THVD1505DR [TI]

总线极性借助 IEC-ESD 保护校正 RS-485 收发器 | D | 8 | -40 to 125;
THVD1505DR
型号: THVD1505DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

总线极性借助 IEC-ESD 保护校正 RS-485 收发器 | D | 8 | -40 to 125

PC 驱动 光电二极管 接口集成电路 驱动器
文件: 总32页 (文件大小:1457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
THVD1505  
ZHCSK86 SEPTEMBER 2019  
具有 IEC-ESD 保护功能的 THVD1505 总线极性校正 RS-485 收发器  
1 特性  
2 应用  
1
符合或超出 TIA/EIA-485A 标准和中国国家电网公  
(SGCC) 11 部分串行通信协议 RS-485 标准  
的要求  
电表  
HVAC 系统  
逆变器  
4.5V 5.5V 电源电压  
半双工 RS-422/RS-485  
可在 45ms 内校正总线极性  
有无失效防护偏置电阻器均可工作  
数据速率:高达 1Mbps  
总线 I/O 保护:  
视频监控  
3 说明  
THVD1505 是一款低功耗 RS-485 收发器,具有总线  
极性自动校正和瞬态保护功能。热插拔时,此器件在总  
线闲置的头 45ms 内检测并校正总线极性。这些总线  
引脚可耐受静电放电 (ESD) 事件,具有符合人体放电  
模型 (HBM)IEC 61000-4-2 接触放电和空气间隙放  
电规范的高级别保护功能。  
±16kV HBM ESD  
±8kV IEC 61000-4-2 接触放电  
±8kV IEC 61000-4-2 空气间隙放电  
±2kV IEC 61000-4-4 快速瞬变脉冲  
此器件将一个差分驱动器和一个差分接收器组合在一  
起,这两个器件由一个 5V 单电源供电。驱动器差分输  
出和接收器差分输入在内部连接,构成一个适用于半双  
工(两线制总线)通信的总线端口。该器件 具有 宽共  
模电压范围,因此适用于长线缆上的 多点 。  
开路、短路和空闲总线失效防护  
用于噪声抑制的  
较大接收器迟滞值:120mV  
一条总线上多达 256 个节点(1/8 单位负载)  
工作温度  
范围:–40°C 125°C  
THVD1505 采用 SOIC-8 封装,在自然通风环境下的  
额定温度范围为 –40°C 125°C。  
低功耗  
器件信息(1)  
待机电源电流:< 1µA  
工作电源电流:< 1.1mA  
器件型号  
THVD1505  
封装  
SOIC (8)  
封装尺寸(标称值)  
适用于热插拔功能的无干扰上电/断电  
4.90mm × 3.91mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
支持极性纠正 (POLCOR) 的典型网络应用  
Cross-wire  
fault  
5V  
M
R
RE  
DE  
D
R
R
R
1k  
A
B
A
B
RE  
DE  
D
1k  
D
D
A
B
A
B
Master  
THVD1500  
Slave  
THVD1505  
R
R
D
D
POLCOR  
RE DE  
POLCOR  
RE DE  
R
D
R
D
Slave  
Slave  
THVD1505  
THVD1505  
Copyright © 2018, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF68  
 
 
 
