THS6226AIRHBR [TI]

门控 H 类双端口 VDSL2 和 PLC 线路驱动器 | RHB | 32 | -40 to 85;
THS6226AIRHBR
型号: THS6226AIRHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

门控 H 类双端口 VDSL2 和 PLC 线路驱动器 | RHB | 32 | -40 to 85

驱动 商用集成电路 驱动器
文件: 总33页 (文件大小:2520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
THS6226A 门控 H 类,双端口 VDSL2 线路驱动器  
1 特性  
3 说明  
1
数字式可调节静态电流:  
9.4mA 24.8mA  
THS6226A 是一款双端口,H 类,电流反馈架构,差  
分线路驱动器放大器系统,此系统非常适合于 xDSL  
系统。 该器件旨在应用于超高位速率数字用户线路 2  
(VDSL2) 线路驱动器系统,此类系统可启用本地 DTM  
信号,同时用良好线性支持高于 20.5dBm 的线路功  
率(在高达 8.5MHz 的频率条件下),从而支持  
G.993.2 VDSL2 8b 传输模式。 另外,此器件还拥有  
足以支持 14.5dBm 线路功率(在高达 30MHz 的频率  
下)的中心局传输的高速度。  
偏置电流步长:1.0mA  
独立的升压和主线路驱动器禁用  
低功率线路端接模式  
完全电容器再充电:200µs  
低输出电压噪声密度:  
6.5nV/Hz 输入引入电压噪声  
低多音频功率比 (MTPR) 失真:  
70dB 加上 +19.8dBm G.993.2 — 传输模式 8b  
此器件的独特架构可实现极小的静态电流,同时仍然实  
现超高线性度。 在全偏置条件和 1MHz 频率下,差分  
失真为 -91dBc,并在 5MHz 频率下减少为仅有 -  
75dBc。 对于并不需要放大器全部性能的线路长度,  
放大器的多种固定偏置设定值可提升节能效果。 为了  
在所有的系统配置中实现更大的灵活性及节能幅度,以  
0.1mA 的偏置电流步长对静态电流进行数字化调节,  
调节范围从 7.67mA 23mA。 对于那些希望在不传  
输时节省更多电能的系统,此器件可在其线路端接模式  
中使用,以保持阻抗匹配。  
-83dBc HD31MHz60差分)  
高输出电流:(可向 60Ω 负载输送 383mA 的电  
流)  
宽输出摆幅:40VPP+12V100Ω 差分负载和一  
1:1.4 变压器)  
高带宽:97MHz  
端口至端口隔离度:1MHz 时大于 90dB  
电源抑制比 (PSRR):在 1MHz 频率下提供了  
70dB 的良好隔离  
2 应用范围  
12V 电源上的宽输出摆幅与出色的电流驱动能力相结  
合,可实现宽动态余量,从而将失真保持在尽可能低的  
水平。 此器件采用超薄四方扁平无引线 (VQFN)-32  
PowerPAD™ 封装。  
非常适合于所有的 VDSL2 传输模式  
ADSLADSL2+ ADSL2++ 系统向后兼容  
器件信息(1)  
产品型号  
THS6226A  
封装  
VQFN (32)  
封装尺寸(标称值)  
5.00mm x 5.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
利用 THS6226A 的一个端口的典型 VDSL2 线路驱动  
器电路  
1mF  
功耗与 Tx 间的关系  
850  
VLL_CD  
+12V  
CAPL_CD  
FBC  
750  
650  
550  
450  
350  
IND  
VIN+  
OUTD  
1:n  
+12V  
THS6226A  
100kW  
RL  
RL  
33nF  
0.2 ×  
n2  
OUTC  
250  
150  
Single Channel  
Dual channel  
VIN-  
DATA  
CLK  
INC  
FBD  
±6  
±3  
0
3
6
9
12  
15  
18  
21  
VHH_CD  
CAPH_CD  
1mF  
Tx Power (dBm)  
C009  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBOS643  
 
 
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 15  
7.5 Programming........................................................... 16  
Applications and Implementation ...................... 19  
8.1 Application Information............................................ 19  
8.2 Typical Application .................................................. 19  
8.3 Initialization Set Up ................................................ 21  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 Handling Ratings....................................................... 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics: VS = +12 V....................... 6  
6.6 Timing Characteristics............................................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 文档支持................................................................ 24  
11.2 Trademarks........................................................... 24  
11.3 Electrostatic Discharge Caution............................ 24  
11.4 Glossary................................................................ 24  
12 机械封装和可订购信息 .......................................... 24  
7
4 修订历史记录  
Changes from Original (April 2014) to Revision A  
Page  
Changed HBM parameter in Handling Ratings table ............................................................................................................. 5  
2
Copyright © 2014, Texas Instruments Incorporated  
 
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
5 Pin Configuration and Functions  
RHB Package(1)(2)  
VQFN-32  
(Top View)  
32 31 30 29 28 27 26 25  
GND  
1
2
3
4
5
6
7
8
24 OUTD  
FB_D  
FB_C  
IND  
INC  
23  
22  
DATA  
CLK  
INB  
21 OUTC  
20  
19  
18  
OUTB  
FB_B  
FB_A  
INA  
RESET(3)  
17 OUTA  
9
10 11 12 13 14 15 16  
(1) The PowerPAD is electrically isolated from all other pins and can be connected to any potential voltage range from VS– to VS+. Typically,  
the PowerPAD is connected to the GND plane because this plane tends to physically be the largest and is able to dissipate the most amount  
of heat.  
(2) The device defaults to the disabled mode at power-up.  
(3) Default is GND (internal pull-down resistor).  
Copyright © 2014, Texas Instruments Incorporated  
3
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
GND  
1, 12, 29  
2
I
Analog ground  
IND  
Input D of amplifier CD  
3
INC  
I
Input C of amplifier CD  
4
DATA  
I
Serial interface data pin  
5
CLK  
I
Serial interface CLK pin  
6
INB  
I
Input B of amplifier AB  
7
INA  
I
Input A of amplifier AB  
8
RESET  
VH_ENAB  
VLL_AB  
CAPL_AB  
VSAB  
I
Reset the internal register to 00h (startup conditions, state machine may require resetting)  
Class H mode control pin for amplifier AB  
Amplifier AB low pump supply  
9
I
10  
11  
13, 14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27, 28  
30  
31  
32  
O
I
Amplifier AB negative voltage pump capacitor pin  
Amplifier AB supply voltage  
CAPH_AB  
VHH_AB  
OUTA  
Amplifier AB positive voltage pump capacitor pin  
Amplifier AB high pump supply  
Output A of amplifier AB  
FB_A  
Feedback for active output impedance of amplifier AB  
Feedback for active output impedance of amplifier AB  
Output B of amplifier AB  
FB_B  
I
OUTB  
O
O
I
OUTC  
FB_C  
Output C of amplifier CD  
Feedback for active output impedance of amplifier CD  
Feedback for active output impedance of amplifier CD  
Output D of amplifier CD  
FB_D  
I
OUTD  
VHH_CD  
CAPH_CD  
VSCD  
O
I
Amplifier CD high pump supply  
Amplifier CD positive voltage pump capacitor pin  
Amplifier CD supply voltage  
CAPL_CD  
VLL_CD  
VH_ENCD  
Amplifier CD negative voltage pump capacitor pin  
Amplifier CD low pump supply  
Class H mode control pin for amplifier CD  
The PowerPAD must be connected to any internal PCB ground plane using multiple vias for good thermal  
performance.  
PowerPAD  
4
Copyright © 2014, Texas Instruments Incorporated  
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
16.5  
12.8  
15  
UNIT  
V
Class AB only  
Supply voltage, GND to VS+  
Class H only  
V
Input voltage, VI  
V
Output current, IO  
Static dc(2)  
±100  
mA  
Continuous power dissipation  
See Thermal Information table  
(3)  
Maximum junction, any condition, TJ  
150  
°C  
Temperature  
Maximum junction, continuous operation, long-term reliability,  
TJ  
130  
°C  
(4)  
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may degrade device reliability.  
(2) The device incorporates a PowerPAD on the underside of the chip, which functions as a heatsink and must be connected to a thermally  
dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature, which could  
permanently damage the device. See the technical brief PowerPAD™ Thermally Enhanced Package (SLMA002) for more information  
about using the PowerPAD thermally-enhanced package. Under high-frequency ac operation (> 10 kHz), the short-term output current  
capability is much greater than the continuous dc output current rating. This short-term output current rating is roughly 8.5 times the dc  
capability, or approximately ±850 mA.  
(3) The absolute maximum junction temperature under any condition is limited by the constraints of the silicon process.  
(4) The absolute maximum junction temperature for continuous operation is limited by the package constraints. Operation above this  
temperature may result in reduced reliability or lifetime of the device.  
6.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–65  
150  
°C  
Supply and ground pins with respect to  
PowerPad: GND (pins 1, 12, 29), VSAB (pins  
13, 14), VSCD (pins 27, 28)  
–1.5  
1.5  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001  
kV  
V
Electrostatic  
discharge  
V(ESD)  
All other pins  
–2  
2
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins  
–500  
500  
Copyright © 2014, Texas Instruments Incorporated  
5
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
10  
NOM  
MAX  
12.6  
15  
UNIT  
V
Class H  
Power-supply voltage range  
Class AB  
10  
V
Operating junction temperature  
6.4 Thermal Information  
THERMAL METRIC(1)  
–40  
130  
°C  
THS6226A  
RHB (VQFN)  
32 PINS  
35.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
22.1  
7.0  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
6.9  
RθJC(bot)  
1.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics: VS = +12 V  
At TA = 25°C, RMATCH = 10.2 , transformer turn ratio 1:1.4, RL = 100-differential at transformer output, full bias mode, and  
active impedance circuit configuration, unless otherwise noted. Each port is tested independently.  
TEST  
PARAMETER  
AC PERFORMANCE  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
VO = 2 VPP, differential at  
OUTCD and OUTAB, gain = 19 V/V  
Small-signal bandwidth, –3 dB  
97  
MHz  
C
0.1-dB bandwidth flatness  
Large-signal bandwidth  
Slew rate (10% to 90% level)  
Rise-and-fall time  
VO = 2 VPP  
30  
80  
MHz  
MHz  
V/μs  
ns  
C
C
C
C
VO = 7.5 VPP  
SR  
VO = 15-V step, differential  
VO = 2 VPP  
1750  
3.6  
Full bias, f = 1 MHz, VO = 2 VPP  
RL = 60-differential  
,
,
,
,
–87  
–73  
–83  
dBc  
dBc  
dBc  
C
C
C
HD2  
Second-harmonic distortion  
Full bias, f = 5 MHz, VO = 2 VPP  
RL = 60-differential  
Full bias, f = 1 MHz, VO = 2 VPP  
RL = 60-differential  
HD3  
Third-harmonic distortion  
Full bias, f = 5 MHz, VO = 2 VPP  
RL = 60-differential  
–71  
6.5  
dBc  
C
C
Differential input voltage noise  
f = 1 MHz, input-referred  
nV/Hz  
DC PERFORMANCE  
Differential gain  
Closed-loop configuration  
TA = 25°C  
19  
±1  
V/V  
C
A
A
B
B
Differential gain error(2)  
±8%  
±10  
±11  
15  
TA = 25°C  
mV  
mV  
VIO  
Input offset voltage  
TA = –40°C to 85°C  
Input offset voltage drift  
μV/°C  
Channels 1 to 2 and 3 to 4 only,  
TA = 25°C  
Input offset voltage matching  
±1  
±10  
mV  
A
INPUT CHARACTERISTICS  
Noninverting input resistance  
Input bias voltage  
2 || 2  
6
k|| pF  
C
A
TA = 25°C  
5.8  
6.2  
V
(1) Test levels: (A) 100% tested at 25°C. Overtemperature limits set by characterization and simulation. (B) Limits set by characterization  
and simulation. (C) Typical value only for information.  
(2) Negative feedback loop only.  
6
Copyright © 2014, Texas Instruments Incorporated  
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
Electrical Characteristics: VS = +12 V (continued)  
At TA = 25°C, RMATCH = 10.2 , transformer turn ratio 1:1.4, RL = 100-differential at transformer output, full bias mode, and  
active impedance circuit configuration, unless otherwise noted. Each port is tested independently.  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
OUTPUT CHARACTERISTICS  
16  
–4  
17.5  
–5.5  
V
V
V
V
A
A
B
B
RL = 60-differential, class H  
operation(3)(4), each output, TA = 25°C  
Voltage swing  
15.7  
–3.7  
Class H  
output  
TA = –40°C to 85°C(3)(4)  
RL = 60-differential, class H operation,  
TA = 25°C  
±333  
±383  
mA  
A
Current  
(sourcing, sinking)  
TA = –40°C to 85°C  
±323  
9.9  
mA  
V
B
A
A
B
B
RL = 60-differential, normal operation(3)  
each output, TA = 25°C  
,
10.1  
1.9  
2.1  
V
Voltage swing  
9.8  
V
Class AB  
output  
TA = –40°C to 85°C(3)  
2.2  
V
RL = 60-differential, normal operation,  
TA = 25°C  
±130  
±126  
±137  
mA  
A
Current  
(sourcing, sinking)  
TA = –40°C to 85°C  
mA  
A
B
C
C
C
Short-circuit output current  
Output impedance  
Crosstalk  
1
25  
zo  
f = 1 MHz, differential  
f = 1 MHz, VOUT = 2 VPP, port 1 to port 2  
–90  
dB  
POWER SUPPLY  
Class AB, TA = 25°C  
TA = –40°C to 85°C  
Class H  
10  
10  
10  
10  
12  
12  
15  
15  
V
V
V
V
A
B
B
B
Maximum operating voltage  
12.6  
12.6  
TA = –40°C to 85°C  
Per port, bias 15, class H enable  
(power supplies connected together),  
TA = 25°C  
23.4  
22.9  
22.8  
22.3  
24.6  
24.0  
25.8  
26.1  
25.2  
25.7  
mA  
mA  
mA  
A
B
A
TA = –40°C to 85°C  
Per port, bias 15, class H disable  
(power supplies connected together),  
TA = 25°C  
TA = –40°C to 85°C  
Bias current step  
mA  
mA  
B
C
1
Per port, bias 0, class H disable  
(power supplies connected together),  
TA = 25°C  
IQ  
Quiescent current (IS+)  
8.5  
8.0  
9.7  
10.9  
11.4  
mA  
mA  
mA  
A
B
C
TA = –40°C to 85°C  
Per port, line termination mode  
(B9 = B8 = B7 = B6 = 0)  
(power supplies connected together)  
7.0  
1.9  
Both ports, main amplifiers and  
class H disable  
(B9 = B8 = B7 = B6 = 0)  
2.4  
2.5  
mA  
A
TA = –40°C to 85°C  
mA  
dB  
dB  
B
A
B
PSRR  
Power-supply rejection ratio  
Differential, from 12 V, GND, TA = 25°C  
TA = –40°C to 85°C  
60  
58  
70  
(3) Measured at the amplifier outputs (pins 17, 20, 21, and 24).  
(4) Capacitor fully charged, no droop.  
Copyright © 2014, Texas Instruments Incorporated  
7
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
Electrical Characteristics: VS = +12 V (continued)  
At TA = 25°C, RMATCH = 10.2 , transformer turn ratio 1:1.4, RL = 100-differential at transformer output, full bias mode, and  
active impedance circuit configuration, unless otherwise noted. Each port is tested independently.  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
LOGIC  
Logic 1, with respect to GND(5)  
Logic 0, with respect to GND(5)  
Logic X = 0.5 V (logic 0), TA = 25°C  
TA = –40°C to 85°C  
1.9  
V
V
C
C
A
B
A
B
C
C
C
Logic threshold  
0.8  
25  
10  
66  
μA  
Logic pin  
30  
μA  
Input Bias current  
Input impedance  
Logic X = 3.3 V (logic 1), TA = 25°C  
TA = –40°C to 85°C  
125  
130  
μA  
μA  
50 || 1  
k|| pF  
μs  
td(on)  
td(off)  
Turn-on time delay  
Turn-off time delay  
Time for IS to reach 50% of final value  
Time for IS to reach 50% of final value  
1
1
μs  
(5) The GND pin usable range is from VS– to (VS+ – 5 V).  
6.6 Timing Characteristics  
PARAMETER  
MIN  
200  
MAX  
UNITS  
tCL  
Clock period  
ns  
1
2
3
4
5
6
7
8
9
10  
11 12  
CLK  
tCL  
DATA  
tSETUP  
Figure 1. Serial Interface Timing  
8
Copyright © 2014, Texas Instruments Incorporated  
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
6.7 Typical Characteristics  
At TA = 25°C, 1:1.4 transformer, and 10.2-Ω matching resistance, unless otherwise noted  
3
0
3
0
-3  
-3  
Bias 0  
Bias 1  
Bias 2  
Bias 3  
Bias 4  
Bias 5  
Bias 6  
Bias 7  
Bias 8  
Bias 9  
Bias 10  
Bias 11  
Bias 12  
Bias 13  
Bias 14  
Bias 15  
Bias 0  
Bias 1  
Bias 2  
Bias 3  
Bias 4  
Bias 5  
Bias 6  
Bias 7  
Bias 8  
Bias 9  
Bias 10  
Bias 11  
Bias 12  
Bias 13  
Bias 14  
Bias 15  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-24  
-12  
-15  
-18  
-21  
-24  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
C001  
C002  
VO = 2 VPP  
VO = 7.5 VPP  
Figure 2. Normalized Small-Signal Frequency Response  
Figure 3. Normalized Large-Signal Frequency Response  
12  
±30  
Profile  
±40  
Adjacent Ch. Disabled  
±50  
±60  
10  
8
1 W Internal  
Power Limit  
±70  
±80  
±90  
6
25 : Load Line  
50 : Load Line  
100 : Load Line  
±100  
±110  
±120  
±130  
±140  
±150  
±160  
4
1 W Internal  
Power Limit  
2
0
-350  
-250  
-150  
-50  
50  
150  
250  
350  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  
Output Current (mA)  
Frequency (MHz)  
C003  
C004  
14.5-dBm Tx Power in One Channel  
MTPR Measured on Adjacent channel  
Bias 11  
Figure 4. Output Voltage vs Output Current  
Figure 5. Profile 17a Crosstalk  
25  
24.5  
24  
12  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
11.5  
11  
Class H Bias 15  
Class AB Bias 15  
Class H Bias 0  
Class AB Bias 0  
23.5  
23  
10.5  
10  
22.5  
22  
9.5  
9
Ch. AB Bias 15  
Ch. CD Bias 15  
Ch. AB Bias 15 Class H  
Ch. CD Bias 15 Class H  
Ch. AB Bias 0  
6
4
2
0
21.5  
21  
8.5  
8
Ch. CD Bias 0  
0
5
10  
15  
±50  
±25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (ƒC)  
C005  
C006  
Figure 6. Quiescent Current vs Supply Voltage  
Figure 7. Quiescent Current vs Temperature  
Copyright © 2014, Texas Instruments Incorporated  
9
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, 1:1.4 transformer, and 10.2-Ω matching resistance, unless otherwise noted  
±30  
700  
600  
500  
400  
300  
200  
100  
0
Single Channel  
±40  
Dual channel (per channel)  
±50  
±60  
±70  
±80  
Profile  
Single Channel  
Dual Channel  
±90  
±100  
±110  
±120  
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
±10  
±5  
0
5
10  
15  
20  
Frequency (MHz)  
Tx Power (dBm)  
C008  
C007  
19.8-dBm Tx Power  
Bias 2  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
Bias 2  
ADSL  
Figure 9. ADSL MTPR  
Figure 8. ADSL Power Consumption vs Tx Power  
±30  
±40  
850  
750  
650  
550  
450  
350  
250  
150  
±50  
±60  
±70  
±80  
±90  
Profile  
Single Channel  
Dual Channel  
±100  
±110  
±120  
Single Channel  
Dual channel  
0
1
2
3
4
5
6
7
8
±6  
±3  
0
3
6
9
12  
15  
18  
21  
Frequency (MHz)  
Tx Power (dBm)  
C010  
C009  
20.5-dBm Tx Power  
Bias 7  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
VDSL Profile 8  
Bias 7  
Figure 11. Profile 8 MTPR  
Figure 10. Profile 8 Power Consumption vs Tx Power  
±30  
±40  
500  
Profile  
Single Channel  
Dual Channel  
450  
400  
350  
300  
250  
200  
±50  
±60  
±70  
±80  
±90  
±100  
±110  
±120  
±130  
Single Channel  
Dual channel  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
±6  
±3  
0
3
6
9
12  
15  
Frequency (MHz)  
Tx Power (dBm)  
C012  
C011  
14.5-dBm Tx Power  
Bias 11  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
VDSL Profile 17  
Bias 11  
Figure 13. Profile 17 MTPR  
Figure 12. Profile 17 Power Consumption vs Tx Power  
10  
Copyright © 2014, Texas Instruments Incorporated  
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
Typical Characteristics (continued)  
At TA = 25°C, 1:1.4 transformer, and 10.2-Ω matching resistance, unless otherwise noted  
±30  
700  
600  
500  
400  
300  
200  
100  
0
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±40  
±50  
±60  
±70  
Profile  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±80  
±90  
±100  
±110  
±120  
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
±10  
±5  
0
5
10  
15  
20  
Frequency (MHz)  
Tx Power (dBm)  
C014  
C013  
19.8-dBm Tx Power  
Bias 2  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
Bias 2  
ADSL  
Figure 15. Single-Channel ADSL MTPR vs Temperature  
Figure 14. Single-Channel ADSL Power Consumption  
vs Temperature  
±30  
±40  
±50  
±60  
±70  
±80  
850  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
750  
650  
550  
450  
350  
250  
150  
Profile  
±90  
Ta = +85ƒC  
Ta = +25ƒC  
±100  
Ta = -40ƒC  
±110  
±120  
0
1
2
3
4
5
6
7
8
±6  
±3  
0
3
6
9
12  
15  
18  
21  
Frequency (MHz)  
Tx Power (dBm)  
C016  
C015  
20.5-dBm Tx Power  
Bias 7  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
VDSL Profile 8  
Bias 7  
Figure 17. Single-Channel Profile 8 MTPR vs Temperature  
Figure 16. Single-Channel Profile 8 Power Consumption  
vs Temperature  
±30  
500  
Profile  
Ta = +85ƒC  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±40  
Ta = -40ƒC  
±50  
450  
400  
350  
300  
250  
±60  
±70  
±80  
±90  
±100  
±110  
±120  
±130  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
±6  
±3  
0
3
6
9
12  
15  
Frequency (MHz)  
Tx Power (dBm)  
C018  
C017  
14.5-dBm Tx Power  
Bias 11  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
VDSL Profile 17  
Bias 11  
Figure 19. Single-Channel Profile 17 MTPR vs Temperature  
Figure 18. Single-Channel Profile 17 Power Consumption  
vs Temperature  
Copyright © 2014, Texas Instruments Incorporated  
11  
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, 1:1.4 transformer, and 10.2-Ω matching resistance, unless otherwise noted  
±30  
700  
600  
500  
400  
300  
200  
100  
0
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±40  
±50  
±60  
±70  
Profile  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±80  
±90  
±100  
±110  
±120  
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
±10  
±5  
0
5
10  
15  
20  
Frequency (MHz)  
Tx Power (dBm)  
C020  
C019  
19.8-dBm Tx Power  
Bias 2  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
Bias 2  
Per Channel  
ADSL  
Figure 21. Dual-Channel ADSL MTPR vs Temperature  
Figure 20. Dual-Channel ADSL Power Consumption  
vs Tx Power  
±30  
±40  
±50  
±60  
±70  
±80  
850  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
750  
650  
550  
450  
350  
250  
150  
Profile  
±90  
Ta = +85ƒC  
Ta = +25ƒC  
±100  
Ta = -40ƒC  
±110  
±120  
0
1
2
3
4
5
6
7
8
±6  
±3  
0
3
6
9
12  
15  
18  
21  
Frequency (MHz)  
Tx Power (dBm)  
C022  
C021  
20.5-dBm Tx Power  
Bias 7  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
Bias 7  
Per Channel  
VDSL Profile 8  
Figure 23. Dual-Channel Profile 8 MTPR vs Temperature  
Figure 22. Dual-Channel Profile 8 Power Consumption  
vs Temperature  
±30  
450  
Profile  
Ta = +85ƒC  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±40  
Ta = -40ƒC  
±50  
400  
350  
300  
250  
200  
±60  
±70  
±80  
±90  
±100  
±110  
±120  
±130  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
±6  
±3  
0
3
6
9
12  
15  
Frequency (MHz)  
Tx Power (dBm)  
C024  
C023  
14.5-dBm Tx Power  
Bias 11  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
Bias 11  
VDSL Profile 17  
Per Channel  
Figure 25. Dual-Channel Profile 17 MTPR vs Temperature  
Figure 24. Dual-Channel Profile 17 Power Consumption  
vs Temperature  
12  
Copyright © 2014, Texas Instruments Incorporated  
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
Typical Characteristics (continued)  
At TA = 25°C, 1:1.4 transformer, and 10.2-Ω matching resistance, unless otherwise noted  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2
1.5  
1
0.5  
0
-0.5  
-1  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
-1.5  
-2  
±50  
±25  
0
25  
50  
75  
100  
125  
Temperature (ƒC)  
Input Offset Voltage (mV)  
C025  
C026  
Figure 27. Input Offset Voltage Histogram  
Figure 26. Input Offset Voltage vs Temperature  
±30  
±40  
500  
450  
400  
350  
300  
250  
200  
Profile  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±50  
±60  
±70  
±80  
±90  
±100  
±110  
±120  
±130  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Frequency (MHz)  
±6  
±3  
0
3
6
9
12  
15  
Tx Power (dBm)  
C028  
C027  
14.5-dBm Tx Power  
Bias 15  
1:1.4 Transformer into 100 Ω  
1:1.4 Transformer into 100 Ω  
Bias 15  
VDSL Profile 30  
Figure 29. Single-Channel Profile 30 MTPR vs Temperature  
Figure 28. Single-Channel Profile 30 Power Consumption  
vs Temperature  
±30  
500  
Profile  
Ta = +85ƒC  
Ta = +85ƒC  
Ta = +25ƒC  
Ta = +25ƒC  
Ta = -40ƒC  
±40  
Ta = -40ƒC  
450  
400  
350  
300  
250  
200  
±50  
±60  
±70  
±80  
±90  
±100  
±110  
±120  
±130  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Frequency (MHz)  
±6  
±3  
0
3
6
9
12  
15  
Tx Power (dBm)  
C030  
C029  
14.5-dBm Tx Power  
Bias 15  
1:1.4 Transformer into 100 Ω  
Per Channel  
Figure 31. Dual-Channel Profile 30 MTPR vs Temperature  
Figure 30. Dual-Channel Profile 30 Power Consumption  
vs Temperature  
Copyright © 2014, Texas Instruments Incorporated  
13  
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The THS6226A class H line driver provides exceptional ac performance in conjunction with wide output voltage  
swing. The class H operation allows voltage swings to exceed the power supply for short intervals limited only by  
the charge in the capacitor. In class AB mode, the device is capable of driving a 100-Ω load from +1.8 V to  
+10.2 V. In class H mode, under the same conditions, the output voltage range becomes an impressive –5.5 V to  
+17.5 V, or 46 VPP differentially with the capacitor fully charged.  
The Functional Block Diagram section shows a fully-differential, noninverting amplifier configuration with active  
impedance. In this configuration, the 10.2-Ω matching resistor appears through the transformer as 100 Ω,  
minimizing reflection on the line. This active impedance scheme also minimizes transmission losses, as  
compared to passive termination. Device gain is fixed and is equal to 19 V/V from the input to the output of the  
amplifier (INAB/CD to OUTAB/CD), not including the transformer-turn ratio or the termination loss.  
To simplify the implementation as well as to provide design flexibility, the device contains an integrated mid-  
supply buffer that provides the correct biasing to the amplifier core without requiring any external components.  
Also present is a two-pin serial interface that provides exceptional design flexibility and allows minimal power  
consumption for each xDSL profile.  
7.2 Functional Block Diagram  
VLL_AB,  
VLL_CD  
CAPL_AB,  
CAPL_CD  
Class H Functions  
IN_B, IN_D  
FB_B, FB_D  
OUTB, OUTD  
Voltage  
Reference  
OUTA, OUTC  
FB_A, FB_C  
IN_A, IN_C  
Bias  
Class H Functions  
RESET DATA  
CLK  
VHH_AB,  
VHH_CD  
CAPH_AB,  
CAPH_CD  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
7.3 Feature Description  
The device incorporates several hardware and functionality features: a high output current line driver, a charge  
pump, a voltage reference, a logic circuit, an active impedance, and a RESET pin. The device has two ports.  
Each port consists of a high output current line driver, a charge pump, and a reference voltage. Common circuits  
are the RESET feature and the logic circuit.  
7.3.1 High Output Current Line Driver  
The main purpose for the device is to provide a high output current into a heavy load. For the THS6226A, with its  
xDSL application targeted, the load is typically 100 Ω and currents as high as 400 mA are supported with  
excellent linearity. The core of the line driver is a class AB amplifier providing both good efficiency and high  
current drive capability. The high output line driver is the core of the device and any external circuit interface is  
located on both the device inputs and output.  
7.3.2 Charge Pump  
The class H functionality of the device is brought on by the integration of a charge pump. The charge pump is a  
power-supply function to the line driver. The role of the charge pump is to vary the power supply from (12 V /  
GND) to (20 V / –8 V) and allow the line driver to support high peak to average ratio (PAR) signals while  
minimizing power consumption and maintaining excellent linearity. The charge pump is controlled externally by  
the VH_EN pin. A logic high on the VH_EN pin results in the power supply of the class AB line driver going to (20 V /  
–8 V), while a logic low on the VH_EN pin results in normal operation under the (12 V / GND) supplies.  
7.3.3 Voltage Reference  
An internal voltage reference provides the device common-mode input and output voltage.  
7.3.4 Logic  
The DATA and CLK pins allow access to the internal logic circuit implemented in the device. This logic circuit  
allows each channel to either be programmed individually for quiescent current, turn the charge pump on or off,  
disable the main amplifier, or select the line termination mode. For more information on programming, refer to the  
Programming section.  
7.3.5 Active Impedance  
The line driver incorporates the positive feedback path to provide the termination to the load. For the device, the  
synthesis factor implemented is 5.  
7.3.6 RESET Pin  
The RESET pin provides a quick and easy way to disable the two ports immediately if a fault condition on the  
line occurs.  
7.4 Device Functional Modes  
There are several functional modes for the device. These functional modes can be accessed with the CLK and  
DATA pins. Each main line driver quiescent current can be set to 16 different bias modes: bias 0 through bias  
15. Additionally, the line driver and class H feature can be controlled to have the following configuration:  
Class AB mode is the main line driver by itself. The output voltage is limited by the (12 V / GND) power-  
supply rails. The quiescent current is then set by four bits.  
Class H mode is the main line driver used in conjunction with the class H feature. The output voltage is  
limited by the (20 V / –8 V) internally-generated power-supply rails. The quiescent current of the main line  
driver is set by four bits, as in class AB mode.  
Line termination mode is the powered-down mode for the line driver. This mode maintains line termination but  
has reduced linearity performance.  
Disabled mode.  
For more information on these mode, refer to the Programming section.  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
7.5 Programming  
7.5.1 Programming the Device  
Programming the device is accomplished through a serial interface (pins 4 and 5) and proceeds in the following  
sequence:  
Two start bits are required (B0 = 0 followed by B1 = 1).  
B2 through B9 are used to program the device. (Table 1 lists the bit descriptions.)  
B10 (described in Table 2) is the parity bit that controls whether the word is loaded or not.  
B11 is the stop bit and must be set to B11 = 1.  
Figure 32 shows the required sequence.  
Table 1. DATA Sequence  
PARAMETER  
B0, B1  
DESCRIPTION  
Start bits  
B2, B3  
B4, B5  
B6-B9  
B10  
Channel select  
Power-down features  
Quiescent current setting  
Parity bit  
B11  
Stop bit  
Table 2. Parity Bit  
B10  
0
ODD PARITY BIT  
For an odd number of high bits in B2 to B9, set B10 to 0  
For an even number of high bits in B2 to B9, set B10 to 1  
1
MSB  
B0  
LSB  
B11  
DATA  
B1  
B2  
B3  
B4  
B5  
B6  
D3  
B7  
D2  
B8  
D1  
B9  
D0  
B10  
Start  
Bit  
Start Ch AB Ch CD PD1  
Bit Select Select  
PD0  
Parity Stop  
Bit  
Figure 32. DATA Description  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
7.5.2 Quiescent Current  
The device quiescent current is dissipated in two main device modules: the class AB and the charge pump. Bits  
B4 (PD1) and B5 (PD0) select one of the possible four modes of operation:  
1. Class AB mode (charge pump disabled),  
2. Class H mode (charge pump enabled),  
3. Disable mode, or  
4. Line termination mode (maintains line matching, core amplifier at very low bias mode and charge pump  
disabled for lowest power consumption possible).  
Table 3 lists the details on each bit functionality and the approximate quiescent current. The various power  
modes are shown in Table 3. For all modes, when B6 through B9 are not defined, set B9 = B8 = B7 = B6 = 0 to  
achieve the lowest power dissipation possible.  
Table 3. Power Modes  
APPROXIMATE IQ  
B4 (PD1)  
B5 (PD0)  
POWER-DOWN MODE  
(mA per Port)  
0
0
1
1
0
1
0
1
Power-down (B9 = B8 = B7 = B6 = 0)  
0.85  
4.4  
Line termination mode (B9 = B8 = B7 = B6 = 0)  
Class AB driver IQ set by B6 to B9, class H disabled  
Class AB driver IQ set by B6 to B9, class H enabled  
The class AB quiescent current is set by bits B6 to B9, using B4 and B5 for the power-down function and B2 and  
B3 for channel selection. The approximate quiescent current for the amplifier core is shown in Table 4.  
Table 4. Class AB Quiescent Current  
QUIESCENT CURRENT APPROXIMATE  
BIAS  
0
B6 (D3)  
B7 (D2)  
B8 (D1)  
B9 (D0)  
SETTING  
IQ (mA per Port)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
9.4  
1
10.4  
2
ADSL2+ mode  
11.5  
3
12.5  
4
13.6  
5
14.6  
6
15.7  
7
Profile 8b mode  
Profile 17a mode  
16.7  
8
17.8  
9
18.8  
10  
11  
12  
13  
14  
15  
19.8  
20.8  
21.8  
22.8  
23.8  
24.8  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
 
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
Channel selection is shown in Table 5. Each channel can be programmed independently, or together if both B2  
and B3 are set to 1.  
Table 5. Channel Selection  
B2 (Channel AB)  
B3 (Channel CD)  
CHANNEL SELECT  
Bits B4 to B9 are ignored  
0
0
1
1
0
1
0
1
Channel B programmed with B4 to B9  
Channel A programmed with B4 to B9  
Channels A and B programmed with B4 to B9  
At startup, the internal register is set as shown in Figure 33.  
Figure 33. Internal Register  
7
6
5
PD1(B4)  
W
4
PD0(B5)  
W
3
D3 (B6)  
W
2
D2 (B7)  
W
1
D1 (B8)  
W
0
D0 (B9)  
W
Ch. AB Select  
(B2)  
Ch. CD Select  
(B3)  
W
W
LEGEND: W = Write  
In this condition, the total quiescent power dissipation is 10.2 mW per port on a +12-V supply.  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
 
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
8 Applications and Implementation  
8.1 Application Information  
The device is a dual-port, very-high-bit-rate digital subscriber line (VDSL), class H line driver. Typically, the signal  
is generated by a high-speed digital-to-analog converter (DAC). The device drives a twisted pair.  
The digital subscriber line (DSL) system is ac-coupled as it transmits information above the audio band. On the  
input of the line driver, this ac-coupling translates into the series capacitors to isolate the dc voltage coming from  
the DAC output common-mode voltage. On the output, a transformer is used to help isolate the 48V present  
between tip and ring of the telephone line.  
The transformer can be set to any useful ratio. In practice, the transformer-turn ratio is set between 1:1 and 1:1.4  
for the device. As mentioned in the Feature Description section, the active impedance synthesis factor is 5. This  
synthesis factor means that the termination resistor is 1/5th of the load impedance reflected to the transformer  
secondary. Thus, the correct termination can be selected based on the transformer-turn ratio.  
Note that the resulting load detected by the amplifier may affect the amplifier linearity or output voltage swing  
capabilities.  
8.2 Typical Application  
The typical application circuit for this application is shown in Figure 34.  
1mF  
VLL_CD  
+12V  
CAPL_CD  
FBC  
47 W  
IND  
VIN+  
OUTD  
1:n  
+12V  
Device  
100kW  
RL  
RL  
33 nF  
0.2 ×  
n2  
OUTC  
VIN-  
DATA  
CLK  
INC  
47 W  
FBD  
VHH_CD  
CAPH_CD  
1mF  
Figure 34. Typical VDSL Line Driver Circuit Configuration  
Copyright © 2014, Texas Instruments Incorporated  
19  
 
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 6. Design Requirements  
DESIGN REQUIREMENT  
CONDITION  
0.1 µF  
AC-coupling capacitors  
Synthesis factor  
5
Output transformer ratio  
Surge protection circuit  
1:1.4  
Not shown  
8.2.2 Detailed Design Procedure  
The input capacitor forms a high-pass filter with the device input impedance. This pole must be set at a  
frequency low enough to not interfere with the desired signal.  
The output transformer can be changed to any transformer-turn ratio. Note that the load is expected to be a  
transmission line with 100-Ω characteristic impedance. Referred to the transformer secondary, the load detected  
by the amplifier is 1 / n2 with 1:n being the transformer-turn ratio.  
Practical limitations force the transformer-turn ratio to be between 1.4:1 and 1:2. At the lighter load detected by  
the amplifier (1.4:1), the voltage swing is limited by the class H and the maximum achievable swing of the  
amplifier. At the heaviest load (1:2), the voltage swing is limited by the current drive capability of the amplifier. To  
satisfy the synthesis impedance factor and the loading, the series resistance (RS) can be set to RS = RL / 5 =  
100 Ω / (5 × n2).  
For the charge pump, consider the thermal characteristic of the capacitor (X7R, X5R, or Y5V can be used for the  
charge pump).  
For the power-supply bypass, consider using only X7R or X5R because of the better stability of these materials  
over temperature.  
For surge protection, consider adding 47-Ω resistors in series on the positive feedback path. The secondary  
protection is also normally added after the series resistance on the secondary transformer.  
20  
Copyright © 2014, Texas Instruments Incorporated  
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
8.2.3 Application Curves  
±30  
±40  
±30  
±40  
±50  
±50  
±60  
±60  
±70  
±70  
±80  
±80  
Profile  
Single Channel  
Dual Channel  
±90  
±90  
Profile  
Single Channel  
Dual Channel  
±100  
±110  
±120  
±100  
±110  
±120  
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
0
1
2
3
4
5
6
7
8
Frequency (MHz)  
Frequency (MHz)  
C008  
C010  
19.8-dBm Tx Power  
1:1.4 Transformer into 100 Ω  
Bias 2  
20.5-dBm Tx Power  
1:1.4 Transformer into 100 Ω  
Bias 7  
Figure 35. ADSL MTPR  
Figure 36. VDSL 8b MTPR  
±30  
±40  
Profile  
Single Channel  
Dual Channel  
±50  
±60  
±70  
±80  
±90  
±100  
±110  
±120  
±130  
0
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  
Frequency (MHz)  
C012  
14.5-dBm Tx Power  
Bias 11  
1:1.4 Transformer into 100 Ω  
Figure 37. VDSL 17a MTPR  
8.3 Initialization Set Up  
After the initial power-up and prior to sending any words to program the device, TI recommends sending a string  
of twelve 1s (111111111111) to ensure that the state machine is initialized.  
9 Power Supply Recommendations  
As a result of large recharge current flowing in and out of the four charge pump capacitors during charge pump  
discharge and recharge events, TI recommends placing bypass capacitors that are at least equal in value to the  
charge pump capacitor close to each supply voltage pin. A minimum of 2-µF bypass capacitors for each channel  
are required to minimize any transient appearing on the power supply because both positive and negative charge  
pump 1-µF bypass capacitors are recharged on the +12-V supply.  
Copyright © 2014, Texas Instruments Incorporated  
21  
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the THS6226A requires careful attention  
to board layout parasitics and external component types. Recommendations that optimize performance include:  
a. Minimize parasitic capacitance to any ac ground for all signal I/O pins. Excessive parasitic capacitance on  
the inverting input pin can cause instability. In the line driver application, the parasitic capacitance forms a  
pole with the load detected by the amplifier and may reduce the effective bandwidth of the application circuit,  
thus leading to degraded performance. To reduce unwanted capacitance, open a window around the signal  
I/O pins in all ground and power planes around those pins. Otherwise, make sure that ground and power  
planes are unbroken elsewhere on the board.  
b. Minimize the distance (< 0.25") from the power-supply pins to high-frequency 0.1-µF decoupling capacitors.  
At the device pins, make sure that the ground and power-plane layout are not in close proximity to the signal  
I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and decoupling  
capacitors. Always decouple the power-supply connections with these capacitors. An additional low ESR  
supply decoupling capacitor (2 µF, X7R or X5R) to ground is necessary to provide a transient current  
during the charge pump capacitors recharge.  
c. Careful selection and placement of external components preserves the high-frequency performance  
of the device. Use very low reactance type resistors. Surface-mount resistors function best and allow a  
tighter overall layout. Metal-film or carbon composition, axially-leaded resistors also provide good high-  
frequency performance. Again, keep the leads and printed circuit board traces as short as possible. Never  
use wire-wound type resistors in a high-frequency application.  
d. Connections to other wideband devices on the board can be made with short, direct traces or through  
onboard transmission lines. For short connections, consider the trace and the input to the next device as a  
lumped capacitive load. Use relatively wide traces (50 mils to 100 mils), preferably with ground and power  
planes opened up around them.  
e. Do not socket a high-speed part such as the THS6226A. The additional lead length and pin-to-pin  
capacitance introduced by the socket can create an extremely troublesome parasitic network that makes  
achieving a smooth, stable frequency response almost impossible. Best results are obtained by soldering the  
device onto the board.  
22  
Copyright © 2014, Texas Instruments Incorporated  
THS6226A  
www.ti.com.cn  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
10.2 Layout Example  
Charge Pump  
Capacitor  
Charge Pump  
Capacitor  
GND  
Charge Pump  
Capacitor  
Charge Pump  
Capacitor  
Charge Pump  
Placed to Minimize  
Parasitic Series Resistance  
Figure 38. Layout Example  
Copyright © 2014, Texas Instruments Incorporated  
23  
THS6226A  
ZHCSCI0A APRIL 2014REVISED MAY 2014  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
PowerPAD™ 耐热增强型封装》(SLMA002  
11.2 Trademarks  
PowerPAD is a trademark of Texas Instruments, Inc.  
All other trademarks are the property of their respective owners.  
11.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
Copyright © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THS6226AIRHBR  
THS6226AIRHBT  
LIFEBUY  
VQFN  
VQFN  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
HS6226A  
IRHB  
LIFEBUY  
RHB  
NIPDAU  
HS6226A  
IRHB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THS6226AIRHBR  
THS6226AIRHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THS6226AIRHBR  
THS6226AIRHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THS6226AIRHBT

门控 H 类双端口 VDSL2 和 PLC 线路驱动器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6226IRHBR

Gated-Class H, Dual-Port VDSL2 Line Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6226IRHBT

Gated-Class H, Dual-Port VDSL2 Line Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6301

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6301IRSAR

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器 | RSA | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6301IRSAT

单端口、G.Fast 106MHz、212MHz CPE DSL 线路驱动器放大器 | RSA | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6302

双端口 G.Fast 和 G.mgFast DSL 线路驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6302IRHFR

Dual port G.Fast and G.mgFast DSL line driver | RHF | 28 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS6832DR

LOW-POWER DISSIPATION ADSL LINE DRIVER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS7

EURO TERMINAL BLOCKS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

THS7001

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THS7001CPWP

70-MHz PROGRAMMABLE-GAIN AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI