-mode voltage noise  
20  
nV/√Hz  
AC-coupled inputs  
f = DC  
650  
520  
Ω
Ω
Common-mode output resistance  
DC-coupled inputs  
OUTPUT CHARACTERISTICS  
RL = 100 Ω, RS = 0 Ω  
RL = 50 Ω, RS = 0 Ω  
RL = 25 Ω, RS = 0 Ω  
±9.7  
±9.3  
VO  
Output voltage swing  
V
±8.4  
IO  
Output current (sourcing and sinking) RL = 25 Ω, RS = 0 Ω, based on VO specification  
Short-circuit output current  
±338  
±0.81  
0.03  
mA  
A
ZO  
Closed-loop output impedance  
f = 1 MHz, differential  
Ω
POWER SUPPLY  
8
8
12  
32  
V
32  
VS  
Operating voltage  
TA = –40°C to +85°C  
DGND  
DGND pin voltage  
VS–  
0
19.5  
15  
VS+ – 5  
V
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Differential  
IS+  
Quiescent current  
mA  
10.4  
1.1  
18.8  
14.4  
9.8  
IS–  
Quiescent current  
mA  
0.4  
Current through DGND pin  
0.8  
mA  
dB  
dB  
+PSRR Positive power-supply rejection ratio  
83  
–PSRR Negative power-supply rejection ratio Differential  
83  
BIAS CONTROL  
With respect to DGND,  
TA = –40°C to +85°C  
Bias control pin voltage range  
0
3.3  
12  
V
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.5 Electrical Characteristics: VS = 12 V (continued)  
at TA ≈ 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 50 Ω, series isolation resistor (RS) = 2.5 Ω  
each, RF = 1.24 kΩ, RADJ = 0 Ω, VCM = open, VO = D1_OUT – D2_OUT, and full bias (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Logic 1, with respect to DGND,  
TA = –40°C to +85°C  
2.1  
Bias control pin logic threshold  
V
Logic 0, with respect to DGND,  
TA = –40°C to +85°C  
0.8  
BIAS-1, BIAS-2 = 0.5 V (logic 0)  
BIAS-1, BIAS-2 = 3.3 V (logic 1)  
Off bias (BIAS-1 = 1, BIAS-2 = 1)  
–9.6  
0.3  
Bias control pin current(1)  
µA  
1
Open-loop output impedance  
70 || 5  
MΩ || pF  
(1) Current is considered positive out of the pin.  
6.6 Electrical Characteristics: VS = 32 V  
at TA ≈ 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 100 Ω, RF = 1.24 kΩ, RADJ = 0 Ω, VCM  
open, VO = D1_OUT – D2_OUT, and full bias (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
AV = 5 V/V, RF = 1.5 kΩ, VO = 2 VPP  
AV = 10 V/V, RF = 1.24 kΩ, VO = 2 VPP  
285  
205  
13  
SSBW  
Small-signal bandwidth, –3 dB  
MHz  
0.1-dB bandwidth flatness  
Large-signal bandwidth  
Slew rate (20% to 80% level)  
Rise and fall time  
MHz  
MHz  
V/µs  
ns  
LSBW  
SR  
VO = 40 VPP  
170  
11,000  
2
VO = 40-V step  
VO = 2 VPP  
Full bias, f = 1 MHz  
–86  
–79  
–71  
–63  
–101  
–88  
–80  
–65  
2.5  
AV = 10 V/V,  
Low bias, f = 1 MHz  
HD2  
HD3  
2nd-order harmonic distortion  
VO = 2 VPP  
,
dBc  
dBc  
Full bias, f = 10 MHz  
Low bias, f = 10 MHz  
Full bias, f = 1 MHz  
Low bias, f = 1 MHz  
Full bias, f = 10 MHz  
Low bias, f = 10 MHz  
RL = 100 Ω  
AV = 10 V/V,  
3rd-order harmonic distortion  
Differential input voltage noise  
VO = 2 VPP  
,
RL = 100 Ω  
en  
f ≥ 1 MHz, input-referred  
f ≥ 1 MHz  
nV/√Hz  
pA/√Hz  
Noninverting input current noise (each  
amplifier)  
in+  
1.7  
18  
Inverting input current noise (each  
amplifier)  
in-  
f ≥ 1 MHz  
pA/√Hz  
DC PERFORMANCE  
ZOL Open-loop transimpedance gain  
1500  
±12  
–40  
±0.5  
±1  
kΩ  
mV  
µV/°C  
mV  
µA  
Input offset voltage  
Input offset voltage drift  
TA = –40°C to +85°C  
Amplifier A to B  
Input offset voltage matching  
Noninverting input bias current  
Inverting input bias current  
Inverting input bias current matching  
±6  
µA  
±8  
µA  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.6 Electrical Characteristics: VS = 32 V (continued)  
at TA ≈ 25°C, differential closed-loop gain (AV) = 10 V/V, differential load (RL) = 100 Ω, RF = 1.24 kΩ, RADJ = 0 Ω, VCM  
open, VO = D1_OUT – D2_OUT, and full bias (unless otherwise noted)  
=
PARAMETER  
INPUT CHARACTERISTICS  
Common-mode input range  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Each input  
±11  
53  
±12  
65  
V
dB  
CMRR  
Common-mode rejection ratio  
Noninverting input resistance  
Inverting input resistance  
Each input  
10 || 2  
38  
kΩ || pF  
Ω
COMMON-MODE BUFFER CHARACTERISTICS  
Voltage at VCM with respect to  
midsupply  
VCM-OS Common-mode offset voltage  
±3.9  
mV  
With and without 100-nF VCM noise-  
decoupling capacitor, f ≥ 50 kHz  
Common-mode voltage noise  
21  
nV/√Hz  
Ω
Common-mode output resistance  
f = DC  
520  
OUTPUT CHARACTERISTICS  
RL = 100 Ω  
RL = 25 Ω  
±28.5  
±16.3  
VO  
Output voltage swing(1)  
V
Output current (sourcing and sinking)  
IO  
RL = 25 Ω, based on VO specification  
±580  
±665  
mA  
(1)  
Short-circuit output current  
Output impedance  
1
A
ZO  
f = 1 MHz, differential  
0.01  
Ω
POWER SUPPLY  
8
8
12  
32  
V
32  
VS Operating voltage  
TA = –40°C to +85°C  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Mid bias (BIAS-1 = 1, BIAS-2 = 0)  
Low bias (BIAS-1 = 0, BIAS-2 = 1)  
Bias off (BIAS-1 = 1, BIAS-2 = 1)  
Full bias (BIAS-1 = 0, BIAS-2 = 0)  
Differential  
23  
17.7  
12.2  
1.5  
22  
IS+  
Quiescent current  
mA  
1.8  
16.7  
11.2  
0.5  
1
IS–  
Quiescent current  
mA  
0.8  
mA  
dB  
dB  
Current through GND pin  
+PSRR Positive power-supply rejection ratio  
83  
–PSRR Negative power-supply rejection ratio Differential  
77  
BIAS CONTROL  
With respect to DGND,  
TA = –40°C to +85°C  
Bias control pin range  
0
3.3  
16.5  
V
V
Logic 1, with respect to DGND,  
TA = –40°C to +85°C  
1.9  
Bias control pin logic threshold  
Logic 0, with respect to DGND,  
TA = –40°C to +85°C  
0.8  
1
BIAS-1, BIAS-2 = 0.5 V (logic 0)  
BIAS-1, BIAS-2 = 3.3 V (logic 1)  
–15  
–10  
0.1  
Bias control pin current(2)  
µA  
(1) See Output Voltage and Current Drive and Figure 6-51 for output voltage vs output current characteristics.  
(2) Current is considered positive out of the pin.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.7 Timing Requirements  
MIN  
NOM  
25  
MAX UNIT  
tON  
Turnon time delay: time for output to start tracking the input  
Turnoff time delay: time for output to stop tracking the input  
ns  
ns  
tOFF  
275  
6.8 Typical Characteristics: VS = 12 V  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
3
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
AV = 5 V/V, RF = 1.5 kW  
AV = 10 V/V, RF = 1.24 kW  
AV = 15 V/V, RF = 1 kW  
AV = 20 V/V, RF = 850 W  
-12  
-12  
AV = 10 V/V, RF = 1.24 kW  
AV = 15 V/V, RF = 1 kW  
-15  
-15  
10M  
100M  
Frequency (Hz)  
1G  
10M  
100M  
Frequency (Hz)  
D001  
D040  
VO = 2 VPP  
VO = 16 VPP  
Figure 6-1. Small-Signal Frequency Response  
Figure 6-2. Large-Signal Frequency Response  
-40  
27  
Band0  
Band1  
Band2  
Band3  
TA = -40èC  
-45  
-50  
TA = 25èC  
24  
TA = 85èC  
-55  
-60  
-65  
-70  
21  
18  
15  
12  
9
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
6
10M  
100M  
Frequency (Hz)  
1G  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
D005  
D030  
AV = 15 V/V, VO = 2 VPP  
SGCC HPLC profiles, crest factor = 5 V/V, see the Broadband  
PLC Line Driving section for more details.  
Figure 6-4. Small-Signal Frequency Response vs Temperature  
Figure 6-3. Out-of-Band Suppression  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
26  
23  
20  
17  
14  
11  
8
27  
24  
21  
18  
15  
12  
9
RF = 100 W  
RF = 250 W  
RF = 500 W  
RF = 700 W  
RF = 1000 W  
RF = 250 W  
RF = 500 W  
RF = 909 W  
RF = 1240 W  
5
10M  
100M  
Frequency (Hz)  
1G  
10M  
100M  
Frequency (Hz)  
1G  
D039  
D004  
AV = 10 V/V, VO = 2 VPP  
AV = 15 V/V, VO = 2 VPP  
Figure 6-5. Small-Signal Frequency Response vs RF  
Figure 6-6. Small-Signal Frequency Response vs RF  
20.5  
20.4  
20.3  
20.2  
20.1  
20  
24.1  
24  
23.9  
23.8  
23.7  
23.6  
23.5  
23.4  
19.9  
19.8  
RF = 100 W  
23.3  
RF = 250 W  
RF = 250 W  
19.7  
RF = 500 W  
23.2  
23.1  
23  
RF = 500 W  
RF = 700 W  
RF = 1000 W  
RF = 909 W  
RF = 1240 W  
19.6  
19.5  
10M  
100M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
1G  
D041  
D042  
AV = 10 V/V, VO = 2 VPP  
AV = 15 V/V, VO = 2 VPP  
Figure 6-7. Small-Signal Gain Flatness vs RF  
Figure 6-8. Small-Signal Gain Flatness vs RF  
0.8  
3
AV = 10 V/V,  
F = 1.24 kW  
AV = 15 V/V,  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
0
-3  
-6  
RF = 1 kW  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-9  
CL = 22 pF, RS = 0 W  
CL = 33 pF, RS = 0 W  
CL = 47 pF, RS = 2 W  
CL = 100 pF, RS = 5 W  
CL = 100 pF, RS = 5 W  
-12  
-15  
10M  
100M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
D006  
D043  
VO = 100 mVPP  
VO = 16 VPP  
Frequency response is measured at the device output pin  
before the isolation resistor.  
Figure 6-9. Large-Signal Gain Flatness  
Figure 6-10. Small-Signal Frequency Response vs CLOAD  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
23  
20  
17  
14  
11  
8
25  
22  
19  
16  
13  
10  
VO = 2 VPP  
VO = 5 VPP  
VO = 10 VPP  
VO = 16 VPP  
VO = 2 VPP  
VO = 5 VPP  
VO = 10 VPP  
VO = 16 VPP  
5
10M  
100M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
D007  
D008  
AV = 10 V/V  
AV = 15 V/V  
Figure 6-11. Large-Signal Frequency Response vs VO  
Figure 6-12. Large-Signal Frequency Response vs VO  
21  
25  
Full-bias  
Mid-bias  
Low-bias  
Full-bias  
Mid-bias  
Low-bias  
22  
18  
15  
12  
9
19  
16  
13  
10  
10M  
100M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
D003  
D002  
AV = 15 V/V, VO = 2 VPP  
AV = 10 V/V, VO = 2 VPP  
Figure 6-14. Small-Signal Frequency Response vs Bias Modes  
Figure 6-13. Small-Signal Frequency Response vs Bias Modes  
26  
100  
10  
1
100  
10  
1
Full-bias  
Mid-bias  
Low-bias  
en  
in+  
in-  
23  
20  
17  
14  
11  
8
5
10M  
100M  
Frequency (Hz)  
1G  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D047  
D018  
AV = 15 V/V, VO = 16 VPP  
.
Figure 6-15. Large-Signal Frequency Response vs Bias Modes  
Figure 6-16. Input Voltage and Current Noise Density vs  
Frequency  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-75  
-77  
-79  
-81  
-83  
-85  
-87  
-89  
-91  
-93  
-95  
HD2, RL = 50W  
HD3, RL = 50W  
HD2, RL = 100W  
HD3, RL = 100W  
HD2  
HD3  
1M  
10M  
Frequency (Hz)  
100M  
5
10  
Gain (V/V)  
20  
D009  
D014  
VO = 2 VPP  
f = 1 MHz, VO = 2 VPP  
Figure 6-17. Harmonic Distortion vs Frequency  
Figure 6-18. Harmonic Distortion vs Gain  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
HD2  
HD3  
HD2  
HD3  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.5  
1
10  
20  
0.5  
1
10  
20  
Output Voltage (VPP  
)
Output Voltage (VPP)  
D010  
D011  
f = 1 MHz, AV = 10 V/V  
Figure 6-19. Harmonic Distortion vs VO  
f = 10 MHz, AV = 10 V/V  
Figure 6-20. Harmonic Distortion vs VO  
-60  
-65  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD2  
HD3  
HD2  
HD3  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
10  
100  
Load Resistance, RL (W)  
300  
10  
100  
Load Resistance, RL (W)  
300  
D012  
D013  
f = 1 MHz, VO = 2 VPP, AV = 10 V/V  
f = 10 MHz, VO = 2 VPP, AV = 10 V/V  
Figure 6-21. Harmonic Distortion vs RL  
Figure 6-22. Harmonic Distortion vs RL  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
15  
12.5  
10  
VIN ì 10 gain  
VO (AV = 10)  
IMD2  
IMD3  
7.5  
5
2.5  
0
-2.5  
-5  
-7.5  
-10  
-12.5  
-15  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
Time, 15 ms per division  
D015  
D023  
±12.2 kHz tone spacing, VO = 2 VPP per tone  
VIN = 2.8-VPP triangular waveform  
Figure 6-23. Intermodulation Distortion vs Frequency  
Figure 6-24. Overdrive Recovery  
1.25  
9
7
D1OUT - D2OUT  
D1OUT  
D2OUT  
D1OUT - D2OUT  
D1OUT  
D2OUT  
1
0.75  
5
0.5  
0.25  
0
3
1
-1  
-3  
-5  
-7  
-9  
-0.25  
-0.5  
-0.75  
-1  
-1.25  
Time, 25 ns per division  
Time, 25 ns per division  
D046  
D019  
VO step = 16 VPP  
VO step = 2 VPP  
Figure 6-26. Large-Signal Pulse Response  
Figure 6-25. Small-Signal Pulse Response  
130  
120  
110  
100  
90  
15  
130  
120  
110  
100  
90  
15  
ZOL  
Phase  
ZOL  
Phase  
0
0
-15  
-15  
-30  
-30  
-45  
-45  
80  
-60  
80  
-60  
70  
-75  
70  
-75  
60  
-90  
60  
-90  
50  
-105  
-120  
-135  
-150  
-165  
-180  
50  
-105  
-120  
-135  
-150  
-165  
-180  
40  
40  
30  
30  
20  
20  
10  
10  
0
0
100  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
1G  
100  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
1G  
D016  
D036  
Full-bias simulation  
Mid-bias simulation  
Figure 6-27. Open-Loop Transimpedance Gain and Phase vs  
Frequency  
Figure 6-28. Open-Loop Transimpedance Gain and Phase vs  
Frequency  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
130  
120  
110  
100  
90  
15  
1M  
100k  
10k  
1k  
ZOL  
Phase  
Full-bias  
Mid-bias  
Low-bias  
Shutdown  
0
-15  
-30  
-45  
80  
-60  
70  
-75  
60  
-90  
50  
-105  
-120  
-135  
-150  
-165  
-180  
100  
10  
40  
30  
20  
10  
0
1
100k  
100  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
1G  
1M  
10M  
Frequency (Hz)  
100M  
D037  
D017  
Low-bias simulation  
Simulation  
Figure 6-29. Open-Loop Transimpedance Gain and Phase vs  
Frequency  
Figure 6-30. Open-Loop Output Impedance vs Frequency  
25  
20  
15  
20  
Full-bias  
Mid-bias  
Low-bias  
Power-down  
18  
16  
14  
10  
ICC, TA = -40èC  
5
12  
10  
8
ICC, TA = 25èC  
ICC, TA = 85èC  
IEE, TA = -40èC  
IEE, TA = 25èC  
IEE, TA = 85èC  
0
-5  
-10  
-15  
-20  
-25  
6
4
2
0
4
8
12  
16  
Single-Supply Voltage, VS (V)  
20  
24  
28  
32  
0
0.5  
1
1.5  
2
2.5  
RADJ (kW)  
3
3.5  
4
4.5  
5
5.5  
6
D021  
D020  
RL = no load, average of 30 devices  
Average of 30 devices  
Figure 6-32. Quiescent Current vs RADJ  
Figure 6-31. Quiescent Current vs Single-Supply Voltage  
22  
20  
18  
16  
14  
12  
10  
160  
150  
140  
130  
120  
110  
100  
90  
PSRR+  
PSRR-  
CMRR  
80  
8
6
4
2
0
Full-bias  
Mid-bias  
Low-bias  
Power-down  
70  
60  
50  
40  
30  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
Ambient Temperature, TA (èC)  
D044  
D026  
RL = no load, average of 30 devices  
TJ = 50°C, simulation  
Figure 6-34. PSRR and CMRR vs Frequency  
Figure 6-33. Quiescent Current vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.8 Typical Characteristics: VS = 12 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 50 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
22  
20  
18  
16  
14  
12  
10  
8
8
7
B1, TA = -40(èC)  
B1, TA = 25(èC)  
B1, TA = 85(èC)  
B2, TA = -40(èC)  
B2, TA = 25(èC)  
B2, TA = 85(èC)  
B1, B2  
D1OUT - D2OUT  
D1OUT  
D2OUT  
6
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
1
2
3
4
5
6
7
Bias Pin Voltage (V)  
8
9
10 11 12  
Time, 25 ns per division  
D024  
D025  
B1 = full-bias to mid-bias transition with B2 = DGND, B2 = full-  
bias to low-bias transition with B1 = DGND, DGND = VS–  
.
Figure 6-36. Full-Bias and Shutdown Mode Transition Timing  
Figure 6-35. Mode Transition Voltage Threshold  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.9 Typical Characteristics: VS = 32 V  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 100 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
3
23  
20  
17  
14  
11  
8
0
-3  
-6  
-9  
AV = 5 V/V, RF = 1.5 kW  
AV = 10 V/V, RF = 1.24 kW  
AV = 15 V/V, RF = 1 kW  
AV = 20 V/V, RF = 850 W  
RF = 500 W  
RF = 909 W  
RF = 1240 W  
-12  
-15  
10M  
5
10M  
100M  
Frequency (Hz)  
1G  
100M  
Frequency (Hz)  
1G  
D100  
D101  
VO = 2 VPP  
VO = 2 VPP  
Figure 6-37. Small-Signal Frequency Response  
Figure 6-38. Small-Signal Frequency Response vs RF  
23  
26  
20  
17  
14  
23  
20  
17  
11  
14  
VO = 2 VPP  
VO = 2 VPP  
VO = 10 VPP  
VO = 20 VPP  
VO = 40 VPP  
VO = 5 VPP  
VO = 10 VPP  
VO = 16 VPP  
8
11  
5
10M  
8
10M  
100M  
Frequency (Hz)  
1G  
100M  
Frequency (Hz)  
1G  
D103  
D104  
AV = 10 V/V  
AV = 15 V/V  
Figure 6-39. Large-Signal Frequency Response vs VO  
Figure 6-40. Large-Signal Frequency Response vs VO  
23  
-30  
Full-bias  
Mid-bias  
Low-bias  
IMD2  
IMD3  
-35  
-40  
20  
17  
14  
11  
8
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
5
10M  
100M  
Frequency (Hz)  
1G  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
D121  
D111  
VO = 40 VPP  
.
Figure 6-41. Large-Signal Frequency Response vs Bias Modes  
Figure 6-42. Intermodulation Distortion vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: THS6222  
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.9 Typical Characteristics: VS = 32 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 100 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-75  
-77  
-79  
-81  
-83  
-85  
-87  
-89  
-91  
-93  
-95  
HD2, RL = 50W  
HD3, RL = 50W  
HD2, RL = 100W  
HD3, RL = 100W  
HD2  
HD3  
1M  
10M  
Frequency (Hz)  
100M  
5
10  
Gain (V/V)  
20  
D105  
D110  
VO = 2 VPP  
f = 1 MHz, VO = 2 VPP RL = 50 Ω  
Figure 6-43. Harmonic Distortion vs Frequency  
Figure 6-44. Harmonic Distortion vs Gain  
-75  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
HD2  
HD3  
HD2  
HD3  
-80  
-85  
-90  
-95  
-100  
0.5  
1
10  
20  
0.5  
1
10  
20  
Output Voltage (VPP  
)
Output Voltage (VPP)  
D106  
D107  
f = 1 MHz, RL = 50 Ω  
Figure 6-45. Harmonic Distortion vs VO  
f = 10 MHz, RL = 50 Ω  
Figure 6-46. Harmonic Distortion vs VO  
-60  
-65  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD2  
HD3  
HD2  
HD3  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
10  
100  
Load Resistance, RL (W)  
300  
10  
100  
Load Resistance, RL (W)  
300  
D108  
D109  
f = 1 MHz, VO = 2 VPP  
f = 10 MHz, VO = 2 VPP  
Figure 6-47. Harmonic Distortion vs RL  
Figure 6-48. Harmonic Distortion vs RL  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: THS6222  
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
6.9 Typical Characteristics: VS = 32 V (continued)  
At TA ≈ 25°C, AV = 10 V/V, RF = 1.24 kΩ, RL = 100 Ω, RS = 2.5 Ω, RADJ = 0 Ω, full-bias mode, and VCM = open (unless  
otherwise noted).  
1.25  
1
25  
20  
15  
10  
5
D1OUT - D2OUT  
D1OUT  
D2OUT  
D1OUT - D2OUT  
D1OUT  
D2OUT  
0.75  
0.5  
0.25  
0
0
-5  
-0.25  
-0.5  
-0.75  
-1  
-10  
-15  
-20  
-25  
-1.25  
Time, 25 ns per division  
Time, 25 ns per division  
D122  
D114  
VO step = 40 VPP  
VO step = 2 VPP  
Figure 6-50. Large-Signal Pulse Response  
Figure 6-49. Small-Signal Pulse Response  
16  
24  
Full-bias  
Mid-bias  
Low-bias  
Power-down  
14  
12  
10  
8
6
4
2
0
-2  
-4  
22  
20  
18  
16  
14  
12  
10  
8
Sourcing, TA  
Sourcing, TA = 25  
Sourcing, TA = 85  
= -40èC  
è
C
èC  
Sinking, TA  
Sinking, TA = 25  
Sinking, TA = 85  
= -40èC  
è
C
èC  
-6  
-8  
6
-10  
-12  
-14  
-16  
4
2
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
0
0.5  
1
1.5  
2
2.5  
RADJ (kW)  
3
3.5  
4
4.5  
5
5.5  
6
D117  
D115  
Average of 30 devices  
Average of 30 devices  
Output voltage is slammed and IO is pulsed to maintain TJ as  
close to TA as possible.  
Figure 6-52. Quiescent Current vs RADJ  
Figure 6-51. Single-Ended Output Voltage vs IO and  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: THS6222  
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
7 Detailed Description  
7.1 Overview  
The THS6222 is a differential line-driver amplifier with a current-feedback architecture. The device is targeted for  
use in line-driver applications such as narrow-band and broadband power-line communications (PLC) that are  
often found in smart metering and home networking applications.  
The THS6222 is designed as a single-port differential line driver solution that can be a drop-in replacement for  
the THS6212. The integrated common-mode buffer featured in the THS6222 reduces the number of external  
components required for level shifting the input common-mode voltage in PLC applications that are often ac  
coupled, resulting in space savings on the circuit board and reducing the overall system cost. The THS6222  
uses an architecture that does not allow using the two current-feedback amplifiers, D1 and D2, independently;  
therefore, these amplifiers must always be driven differentially.  
The architecture of the THS6222 is designed to provide maximum flexibility with adjustable power modes that  
are selectable based on application performance requirements, and also provides an external current  
adjustment pin (IADJ) to further optimize the quiescent power of the device. The wide output swing (18.6 VPP  
)
into 50-Ω differential loads with 12-V power supplies and high current drive of the THS6222 make the device  
ideally suited for high-power, line-driving applications. By using 32-V power supplies and with good thermal  
design that keep the device within the safe operating temperature, the THS6222 is capable of swinging 57 VPP  
into 100-Ω loads.  
7.2 Functional Block Diagram  
THS6222  
BIAS  
2
BIAS  
1
IADJ  
VS+  
D1  
Bias Current Control  
D1  
IN+  
+
D1  
OUT  
VS+  
œ
5 k  
CM  
D1  
INt  
Buffer  
520 ꢀ  
5 kꢀ  
Thermal  
Protection  
VCM  
D2  
INt  
œ
D2  
OUT  
VSœ  
D2  
D2  
IN+  
+
D
GND  
VSt  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
7.3 Feature Description  
7.3.1 Common-Mode Buffer  
The THS6222 is a differential line driver that features an integrated common-mode buffer. Most common line  
driving applications for the THS6222 are ac-coupled applications; see Figure 8-2. Therefore, the inputs must be  
common-mode shifted to ensure the input signals are within the common-mode specifications of the device. To  
maximize the dynamic range, the common-mode voltage is shifted to midsupply in most ac-coupled applications.  
With the integrated common-mode buffer, no external components are required to shift the input common-mode  
voltage. Often, engineers choose to connect a noise-decoupling capacitor to the VCM pin. However, as shown in  
Figure 7-1, assuming the circuit is reasonably shielded from external noise sources, no difference in common-  
mode noise is observed with the 100 nF capacitor or without the capacitor.  
300  
VS = 12 V, no VCM capacitor  
VS = 12 V, 100-nF VCM capacitor  
VS = 32 V, no VCM capacitor  
VS = 32 V, 100-nF VCM capacitor  
100  
10  
1k  
10k  
100k  
Frequency (Hz)  
1M  
D052  
Figure 7-1. Common-Mode Voltage Noise Density vs Frequency  
There are ESD protection diodes in series directly at the output of the common-mode buffer between the internal  
520 Ω resistor and the common-mode buffer output. These diodes are referenced to midsupply. Any voltage that  
is 1.4 V above or below the midsupply applied to the VCM pin forward biases the protection diodes. This biasing  
results in either current flowing into or out of the VCM pin. The current is limited by the 520 Ω resistor in series,  
but to prevent permanent damage to the device, the current must be limited to the current specifications in the  
Absolute Maximum Ratings table.  
7.3.2 Thermal Protection and Package Power Dissipation  
The THS6222 is designed with thermal protection that automatically puts the device in shutdown mode when the  
junction temperature reaches approximately 175°C. In this mode, the device behavior is the same as if the bias  
pins are used to power-down the device. The device resumes normal operation when the junction temperature  
reaches approximately 145°C. In general, the thermal shutdown condition must be avoided. If and when the  
thermal protection triggers, thermal cycling occurs where the device repeatedly goes in and out of thermal  
shutdown until the junction temperature stabilizes to a value that prevents thermal shutdown.  
A common technique to calculate the maximum power dissipation that a device can withstand is by using the  
junction-to-ambient thermal resistance (R θJA), provided in the Thermal Information table. Using the equation  
power dissipation = (junction temperature, TJ – ambient temperature, TA) / RθJA, the amount of power a package  
can dissipate can be estimated. Figure 7-2 illustrates the package power dissipation based on this equation to  
reach junction temperatures of 125°C and 150°C at various ambient temperatures. The RθJA value is determined  
using industry standard JEDEC specifications and allows ease of comparing various packages. Power greater  
than that in Figure 7-2 can be dissipated in a package by good printed circuit board (PCB) thermal design, using  
heat sinks, and or active cooling techniques. See the Thermal Design By Insight, Not Hindsight application report  
for an in-depth discussion on thermal design.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: THS6222  
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
4.5  
4.25  
4
TJ = 125èC  
TJ = 150èC  
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Ambient Temperature (èC)  
SBOS  
Figure 7-2. Package Power Dissipation vs Ambient Temperature  
7.3.3 Output Voltage and Current Drive  
The THS6222 provides output voltage and current capabilities that are unsurpassed in a low-cost, monolithic op  
amp. Under no load at room temperature, the output voltage typically swings closer than 1.1 V to either supply  
rail and typically swings to within 1.1 V of either supply with a 100 Ω differential load. The THS6222 can deliver  
over 350 mA of current with a 25 Ω load.  
Good thermal design of the system is important, including use of heat sinks and active cooling methods, if the  
THS6222 is pushed to the limits of its output drive capabilities. Figure 7-3 and Figure 7-4 show the output drive  
of the THS6222 under two different sets of conditions where T A is approximately equal to T J. In practical  
applications, T J is often much higher than T A and is highly dependent on the device configuration, signal  
parameters, and PCB thermal design. In order to represent the full output drive capability of the THS6222 in  
Figure 7-3 and Figure 7-4, TJ ≈ TA is achieved by pulsing or sweeping the output current for a duration of less  
than 100 ms.  
6
5
1
0.8  
0.6  
0.4  
0.2  
0
Full-bias  
Mid-bias  
Low-bias  
4
3
2
Sourcing, TA = -40èC  
Sourcing, TA = 25èC  
Sourcing, TA = 85èC  
Sinking, TA = -40èC  
Sinking, TA = 25èC  
Sinking, TA = 85èC  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-700 -500 -300 -100 100  
300  
Output Current (mA)  
500  
700  
900  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
D045  
D022  
VS = 12 V, TJ ≈ TA ≈ 25°C  
V
S = 12 V, TJ ≈ TA  
Figure 7-4. Linear Single-Ended Output Voltage vs  
IO and Temperature  
Figure 7-3. Slammed Single-Ended Output Voltage  
vs IO and Temperature  
In Figure 7-3, the output voltages are differentially slammed to the rail and the output current is single-endedly  
sourced or sunk using a source measure unit (SMU) for less than 100 ms. The single-ended output voltage of  
each output is then measured prior to removing the load current. After removing the load current, the outputs are  
brought back to mid-supply before repeating the measurement for different load currents. This entire process is  
repeated for each ambient temperature. Under the slammed output voltage condition of Figure 7-3, the output  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
transistors are in saturation and the transistors start going into linear operation as the output swing is backed off  
for a given IO,  
In Figure 7-4, the inputs are floated and the output voltages are allowed to settle to the mid-supply voltage. The  
load current is then single-endedly swept for sourcing (greater than 0 mA) and sinking (less than 0 mA)  
conditions and the single-ended output voltage is measured at each current-forcing condition. The current sweep  
is completed in a few seconds (approximately 3 to 4 seconds) so as not to significantly raise the junction  
temperature (TJ) of the device from the ambient temperature (TA). The output is not swinging and the output  
transistors are in linear operation in Figure 7-4 until the current drawn exceeds the device capabilities, at which  
point the output voltage starts to deviate quickly from the no load output voltage.  
To maintain maximum output stage linearity, output short-circuit protection is not provided. This absence of short-  
circuit protection is normally not a problem because most applications include a series-matching resistor at the  
output that limits the internal power dissipation if the output side of this resistor is shorted to ground. However,  
shorting the output pin directly to the adjacent positive power-supply pin, in most cases, permanently damages  
the amplifier.  
7.3.4 Breakdown Supply Voltage  
To estimate the margin beyond the maximum supply voltage specified in the Absolute Maximum Ratings table  
and exercise the robustness of the device, several typical units were tested beyond the specifications in the  
Absolute Maximum Ratings table. Figure 7-5 shows the configuration used for the test. The supply voltage, VS,  
was swept manually and quiescent current was recorded at each 0.5-V supply voltage increment. Figure 7-6  
shows the results of the single-supply voltage where the typical units started breaking. Under a similar  
configuration as the one shown in Figure 7-5, a unit was subjected to VS = 42 V for 168 hours and tested for  
quiescent current at the beginning and at the end of the test. There was no notable difference in the quiescent  
current before and after the 168 hours of testing and the device did not show any signs of damage or  
abnormality.  
The primary objective of these tests was to estimate the margins of robustness for typical devices and does not  
imply performance or maximum limits beyond those specified in the Abolute Maximum Ratings and  
Recommended Operating Conditions tables.  
VS  
THS6222  
BIAS  
2
BIAS  
1
IADJ  
VS+  
Bias Current Control  
D1  
IN+  
+
D1  
VS+  
OUT  
œ
RF1  
1.25 k  
5 kꢀ  
CM  
Buffer  
D1  
INt  
520 ꢀ  
5 kꢀ  
Thermal  
Protection  
RG  
274 ꢀ  
Open  
VCM  
Open  
D2  
INt  
RF2  
1.25 kꢀ  
œ
D2  
OUT  
VSœ  
D2  
IN+  
+
D
GND  
VSt  
Figure 7-5. Breakdown Supply Voltage Test Configuration  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
45  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
40  
35  
30  
25  
20  
15  
10  
5
0
D038  
Single-Supply Voltage (V)  
Figure 7-6. Typical Device Breakdown Supply Voltage (TA = 27°C)  
7.3.5 Surge Test Results  
Line drivers such as the THS6222 often directly interface with power lines through a transformer and various  
protection components in high-speed power line communications (HPLC) smart-meters and digital subscriber  
line (DSL) applications. Surge testing is an important requirement for such applications. To validate the  
performance and surge survivability of the THS6222, the THS6222 circuit configuration shown in Figure 7-7 was  
subjected to a ±4 kV common-mode surge and a ±2 kV differential-mode surge. The common-mode and  
differential-mode surge voltages were applied at VCM and VDIFF, respectively, in Figure 7-7. The 1.2/50 µs surge  
profile was used per the IEC 61000-4-5 test with REQ = 42 Ω as explained in the TI's IEC 61000-4-x Tests and  
Procedures application report. Five devices were tested in full-bias and shutdown modes, and were subjected to  
the surge five times for each polarity. No device showed any discernable change in quiescent current after being  
subjected to the surge test, and the out-of-band suppression tests did not show any performance deterioration  
either, as shown in Figure 7-8 through Figure 7-11 for the state grid corporation of China (SGCC) HPLC bands.  
Full-bias /  
Shutdown  
+12 V  
THS6222  
BIAS  
2
BIAS  
1
IADJ  
VS+  
+12 V  
AV  
=
Bias Current Control  
100 nF  
RS1  
10 V/V  
D1  
IN+  
100 nF  
2.49  
+
D1  
VS+  
OUT  
œ
RF1  
1:1  
RT1  
5 kꢀ  
CM  
Buffer  
1.24 kꢀ  
VCM  
49.9 ꢀ  
D1  
INt  
520 ꢀ  
5 kꢀ  
Thermal  
Protection  
RG  
VCM  
TVS  
Varistor  
VDIFF  
274 ꢀ  
+12 V  
D2  
INt  
VCM  
RT2  
RF2  
49.9 ꢀ  
1.24 kꢀ  
œ
D2  
OUT  
VSœ  
D2  
IN+  
+
RS2  
2.49 ꢀ  
100 nF  
100 nF  
D
GND  
VSt  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
Full-bias /  
Shutdown  
+12 V  
SC00059  
BIAS  
2
BIAS  
1
IADJ  
VS+  
+12 V  
AV  
=
Bias Current Control  
100 nF  
RS1  
10 V/V  
D1  
IN+  
100 nF  
2.49  
+
D1  
OUT  
VS+  
œ
RF1  
1:1  
RT1  
5 kꢀ  
CM  
Buffer  
1.24 kꢀ  
VCM  
49.9 ꢀ  
D1  
INt  
520 ꢀ  
5 kꢀ  
Thermal  
Protection  
RG  
VCM  
TVS  
Varistor  
VDIFF  
274 ꢀ  
+12 V  
D2  
INt  
VCM  
RT2  
RF2  
49.9 ꢀ  
1.24 kꢀ  
œ
D2  
OUT  
VSœ  
D2  
IN+  
+
RS2  
2.49 ꢀ  
100 nF  
100 nF  
D
GND  
VSt  
Figure 7-7. Surge Test Configuration  
-45  
-50  
-40  
Pre-surge  
Post-surge  
Pre-surge  
Post-surge  
-45  
-50  
-55  
-55  
-60  
-60  
-65  
-65  
-70  
-70  
-75  
-80  
-85  
-90  
-75  
-80  
-85  
-95  
-90  
-100  
-105  
-110  
-115  
-120  
-95  
-100  
-105  
-110  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
D048  
D049  
Figure 7-8. China SGCC HPLC Band0 Pre-Surge  
and Post-Surge  
Figure 7-9. China SGCC HPLC Band1 Pre-Surge  
and Post-Surge  
-40  
-40  
Pre-surge  
Post-surge  
Pre-surge  
Post-surge  
-45  
-50  
-45  
-50  
-55  
-60  
-55  
-60  
-65  
-70  
-65  
-70  
-75  
-80  
-75  
-80  
-85  
-90  
-85  
-90  
-95  
-95  
-100  
-105  
-110  
-115  
-120  
-100  
-105  
-110  
-115  
-120  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
D050  
D051  
Figure 7-10. China SGCC HPLC Band2 Pre-Surge  
and Post-Surge  
Figure 7-11. China SGCC HPLC Band3 Pre-Surge  
and Post-Surge  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
7.4 Device Functional Modes  
The THS6222 has four different functional modes set by the BIAS-1 and BIAS-2 pins. Table 7-1 shows the truth  
table for the device mode pin configuration and the associated description of each mode.  
Table 7-1. BIAS-1 and BIAS-2 Logic Table  
BIAS-1  
BIAS-2  
FUNCTION  
DESCRIPTION  
0
1
0
0
Full-bias mode (100%)  
Mid-bias mode (75%)  
Amplifiers on with lowest distortion possible  
Amplifiers on with power savings and a reduction in distortion performance  
Amplifiers on with enhanced power savings and a reduction of overall  
performance  
0
1
1
1
Low-bias mode (50%)  
Shutdown mode  
Amplifiers off and output is high impedance  
If the PLC application requires switching the line driver between all four power modes and if the PLC application-  
specific integrated circuit (ASIC) has two control bits, then the two control bits can be connected to the bias pins  
BIAS-1 and BIAS-2 for switching between any of the four power modes. However, most PLC applications only  
require the line driver to switch between one of the three active power modes and the shutdown mode. This type  
of 1-bit power mode control is illustrated in Figure 8-1, where the line driver can be switched between the full-  
bias and shutdown modes using just one control bit from the PLC ASIC. If switching between the mid-bias or  
low-bias modes and the shutdown mode is required for the application, then either the BIAS-1 or BIAS-2 pin can  
be connected to ground and the control pin from the PLC ASIC can be connected to the non-grounded BIAS pin.  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The THS6222 is typically used for high output power line-driving applications with various load conditions, as is  
often the case in power line communications (PLC) applications. In the Typical Applications section, the amplifier  
is presented in a typical, broadband, current-feedback configuration driving a 50 Ω line load. However, the  
amplifier is also applicable for many different general-purpose and specific line-driving applications beyond what  
is shown in the Typical Applications section.  
8.2 Typical Applications  
8.2.1 Broadband PLC Line Driving  
The THS6222 provides the exceptional ac performance of a wideband current-feedback op amp with a highly  
linear, high-power output stage. The low output headroom requirement and high output current drive capability  
makes the THS6222 an excellent choice for 12 V PLC applications. The primary advantage of a current-  
feedback op amp such as the THS6222 over a voltage-feedback op amp is that the ac performance (bandwidth  
and distortion) is relatively independent of signal gain. Figure 8-1 shows a typical ac-coupled broadband PLC  
application circuit where a current-output digital-to-analog converter (DAC) of the PLC application-specific  
integrated circuit (ASIC) drives the inputs of the THS6222. Though Figure 8-1 shows the THS6222 interfacing  
with a current-output DAC, the THS6222 can just as easily be interfaced with a voltage-output DAC by using  
much larger terminating resistors, RT1 and RT2.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
 
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
1-bit power mode control  
Full-bias / shutdown  
+12 V  
THS6222  
BIAS  
2
BIAS  
1
IADJ  
VS+  
+12 V  
PLC ASIC  
AV =  
10 V/V  
Bias Current Control  
100 nF  
RS1  
2.49  
D1  
IN+  
100 nF  
+
D1  
OUT  
VS+  
œ
RF1  
1.24 kꢀ  
1:1  
RT1  
249 ꢀ  
5 kꢀ  
CM  
Buffer  
D1  
INt  
520 ꢀ  
5 kꢀ  
Optional  
Thermal  
Protection  
RG  
274 ꢀ  
50 ꢀ  
Power Line  
RL  
50 ꢀ  
VCM  
DAC f  
100 nF  
+12 V  
D2  
INt  
RT2  
249 ꢀ  
RF2  
1.24 kꢀ  
œ
D2  
OUT  
VSœ  
D2  
IN+  
+
RS2  
2.49 ꢀ  
100 nF  
100 nF  
D
GND  
VSt  
Figure 8-1. Typical Broadband PLC Configuration  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: THS6222  
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
8.2.1.1 Design Requirements  
The main design requirements for an ac-coupled wideband current-feedback operation are to choose power  
supplies that satisfy the output voltage requirement, and also to use a feedback resistor value that allows for the  
proper bandwidth while maintaining stability. Use the design requirements shown in Table 8-1 to design a  
broadband PLC application circuit.  
Table 8-1. Design Requirements  
DESIGN PARAMETER  
Power supply  
VALUE  
12 V, single-supply  
Differential gain, AV  
10 V/V  
Spectrum profile  
China SGCC HPLC band0, band1, band2, and band3  
In-band power spectral density  
Minimum out-of-band suppression  
–50 dBm/Hz  
35 dB  
8.2.1.2 Detailed Design Procedure  
The closed-loop gain equation for a differential line driver such as the THS6222 is given as AV = 1 + 2 × (RF /  
RG), where RF = RF1 = RF2. The THS6222 is a current-feedback amplifier and thus the bandwidth of the closed-  
loop configuration is set by the value of the RF resistor. This advantage of the current-feedback architecture  
allows for flexibility in setting the differential gain by choosing the value of the RG resistor without reducing the  
bandwidth as is the case with voltage-feedback amplifiers. The THS6222 is designed to provide optimal  
bandwidth performance with RF1 = RF2 = 1.24 kΩ. To configure the device in a gain of 10 V/V, the RG resistor is  
chosen to be 274 Ω. See the TI Precision Labs for more details on how to choose the RF resistor to optimize the  
performance of a current-feedback amplifier.  
Often, a key requirement for PLC applications is the out-of-band suppression specifications. The in-band  
frequencies carry the encoded data with a certain power level. The line driver must not generate any spurs  
beyond a certain power level outside the in-band spectrum. In the design requirements of this application  
example, the minimum out-of-band suppression specification of 35 dB means there must be no frequency spurs  
in the out-of-band spectrum beyond the –80 dBm/Hz power spectral density, considering the in-band power  
spectral density is –50 dBm/Hz.  
The circuit shown in Figure 8-2 measures the out-of-band suppression specification. The minor difference in  
components between the circuits of Figure 8-1 and Figure 8-2 does not have any significant impact on the out-  
of-band suppression results.  
+6 V  
THS6222  
BIAS  
2
BIAS  
1
IADJ  
VS+  
AV =  
10 V/V  
Bias Current Control  
100 nF  
RS1  
2.49  
D1  
IN+  
+
D1  
VS+  
OUT  
œ
RF1  
1.24 kꢀ  
5 kꢀ  
1:1  
CM  
Buffer  
Atten-  
uation  
100 nF  
100 nF  
D1  
INt  
Power  
Spectrum  
Analyzer  
Arbitrary  
Waveform  
Generator  
520 ꢀ  
5 kꢀ  
Thermal  
Protection  
RG  
274 ꢀ  
VCM  
Open  
D2  
INt  
RF2  
1.24 kꢀ  
œ
D2  
OUT  
VSœ  
D2  
IN+  
+
RS2  
2.49 ꢀ  
100 nF  
D
GND  
VSt  
œ6 V  
Figure 8-2. Measurement Test Circuit for Out-of-Band Suppression  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
8.2.1.3 Application Curve  
Figure 8-3 shows the out-of-band suppression measurement results of the circuit. Out-of-band suppression is a  
good indicator of the linearity performance of the device. The results in Figure 8-3 show over 40 dB of out-of-  
band suppression, which is well beyond the 35 dB requirement and indicative of the excellent linearity  
performance of the THS6222.  
-40  
Band0  
Band1  
Band2  
Band3  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Frequency (MHz)  
D030  
Figure 8-3. Out-of-Band Suppression  
8.3 What to Do and What Not to Do  
8.3.1 Do  
Include a thermal design at the beginning of the project.  
Use well-terminated transmission lines for all signals.  
Use solid metal layers for the power supplies.  
Keep signal lines as straight as possible.  
Keep the traces carrying differential signals of the same length.  
8.3.2 Do Not  
Do not use a lower supply voltage than necessary.  
Do not use thin metal traces to supply power.  
Do not treat the D1 and D2 amplifiers as independent single-ended amplifiers.  
9 Power Supply Recommendations  
The THS6222 supports single-supply and split-supply power supplies, and balanced and unbalanced bipolar  
supplies. The device has a wide supply range of 8 V (–3 V to +5 V) to 32 V (±16 V). Choose power-supply  
voltages that allow for adequate swing on both the inputs and outputs of the amplifier to prevent affecting device  
performance. Operating from a single supply can have numerous advantages. With the negative supply at  
ground, the errors resulting from the –PSRR term can be minimized. The DGND pin provides the ground  
reference for the bias control pins. For applications that use split bipolar supplies, care must be taken to design  
within the DGND voltage specifications and must be within VS– to (VS+ – 5 V); the DGND pin must be a minimum  
bias of 5 V. Thus, the minimum positive supply that can be used in split-supply applications is VS+ = 5 V. The  
negative supply, V S–, can then be set to a voltage anywhere in between –3 V and –27 V, as per the  
Recommended Operating Conditions specifications.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: THS6222  
 
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the THS6222 requires careful attention  
to board layout parasitic and external component types. The THS6222RHFEVM can be used as a reference  
when designing the circuit board. Recommendations that optimize performance include:  
1. Minimize parasitic capacitance to any ac ground for all signal I/O pins. Parasitic capacitance, particularly on  
the output and inverting input pins, can cause instability; on the noninverting input, this capacitance can react  
with the source impedance to cause unintentional band limiting. To reduce unwanted capacitance, a window  
around the signal I/O pins must be opened in all ground and power planes around these pins. Otherwise,  
ground and power planes must be unbroken elsewhere on the board.  
2. Minimize the distance (less than 0.25 in, or 6.35 mm) from the power-supply pins to high-frequency 0.1 µF  
decoupling capacitors. At the device pins, the ground and power plane layout must not be in close proximity  
to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and  
the decoupling capacitors. The power-supply connections must always be decoupled with these capacitors.  
An optional supply decoupling capacitor across the two power supplies (for bipolar operation) improves  
second-harmonic distortion performance. Larger (2.2 µF to 6.8 µF) decoupling capacitors, effective at lower  
frequencies, must also be used on the main supply pins. These capacitors can be placed somewhat farther  
from the device and can be shared among several devices in the same area of the PCB.  
3. Careful selection and placement of external components preserves the high-frequency performance of the  
THS6222. Resistors must be of a very low reactance type. Surface-mount resistors work best and allow a  
tighter overall layout. Metal film and carbon composition, axially-leaded resistors can also provide good high-  
frequency performance.  
Again, keep leads and PCB trace length as short as possible. Never use wire-wound type resistors in a high-  
frequency application. Although the output pin and inverting input pin are the most sensitive to parasitic  
capacitance, always position the feedback and series output resistor, if any, as close as possible to the output  
pin. Other network components, such as noninverting input termination resistors, must also be placed close  
to the package. Where double-side component mounting is required, place the feedback resistor directly  
under the package on the other side of the board between the output and inverting input pins. The frequency  
response is primarily determined by the feedback resistor value, as described in the Boradband PLC Line  
Driving section. Increasing the value reduces the bandwidth, whereas decreasing the value leads to a more  
peaked frequency response. The 1.24 kΩ feedback resistor used in the Typical Characteristics: Vs = 12 V is a  
good starting point for a gain of 10 V/V design.  
4. Connections to other wideband devices on the board can be made with short direct traces or through  
onboard transmission lines. For short connections, consider the trace and the input to the next device as a  
lumped capacitive load. Relatively wide traces (50-mils to 100-mils, 0.050-in to 0.100-In, or 1.27-mm to 2.54-  
mm) must be used, preferably with ground and power planes opened up around them.  
5. Socketing a high-speed part such as the THS6222 is not recommended. The additional lead length and pin-  
to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network, and can  
make achieving a smooth, stable frequency response almost impossible. Best results are obtained by  
soldering the THS6222 directly onto the board.  
6. Use the VS– plane to conduct the heat out of the package. The package attaches the die directly to an  
exposed thermal pad on the bottom, and must be soldered to the board. This pad must be connected  
electrically to the same voltage plane as the most negative supply voltage (VS–) applied to the THS6222.  
Place as many vias as possible on the thermal pad connection and connect the vias to a heat spreading  
plane that is at the same potential as VS– on the bottom side of the PCB.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
10.2 Wafer and Die Information  
Table 10-1 lists wafer and bond pad information for the YS package.  
Table 10-1. Wafer and Bond Pad Information  
WAFER BACKSIDE  
FINISH  
WAFER  
THICKNESS  
BOND PAD  
METALLIZATION  
BACKSIDE POTENTIAL  
BOND PAD DIMENSIONS (X × Y)  
Silicon without  
backgrind  
Must be connected to the lowest voltage potential on  
25 mils  
Al  
76.0 µm × 76.0 µm  
the die (generally VS–  
)
19  
18  
17  
16  
15  
14  
THS6222  
13  
12  
11  
1
PAD #1  
10  
9
2
3
4
5
8
7
6
0
38  
0
38  
1261.0  
All dimensions are in micrometers (µm).  
Figure 10-1. Die Dimensions  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
Table 10-2 lists the bond pad locations for the YS package. All dimensions are in micrometers (µm).  
Table 10-2. Bond Pad Locations  
PAD  
NUMBER  
PAD NAME  
X MIN  
Y MIN  
X MAX  
Y MAX  
DESCRIPTION  
1
2
3
4
5
6
7
D1_IN+  
D2_IN+  
DGND  
IADJ  
71.050  
71.050  
878.875  
525.125  
384.025  
267.025  
150.025  
85.925  
147.050  
147.050  
147.050  
147.050  
147.050  
285.175  
1083.475  
954.875  
601.125  
460.025  
343.025  
226.025  
161.925  
171.500  
Amplifier D1 noninverting input  
Amplifier D2 noninverting input  
71.050  
Ground reference for bias control pins  
Bias current adjustment pin  
71.050  
VCM  
71.050  
Common-mode buffer output  
VS–  
209.175  
1007.475  
Negative power-supply connection  
Positive power-supply connection  
VS+  
95.500  
Amplifier D2 output (must be used for D2  
output)  
8
9
D2_OUT  
1007.475  
1007.475  
222.500  
369.900  
1083.475  
1083.475  
298.500  
445.900  
Optional amplifier D2 output (can be left  
unconnected or connected to pad 8)  
D2_OUT (OPT)  
10  
11  
D2_IN–  
D1_IN–  
1007.475  
1007.450  
487.375  
919.375  
1083.475  
1083.450  
563.375  
995.375  
Amplifier D2 inverting input  
Amplifier D1 inverting input  
Optional amplifier D1 output (pad can be  
left unconnected or connected to pad 13)  
12  
13  
D1_OUT (OPT)  
D1_OUT  
1007.475  
1007.475  
1034.100  
1181.500  
1083.475  
1083.475  
1110.100  
1257.500  
Amplifier D1 output (must be used for D1  
output)  
14  
15  
16  
17  
18  
19  
VS+  
VS+  
851.675  
718.900  
557.375  
424.600  
293.075  
159.250  
1417.950  
1417.950  
1417.950  
1417.950  
1417.750  
1417.750  
927.675  
794.900  
633.375  
500.600  
369.075  
235.250  
1493.950  
1493.950  
1493.950  
1493.950  
1493.750  
1493.750  
Positive power-supply connection  
Positive power-supply connection  
Negative power-supply connection  
Negative power-supply connection  
Bias mode parallel control, LSB  
Bias mode parallel control, MSB  
VS–  
VS–  
BIAS-1  
BIAS-2  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: THS6222  
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
10.3 Layout Examples  
VS+  
Bias Control  
CBYP  
THS6222  
BIAS  
2
BIAS  
1
IADJ  
VS+  
D1  
IN+  
D1IN+  
RS1  
+
D1  
OUT  
D1OUT  
VS+  
œ
RF1  
5 k  
CM  
Buffer  
D1  
INt  
520 ꢀ  
5 kꢀ  
Thermal  
Protection  
RG  
VCM  
Open  
D2  
INt  
RF2  
œ
D2  
OUT  
VSœ  
D2OUT  
D2  
IN+  
D2IN+  
+
RS2  
D
GND  
VSt  
CBYP  
Figure 10-2. Representative Schematic for the Layout in Figure 10-3  
Place bypass capacitor  
close to power pins  
Place the feedback resistors, RF1  
and RF2, and the isolation resistors,  
RS1 and RS2, as close to the device  
pins as possible to minimize parasitics  
RS1  
D1OUT  
Bias  
Control  
CBYP  
CBYP  
Considering high power capabilities,  
use wide supply traces to the bypass  
capacitors to minimize inductance  
RF1  
RG  
D1IN+  
D2IN+  
1
2
3
4
5
6
7
19  
Thermal Pad  
Ground and power plane exist on  
inner layers.  
18  
17  
16  
15  
14  
13  
RF2  
RS2  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed.  
D2OUT  
Open VCM  
Place as many vias as possible under  
the thermal pad and connect them to a  
heat spreading plane that is at the  
same potential as VSœ  
Connect the thermal pad to a heat  
spreading plane; the plane must be at  
the same potential as VSœ  
Figure 10-3. Layout Recommendations  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: THS6222  
 
 
THS6222  
www.ti.com  
SBOS974C – AUGUST 2019 – REVISED NOVEMBER 2020  
11 Device and Documentation Support  
11.1 Development Support  
TI Precision Labs  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, THS6212 Differential Broadband PLC Line Driver Amplifier data sheet  
Texas Instruments, THS6214 Dual-Port, Differential, VDSL2 Line Driver Amplifiers data sheet  
Texas Instruments, Thermal Design By Insight, Not Hindsight application report  
Texas Instruments, TI's IEC 61000-4-x Tests and Procedures application report  
Texas Instruments, THS6222 Evaluation Module user guide  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: THS6222  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
RGT  
RHF  
Qty  
3000  
3000  
250  
1
(1)  
(2)  
(3)  
(4/5)  
(6)  
THS6222IRGTR  
THS6222IRHFR  
THS6222IRHFT  
THS6222YS  
ACTIVE  
VQFN  
VQFN  
VQFN  
16  
24  
24  
0
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TH6222  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
Call TI  
THS  
6222  
RHF  
Green (RoHS  
& no Sb/Br)  
THS  
6222  
ACTIVE WAFERSALE  
YS  
TBD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Nov-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS6222IRGTR  
THS6222IRHFR  
THS6222IRHFT  
VQFN  
VQFN  
VQFN  
RGT  
RHF  
RHF  
16  
24  
24  
3000  
3000  
250  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
3.3  
4.3  
4.3  
3.3  
5.3  
5.3  
1.1  
1.3  
1.3  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q2  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Nov-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THS6222IRGTR  
THS6222IRHFR  
THS6222IRHFT  
VQFN  
VQFN  
VQFN  
RGT  
RHF  
RHF  
16  
24  
24  
3000  
3000  
250  
367.0  
367.0  
210.0  
367.0  
367.0  
185.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/B 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/B 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/B 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

THS6222IRHFR

具有共模缓冲器的差分宽带 PLC 和 HPLC 线路驱动器 | RHF | 24 | -40 to 85
TI

THS6222IRHFT

具有共模缓冲器的差分宽带 PLC 和 HPLC 线路驱动器 | RHF | 24 | -40 to 85
TI

THS6222YS

具有共模缓冲器的差分宽带 PLC 和 HPLC 线路驱动器 | YS | 0 | -40 to 85
TI

THS6222_V02

THS6222 8 V to 32 V, Differential HPLC Line Driver with Common-Mode Buffer
TI

THS6226

Gated-Class H, Dual-Port VDSL2 Line Driver
TI

THS6226A

门控 H 类双端口 VDSL2 和 PLC 线路驱动器
TI

THS6226AIRHBR

门控 H 类双端口 VDSL2 和 PLC 线路驱动器 | RHB | 32 | -40 to 85
TI

THS6226AIRHBT

门控 H 类双端口 VDSL2 和 PLC 线路驱动器 | RHB | 32 | -40 to 85
TI

THS6226IRHBR

Gated-Class H, Dual-Port VDSL2 Line Driver
TI

THS6226IRHBT

Gated-Class H, Dual-Port VDSL2 Line Driver
TI

THS6301

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器
TI

THS6301IRSAR

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器 | RSA | 16 | -40 to 85
TI