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.1 Overview ................................................................ 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 ESD Ratings [IEC] .................................................... 4  
6.4 Recommended Operating Conditions....................... 4  
6.5 Thermal Information.................................................. 4  
6.6 Electrical Characteristics........................................... 5  
6.7 Power Dissipation Characteristics ............................ 6  
6.8 Switching Characteristics.......................................... 6  
6.9 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 8  
7.1 Driver......................................................................... 8  
7.2 Receiver.................................................................... 9  
Detailed Description ............................................ 11  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example ................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 器件支持................................................................ 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 25  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
9 2019 年  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
R
RE  
DE  
D
1
2
3
4
8
7
6
5
V
B
A
CC  
GND  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Bus  
input/output  
A
6
Driver output or receiver input (complementary to B)  
Driver output or receiver input (complementary to A)  
Bus  
input/output  
B
7
D
DE  
GND  
R
4
3
5
1
2
8
Digital input Driver data input (internal 5-MΩ pull-up)  
Digital input Driver enable, active high (internal 5-MΩ pull-down)  
Ground  
Device ground  
Digital output Receive data output  
RE  
VCC  
Digital input Receiver enable, active low (internal 5-MΩ pull-up)  
Supply  
4.5-V to 5.5-V supply  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.3  
–18  
MAX  
7
UNIT  
V
VCC  
VL  
Supply voltage  
Input voltage at any logic pin (D, DE or RE)  
5.7  
18  
V
VA, VB Voltage at A or B inputs, as differential or common-mode with respect to GND  
V
IO  
Receiver output current  
Junction temperature  
Storage temperature  
–24  
24  
mA  
°C  
°C  
TJ  
170  
150  
TSTG  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditionsbeyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions forextended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±16,000  
±4,000  
±1,500  
±400  
UNIT  
Bus terminals and GND  
All other pins  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Machine model (MM), per JEDEC JESD22-A115-A  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2019, Texas Instruments Incorporated  
3
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
6.3 ESD Ratings [IEC]  
VALUE  
±8,000  
±8,000  
±2,000  
UNIT  
IEC 61000-4-2 ESD contact discharge, bus terminals and GND  
IEC 61000-4-2 ESD air-gap discharge, bus terminals and GND  
IEC 61000-4-4 EFT fast transient, bus terminals and GND  
V(ESD)  
Electrostatic discharge  
V
6.4 Recommended Operating Conditions  
MIN  
4.5  
–12  
–7  
NOM  
MAX  
UNIT  
VCC  
VID  
VI  
Supply voltage  
5
5.5  
12  
V
V
V
V
V
Differential input voltage  
Input voltage at any bus terminal(1)  
12  
VIH  
VIL  
High-level input voltage (driver, driver-enable, and receiver-enable inputs)  
Low-level input voltage (driver, driver-enable, and receiver-enable inputs)  
2
VCC  
0.8  
60  
0
Driver  
–60  
–8  
IO  
Output current  
Receiver  
mA  
8
RL  
Differential load resistance  
54  
60  
Ω
kbps  
°C  
1/tUI  
TJ  
Signaling rate  
0.3  
–40  
–40  
1000  
150  
Junction temperature  
(2)  
TA  
Operating ambient temperature (see Thermal Information for additional information)  
125  
°C  
(1) The algebraic convention in which the least positive (most negative) limit is designated as minimum is used in this datasheet.  
(2) Operation is specified for internal (junction) temperatures upto 150°C. Self-heating due to internal power dissipation should be  
considered for each application. Maximum junction temperature is internally limited by the thermal shutdown (TSD) circuit which disables  
the device when the junction temperature reaches 170°C.  
6.5 Thermal Information  
THVD1505  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
125.3  
67.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
68.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
20.4  
ψJB  
67.8  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
6.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
Vtest from –7 to +12 V  
See 7  
See 8  
1.5  
1.5  
2
2.5  
2.5  
3
Driver differential-output voltage  
magnitude  
VOD  
RL = 54 Ω (RS-485), CL = 50 pF  
RL = 100 Ω (RS-422), CL = 50 pF  
V
Change in magnitude of driver  
differential-output voltage  
ΔVOD  
VOC(SS)  
ΔVOC  
RL = 54 Ω, CL = 50 pF  
See 8  
–50  
1
50  
3
mV  
V
Steady-state common-mode  
output voltage  
VCC / 2  
Change in differential driver  
common-mode output voltage  
RL = 54 Ω, CL = 50 pF  
See 8  
–50  
50  
mV  
mV  
Peak-to-peak driver common-  
mode output voltage  
VOC(PP)  
250  
8
DE = VCC, -7 V [VA or VB] 12 V, or A pin shorted to B  
pin  
IOS  
Driver short-circuit output current  
Differential output capacitance  
150  
110  
mA  
pF  
COD  
Receiver  
VI = 12 V  
75  
II  
Bus input current (driver disabled) DE = 0 V, VCC = 0 V or 5.5 V  
µA  
VI = –7 V  
–90  
96  
–70  
VA = -7 V, VB = 12 V and VA = 12  
RA, RB  
VIT+  
Bus input impedance  
V, VB = -7 V  
See 12  
kΩ  
mV  
mV  
mV  
Positive-going receiver  
differential-input voltage threshold  
60  
–60  
120  
100  
Negative-going receiver  
differential-input voltage threshold  
VIT–  
–100  
Receiver differential-input voltage  
threshold hysteresis (VIT+ – VIT–  
(1)  
VHYS  
40  
4
)
VOH  
VOL  
Receiver high-level output voltage IOH = –8 mA  
Receiver low-level output voltage IOL = 8 mA  
Receiver high-impedance output  
VCC – 0.3  
0.2  
V
V
0.4  
1
IOZ  
VO = 0 V or VCC, RE = VCC  
–1  
–2  
µA  
current  
Receiver output short-circuit  
current  
IOSR  
RE = 0, DE = 0  
See 13  
95  
2
mA  
Logic  
IIN  
Input current (D, DE, RE)  
Supply current (quiescent)  
µA  
µA  
Supply  
DE = VCC, RE = 0,  
no load  
Driver and receiver enabled  
Driver enabled, receiver disabled  
Driver disabled, receiver enabled  
Driver and receiver disabled  
820  
520  
520  
0.03  
1100  
660  
660  
1
DE = VCC, RE =  
VCC, no load  
ICC  
DE = 0, RE = 0, no  
load  
DE = 0, RE = VCC  
no load  
,
(1) Under any specific conditions, VIT+ is specified to be at least VHYS higher thanVIT–  
.
Copyright © 2019, Texas Instruments Incorporated  
5
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
6.7 Power Dissipation Characteristics  
PARAMETER  
TEST CONDITIONS  
RL = 300 Ω, CL = 50 pF  
VALUE  
120  
UNIT  
Unterminated  
RS-422 load  
RS-485 load  
Power dissipation, driver and  
receiver enabled, VCC = 5.5 V, TA  
125°C, 50% duty cycle square-wave  
signal at maximum signaling rate  
=
PD  
RL = 100 Ω, CL = 50 pF  
RL = 54 Ω, CL = 50 pF  
160  
mW  
200  
6.8 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
tr, tf  
Driver differential output rise and fall times  
Driver propagation delay  
See 9  
100  
115  
90  
300  
350  
40  
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
See 9  
Driver pulse skew, |tPHL – tPLH  
|
See 9  
25  
tPHZ, tPLZ  
Driver disable time  
See 10 and 11  
See 10 and 11  
See 10 and 11  
70  
160  
400  
3
Receiver enabled  
Receiver disabled  
220  
1.5  
tPHZ, tPLZ  
Driver enable time  
Receiver  
tr, tf  
Receiver output rise and fall times  
Receiver propagation delay time  
See 14  
See 14  
See 14  
See 15  
See 15  
6
80  
30  
120  
7
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
Receiver pulse skew, |tPHL – tPLH  
|
2
tPHZ, tPLZ  
Receiver disable time  
15  
30  
tPZL(1)  
tPZH(1)  
tPZL(2)  
tPZH(2)  
,
Driver enabled  
Driver disabled  
Driver disabled  
180  
370  
Receiver enable time  
Bus fail-safe time  
,
See 16  
See 17  
1
5
µs  
tFS  
25  
35  
45  
ms  
6
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
6.9 Typical Characteristics  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3
4.2  
3.6  
3
VOL  
VOH  
2.4  
1.8  
1.2  
0.6  
0
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
-0.6  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
Driver Output Current (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
Driver Output Current (mA)  
D_00  
D_00  
2. Driver Differential Output Voltage vs Driver Output  
1. Driver Output Voltage vs Driver Output Current  
Current  
130  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Rise time  
Fall time  
128  
126  
124  
122  
120  
118  
116  
114  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
6
6.5  
7
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (0C)  
D_00  
D_00  
3. Driver Output Current vs Supply Voltage  
4. Driver Rise or Fall Time vs Temperature  
91  
45.35  
45.3  
45.25  
45.2  
45.15  
45.1  
45.05  
45  
90.5  
90  
89.5  
89  
88.5  
88  
87.5  
87  
TPLH  
TPHL  
44.95  
44.9  
86.5  
86  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
100 200 300 400 500 600 700 800 900 1000  
Signaling Rate (kbps)  
Temperature (0C)  
D_00  
D_00  
5. Driver Propagation Delay vs Temperature  
6. Supply Current vs Signaling Rate  
版权 © 2019, Texas Instruments Incorporated  
7
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Driver  
Vcc  
DE  
375  
60 Ω  
A
B
D
0V or 5 V  
VOD  
Vtest  
375 Ω  
7. Measurement of Driver Differential-Output Voltage With Common-Mode Load  
A
VA  
A
B
RL/2  
RL/2  
B
D
VB  
ûVOC(SS)  
0V or 5 V  
VOD  
VOC(PP)  
VOC  
CL  
VOC  
8. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
5V  
Vcc  
50%  
VI  
tPLH  
0V  
DE  
A
B
tPHL  
D
CL=  
50 pF  
54 Ω  
2V  
VOD  
90%  
50%  
10%  
Input  
Generator  
50Ω  
VI  
VOD  
-2V  
tr  
tf  
9. Measurement of Driver Differential-Output Rise and Fall Times and Propagation Delays  
A
B
5V  
S1  
VO  
D
50%  
VI  
0V  
RL=  
110 Ω  
DE  
50Ω  
tPZH  
CL=  
50 pF  
VOH  
Input  
Generator  
90%  
VI  
50%  
VO  
0V  
tPHZ  
10. Measurement of Driver Enable and Disable Times With Active-High Output and Pull-Down Load  
5V  
5V  
50%  
RL= 110 Ω  
VI  
tPZL  
VO  
A
B
0V  
S1  
D
VO  
tPLZ  
5V  
DE  
50Ω  
CL=  
50 pF  
50%  
Input  
Generator  
10%  
VI  
VOL  
11. Measurement of Driver Enable and Disable Times With Active-Low Output and Pull-up Load  
8
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
7.2 Receiver  
VCC  
Source meter to apply  
VA/VB and measure IA/IB  
=
VX  
RE  
DE  
VCC  
A
VA  
IA  
DI  
R
B
VB  
IB  
GND  
12. Measurement of Bus Impedance  
VCC  
RE  
DE  
VCC  
A
DI  
R
B
A
GND  
13. Measurement of Receiver Output Short Circuit Current  
5V  
50%  
VI  
tPLH  
0V  
A
R
VO  
tPHL  
Input  
Generator  
50  
VI  
1.5V  
0V  
VOH  
90%  
50%  
10%  
B
CL= 15 pF  
RE  
VOD  
VOL  
tr  
tf  
14. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
5V  
Vcc  
DE  
Vcc  
VI  
tPZH(1)  
VO  
50%  
0V  
A
B
1 kΩ  
tPHZ  
D
VO  
D at 5V  
S1 to GND  
R
S1  
0V or 5 V  
VOH  
0V  
VCC  
VOL  
90%  
50%  
CL= 15 pF  
RE  
tPZL(1)  
tPLZ  
D at 0V  
S1 to VCC  
Input  
Generator  
50Ω  
VI  
VO  
50%  
10%  
15. Measurement of Receiver Enable and Disable Times With Driver Enabled  
版权 © 2019, Texas Instruments Incorporated  
9
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
Receiver (接下页)  
5V  
Vcc  
VI  
tPZH(2)  
VO  
50%  
0V  
A
1 kΩ  
0V or 1.5 V  
R
VO  
S1  
VOH  
0V  
VCC  
VOL  
A at 1.5V  
B at 0V  
S1 to GND  
1.5 V or 0 V  
B
50%  
CL= 15 pF  
RE  
tPZL(2)  
Input  
Generator  
A at 0V  
B at 1.5V  
S1 to VCC  
50Ω  
VI  
VO  
50%  
16. Measurement of Receiver Enable Times With Driver Disabled  
2.8V  
VI  
2.2V  
A
R
VO  
10 k  
Input  
Generator  
tFS  
50Ω  
VI  
2.5V  
0V  
B
VCC  
RE  
(DE = Low)  
VO  
50%  
17. Measurement of Receiver Polarity-Correction Time With Driver Disabled  
10  
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
8 Detailed Description  
8.1 Overview  
The THVD1505 device is a half-duplex RS-485 transceiver suitable for data transmission at rates up to 1 Mbps  
over controlled-impedance transmission media (such as twisted-pair cabling). The device features a high level of  
internal transient protection, making it able to withstand ESD strikes up to ±8 kV (per IEC 61000-4-2) and EFT  
transients up to ±2 kV (per IEC 61000-4-4) without incurring damage. Up to 256 units of THVD1500 and/or  
THVD1505 may share a common RS-485 bus due to the devices' low bus input currents. THVD1505 features  
automatic polarity correction, which detects bus mis-wiring and swaps A and B.  
8.2 Functional Block Diagram  
R
RE  
DE  
D
Vcc  
B
A
GND  
Copyright © 2018, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Bus Polarity Correction  
THVD1505 automatically corrects a wrong bus-signal polarity caused by a mis-wire fault. In order to detect the  
bus polarity, the following conditions must be met.  
A slave node must enable the receiver (RE = low). Driver can be in either enabled or disabled state  
A and B signals should be static for longer than fail-safe time (tFS  
The absolute value of the differential voltage at the receiver input should be greater than the receiver  
thresholds (|VIT+| or |VIT-|)  
)
The receiver input voltage can be defined either by using passive fail-safe resistors or by the master node  
actively driving the bus.  
8.3.1.1 Passive Polarity Definition Using Fail-Safe Biasing Network  
18 shows a simple point-to-point data link between a master node and a slave node with mis-wire fault.  
VS-Master  
VS-Master  
VS-Slave  
VS-Slave  
Master  
node  
Slave  
node  
VSM  
Vdd  
Vcc  
Vcc  
Vdd  
R
R
RxD  
RxD  
RFS  
A
B
A
B
MCU  
MCU  
RE  
DE  
D
RE  
DE  
D
RT  
(opt.)  
RT  
(opt.)  
DIR  
TxD  
DIR  
TxD  
RFS  
DGND  
GND  
GND  
DGND  
18. Passive Polarity Definition  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
During passive polarity definition, an external fail-safe resistor network (RFS) must be used to ensure fail-safe  
operation during an idle bus state. When the bus is not actively driven, the differential receiver inputs could float  
allowing the receiver output to assume a random output. A proper fail-safe network forces the receiver inputs to  
exceed the VIT threshold, thus forcing the THVD1505 receiver output into the high state.  
19 shows the timing diagram for passive polarity definition.  
Prior to initiating data transmission the master transceiver must idle for a time span that exceeds the maximum  
fail-safe time, tFS, of a slave transceiver. This idle time is accomplished by driving the direction control line (the  
output of the MCU in 19 that is driving DE and RE pins), DIR, low. After a time, t > tFS, the master begins  
transmitting data.  
Because of the indicated mis-wire fault between master and slave, the slave node receives bus signals with  
reversed polarity. Assuming the slave node has just been connected to the bus, the direction-control pin is  
pulled-down during power-up and then is actively driven low by the slave MCU. The polarity correction begins as  
soon as the slave supply is established and ends after tFS  
.
Low due to pull-down  
DIRm  
Dm  
or actively driven  
high Z  
Master  
signals  
VAm  
0V  
VFS  
-Vod  
+Vid  
+Vod  
-Vid  
VBm  
VBs  
0V  
VFS  
VAs  
VSs  
Slave  
signals  
Low due to pull-down and then actively driven  
DIRs  
Rs  
tFS  
Uncorrected R output:  
R is in phase with  
wrong V polarity  
Corrected R output:  
R is reversed to  
wrong V polarity  
ID  
ID  
19. Polarity Correction Timing With Passive Polarity Definition  
Initially, the slave receiver assumes that the correct bus polarity is applied to the inputs and performs no polarity  
reversal. Because of the reversed polarity of the bus-failsafe voltage, the output of the slave receiver, RS, turns  
low. After tFS has passed and the receiver has detected the wrong bus polarity, the internal POLCOR logic  
reverses the input signal and RS turns high.  
At this point, all incoming bus data with reversed polarity are polarity corrected within the transceiver. Because  
polarity correction is also applied to the transmit path, the data sent by the slave MCU are reversed by the  
POLCOR logic and then fed into the driver.  
12  
版权 © 2019, Texas Instruments Incorporated  
 
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
Feature Description (接下页)  
The reversed data from the slave MCU are reversed again by the mis-wire fault in the bus, and the correct bus  
polarity is reestablished at the master end.  
THVD1505 retains the state of the polarity logic as long as VCC is present to the device. However, the device  
POLCOR logic powers up in the default no polarity reversal mode at each device power up. POLCOR logic  
remains active as long as VCC is applied to the device.  
Data string durations of consecutive 0s or 1s exceeding the minimum tFS can accidently  
trigger a wrong polarity correction and must be avoided.  
8.3.1.2 Active Polarity Definition by the Master Node  
THVD1505 polarity correction can also work without a fail-safe resistor network. See 20.  
VS-Master  
VS-Master  
VS-Slave  
VS-Slave  
Master  
node  
Slave  
node  
Vdd  
Vcc  
Vcc  
Vdd  
R
R
RxD  
RxD  
A
B
A
B
MCU  
RE  
DE  
D
RE  
DE  
D
MCU  
DIR  
TxD  
RT  
RT  
DIR  
TxD  
DGND  
GND  
GND  
DGND  
20. Active Polarity Definition  
In this scenario, the master node drives the bus for longer than tFS. After a time, t > tFS, the master begins  
transmitting data. 21 shows the timing diagram for active polarity definition. DIR pin refers to the output of the  
MCU that is driving DE and RE pins in 21.  
版权 © 2019, Texas Instruments Incorporated  
13  
 
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
Driven high  
Driven high  
DIRm  
Dm  
Master  
signals  
VAm  
0V  
-VOD  
+VOD  
VFS  
VBm  
VBs  
0V  
+VID  
-VID  
VFS  
VAs  
VSs  
Slave  
signals  
Low due to pull-down and then actively driven  
DIRs  
Rs  
tFS  
Uncorrected R output :  
R is in phase with  
wrong V polarity  
Corrected R output :  
R is reversed to  
wrong V polarity  
ID  
ID  
21. Polarity Correction Timing With Active Polarity Definition  
POLCOR logic behavior with active polarity definition is identical to the POLCOR logic behavior with passive  
polarity definition.  
14  
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
8.4 Device Functional Modes  
1. Driver Pin Functions  
INPUT  
ENABLE  
DE  
OUTPUTS  
DESCRIPTION  
D
A
B
NORMAL MODE  
H
H
H
L
L
H
Z
Z
L
Actively drives bus high  
Actively drives bus low  
Driver disabled  
L
X
H
L
Z
Z
H
X
OPEN  
H
Driver disabled by default  
Actively drives bus high  
OPEN  
POLARITY-CORRECTING MODE  
H
H
L
H
Z
Z
L
H
L
Actively drives bus low  
Actively drives bus high  
Driver disabled  
L
X
H
L
Z
Z
H
X
OPEN  
H
Driver disabled by default  
Actively drives bus low  
OPEN  
2. Receiver Pin Functions  
DIFFERENTIAL  
INPUT  
ENABLE  
OUTPUT  
DESCRIPTION  
VID = VA – VB  
RE  
DE  
R
VID > VIT+  
L
X
H
Receive valid bus high  
L during tFS  
H after tFS  
Receive valid bus low if lasting for less than tFS, polarity correcting if lasting for  
more than tFS  
VIT- > VID  
L
X
X
X
H
X
X
Z
Z
Receiver disabled  
Receiver disabled  
OPEN  
Open, short or VIT+  
VID > VIT-  
>
L
X
H after tFS  
Receiver fail-safe high  
版权 © 2019, Texas Instruments Incorporated  
15  
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Device Configuration  
The THVD1505 is a half-duplex RS-485 transceiver operating from a single 5-V ±10% supply. The driver and  
receiver enable pins allow for the configuration of different operating modes.  
R
R
R
R
Vcc  
B
R
Vcc  
B
R
Vcc  
B
RE  
RE  
RE  
DE  
D
DE  
D
DE  
D
A
A
A
D
GND  
D
GND  
D
GND  
c) Receiver always on  
b) Combined enable signals for  
use as directional control pin  
a) Independent driver and  
receiver enable signals  
Copyright © 2018, Texas Instruments Incorporated  
22. Transceiver Configurations  
Using independent enable lines provides the most flexible control as the lines allow for the driver and the  
receiver to be turned on and turned off individually. While this configuration requires two control lines, it allows for  
selective listening to the bus traffic, whether the driver is transmitting data or not. Only this configuration allows  
the THVD1505 to enter low-power standby mode because it allows both the driver and receiver to be disabled  
simultaneously.  
Combining the enable signals simplifies the interface to the controller by forming a single direction-control signal.  
Thus, when the direction-control line is high, the transceiver is configured as a driver, while for a low the device  
operates as a receiver.  
Tying the receiver enable to ground and controlling only the driver-enable input also uses only one control line. In  
this configuration, a node not only receives the data on the bus sent by other nodes but also receives the data  
sent on the bus, enabling the node to verify the correct data has been transmitted.  
9.1.2 Bus Design  
An RS-485 bus consists of multiple transceivers connected in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, allows for relatively high data rates over  
long cable length.  
Common cables used are unshielded twisted pair (UTP), such as low-cost CAT-5 cable with Z0 = 100 Ω, and RS-  
485 cable with Z0 = 120 Ω. Typical cable sizes are AWG 22 and AWG 24.  
The maximum bus length is typically given as 4000 ft or 1200 m, and represents the length of an AWG 24 cable  
whose cable resistance approaches the value of the termination resistance, thus reducing the bus signal by half  
or 6 dB. Actual maximum usable cable length depends on the signaling rate, cable characteristics, and  
environmental conditions.  
16  
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
Application Information (接下页)  
9.1.3 Fail-Safe Biasing for Passive Polarity Definition  
External biasing resistor network of RFS along with RT define the VFS during the polarity correction time, tFS. See  
Passive Polarity Definition Using Fail-Safe Biasing Network for more details.  
RFS resistors should be selected such that VFS > |VIT| = 100 mV. The equation below can be used to calculate  
RFS. Note that too low of a RFS value increases the bus loading that reduces the number of nodes on the RS-485  
bus.  
RFS < 0.5 x [(RT x VCC-min) / 0.1 - RT]  
(1)  
9.1.4 Cable Length Versus Data Rate  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
shorter the cable length; and conversely, the lower the data rate the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, applications such as e-metering often operate at rates of  
up to 250 kbps even at distances of 4000 ft and longer. Longer distances are possible by allowing for small  
signal jitter of up to 5 or 10%.  
10000  
5,10,20 % Jitter  
1000  
Conservative  
Characteristics  
100  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
DATA RATE - bps  
23. Cable Length vs Data Rate Characteristic  
9.1.5 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. The reason for the short distance is because a stub presents a non-  
terminated piece of bus line which can introduce reflections if the distance is too long. As a general guideline, the  
electrical length or round-trip delay of a stub should be less than one-tenth of the rise time of the driver, thus  
leading to a maximum physical stub length of as shown in 公式 2.  
LS 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s or 9.8 × 108 ft/s)  
v is the signal velocity of the cable (v = 78%) or trace (v = 45%) as a factor of c  
(2)  
Based on 公式 2, with a minimum rise time of 400 ns, 公式 3 shows the maximum cable-stub length of the  
THVD1505.  
LS 0.1 × 400 × 10-9 × 3 108 × 0.78 = 9.4 m (or 30.6 ft)  
(3)  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
Application Information (接下页)  
L
S
A
B
R
R
D
D
RE DE  
24. Stub Length  
9.1.6 Transient Protection  
The bus terminals of the THVD1505 transceiver family possess on-chip ESD protection against ±16 kV HBM, ±8  
kV IEC 61000-4-2 contact discharge and ±2 kV IEC 61000-4-4 EFT. The International Electrotechnical  
Commission (IEC) ESD test is far more severe than the HBM ESD test. The 50% higher charge capacitance, CS,  
and 78% lower discharge resistance, RD of the IEC model produce significantly higher discharge currents than  
the HBM model.  
R
R
D
C
40  
35  
30  
25  
20  
15  
10  
5
50M  
(1M)  
330  
10kV IEC  
(1.5k)  
High-Voltage  
Pulse  
Generator  
Device  
Under  
Test  
150pF  
C
S
(100pF)  
10kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time - ns  
Copyright © 2016, Texas Instruments Incorporated  
25. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD and EFT protection significantly increases the robustness of equipment.  
Common discharge events occur because of human contact with connectors and cables. EFTs are generally  
caused by relay-contact bounce or the interruption of inductive loads.  
Surge transients often result from lightning strikes (direct strike or an indirect strike which induce voltages and  
currents), or the switching of power systems, including load changes and short circuit switching. These transients  
are often encountered in industrial environments, such as factory automation and power-grid systems.  
26 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left hand diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT  
transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are  
representative of events that may occur in factory environments in industrial and process automation. The right  
hand diagram shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge transient. 6-kV  
surge transients are most likely to occur in power generation and power-grid systems.  
Designers may choose to implement protection against longer duration surge transients. 28 suggests two  
circuit designs providing protection against short and long duration surge transients. 3 lists the bill of materials  
for the external protection devices.  
18  
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
Application Information (接下页)  
The unit of the pulse-power changes from kW to MW, thus making the power of the 500-V  
surge transient almost dropping off the scale.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6kV Surge  
22  
20  
18  
16  
14  
12  
10  
8
0.5kV Surge  
4kV EFT  
6
4
2
0.5kV Surge  
10kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time - μs  
Time - μs  
26. Power Comparison of ESD, EFT, and Surge Transients  
In the case of surge transients, high-energy content is signified by long pulse duration and slow decaying pulse  
power.  
The electrical energy of a transient that is dumped into the internal protection cells of the transceiver is converted  
into thermal energy. This thermal energy heats the protection cells and literally destroys them, thus destroying  
the transceiver. 27 shows the large differences in transient energies for single ESD, EFT, and surge transients  
as well as for an EFT pulse train, commonly applied during compliance testing.  
1000  
100  
Surge  
10  
1
EFT Pulse Train  
0.1  
0.01  
EFT  
10-3  
10-4  
ESD  
10-5  
10-6  
0.5  
1
2
4
6
8
10  
15  
Peak Pulse Voltage - kV  
27. Comparison of Transient Energies  
版权 © 2019, Texas Instruments Incorporated  
19  
 
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
Application Information (接下页)  
3. List of Components  
DEVICE  
FUNCTION  
ORDER NUMBER(1)  
MANUFACTURER  
XCVR  
5-V, 1-Mbps RS-485 Transceiver  
THVD1505DR  
TI  
R1, R2  
10-Ω, Pulse-Proof Thick-Film Resistor  
CRCW0603010RJNEAHP  
CDSOT23-SM712  
Vishay  
Bidirectional 400-W Transient Voltage  
Suppressor  
TVS  
Bourns  
Bourns  
Bourns  
TBU1, TBU2  
MOV1, MOV2  
Bidirectional 200mA Transient Blocking Unit  
TBU-CA-065-200-WH  
MOV-10D201K  
200-mA Transient Blocking Unit 200-V, Metal-  
Oxide Varistor  
(1) See Third Party Disclaimer  
Vcc  
Vcc  
Vcc  
0.1F  
Vcc  
10k  
10k  
0.1F  
TBU1  
MOV1  
R1  
R1  
1
8
7
6
5
1
2
3
4
8
7
6
5
RxD  
MCU  
R
Vcc  
B
RxD  
MCU  
R
Vcc  
B
TVS  
TVS  
2
3
4
RE  
DE  
D
RE  
DE  
D
XCVR  
XCVR  
DIR  
TxD  
A
DIR  
TxD  
A
MOV2  
TBU2  
GND  
GND  
R2  
R2  
10k  
10k  
Copyright © 2016, Texas Instruments Incorporated  
28. Transient Protections Against Surge Transients  
The left circuit shown in 28 provides surge protection of 1-kV transients, while the right protection circuits can  
withstand surge transients of 5 kV.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
9.2 Typical Application  
Many RS-485 networks use isolated bus nodes to prevent the creation of unintended ground loops and their  
disruptive impact on signal integrity. An isolated bus node typically includes a micro controller that connects to  
the bus transceiver through a multi-channel, digital isolator (29).  
THVD1505  
A. See 3.  
29. Isolated Bus Node With Transient Protection  
9.2.1 Design Requirements  
Example Application: Isolated Bus Node with Transient Protection  
RS-485-compliant bus interface.  
Galvanic isolation of both signal and power supply lines.  
Able to withstand surge transients up to 1 kV (per IEC 61000-4-5).  
Full control of data flow on bus in order to prevent contention (for half-duplex communication).  
9.2.2 Detailed Design Procedure  
Power isolation is accomplished using the push-pull transformer driver SN6501, a low-cost LDO and TLV70733.  
Signal isolation uses the quadruple digital isolator ISO7741. Notice that both enable inputs, EN1 and EN2, are  
pulled-up via 4.7-kΩ resistors to limit input currents during transient events.  
While the transient protection is similar to the one in 28 (left circuit), an additional high-voltage capacitor  
diverts transient energy from the floating RS-485 common further towards protective earth (PE) ground. This  
diversion is necessary as noise transients on the bus are usually referred to Earth potential.  
RVH refers to a high-voltage resistor, and in some applications even a varistor. This resistance is applied to  
prevent charging of the floating ground to dangerous potentials during normal operation.  
Occasionally varistors are used instead of resistors in order to rapidly discharge CHV, if expected that fast  
transients might charge CHV to high-potentials.  
版权 © 2019, Texas Instruments Incorporated  
21  
 
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
Note that the PE island represents a copper island on the PCB for the provision of a short, thick Earth wire  
connecting this island to PE ground at the entrance of the power supply unit (PSU).  
In equipment designs using a chassis, the PE connection is usually provided through the chassis itself. Typically  
the PE conductor is tied to the chassis at one end while the high-voltage components, CHV and RHV, are  
connecting to the chassis at the other end.  
9.2.3 Application Curve  
30. Waveforms at 1 Mbps Operation, PRBS7 Data Pattern  
31. Waveforms at 1 Mbps Operation, Clock Data Pattern  
22  
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
10 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100-  
nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage ripple  
present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and  
inductance of the PCB power planes.  
版权 © 2019, Texas Instruments Incorporated  
23  
THVD1505  
ZHCSK86 SEPTEMBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Design and Layout Considerations For Transient Protection  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against surge transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
1. Place the protection circuitry close to the bus connector to prevent noise transients from propagating across  
the board.  
2. Use Vcc and ground planes to provide low inductance. Note that high frequency currents follow the path of  
least impedance and not the path of least resistance.  
3. Design the protection components into the direction of the signal path. Do not force the transients currents to  
divert from the signal path to reach the protection device.  
4. Apply 100 to 220-nF decoupling capacitors as close as possible to the VCC pins of transceiver and UART or  
controller ICs on the board.  
5. Use at least two vias for VCC and ground connections of decoupling capacitors and protection devices to  
minimize effective via inductance.  
6. Use 1 to 10-k pull-up or pull-down resistors for enable lines to limit noise currents in theses lines during  
transient events.  
7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus terminals. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up.  
While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-  
oxide varistors (MOVs) which reduce the transients to a few-hundred volts of clamping voltage, and  
transient blocking units (TBUs) that limit transient current to about 200 mA.  
11.2 Layout Example  
5
Via to ground  
Via to VCC  
C
4
R
R
R
6
6
1
R
R
7
R
MCU  
5
TVS  
THVD1505  
5
32. THVD1505 Layout Example  
24  
版权 © 2019, Texas Instruments Incorporated  
THVD1505  
www.ti.com.cn  
ZHCSK86 SEPTEMBER 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THVD1505DR  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1505  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THVD1505DR  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
THVD1505DR  
D
8
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

THVD1510

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器
TI

THVD1510D

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1510DGK

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGK | 8 | -40 to 125
TI

THVD1510DGKR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGK | 8 | -40 to 125
TI

THVD1510DR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1512

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器
TI

THVD1512DGS

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGS | 10 | -40 to 125
TI

THVD1512DGSR

具有 ±18kV IEC ESD 保护功能的 5V RS-485 收发器 | DGS | 10 | -40 to 125
TI

THVD1520

具有 ±8kV IEC ESD 保护功能且速率高达 10Mbps 的 5V RS-485 收发器
TI

THVD1520DR

具有 ±8kV IEC ESD 保护功能且速率高达 10Mbps 的 5V RS-485 收发器 | D | 8 | -40 to 125
TI

THVD1550

具有 ±18-kV IEC ESD 保护功能的 5V RS-485 收发器
TI

THVD1550D

具有 ±18-kV IEC ESD 保护功能的 5V RS-485 收发器 | D | 8 | -40 to 125
TI