THVD1419DR [TI]

具有浪涌保护功能的 3.3V 至 5V RS-485 收发器 | D | 8 | -40 to 125;
THVD1419DR
型号: THVD1419DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有浪涌保护功能的 3.3V 至 5V RS-485 收发器 | D | 8 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总31页 (文件大小:1386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
具有浪涌保护功能的 THVD14x9 3.3V 5V RS-485 收发器  
1 特性  
3 说明  
1
满足或超过 TIA/EIA-485A 标准的要求  
THVD1419 THVD1429 是半双工 RS-485 收发器,  
集成了浪涌保护功能。电涌保护是通过在标准 8 引脚  
SOIC (D) 封装中集成瞬态电压抑制器 (TVS) 二极管实  
现的。此功能大大提高了可靠性,可以更好地抵抗耦合  
到数据电缆的噪声瞬变,无需外部保护元件。  
3V 5.5V 电源电压  
总线 I/O 保护  
±16kV HBM ESD  
±8kV IEC 61000-4-2 接触放电  
±30kV IEC 61000-4-2 气隙放电  
±4kV IEC 61000-4-4 电气快速瞬变  
±2.5kV IEC 61000-4-5 1.2/50μs 浪涌  
每个器件由 3.3V 5V 单电源供电。该系列中的器件  
具有很宽的共模电压范围,因此非常适合长电缆上的  
应用 长线缆。  
有两种速度等级  
THVD1419 THVD1429 器件采用行业标准 SOIC 封  
装,无需变更 PCB 即可轻松插入。这些器件在自然通  
风环境下的额定温度范围为 –40°C 125°C。  
THVD1419250kbps  
THVD142920Mbps  
扩展环境  
温度范围:–40°C 125°C  
器件信息(1)  
扩展运行  
共模范围:±12V  
器件型号  
THVD1419  
THVD1429  
封装  
封装尺寸(标称值)  
SOIC (8)  
4.90mm × 3.91mm  
用于噪声抑制的接收器迟滞值:30mV  
低功耗  
(1) 如需了解所有可订购器件,请参阅数据表末尾的可订购产品附  
录。  
待机电源电流:< 2µA  
运行期间的电流:< 3mA  
THVD1419 THVD1429 方框图  
适用于热插拔功能的无干扰加电/断电  
开路、短路和空闲总线失效防护  
VCC  
1/8 单位负载(多达 256 个总线节点)  
A
R
采用可实现快插兼容性的行业标准 8 引脚 SOIC  
封装  
B
RE  
DE  
D
2 应用  
无线基础设施  
楼宇自动化  
HVAC 系统  
工厂自动化和控制  
电网基础设施  
智能仪表  
GND  
过程分析  
视频监控  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF32  
 
 
 
 
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
目录  
9.2 Functional Block Diagrams ..................................... 13  
9.3 Feature Description................................................. 13  
9.4 Device Functional Modes........................................ 16  
10 Application and Implementation........................ 17  
10.1 Application Information...................................... 17  
10.2 Typical Application ............................................... 17  
11 Power Supply Recommendations ..................... 20  
12 Layout................................................................... 21  
12.1 Layout Guidelines ................................................. 21  
12.2 Layout Example .................................................... 21  
13 器件和文档支持 ..................................................... 22  
13.1 器件支持................................................................ 22  
13.2 第三方产品免责声明.............................................. 22  
13.3 相关链接................................................................ 22  
13.4 接收文档更新通知 ................................................. 22  
13.5 社区资源................................................................ 22  
13.6 ....................................................................... 22  
13.7 静电放电警告......................................................... 22  
13.8 术语表 ................................................................... 22  
14 机械、封装和可订购信息....................................... 22  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 ESD Ratings [IEC] .................................................... 5  
7.4 Recommended Operating Conditions....................... 6  
7.5 Thermal Information.................................................. 6  
7.6 Power Dissipation ..................................................... 6  
7.7 Electrical Characteristics........................................... 7  
7.8 Switching Characteristics.......................................... 8  
7.9 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 13  
9.1 Overview ................................................................. 13  
8
9
4 修订历史记录  
Changes from Revision B (December 2018) to Revision C  
Page  
THVD1419 从:产品预览更改为:生产数据................................................................................................................ 1  
Changed power dissipation numbers of THVD1419 ............................................................................................................. 6  
Changed THVD1419 driver switching characteristics ............................................................................................................ 8  
Changed THVD1419 receiver switching characteristics......................................................................................................... 8  
Added 7 to 9 ................................................................................................................................................................. 9  
Changes from Revision A (December 2018) to Revision B  
Page  
THVD1429 从:预告信息更改为:生产数据................................................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
5 Device Comparison Table  
PART NUMBER  
THVD1419  
DUPLEX  
Half  
ENABLES  
SIGNALING RATE  
up to 250 kbps  
up to 20 Mbps  
NODES  
DE, RE  
256  
THVD1429  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
THVD1419, THVD1429 Devices  
8-Pin D Package (SOIC)  
Top View  
R
RE  
DE  
D
1
2
3
4
8
7
6
5
VCC  
B
A
GND  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
A
NO.  
6
Bus input/output  
Bus input/output  
Digital input  
Digital input  
Ground  
Bus I/O port, A (complementary to B)  
Bus I/O port, B (complementary to A)  
Driver data input  
B
7
D
4
DE  
GND  
R
3
Driver enable, active high (2-MΩ internal pull-down)  
Device ground  
5
1
Digital output  
Power  
Receive data output  
VCC  
RE  
8
3.3-V to 5-V supply  
2
Digital input  
Receiver enable, active low (2-MΩ internal pull-up)  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage  
Bus voltage  
VCC  
-0.5  
7
V
Range at any bus pin (A or B) as differential or  
common-mode with respect to GND  
-15  
-0.3  
-24  
-65  
15  
5.7  
24  
V
V
Input voltage  
Range at any logic pin (D, DE, or /RE)  
Receiver output  
current  
IO  
mA  
Storage temperature range  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±16  
UNIT  
kV  
Bus terminals  
and GND  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001, 2010  
V(ESD)  
Electrostatic discharge  
All other pins  
±8  
kV  
Charged device model (CDM), per  
JEDEC JESD22-C101E  
All pins  
±1.5  
kV  
7.3 ESD Ratings [IEC]  
VALUE  
UNIT  
Contact Discharge, per IEC 61000- Bus pins and  
4-2 GND  
±8  
kV  
V(ESD)  
Electrostatic discharge  
Air-Gap Discharge, per IEC 61000- Bus pins and  
±30  
±4  
kV  
kV  
kV  
4-2  
GND  
Bus pins and  
GND  
V(EFT)  
Electrical fast transient  
Surge  
Per IEC 61000-4-4  
Bus pins and  
GND  
V(surge)  
Per IEC 61000-4-5, 1.2/50 μs  
±2.5  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
VCC  
VI  
Supply voltage  
3
5.5  
V
Input voltage at any bus terminal  
(separately or common mode)  
-12  
12  
VCC  
0.8  
V
V
V
(1)  
High-level input voltage (driver, driver  
enable, and receiver enable inputs)  
VIH  
VIL  
2
0
Low-level input voltage (driver, driver  
enable, and receiver enable inputs)  
VID  
IO  
Differential input voltage  
Output current, driver  
-12  
-60  
-8  
12  
60  
8
V
mA  
mA  
Ω
IOR  
RL  
Output current, receiver  
Differential load resistance  
Signaling rate: THVD1419  
Signaling rate: THVD1429  
Operating ambient temperature  
Junction temperature  
54  
1/tUI  
1/tUI  
TA  
250  
20  
kbps  
Mbps  
-40  
-40  
125  
150  
TJ  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
7.5 Thermal Information  
THVD14x9  
THERMAL METRIC(1)  
D (SOIC)  
8-PINS  
120.7  
50.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
62.8  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.5  
ΨJB  
62.2  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.6 Power Dissipation  
PARAMETER  
Description  
TEST CONDITIONS  
VALUE  
230  
UNIT  
mW  
mW  
mW  
mW  
mW  
mW  
Unterminated: RL = 300 Ω, CL = 50 pF  
RS-422 load: RL = 100 Ω, CL = 50 pF  
RS-485 load: RL = 54 Ω, CL = 50 pF  
Unterminated: RL = 300 Ω, CL = 50 pF  
RS-422 load: RL = 100 Ω, CL = 50 pF  
RS-485 load: RL = 54 Ω, CL = 50 pF  
Driver and receiver enabled, VCC = 5.5 V, TA  
= 125 0C, 50% duty cycle square wave at  
maximum signaling rate, THVD1419  
350  
470  
PD  
350  
Driver and receiver enabled, VCC = 5.5 V, TA  
= 125 0C, 50% duty cycle square wave at  
maximum signaling rate, THVD1429  
290  
300  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
7.7 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
Driver differential output voltage  
magnitude  
|VOD  
|VOD  
|VOD  
|VOD  
|
|
|
|
1.5  
2.1  
2
3.5  
V
V
RL = 60 Ω, -12 V Vtest 12 V, see 10  
Driver differential output voltage  
magnitude  
RL = 60 Ω, -12 V Vtest 12 V, 4.5 V VCC  
5.5 V, see 10  
Driver differential output voltage  
magnitude  
RL = 100 Ω, see 11  
RL = 54 Ω, see 11  
4
V
Driver differential output voltage  
magnitude  
1.5  
-200  
1
3.5  
V
Change in differential output  
voltage  
Δ|VOD  
|
200  
3
mV  
V
VCC  
/
VOC  
Common-mode output voltage  
RL = 54 Ω, see 11  
2
Change in steady-state common-  
mode output voltage  
ΔVOC(SS)  
-200  
-250  
200  
250  
mV  
mA  
IOS  
Short-circuit output current  
DE = VCC, -7 V VO 12 V  
Receiver  
VI = 12 V  
VI = -7 V  
VI = -12 V  
50  
-65  
125  
µA  
µA  
µA  
II  
Bus input current  
DE = 0 V, VCC = 0 V or 5.5 V  
-100  
-150  
-100  
Positive-going input threshold  
voltage  
VTH+  
VTH-  
See(1)  
-100  
-20  
mV  
mV  
Negative-going input threshold  
voltage  
Over common-mode range of ±12 V  
-200  
-130 See(1)  
VHYS  
CA,B  
Input hysteresis  
30  
mV  
pF  
Input differential capacitance  
Measured between A and B, f = 1 MHz  
IOH = -8 mA  
220  
VCC  
0.4  
VCC  
VOH  
Output high voltage  
V
0.3  
VOL  
Output low voltage  
IOL = 8 mA  
0.2  
0.4  
1
V
IOZR  
Output high-impedance current  
VO = 0 V or VCC, RE = VCC  
-1  
µA  
Logic  
IIN  
Input current (D, DE, RE)  
4.5 V VCC 5.5 V  
-6.2  
6.2  
µA  
Device  
RE = 0 V,  
Driver and receiver enabled  
DE = VCC  
No load  
,
2.4  
2
3
2.6  
mA  
mA  
µA  
RE = VCC  
,
Driver enabled, receiver disabled DE = VCC  
No load  
,
ICC  
Supply current (quiescent)  
RE = 0 V,  
Driver disabled, receiver enabled DE = 0V,  
No load  
700  
960  
RE = VCC  
DE = 0 V, D  
= open, No  
load  
,
Driver and receiver disabled  
0.1  
2
µA  
TSD  
Thermal shutdown temperature  
170  
(1) Under any specific conditions, VTH+ is assured to be at least VHYS higher than VTH–  
.
Copyright © 2018–2019, Texas Instruments Incorporated  
7
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
7.8 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver: THVD1419  
tr, tf  
Differential output rise / fall time  
Propagation delay  
300  
200  
500  
450  
40  
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF, see 12  
Pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Disable time  
20  
60  
3
50  
RE = 0 V, see 13 and 14  
RE = VCC, see 13 and 14  
250  
11  
tPZH, tPZL  
Enable time  
Receiver: THVD1419  
tr, tf  
Output rise / fall time  
14  
30  
20  
50  
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
tPHZ, tPLZ  
tPZH(1), tPZL(1),  
tPZH(2)  
tPZL(2)  
Driver: THVD1429  
Propagation delay  
Pulse skew, |tPHL – tPLH  
Disable time  
CL = 15 pF, see 15  
|
7
35  
80  
45  
DE = VCC, see 16  
DE = 0 V, see 17  
120  
,
,
Enable time  
5
14  
µs  
tr, tf  
Differential output rise / fall time  
Propagation delay  
9
16  
25  
6
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF, see 12  
12  
Pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Disable time  
18  
16  
40  
40  
11  
RE = 0 V, see 13 and 14  
RE = VCC, see 13 and 14  
tPZH, tPZL  
Enable time  
2.8  
Receiver: THVD1429  
tr, tf  
Output rise / fall time  
2
6
45  
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
tPHZ, tPLZ  
tPZH(1), tPZL(1),  
tPZH(2)  
tPZL(2)  
Propagation delay  
Pulse skew, |tPHL – tPLH  
Disable time  
CL = 15 pF, see 15  
12  
|
6
14  
75  
28  
DE = VCC, see 16  
DE = 0 V, see 17  
110  
,
,
Enable time  
4.8  
14  
µs  
8
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
7.9 Typical Characteristics  
5
4.5  
4
5
4.5  
4
VOH VCC = 5 V  
VOL VCC = 5 V  
VOH VCC = 3.3 V  
VOL VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
IO Driver Output Current (mA)  
IO Driver Output Current (mA)  
D101  
D102  
DE = VCC  
D = 0 V  
DE = VCC  
D = 0 V  
1. Driver Output Voltage vs Driver Output Current  
2. Driver Differential Output voltage vs Driver Output  
Current  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
16  
15.5  
15  
14.5  
14  
13.5  
13  
12.5  
12  
11.5  
11  
10.5  
10  
9.5  
9
VCC = 5 V  
VCC = 3.3 V  
0
-5  
8.5  
8
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
VCC Supply Voltage (V)  
Temperature (0C)  
D103  
D104  
DE = VCC  
TA = 25°C  
RL = 54 Ω  
THVD1429  
3. Driver Output Current vs Supply Voltage  
4. Driver Rise or Fall Time vs Temperature  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
-40  
THVD1429  
5. Driver Propagation Delay vs Temperature  
-20  
0
20  
40  
60  
80  
100 120 140  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Temperature (0C)  
Signaling Rate (Mbps)  
D105  
D106  
THVD1429  
TA = 25°C  
RL = 54 Ω  
6. Supply Current vs Signal Rate  
版权 © 2018–2019, Texas Instruments Incorporated  
9
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
340  
VCC = 5V  
VCC = 3.3V  
VCC = 5 V  
VCC = 3.3 V  
320  
300  
280  
260  
240  
220  
200  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (0C)  
Temperature (0C)  
D_TH  
D_TH  
THVD1419  
THVD1419  
8. Driver Propagation Delay vs Temperature  
7. Driver Rise or Fall Time vs Temperature  
85  
VCC = 5V  
VCC = 3.3V  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0
25  
THVD1419  
9. Supply Current vs Signal Rate  
50  
75 100 125 150 175 200 225 250  
Signaling Rate (kbps)  
D_TH  
TA = 25°C  
RL = 54 Ω  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
8 Parameter Measurement Information  
375  
Vcc  
DE  
D
A
B
V
test  
VOD  
R
0V or V  
cc  
L
375 Ω  
10. Measurement of Driver Differential Output Voltage With Common-Mode Load  
A
V
A
A
B
R /2  
L
B
D
V
B
0V or V  
cc  
V
OD  
V
OC(PP)  
R /2  
L
ûV  
OC(SS)  
V
OC  
C
L
V
OC  
11. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
V
cc  
Vcc  
DE  
50%  
V
I
0 V  
A
B
t
t
R =  
L
54  
PHL  
PLH  
D
~
V
2 V  
~
C = 50 pF  
L
OD  
90%  
50%  
10%  
Input  
50 Ω  
V
I
Generator  
V
OD  
~ œ 2 V  
~
t
r
t
f
12. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
A
V
cc  
S1  
V
O
D
50%  
V
I
0 V  
V
B
R
110  
=
DE  
50 Ω  
L
t
PZH  
=
C
L
Input  
OH  
50 pF  
90%  
Generator  
V
I
50%  
V
O
~
~ 0V  
t
PHZ  
13. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load  
Vcc  
Vcc  
50%  
RL= 110 Ω  
VI  
tPZL  
VO  
A
B
0 V  
S1  
VO  
tPLZ  
D
Vcc  
DE  
CL=  
50 pF  
Input  
Generator  
50%  
10%  
VOL  
VI  
50 Ω  
14. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
3 V  
0 V  
VOH  
50%  
V
I
A
B
R
VO  
t
tPHL  
Input  
PLH  
50  
V
1.5V  
0 V  
Generator  
I
90%  
CL=15 pF  
50%  
10%  
RE  
V
OD  
V
tr  
OL  
t
f
15. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
V
cc  
Vcc  
DE  
Vcc  
V
50%  
I
0V  
V
A
B
tPZH(1)  
1 kΩ  
tPHZ  
D
V
O
R
D at Vcc  
S1 to GND  
0V or Vcc  
S1  
OH  
90%  
V
50%  
O
CL=15 pF  
0V  
RE  
tPZL(1)  
tPLZ  
Input  
Generator  
D at 0V  
S1 to Vcc  
V
CC  
50 Ω  
V
I
V
50%  
O
10%  
V
OL  
16. Measurement of Receiver Enable/Disable Times With Driver Enabled  
Vcc  
0V  
Vcc  
VI  
50%  
A
B
1 kΩ  
tPZH(2)  
V or 1.5V  
VO  
R
S1  
VOH  
A at 1.5V  
B at 0V  
S1 to GND  
1.5 V or 0V  
50%  
VO  
CL=15 pF  
RE  
0V  
tPZL(2)  
Input  
Generator  
A at 0V  
B at 1.5V  
S1 to VCC  
VCC  
50 Ω  
VI  
VO  
50%  
VOL  
17. Measurement of Receiver Enable Times With Driver Disabled  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
9 Detailed Description  
9.1 Overview  
THVD1419 and THVD1429 are surge-protected, half duplex RS-485 transceivers available in two speed grades  
suitable for data transmission up to 250 kbps and 20 Mbps respectively. Surge protection is achieved by  
integrating transient voltage suppresser (TVS) diodes in the standard 8-pin SOIC (D) package.  
These devices have active-high driver enables and active-low receiver enables. A standby current of less than 2  
µA can be achieved by disabling both driver and receiver.  
9.2 Functional Block Diagrams  
VCC  
A
R
B
RE  
DE  
D
GND  
18. THVD1419 and THVD1429 Block Diagram  
9.3 Feature Description  
9.3.1 Electrostatic Discharge (ESD) Protection  
The bus pins of the THVD14x9 transceiver family include on-chip ESD protection against ±16-kV HBM and ±8-kV  
IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD test is far more  
severe than the HBM ESD test. The 50% higher charge capacitance, C(S), and 78% lower discharge resistance,  
R(D), of the IEC model produce significantly higher discharge currents than the HBM model. As stated in the IEC  
61000-4-2 standard, contact discharge is the preferred transient protection test method.  
R(C)  
R(D)  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
C(S)  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
19. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment. Common  
discharge events occur because of human contact with connectors and cables.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (接下页)  
9.3.2 Electrical Fast Transient (EFT) Protection  
Inductive loads such as relays, switch contactors, or heavy-duty motors can create high-frequency bursts during  
transition. The IEC 61000-4-4 test is intended to simulate the transients created by such switching of inductive  
loads on AC power lines. 20 shows the voltage waveforms in to 50-Ω termination as defined by the IEC  
standard.  
1
Time  
15 ms at 5 kHz  
0.75 ms at 100 kHz  
300 ms  
1
Time  
200 µs at 5 kHz  
10 µs at 100 kHz  
1
0.5  
Time  
5 ns  
50ns  
20. EFT Voltage Waveforms  
Internal ESD protection circuits of the THVD14x9 protect the transceivers against EFT ±4 kV.  
9.3.3 Surge Protection  
Surge transients often result from lightning strikes (direct strike or an indirect strike which induce voltages and  
currents), or the switching of power systems, including load changes and short circuit switching. These transients  
are often encountered in industrial environments, such as factory automation and power-grid systems.  
21 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left hand diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT  
transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are  
representative of events that may occur in factory environments in industrial and process automation.  
The right hand diagram shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge  
transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
Feature Description (接下页)  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6-kV Surge  
22  
20  
18  
16  
14  
0.5-kV Surge  
12  
4-kV EFT  
10  
8
6
4
2
0.5-kV Surge  
10-kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time (µs)  
Time (µs)  
21. Power Comparison of ESD, EFT, and Surge Transients  
22 shows the test setup used to validate THVD14x9 surge performance according to the IEC 61000-4-5  
1.2/50-μs surge pulse.  
80  
A
Surge Generator  
2 Source Impedance  
80 ꢀ  
THVD14x9  
GND  
B
Coupling Network  
22. THVD14x9 Surge Test Setup  
THVD14x9 product family is robust to ±2.5-kV surge transients without the need for any external components.  
9.3.4 Failsafe Receiver  
The differential receivers of the THVD14x9 family are failsafe to invalid bus states caused by the following:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver will output a failsafe logic high state so that the output of the  
receiver is not indeterminate.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
9.4 Device Functional Modes  
When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input  
D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage defined as  
VOD = VA – VB is positive. When D is low, the output states reverse: B turns high, A becomes low, and VOD is  
negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
A turns high and B turns low.  
1. Driver Function Table  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
A
H
L
B
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high.  
When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+  
and VTH- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not  
actively driven (idle bus).  
2. Receiver Function Table  
DIFFERENTIAL INPUT  
VID = VA – VB  
VTH+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VTH- < VID < VTH+  
VID < VTH-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
16  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
THVD14x9 are half-duplex RS-485 transceivers with integrated system-level surge protection. Standard 8-pin  
SOIC (D) package allows drop-in replacement into existing systems and eliminate system-level protection  
components.  
10.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, allows for higher data rates over longer  
cable length.  
R
R
R
R
A
B
A
B
RE  
RE  
R
R
T
T
DE  
D
DE  
D
D
D
A
B
A
B
R
R
R
R
D
D
D
D
RE DE  
RE DE  
23. Typical RS-485 Network With Half-Duplex Transceivers  
10.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
10.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
short the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at  
distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or  
10%.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
Typical Application (接下页)  
www.ti.com.cn  
10000  
1000  
100  
5%, 10%, and 20% Jitter  
Conservative  
Characteristics  
10  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
24. Cable Length vs Data Rate Characteristic  
Even higher data rates are achievable (that is, 20 Mbps for the THVD1429) in cases where the interconnect is  
short enough (or has suitably low attenuation at signal frequencies) to not degrade the data.  
10.2.1.2 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of  
a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as  
shown in 公式 1.  
L(STUB) 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s)  
v is the signal velocity of the cable or trace as a factor of c  
(1)  
10.2.1.3 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit  
load represents a load impedance of approximately 12 k. Because the THVD14x9 devices consist of 1/8 UL  
transceivers, connecting up to 256 receivers to the bus is possible.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
Typical Application (接下页)  
10.2.2 Detailed Design Procedure  
RS-485 transceivers operate in noisy industrial environments typically require surge protection at the bus pins. 图  
25 compares 1-kV surge protection implementation with a regular RS-485 transceiver (such as THVD14x0)  
against with the THVD14x9. The internal TVS protection of the THVD14x9 achieves ±2.5 kV IEC 61000-4-5  
surge protection without any additional external components, reducing system level bill of materials.  
System level surge protection implementation  
using a typical RS-485 transceiver  
3.3V œ 5 V  
100nF  
VCC  
10k 10k  
RxD  
Pulse-proof,  
thick-film resistor  
R
/RE  
TVS  
A
B
DIR  
MCU/  
UART  
DE  
D
DIR  
TxD  
Pulse-proof,  
thick-film resistor  
THVD14x0  
10k  
GND  
System level surge protection implementation  
using THVD14x9 transceiver  
3.3V œ 5 V  
100nF  
VCC  
10k 10k  
R
RxD  
/RE  
A
DIR  
MCU/  
UART  
B
DE  
DIR  
TxD  
D
THVD14x9  
10k  
GND  
25. Implementation of System-Level Surge Protection Using THVD14x9  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Typical Application (接下页)  
10.2.3 Application Curves  
VCC = 5 V  
54-Ω Termination  
TA = 25°C  
26. THVD1429 Waveforms at 20 Mbps  
11 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100-  
nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage ripple  
present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and  
inductance of the PCB power planes.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
THVD1419, THVD1429  
www.ti.com.cn  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
12 Layout  
12.1 Layout Guidelines  
Additional external protection components generally are not needed when using THVD14x9 transceivers.  
1. Use VCC and ground planes to provide low-inductance. Note that high-frequency currents tend to follow the  
path of least impedance and not the path of least resistance. Apply 100-nF to 220-nF decoupling capacitors  
as close as possible to the VCC pins of transceiver, UART and/or controller ICs on the board.  
2. Use at least two vias for VCC and ground connections of decoupling capacitors to minimize effective via-  
inductance.  
3. Use 1-kΩ to 10-kΩ pull-up and pull-down resistors for enable lines to limit noise currents in theses lines  
during transient events.  
12.2 Layout Example  
2
Via to GND  
C
1
R
Via to VCC  
3
R
R
MCU  
3
R
THVD14x9  
2
27. Half-Duplex Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
THVD1419, THVD1429  
ZHCSJ05C NOVEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
THVD1419  
THVD1429  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。.  
13.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.6 商标  
E2E is a trademark of Texas Instruments.  
13.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THVD1419DR  
THVD1419DT  
THVD1429DR  
THVD1429DT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1419  
1419  
1429  
1429  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Sep-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THVD1419DR  
THVD1419DT  
THVD1429DR  
THVD1429DT  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
2500  
250  
330.0  
177.8  
330.0  
177.8  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Sep-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THVD1419DR  
THVD1419DT  
THVD1429DR  
THVD1429DT  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
2500  
250  
346.0  
213.0  
346.0  
213.0  
346.0  
191.0  
346.0  
191.0  
29.0  
35.0  
29.0  
35.0  
2500  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

THVD1419DT

具有浪涌保护功能的 3.3V 至 5V RS-485 收发器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1420

THVD1400, THVD1420 3.3-V to 5-V RS-485 Transceivers in Small Package with ±12-kV IEC ESD Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1420DR

THVD1400, THVD1420 3.3-V to 5-V RS-485 Transceivers in Small Package with ±12-kV IEC ESD Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1420DRLR

THVD1400, THVD1420 3.3-V to 5-V RS-485 Transceivers in Small Package with ±12-kV IEC ESD Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1424

具有压摆率控制、集成式可切换终端和双工切换的 RS-485 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1424RGTR

具有压摆率控制、集成式可切换终端和双工切换的 RS-485 收发器 | RGT | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1426

具有自动方向控制和 ±8kV IEC ESD 保护功能的 3.3V 至 5V 12Mbps RS-485 半双工收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1426DR

具有自动方向控制和 ±8kV IEC ESD 保护功能的 3.3V 至 5V 12Mbps RS-485 半双工收发器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1426DRLR

具有自动方向控制和 ±8kV IEC ESD 保护功能的 3.3V 至 5V 12Mbps RS-485 半双工收发器 | DRL | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1428

具有浪涌保护功能的 3.3V 至 5V RS-485 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1428DR

具有浪涌保护功能的 3.3V 至 5V RS-485 收发器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

THVD1429

具有浪涌保护功能的 3.3V 至 5V RS-485 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI