THVD2450VDRCR [TI]

70V 总线故障保护、灵活 IO、3V 至 5.5V、50Mbps 半双工 RS-485 收发器 | DRC | 10 | -40 to 125;
THVD2450VDRCR
型号: THVD2450VDRCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

70V 总线故障保护、灵活 IO、3V 至 5.5V、50Mbps 半双工 RS-485 收发器 | DRC | 10 | -40 to 125

文件: 总39页 (文件大小:2460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
THVD24xxV 具有灵活I/O 电源IEC ESD 保护功能±70V 故障保护、3V 至  
5.5V RS-485 收发器  
1 特性  
3 说明  
• 符合或超TIA/EIA-485A TIA/EIA-422B 标准的  
要求  
3V 5.5V RS-485 电源电压  
• 差分输出超2.1V5V 电源下  
PROFIBUS 兼容  
• 用于逻辑信号接口1.65V 5.5V 电源  
SLR 引脚可选数据速率:  
THVD24xxV 是具有 ±70V 故障保护功能的半双工和全  
双工 RS-422/RS-485 收发器对逻辑信号接口使用  
1.65V 5.5V 电源对总线侧使用 3V 5.5V 电源。  
这些器件具有压摆率选择功能因此可在两种最大速度  
SLR 引脚设置下使用。  
这些器件具有集成式 IEC ESD 保护无需外部系统级  
保护组件。在更长的电缆敷设长度和/或存在大接地环  
路电压的情况下扩展的 ±25V 输入共模范围可实现可  
靠的数据通信。增强型 250mV 接收器迟滞可提供高噪  
声抑制。此外当输入同时开路或短路时接收器失效  
防护功能可确保逻辑高电平。  
THVD2410VTHVD2412V250kbps 和  
1Mbps  
THVD2450VTHVD2452V20Mbps 和  
50Mbps  
• 总线I/O 保护  
封装信息  
±70V 直流总线故障  
±16kV HBM ESD  
– 半双工器件±15kV IEC 61000-4-2 接触放电和  
空气间隙放电  
– 全双工器件±8kV IEC 61000-4-2 接触放电和  
空气间隙放电  
封装(1)  
VSON (10)  
SOIC (14)  
封装尺寸标称值)  
器件型号  
THVD2450V  
3.00mm × 3.00mm  
THVD2410V  
THVD2412V(2)  
THVD2452V(2)  
8.65mm × 3.91mm  
±4kV IEC 61000-4-4 快速瞬变脉冲  
• 提供两种速度等级的半双工和全双工器件  
• 更宽泛的工作环境温度范围-40°C 125°C  
• 扩展的运行共模电压范围±25V  
• 增强型接收器迟滞可获得抗噪能力  
• 低功耗  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 产品预发布  
3-1. 器件信息  
器件型号  
THVD2410V  
双工  
最大数据速率  
半双工  
全双工  
半双工  
全双工  
SLR = 高电平250kbps  
SLR = 低电平1Mbps  
– 低待机电源电流< 5µA  
THVD2412V  
THVD2450V  
THVD2452V  
– 运行期间静态电流< 5.3mA  
• 适用于热插拔功能的无干扰上电/断电  
• 开路、短路和空闲总线失效防护  
• 热关断  
SLR = 高电平20Mbps  
SLR = 低电平50Mbps  
VIO SLR  
VCC  
1/8 单位负载256 个总线节点)(-7V 至  
12V 的共模范围内)  
• 小3mm x 3mm VSON 封装可节省布板空间)  
14-SOIC 封装可方便插接)  
A
R
B
Internally connected  
only for Half duplex  
devices  
RE  
I/O  
and  
Control  
2 应用  
DE  
D
电机驱动器  
工厂自动化和控制  
HVAC 系统  
楼宇自动化  
电网基础设施  
电表  
Z
Y
Only for full  
duplex devices  
简化版原理图  
过程分析  
视频监控  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFO2  
 
 
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagrams....................................... 19  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................20  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
9.3 Power Supply Recommendations.............................28  
9.4 Layout....................................................................... 28  
10 Device and Documentation Support..........................29  
10.1 Device Support....................................................... 29  
10.2 接收文档更新通知................................................... 29  
10.3 支持资源..................................................................29  
10.4 商标.........................................................................29  
10.5 静电放电警告.......................................................... 29  
10.6 术语表..................................................................... 29  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings .............................................................. 5  
6.3 ESD Ratings [IEC]...................................................... 5  
6.4 Recommended Operating Conditions.........................6  
6.5 Thermal Information....................................................6  
6.6 Power Dissipation....................................................... 7  
6.7 Electrical Characteristics.............................................8  
6.8 Switching Characteristics_250 kbps......................... 10  
6.9 Switching Characteristics_1 Mbps............................ 11  
6.10 Switching Characteristics_20 Mbps........................12  
6.11 Switching Characteristics_50 Mbps........................ 13  
6.12 Typical Characteristics............................................14  
7 Parameter Measurement Information..........................17  
Information.................................................................... 29  
4 Revision History  
Changes from Revision * (December 2022) to Revision A (February 2023)  
Page  
• 删除了封装信THVD2410V 的“产品预发布”说明................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
V
1
2
3
4
5
10  
9
V
B
A
IO  
CC  
R
Thermal  
Pad  
DE  
RE  
D
8
7
SLR  
GND  
6
Not to scale  
5-1. THVD2410V, THVD2450V  
10-Pin DRC Package (VSON)  
Top View  
5-1. Pin Functions  
NO.  
1
NAME  
VIO  
R
TYPE  
DESCRIPTION  
Logic Supply Supply for logic I/O signals (R, RE, D, DE, and SLR)  
Digital Output Receive data output  
2
3
DE  
RE  
D
Digital Input Driver enable input; integrated pull-down  
Digital Input Receiver enable input; integrated pull-up  
Digital Input Transmission data input; integrated pull-up  
4
5
Reference  
6
7
GND  
SLR  
Local device ground  
Potential  
Slew rate select. For THVD2410V: Low = 1 Mbps, High = 250 kbps. Defaults to 1 Mbps if  
Digital Input SLR is left floating. For THVD2450V: Low = 50 Mbps, High = 20 Mbps. Defaults to 50 Mbps  
if left floating.  
8
A
Bus I/O  
Bus I/O  
RS 485 bus I/O, A  
RS 485 bus I/O, B  
9
B
10  
VCC  
Bus Supply Bus supply  
-- Connect to GND for optimal thermal performance  
Thermal Pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IO  
CC  
R
NC  
A
RE  
DE  
B
D
Z
GND  
NC  
Y
8
SLR  
Not to scale  
5-2. THVD2412V, THVD2452V  
14-Pin SOIC Package (D)  
Top View  
5-2. Pin functions  
NO.  
1
NAME  
VIO  
R
TYPE  
DESCRIPTION  
Logic supply 1.65 V to 5.5 V supply for logic I/O signals (R, RE, D, DE and SLR)  
Digital output Receive data output  
2
3
RE  
Digital input  
Digital input  
Digital input  
Receiver enable input; integrated pull-up  
Driver enable input; integrated pull-down  
Transmission data input; integrated pull-up  
Local device ground  
4
DE  
5
D
6
GND  
Reference  
potential  
7
8
NC  
No connect  
Digital input  
Not connected internally  
SLR  
Slew rate select. For THVD2412V: Low = 1 Mbps, High = 250 kbps. Defaults to 1 Mbps if  
SLR is left floating. For THVD2452V: Low = 50 Mbps, High = 20 Mbps. Defaults to 50 Mbps  
if left floating.  
9
Y
Bus output  
Bus output  
Bus input  
RS 485 driver non-inverting output  
RS 485 driver inverting output  
RS 485 receiver inverting input  
RS 485 receiver non-inverting input  
Not connected internally  
10  
11  
12  
13  
14  
Z
B
A
Bus input  
NC  
VCC  
No connect  
Bus supply  
3 V to 5.5 V bus supply  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)(2)  
MIN  
0.5  
0.5  
MAX  
VCC + 0.2  
6.5  
UNIT  
V
Logic supply voltage  
Bus supply voltage  
VIO  
VCC  
V
Range at any bus pin as differential or common-mode  
with respect to GND  
Bus voltage  
70  
V
70  
Input voltage  
Range at any logic pin (D, DE, SLR or RE)  
VIO + 0.2  
24  
V
0.3  
24  
65  
Receiver output current  
Storage temperature  
IO  
mA  
°C  
Tstg  
170  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Bus terminals and GND  
±16,000  
V
Human-body model (HBM), per ANSI/ESDA/  
JEDEC JS-001(1)  
All pins except bus terminals  
and GND  
V(ESD)  
Electrostatic discharge  
±4,000  
±1,500  
V
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 ESD Ratings [IEC]  
VALUE  
UNIT  
Electrostatic discharge, Half  
duplex devices THVD2410V/  
2450V (1)  
Contact discharge, per IEC 61000-4-2  
Air-gap discharge, per IEC 61000-4-2  
Contact discharge, per IEC 61000-4-2  
Air-gap discharge, per IEC 61000-4-2  
Per IEC 61000-4-4  
Bus terminals and GND  
Bus terminals and GND  
Bus terminals and GND  
Bus terminals and GND  
Bus terminals  
±15,000  
±15,000  
±8,000  
±8,000  
±4,000  
V(ESD)  
V
Electrostatic discharge, Full  
duplex devices THVD2412V/  
2452V  
V(ESD)  
V(EFT)  
V
V
Electrical fast transient  
(1) For optimised IEC ESD performance, it is recommended to have series resistor (50 ) on all logic inputs to minimize transient  
currents going into or out of the logic pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: THVD2410V THVD2450V  
 
 
 
 
 
 
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
UNIT  
VCC  
VIO  
VI  
Supply voltage  
5.5  
VCC  
25  
V
V
V
I/O supply voltage  
1.65  
25  
Input voltage at any bus terminal (separately or common mode)(1)  
High-level input voltage (driver, driver enable, receiver enable and slew rate select  
inputs)  
VIH  
VIL  
0.7*VIO  
0
VIO  
V
V
Low-level input voltage (driver, driver enable, receiver enable and slew rate select  
inputs)  
0.3*VIO  
VID  
IO  
Differential input voltage bus pins  
Output current, driver  
25  
60  
4
V
25  
60  
4  
8  
54  
mA  
mA  
mA  
IOR  
IOR  
RL  
Output current, receiver  
Output current, receiver  
Differential load resistance  
VIO = 1.8 V or 2.5 V  
VIO = 3.3 V or 5 V  
8
60  
Ω
THVD2410V, THVD2412V with SLR = VIO  
250  
1
kbps  
THVD2410V, THVD2412V with SLR = GND  
or floating  
Mbps  
Mbps  
Mbps  
1/tUI  
Signaling rate  
THVD2450V, THVD2452V with SLR = VIO  
20  
50  
THVD2450V, THVD2452V with SLR = GND  
or floating  
TA  
TJ  
Operating ambient temperature  
Junction temperature  
-40  
-40  
125  
150  
°C  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
6.5 Thermal Information  
THVD2410V  
THVD2450V  
THVD2412V  
THVD2452V  
THERMAL METRIC(1)  
DRC  
D
UNIT  
(VSON)  
(SOIC)  
10 PINS  
46.7  
47.7  
19.1  
0.7  
14 PINS  
87.5  
41.8  
43.7  
8.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
19.1  
4.6  
43.3  
N/A  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.6 Power Dissipation  
PARAMETER  
TEST CONDITIONS  
THVD2410V,  
VALUE  
UNIT  
250 kbps  
1Mbps  
160  
THVD2412V  
THVD2410V,  
THVD2412V  
250  
310  
630  
170  
250  
290  
570  
220  
280  
325  
560  
Unterminated  
mW  
RL = 300 Ω, CL = 50 pF (driver)  
THVD2450V,  
THVD2452V  
20Mbps  
50 Mbps  
250 kbps  
1Mbps  
THVD2450V,  
THVD2452V  
THVD2410V,  
THVD2412V  
Driver and receiver enabled, loopback for  
full duplex devices (A connected to Y, B  
connected to Z)  
VCC = 5.5 V, TA = 125 °C,  
square wave at 50% duty cycle  
THVD2410V,  
THVD2412V  
RS-422 load  
PD  
mW  
RL = 100 Ω, CL = 50 pF (driver)  
THVD2450V,  
THVD2452V  
20Mbps  
50 Mbps  
250 kbps  
1Mbps  
THVD2450V,  
THVD2452V  
THVD2410V,  
THVD2412V  
THVD2410V,  
THVD2412V  
RS-485 load  
mW  
RL = 54 Ω, CL = 50 pF (driver)  
THVD2450V,  
THVD2452V  
20Mbps  
50 Mbps  
THVD2450V,  
THVD2452V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC  
= 5 V, VIO = 3.3 V , unless otherwise noted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Driver  
1.5  
2.1  
2
3.3  
3.3  
4
V
V
V
V
RL = 60 Ω, 25 V Vtest 25 V (See 7-1 )  
RL = 60 Ω, 25 V Vtest 25 V, 4.5 V VCC 5.5 V (See 7-1 )  
RL = 100 Ω(See 7-2 )  
Driver differential output  
voltage magnitude  
|VOD  
|
1.5  
3.5  
RL = 54 Ω(See 7-2 )  
Change in differential  
output voltage  
50  
3
mV  
V
Δ|VOD  
|
RL = 54 Ωor 100 Ω(See 7-2 )  
RL = 54 Ωor 100 Ω(See 7-2 )  
50  
Common-mode output  
voltage  
VOC  
1
VCC/2  
Change in steady-state  
common-mode output  
voltage  
50  
mV  
mA  
ΔVOC(SS)  
RL = 54 Ωor 100 Ω(See 7-2 )  
50  
DE = VIO, -70 V (VA or VB) 70 V, or A shorted to B (A,B are driver  
terminals for half duplex, Y/Z are for full duplex)  
IOS  
Short-circuit output current  
Bus input current  
250  
250  
Receiver  
VI = 12 V  
90  
200  
125  
250  
μA  
μA  
μA  
μA  
VI = 25 V  
DE = 0 V, VCC and VIO = 0 V or 5.5 V  
VI = 7 V  
II  
100  
350  
80  
220  
VI = 25 V  
Positive-going input  
threshold voltage (2)  
VTH+  
VTH-  
40  
125  
200  
-40  
mV  
mV  
Negative-going input  
threshold voltage (2)  
200  
125  
Over common-mode range of ± 25 V  
VHYS  
Input hysteresis  
250  
mV  
mV  
VTH_FSH  
Input fail-safe threshold  
40  
40  
Input differential  
capacitance  
CA,B  
Measured between A and B, f = 1 MHz  
50  
pF  
VIO –  
0.4  
VIO –  
0.2  
VOH  
VOL  
VOH  
VOL  
IOZ  
Output high voltage  
Output low voltage  
Output high voltage  
Output low voltage  
V
V
IOH = 8 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V  
IOL = 8 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V  
IOH = 4 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V  
IOL = 4 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V  
VO = 0 V or VIO, RE = VIO  
0.2  
0.4  
VIO –  
0.4  
VIO –  
0.2  
V
0.2  
0.4  
1
V
Output high-impedance  
current, R pin  
µA  
1  
Logic  
IIN  
Input current (DE , SLR)  
Input current (D, RE)  
5
µA  
µA  
1.65 V VIO 5.5 V, 0 V VIN VIO  
1.65 V VIO 5.5 V, 0 V VIN VIO  
IIN  
5  
Thermal Protection  
Thermal shutdown  
threshold  
TSHDN  
Temperature rising  
150  
180  
10  
°C  
°C  
Thermal shutdown  
hysteresis  
THYS  
Supply  
UVVCC  
Rising under-voltage  
threshold on VCC  
2.3  
2.2  
170  
1.4  
2.6  
1.6  
V
V
(rising)  
UVVCC  
Falling under-voltage  
threshold on VCC  
1.95  
(falling)  
Hysteresis on under-voltage  
of VCC  
UVVCC(hys)  
mV  
V
UVVIO  
Rising under-voltage  
threshold on VIO  
(rising)  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC  
= 5 V, VIO = 3.3 V , unless otherwise noted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
UVVIO  
Falling under-voltage  
threshold on VIO  
1.2  
1.3  
V
(falling)  
Hysteresis on under-voltage  
of VIO  
UVVIO(hys)  
120  
3.5  
2.5  
1.8  
0.1  
3
mV  
RE = 0 V, DE = VIO  
No load  
,
Driver and receiver enabled  
5.3  
4.2  
2.4  
1.2  
4.1  
3
mA  
mA  
mA  
µA  
RE = VIO, DE = VIO  
No load  
,
Driver enabled, receiver disabled  
Supply current (quiescent),  
VCC = 4.5 V to 5.5 V  
ICC  
RE = 0 V, DE = 0 V,  
No load  
Driver disabled, receiver enabled  
RE = VIO, DE = 0 V,  
D = open, No load  
Driver and receiver disabled  
RE = 0 V, DE = VIO  
No load  
,
Driver and receiver enabled  
mA  
mA  
mA  
µA  
RE = VIO, DE = VIO  
No load  
,
Driver enabled, receiver disabled  
2
Supply current (quiescent),  
VCC = 3 V to 3.6 V  
ICC  
RE = 0 V, DE = 0 V,  
No load  
Driver disabled, receiver enabled  
1.6  
0.1  
4.5  
3.3  
0.1  
1.8  
2.2  
1
RE = VIO, DE = 0 V,  
D = open, No load  
Driver and receiver disabled  
DE = 0 V, RE = 0 V,  
No load  
Driver disabled, Receiver enabled, SLR = GND  
Driver disabled, Receiver enabled, SLR = VIO  
Driver disabled, Receiver disabled, SLR = GND  
Driver disabled, Receiver disabled, SLR = VIO  
8.4  
8.4  
1
µA  
DE = 0 V, RE = 0 V,  
No load  
µA  
Logic supply current  
(quiescent), VIO = 3 to 3.6 V  
IIO  
DE = 0 V, RE = VIO  
No load  
,
µA  
DE = 0 V, RE = VIO  
No load  
,
4
µA  
(1) A, B are driver output and receiver input terminals for Half duplex devices; A/B are Receiver input, Y/Z are driver output terminals for  
Full duplex devices  
(2) Under any specific conditions, VTH+ is assured to be at least VHYS higher than VTH–  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: THVD2410V THVD2450V  
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.8 Switching Characteristics_250 kbps  
250-kbps (THVD2410V, THVD2412V with SLR = VIO) over recommended operating conditions. All typical values are at 25°C  
and supply voltage of VCC = 5 V , VIO = 3.3 V, unless otherwise noted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
VCC = 3 to 3.6 V, Typical  
at 3.3V  
450  
500  
560  
625  
500  
540  
10  
1200  
1200  
720  
770  
70  
ns  
ns  
ns  
ns  
ns  
ns  
tr, tf  
Differential output rise/fall time  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3V  
RL = 54 Ω, CL = 50 pF  
See 7-3  
tPHL, tPLH  
Propagation delay  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3V  
tSK(P)  
Pulse skew, |tPHL tPLH  
|
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
10  
70  
tPHZ, tPLZ  
tPZH, tPZL  
Disable time  
RE = X  
40  
70  
75  
280  
4.5  
ns  
ns  
µs  
ns  
RE = 0 V  
RE = VIO  
RE = VIO  
Enable time  
See 7-4 and 7-5  
2.5  
tSHDN  
Time to shutdown  
50  
500  
Receiver  
tr, tf  
Output rise/fall time  
Propagation delay  
Pulse skew, |tPHL tPLH  
Disable time  
7
800  
5
20  
1270  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
CL = 15 pF  
See 7-6  
|
tPHZ, tPLZ  
DE = X  
30  
40  
VIO = 3 V to 3.6 V; DE = VIO  
VIO = 1.65 V to 1.95 V, DE = VIO  
VIO = 3 V to 3.6 V; DE = VIO  
VIO = 1.65 V to 1.95 V; DE = VIO  
90  
120  
130  
1320  
1320  
tPZH(1)  
100  
900  
900  
Enable time  
See 7-7  
See 7-8  
tPZL(1)  
tPZH(2)  
,
Enable time  
DE = 0 V  
3.3  
5.4  
μs  
tPZL(2)  
tD(OFS)  
tD(FSO)  
tSHDN  
Delay to enter fail-safe operation  
Delay to exit fail-safe operation  
Time to shutdown  
7
540  
50  
11  
18  
1260  
500  
μs  
ns  
CL = 15 pF  
DE = 0 V  
See 7-9  
See 7-8  
800  
ns  
(1) A, B are driver output and receiver input terminals for Half duplex devices; A/B are Receiver input, Y/Z are driver output terminals for  
Full duplex device  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.9 Switching Characteristics_1 Mbps  
1Mbps (THVD2410V, THVD2412V with SLR = 0) over recommended operating conditions. All typical values are at 25°C and  
supply voltage of VCC = 5 V , VIO = 3.3 V, unless otherwise noted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
125  
130  
150  
160  
160  
185  
2
300  
300  
240  
280  
20  
ns  
ns  
ns  
ns  
ns  
ns  
tr, tf  
Differential output rise/fall time  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
RL = 54 Ω, CL = 50 pF  
See 7-3  
tPHL, tPLH  
Propagation delay  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
tSK(P)  
Pulse skew, |tPHL tPLH  
|
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
2
15  
tPHZ, tPLZ  
tPZH, tPZL  
Disable time  
RE = X  
40  
90  
3
95  
275  
4.6  
ns  
ns  
µs  
ns  
RE = 0 V  
RE = VIO  
RE = VIO  
Enable time  
See 7-4 and 7-5  
tSHDN  
Time to shutdown  
50  
500  
Receiver  
tr, tf  
Output rise/fall time  
Propagation delay  
Pulse skew, |tPHL tPLH  
Disable time  
7
50  
4
15  
85  
ns  
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH  
tSK(P)  
CL = 15 pF  
See 7-6  
12.5  
40  
|
tPHZ, tPLZ  
DE = X  
30  
90  
90  
VIO = 3 V to 3.6 V; DE = VIO  
VIO = 1.65 V to 1.95 V; DE = VIO  
120  
130  
tPZH(1)  
,
Enable time  
Enable time  
See 7-7  
See 7-8  
tPZL(1)  
tPZH(2)  
tPZL(2)  
,
DE = 0 V  
3
4.5  
μs  
tD(OFS)  
tD(FSO)  
tSHDN  
Delay to enter fail-safe operation  
Delay to exit fail-safe operation  
Time to shutdown  
7
27  
50  
10  
40  
18  
60  
μs  
ns  
CL = 15 pF  
DE = 0 V  
See 7-9  
See 7-8  
500  
ns  
(1) A, B are driver output and receiver input terminals for Half duplex devices; A/B are Receiver input, Y/Z are driver output terminals for  
Full duplex device  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: THVD2410V THVD2450V  
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.10 Switching Characteristics_20 Mbps  
20-Mbps (THVD2450V, THVD2452V with SLR = VIO) over recommended operating conditions. All typical values are at 25°C  
and supply voltage of VCC = 5 V, VIO = 3.3 V, unless otherwise noted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
4
4
6
4
8
7
15  
15  
30  
26  
3
ns  
ns  
ns  
ns  
ns  
ns  
tr, tf  
Differential output rise/fall time  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
12  
9
RL = 54 Ω, CL = 50 pF  
See 7-3  
tPHL, tPLH  
Propagation delay  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
1
tSK(P)  
Pulse skew, |tPHL tPLH  
|
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
1
3
tPHZ, tPLZ  
tPZH, tPZL  
Disable time  
RE = X  
17  
14  
3
35  
39  
ns  
ns  
RE = 0 V  
RE = VIO  
RE = VIO  
Enable time  
See 7-4 and 7-5  
4.5  
500  
μs  
ns  
tSHDN  
Time to shutdown  
50  
Receiver  
tr, tf  
Output rise/fall time  
Propagation delay  
CL = 15 pF  
1.5  
33  
35  
0.5  
12  
6
58  
60  
5
ns  
ns  
ns  
ns  
ns  
VIO = 3 V to 3.6 V  
VIO = 1.65 V to 1.95 V  
CL = 15 pF  
25  
25  
tPHL, tPLH  
See 7-6  
tSK(P)  
Pulse skew, |tPHL tPLH  
|
tPHZ, tPLZ  
Disable time  
DE = X  
25  
tPZH(1)  
tPZL(1)  
,
Enable time  
Enable time  
DE = VIO  
DE = 0 V  
50  
82  
5
ns  
See 7-7  
See 7-8  
tPZH(2)  
tPZL(2)  
,
2.8  
μs  
tD(OFS)  
tD(FSO)  
tSHDN  
Delay to enter fail-safe operation  
Delay to exit fail-safe operation  
Time to shutdown  
7
19  
50  
10  
32  
18  
50  
μs  
ns  
CL = 15 pF  
DE = 0 V  
See 7-9  
See 7-8  
500  
ns  
(1) A, B are driver output and receiver input terminals for Half duplex devices; A/B are Receiver input, Y/Z are driver output terminals for  
Full duplex device  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.11 Switching Characteristics_50 Mbps  
50-Mbps (THVD2450V, THVD2452V with SLR = 0) over recommended operating conditions. All typical values are at 25°C  
and supply voltage of VCC = 5 V, VIO = 3.3 V, unless otherwise noted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
1
1
5
5
7
6
ns  
ns  
tr, tf  
Differential output rise/fall time  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
VIO = 3 V to 3.6 V, VCC  
=
3 to 3.6 V, Typical at 3.3  
V
5
7
4
6
11  
12  
8
19  
22  
15  
ns  
ns  
ns  
VIO = 1.65 V to 1.95 V,  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
RL = 54 Ω, CL = 50 pF  
See 7-3  
tPHL, tPLH  
Propagation delay  
VIO = 3 V to 3.6 V, VCC  
4.5 to 5.5 V, Typical at 5  
V
=
VIO = 1.65 V to 1.95 V,  
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
10  
1
19  
3
ns  
ns  
VCC = 3 to 3.6 V, Typical  
at 3.3 V  
tSK(P)  
Pulse skew, |tPHL tPLH  
|
VCC = 4.5 to 5.5 V,  
Typical at 5 V  
1
14  
20  
3
30  
35  
ns  
ns  
ns  
tPHZ, tPLZ  
Disable time  
RE = X  
RE = 0 V ; VIO = 1.65 V to 1.95 V,  
2.25 V to 2.75 V  
tPZH, tPZL  
Enable time  
See 7-4 and 7-5  
RE = 0 V ; VIO = 3 V to VCC  
RE = VIO  
V
15  
32  
4.5  
ns  
μs  
ns  
2.5  
tSHDN  
Time to shutdown  
RE = VIO  
50  
500  
Receiver  
tr, tf  
Output rise/fall time  
Propagation delay  
1.5  
33  
6
ns  
ns  
See 7-6  
CL = 15 pF  
VIO = 3 V to 3.6 V, See 图  
7-6  
tPHL, tPLH  
25  
25  
58  
VIO = 1.65 V to 1.95 V,  
See 7-6  
tPHL, tPLH  
Propagation delay  
35  
60  
ns  
tSK(P)  
CL = 15 pF  
DE = X  
0.5  
12  
5
ns  
ns  
Pulse skew, |tPHL tPLH  
|
See 7-6  
tPHZ, tPLZ  
Disable time  
25  
VIO = 1.65 V to 1.95 V,  
See 7-7  
50  
50  
82  
75  
5
ns  
ns  
tPZH(1)  
tPZL(1)  
,
Enable time  
DE = VIO  
DE = 0 V  
VIO = 3 V to 3.6 V, See 图  
7-7  
tPZH(2)  
tPZL(2)  
,
Enable time  
2.8  
See 7-8  
μs  
tD(OFS)  
tD(FSO)  
tSHDN  
Delay to enter fail-safe operation  
Delay to exit fail-safe operation  
Time to shutdown  
7
19  
50  
10  
32  
18  
50  
μs  
ns  
CL = 15 pF  
DE = 0 V  
See 7-9  
See 7-8  
500  
ns  
(1) A, B are driver output and receiver input terminals for Half duplex devices; A/B are Receiver input, Y/Z are driver output terminals for  
Full duplex device  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: THVD2410V THVD2450V  
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics  
4.75  
4.25  
3.75  
3.25  
2.75  
2.25  
1.75  
1.25  
0.75  
VOD (VCC = 3.3 V)  
VOD (VCC = 5 V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
Driver Output Current (mA)  
DE = VIO  
D = GND  
TA = 27 °C  
DE = VIO  
D = GND  
TA = 27 °C  
6-2. Driver Differential Output voltage vs Driver  
6-1. Driver Output Voltage vs Driver Output  
Output Current  
Current  
75  
70  
65  
60  
55  
50  
45  
40  
35  
3.8  
VOD (VCC = 3.3 V)  
VOD (VCC = 5 V)  
3.6  
3.4  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
3
3.25 3.5 3.75  
DE = D = VIO  
4
4.25 4.5 4.75  
5
5.25 5.5  
Temperature (°C)  
Supply Voltage (V)  
DE = D = VIO  
RL = 54 Ω  
TA = 27 °C  
RL = 54 Ω  
6-4. Driver differential output voltage vs  
6-3. Supply Current vs Supply Voltage  
Temperature  
620  
550  
545  
540  
600  
580  
560  
540  
520  
500  
480  
535  
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
530  
525  
520  
515  
510  
505  
500  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
CL = 50 pF  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
CL = 50 pF  
Temperature (°C)  
Temperature (°C)  
DE = VIO  
DE = VIO  
RL = 54 Ω  
RL = 54 Ω  
6-5. THVD2410V 250kbps Driver rise or fall time  
6-6. THVD2410V 250kbps Driver propagation  
vs Temperature  
delay vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
DE = VIO  
CL = 50 pF  
DE = VIO  
CL = 50 pF  
RL = 54 Ω  
RL = 54 Ω  
6-7. THVD2410V 1Mbps Driver rise or fall time vs  
6-8. THVD2410V 1Mbps Driver propagation  
Temperature  
delay vs Temperature  
10  
9.5  
9
16  
15.5  
15  
14.5  
14  
VCC = 3.3 V  
VCC = 5 V  
13.5  
13  
8.5  
VCC = 3.3 V  
VCC = 5 V  
12.5  
12  
8
7.5  
7
11.5  
11  
10.5  
10  
9.5  
9
6.5  
6
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
CL = 50 pF  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
CL = 50 pF  
Temperature (°C)  
Temperature (°C)  
DE = VIO  
RL = 54 Ω  
DE = VIO  
RL = 54 Ω  
6-10. THVD2450V 20Mbps Driver propagation  
6-9. THVD2450V 20Mbps Driver rise or fall time  
delay vs Temperature  
vs Temperature  
11.5  
VCC = 3.3 V  
VCC = 5 V  
11  
10.5  
10  
9.5  
9
8.5  
8
7.5  
7
6.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
CL = 50 pF  
Temperature (°C)  
DE = VIO  
RL = 54 Ω  
DE = VIO  
CL = 50 pF  
RL = 54 Ω  
6-12. THVD2450V 50Mbps Driver propagation  
6-11. THVD2450V 50Mbps Driver rise or fall time  
delay vs Temperature  
vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: THVD2410V THVD2450V  
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
120  
110  
100  
90  
ICC (VCC = 3.3 V)  
ICC (VCC = 5 V)  
ICC (VCC = 3.3 V)  
ICC (VCC = 5 V)  
80  
70  
60  
50  
40  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Data Rate (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
Data Rate (kHz)  
DE = VIO  
TA = 27 °C  
RL = 54 Ω  
DE = VIO  
TA = 27 °C  
RL = 54 Ω  
6-13. THVD2450V Supply Current vs Signal Rate  
6-14. THVD2410V Supply Current vs Signal Rate  
11.2  
37.5  
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
37  
36.5  
36  
11  
35.5  
35  
34.5  
34  
33.5  
33  
32.5  
32  
31.5  
31  
30.5  
30  
10.8  
10.6  
10.4  
10.2  
10  
29.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
CL(RXD) = 15 pF  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
CL(RXD) = 15 pF  
Temperature (C)  
Temperature (°C)  
SLR = GND  
RE = GND  
SLR = GND  
RE = GND  
6-15. Failsafe entry delay vs Temperature  
6-16. Failsafe exit delay vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
375  
VIO  
DE  
A or Y  
B or Z  
Vtest  
D
VOD  
0 V or VIO  
RL  
375  
7-1. Measurement of Driver Differential Output Voltage With Common-Mode Load  
A
V
A
A or Y  
B or Z  
R /2  
L
B
D
V
B
0 V or VIO  
V
OD  
V
OC(PP)  
R /2  
L
V
OC(SS)  
V
OC  
C
L
V
OC  
7-2. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
VIO  
VIO  
50%  
V
I
DE  
0 V  
A or Y  
B or Z  
R =  
L
54  
t
t
PHL  
PLH  
D
~
~
V
2 V  
C = 50 pF  
L
OD  
90%  
50%  
Input  
V
I
Generator  
V
OD  
10%  
~ –2 V  
~
t
r
t
f
7-3. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
A or Y  
S1  
VIO  
VO  
D
50%  
VI  
tPZH  
0 V  
VOH  
B or Z  
CL= 50  
pF  
DE  
RL= 110  
Input  
Generator  
90%  
50  
VI  
50%  
VO  
0 V  
tPHZ  
7-4. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load  
VCC  
VIO  
0 V  
Vcc  
RL= 110  
VO  
A or Y  
B or Z  
50%  
VI  
tPZL  
VO  
S1  
D
tPLZ  
DE  
50  
CL= 50 pF  
Input  
Generator  
50%  
VI  
10%  
VOL  
7-5. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: THVD2410V THVD2450V  
 
 
 
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
3 V  
50%  
V
I
A
0 V  
R
VO  
t
tPHL  
Input  
PLH  
50  
V
1.5V  
0 V  
VOH  
Generator  
I
90%  
B
CL=15 pF  
50%  
10%  
RE  
V
OD  
V
tr  
OL  
t
f
7-6. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
V
IO  
50%  
VIO  
DE  
VIO  
V
I
0V  
A
B
tPZH(1)  
tPHZ  
1 k  
D
V
O
R
D at VIO  
S1 to GND  
0 V or VIO  
S1  
V
OH  
90%  
V
50%  
O
CL=15 pF  
0V  
RE  
tPZL(1)  
tPLZ  
Input  
D at 0V  
S1 to VIO  
V
IO  
50  
Generator  
V
I
V
50%  
O
10%  
V
OL  
7-7. Measurement of Receiver Enable/Disable Times With Driver Enabled  
VIO  
VIO  
VI  
50%  
50%  
tPHZ  
0V  
A
B
tPZH(2)  
1 k  
0 V or 1.5 V  
1.5 V or 0 V  
R
VO  
S1  
VOH  
A at 1.5 V  
B at 0 V  
S1 to GND  
90%  
VO  
VO  
50%  
CL= 15 pF  
0 V  
RE  
tPZL(2)  
tPLZ  
10%  
Input  
Generator  
VIO  
A at 0 V  
B at 1.5 V  
S1 to VIO  
50  
VI  
50%  
VOL  
7-8. Measurement of Receiver Enable Times With Driver Disabled  
0 V  
VA - VB  
A
VA = 0 V or -750 mV  
VB = 0 V or +750 mV  
-1.5 V  
R
VO  
tD(FSO)  
tD(OFS)  
B
CL= 15 pF  
RE  
VIO  
0 V  
VO  
VIO / 2  
0 V  
7-9. Measurement of Fail-Safe Delay  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
THVD24xxV are ±70 V bus fault-protected, ±25V common-mode voltage range capable half and full-duplex  
RS-485 transceivers. The devices have active-high driver enable and active-low receiver enable logic. Each  
device has SLR pin which allows it to be used for two different maximum speed settings. This is beneficial as  
customers can qualify one device and use it in two different end-applications. The devices also have flexible I/O  
supply pin VIO which enables digital interface voltage range, from 1.65 V to 5.5 V, different from bus voltage  
supply 3 V to 5.5 V.  
8.2 Functional Block Diagrams  
VIO SLR  
VCC  
A
B
R
Internally connected  
only for Half duplex  
devices  
RE  
I/O  
and  
Control  
DE  
D
Z
Y
Only for full  
duplex devices  
8-1. THVD2410 and THVD2450 Block Diagram  
8.3 Feature Description  
8.3.1 ±70 V Fault Protection  
THVD24xxV transceivers have extended bus fault protection compared to standard RS-485 devices.  
Transceivers that operate in rugged industrial environments are often exposed to voltage transients greater than  
the -7 V to +12 V defined by the TIA/EIA-485A standard. To protect against such conditions, the generic RS-485  
devices with lower absolute maximum ratings requires expensive external protection components. To simplify  
system design and reduce overall system cost, THVD24xxV devices are protected up to ±70 V without the need  
for any external components.  
8.3.2 Integrated IEC ESD and EFT Protection  
Internal ESD protection circuits protect the transceivers against electrostatic discharges (ESD) according to IEC  
61000-4-2 of up to ±15 kV contact and air discharge (for half-duplex devices) and up to ±8 kV contact and air  
discharge (for full-duplex devices). Bus structures also protect against electrical fast transients (EFT) according  
to IEC 61000-4-4 for up to ±4 kV. With careful system design, integrated bus structures can enable EFT Criterion  
A at the system level (minimum to no data loss when transient noise is present).  
8.3.3 Driver Overvoltage and Overcurrent Protection  
The THVD24xxV drivers are protected against any DC supply shorts in the range of -70 V to +70 V. The devices  
internally limit the short circuit current to ±250 mA in order to comply with the TIA/EIA-485A standard. In addition,  
a fold-back current limiting circuit further reduces the driver short circuit current to less than ±5 mA if the output  
fault voltage exceeds |±25 V|.  
All devices feature thermal shutdown protection that disables the driver and the receiver if the junction  
temperature exceeds the TSHDN threshold due to excessive power dissipation.  
8.3.4 Enhanced Receiver Noise Immunity  
The differential receivers of THVD24xxV feature fully symmetric thresholds to maintain duty cycle of the signal  
even with small input amplitudes. In addition, 250 mV (typical) hysteresis provides noise immunity. When the  
device is in slew rate limited mode of 250 kbps, typical 700 ns of glitch filter in receiver signal chain prevents  
high frequency noise pulses from the bus to appear on R pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: THVD2410V THVD2450V  
 
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.3.5 Receiver Fail-Safe Operation  
The receivers are fail-safe to invalid bus states caused by the following:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the receiver outputs a fail-safe logic high state if the input amplitude stays for longer than  
tD(OFS) at less than |VTH_FSH|.  
8.3.6 Low-Power Shutdown Mode  
Driving DE low and RE high for longer than 500 ns puts the devices into the shutdown mode. If either DE goes  
high or RE goes low, the counters reset. The devices does not enter the shutdown mode if the enable pins are in  
disable state for less than 50 ns. This feature prevents the devices from accidentally going into shutdown mode  
due to skew between DE and RE.  
8.4 Device Functional Modes  
When the driver enable pin, DE, is logic high (H), the differential outputs A and B follow the logic states at data  
input D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage  
defined as VOD = VA VB is positive. When D is low (L), the output states reverse: B turns high, A becomes low,  
and VOD is negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant (X). The DE  
pin has an internal pull-down resistor to ground, thus when left open the driver is disabled (Z= high-impedance)  
by default. The D pin has an internal pull-up resistor to VIO, thus, when left open while the driver is enabled,  
output A turns high and B turns low.  
8-1. Driver Function Table  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
A
H
L
B
L
H
H
Actively drive bus high  
Actively drive bus low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus high by default  
OPEN  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high.  
When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between  
VTH+ and VTH- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not  
actively driven (idle bus).  
8-2. Receiver Function Table  
DIFFERENTIAL INPUT  
VID = VA VB  
VTH+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus high  
Indeterminate bus state  
Receive valid bus low  
Receiver disabled  
VTH- < VID < VTH+  
VID < VTH-  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
8-3 shows SLR (slew rate select) pin functionality. SLR has intergated pull-down, so the device remains in  
higher speed mode until SLR is pulled high which limits the slew rate and puts the device in slower speed mode.  
8-3. SLR pin control  
Device  
Functionality w.r.t SLR pin  
THVD2410V, THVD2412V  
SLR = Low or floating: Both transmitter (TX) and receiver (RX)  
maximum speed is 1 Mbps  
SLR = High: Both TX and RX maximum speed is limited to 250 kbps  
THVD2450V, THVD2452V  
SLR = Low or floating: Both transmitter (TX) and receiver (RX)  
maximum speed is 50 Mbps  
SLR = High: Both TX and RX maximum speed is limited to 20 Mbps  
Table shows the device behavior in undervoltage scenarios:  
8-4. Supply Function Table  
VCC  
VIO  
Driver Output  
Receiver Output  
Determined by RE and A-B  
High impedance  
> UVVCC(rising)  
< UVVCC(falling)  
> UVVCC(rising)  
< UVVCC(falling)  
> UVVIO(rising)  
> UVVIO(rising)  
< UVVIO(falling)  
< UVVIO(falling)  
Determined by DE and D inputs  
High impedance  
High impedance  
High impedance  
High impedance  
High impedance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
THVD24xxV are fault-protected, half- and full-duplex RS-485 transceivers commonly used for asynchronous  
data transmissions. For these devices, the driver and receiver enable pins allow for the configuration of different  
operating modes.  
9.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, generally allows for higher data rates  
over longer cable length.  
R
R
R
R
A
B
A
B
RE  
RE  
R
R
T
T
DE  
D
DE  
D
D
D
A
B
A
B
R
R
R
R
D
D
D
D
RE DE  
RE DE  
9-1. Typical RS-485 Network With Half-Duplex Transceivers  
Commander  
Responder  
R
D
R
R
DE  
RE  
RE  
D
DE  
D
R
D
R
R
D
D
RE DE  
Responder  
9-2. Typical RS-485 Network with Full-Duplex transceivers  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
9.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
short the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at  
distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or  
10%.  
10000  
5%, 10%, and 20% Jitter  
1000  
Conservative  
Characteristics  
100  
10  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
9-3. Cable Length vs Data Rate Characteristic  
Even higher data rates are achievable (that is, 50 Mbps for the THVD24xxV) in cases where the interconnect is  
short enough (or has suitably low attenuation at signal frequencies) to not degrade the data.  
9.2.1.2 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections of varying phase as the length of the stub increases. As a general guideline, the electrical length, or  
round-trip delay, of a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum  
physical stub length as shown in 方程1.  
L(STUB) 0.1 × tr × v × c  
(1)  
where  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s)  
v is the signal velocity of the cable or trace as a factor of c  
9.2.1.3 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to drive 32 unit loads (UL), where 1 unit load  
represents a load impedance of approximately 12 k. Because the THVD24xxV devices consist of 1/8 UL  
transceivers, connecting up to 256 receivers to the bus is possible for a limited common mode range of - 7 V to  
12 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2.1.4 Transient Protection  
The bus pins of the THVD24xxV transceivers include on-chip ESD protection against ±16-kV HBM and ±15-kV  
IEC 61000-4-2 contact discharge for half-duplex devices ±8-kV for full-duplex devices. The International  
Electrotechnical Commission (IEC) ESD test is far more severe than the HBM ESD test. The 50% higher charge  
capacitance, C(S), and 78% lower discharge resistance, R(D), of the IEC model produce significantly higher  
discharge currents than the HBM model. As stated in the IEC 61000-4-2 standard, contact discharge is the  
preferred transient protection test method.  
R(C)  
R(D)  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
C(S)  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
9-4. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment.  
Common discharge events occur because of human contact with connectors and cables. Designers may choose  
to implement protection against longer duration transients, typically referred to as surge transients.  
EFTs are generally caused by relay-contact bounce or the interruption of inductive loads. Surge transients often  
result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the  
switching of power systems, including load changes and short circuit switching. These transients are often  
encountered in industrial environments, such as factory automation and power-grid systems.  
9-5 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left side of the diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT  
transient, both of which exceeds the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients  
are representative of events that may occur in factory environments in industrial and process automation.  
The right side of the diagram shows the pulse power of a 6-kV surge transient, relative to the same 0.5-kV surge  
transient. 6-kV surge transients are may occur in power generation and power-grid systems.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6-kV Surge  
22  
20  
18  
16  
14  
12  
10  
8
0.5-kV Surge  
4-kV EFT  
6
4
2
0.5-kV Surge  
10-kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time (µs)  
Time (µs)  
9-5. Power Comparison of ESD, EFT, and Surge Transients  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
For surge transients, high-energy content is characterized by long pulse duration and slow decaying pulse  
power. The electrical energy of a transient that is dumped into the internal protection cells of a transceiver is  
converted into thermal energy, which heats and destroys the protection cells, thus destroying the transceiver. 图  
9-6 shows the large differences in transient energies for single ESD, EFT, surge transients, and an EFT pulse  
train that is commonly applied during compliance testing.  
1000  
100  
Surge  
10  
1
EFT Pulse Train  
0.1  
0.01  
EFT  
10-3  
10-4  
ESD  
10-5  
10-6  
0.5  
1
2
4
6
8 10  
15  
Peak Pulse Voltage (kV)  
9-6. Comparison of Transient Energies  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: THVD2410V THVD2450V  
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9-7 suggests a protection circuit against 1 kV surge (IEC 61000-4-5) transients. 9-1 shows the associated  
bill of materials. SMAJ30CA TVS diodes are rated to operate up to 30 V. This makes sure the protection diodes  
do not conduct if a direct RS-485 bus shorts to 24-V DC industrial power rail.  
3.3 V - 5 V  
100 nF  
VCC  
VIO  
10 k  
R
RxD  
MCU/  
UART  
DIR  
RE  
A
B
DE  
D
TVS  
TxD  
THVD24xxV  
GND  
10 k  
SLR  
TVS  
9-7. Transient Protection Against Surge Transients for Half-Duplex Devices  
9-1. Components List  
DEVICE  
XCVR  
TVS  
FUNCTION  
ORDER NUMBER  
THVD2410V or THVD2450V  
SMAJ30CA  
MANUFACTURER(1)  
RS-485 transceiver  
TI  
Bidirectional 400-W transient suppressor  
Littelfuse  
(1) See 10.1  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2.3 Application Curves  
50% duty square wave on D pin at 250 kbps  
50% duty square wave on D pin at 250 kbps  
SLR = VIO  
DE = VIO  
SLR = VIO  
DE = VIO  
RL = 54 Ω  
RL = 54 Ω  
9-8. THVD2410V Waveforms at VCC = 5 V  
9-9. THVD2410V Waveforms at VCC = 3.3 V  
Random (PRBS7) data on D pin at 50 Mbps  
Random (PRBS7) data on D pin at 50 Mbps  
SLR = GND  
DE = VIO  
SLR = GND  
DE = VIO  
RL = 54 Ω  
RL = 54 Ω  
9-10. THVD2450V Waveforms at VCC = 5 V  
9-11. THVD2450V Waveforms at VCC = 3.3 V  
A pin given ±200mV VID with DC offset of 1.5 V  
RE = GND  
B pin at 1.5 V  
9-12. THVD2450V Receiver Waveform with ±200 mV VID  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: THVD2410V THVD2450V  
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
For reliable operation at all data rates and supply voltages, each supply should be decoupled with a minimum of  
100 nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage  
ripple present on the outputs of switched-mode power supplies and also helps to compensate for the resistance  
and inductance of the PCB power planes.  
9.4 Layout  
9.4.1 Layout Guidelines  
Robust and reliable bus node design often requires the use of external transient protection devices in order to  
protect against surge transients that may occur in industrial environments. Since these transients have a wide  
frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be  
applied during PCB design.  
1. Place the protection circuitry close to the bus connector to prevent noise transients from propagating across  
the board.  
2. Use VCC and ground planes to provide low inductance. Note that high-frequency currents tend to follow the  
path of least impedance and not the path of least resistance.  
3. Design the protection components into the direction of the signal path. Do not force the transient currents to  
divert from the signal path to reach the protection device.  
4. Apply 100-nF to 220-nF decoupling capacitors as close as possible to the VCC and VIO pins of transceiver,  
UART and/or controller ICs on the board.  
5. Use at least two vias for VCC and ground connections of decoupling capacitors and protection devices to  
minimize effective via inductance.  
6. Use 1-kΩto 10-kΩpull-up and pull-down resistors for enable/SLR lines to limit noise currents in these lines  
during transient events.  
7. Insert pulse-proof resistors into the A/Y and B/Z bus lines if the TVS clamping voltage is higher than the  
specified maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current  
into the transceiver and prevent it from latching up.  
9.4.2 Layout Example  
Via to ground  
Via to VCC  
C
C
VCC  
1
2
3
4
5
10  
9
VIO  
R
TVS  
TVS  
R
R
B
A
R
MCU  
8
DE  
RE  
D
VIO  
7
SLR  
GND  
GND  
6
9-13. Half-Duplex Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: THVD2410V THVD2450V  
 
 
THVD2410V, THVD2450V  
ZHCSOO2A DECEMBER 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: THVD2410V THVD2450V  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTHVD2412VDR  
PTHVD2452VDR  
THVD2410VDRCR  
THVD2450VDRCR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
VSON  
VSON  
D
14  
14  
10  
10  
250  
250  
TBD  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Samples  
Samples  
Samples  
Samples  
D
Call TI  
NIPDAU  
NIPDAU  
Call TI  
DRC  
DRC  
5000 RoHS & Green  
5000 RoHS & Green  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2410  
2450  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
THVD2410VDRCR  
THVD2450VDRCR  
VSON  
VSON  
DRC  
DRC  
10  
10  
5000  
5000  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
THVD2410VDRCR  
THVD2450VDRCR  
VSON  
VSON  
DRC  
DRC  
10  
10  
5000  
5000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THVD8000

具有 OOK 调制功能、适用于电力线通信的 RS-485 收发器
TI

THVD8000DDFR

RS-485 transceiver with OOK modulation for power line communication | DDF | 8 | -40 to 125
TI

THVD8010

具有 OOK 调制功能、适用于电力线通信的 RS-485 收发器
TI

THVD8010DDFR

具有 OOK 调制功能、适用于电力线通信的 RS-485 收发器 | DDF | 8 | -40 to 125
TI

THX15

RF & MICROWAVE TRANSISTORS HF SSB APPLICATIONS
STMICROELECTR

THX15C

NPN SILICON RF POWER TRANSISTOR
ASI

THX201

鉴于国家新能源标准建立的前期,本公司(中行科技)又取得了通华芯THX系列电源IC的独家代理,THX系列电源IC采用专利技术、防过载防饱和、能满足更高绿色环保标准的开关电源控制器集成电路,拥有中国自主知识产权,内含全球范围十几项专利,性能上可完全取代ST的VIPER12A/22A,Fairchild的FSD200/210/311/321/02659等,无输出功耗可小于0.25W,更适合未来新能源标准的应用。 地  址:罗湖区红岭路荔景大厦1214-1216室 联 系 人:吕清风 (先生) 销售工程师 电  话:0086-0755-25572508-816 手  机:13169917099 电子邮箱:lqf126@126.com 传  真:0086-0755-25571866
ETC

THX202

鉴于国家新能源标准建立的前期,本公司(中行科技)又取得了通华芯THX系列电源IC的独家代理,THX系列电源IC采用专利技术、防过载防饱和、能满足更高绿色环保标准的开关电源控制器集成电路,拥有中国自主知识产权,内含全球范围十几项专利,性能上可完全取代ST的VIPER12A/22A,Fairchild的FSD200/210/311/321/02659等,无输出功耗可小于0.25W,更适合未来新能源标准的应用。 地  址:罗湖区红岭路荔景大厦1214-1216室 联 系 人:吕清风 (先生) 销售工程师 电  话:0086-0755-25572508-816 手  机:13169917099 电子邮箱:lqf126@126.com 传  真:0086-0755-25571866
ETC

THX203

鉴于国家新能源标准建立的前期,本公司又取得了通华芯THX系列电源IC的独家代理,THX系列电源IC采用专利技术、防过载防饱和、能满足更高绿色环保标准的开关电源控制器集成电路,拥有中国自主知识产权,内含全球范围十几项专利,性能上可完全取代ST的VIPER12A/22A,Fairchild的FSD200/210/311/321/02659等,无输出功耗可小于0.25W,更适合未来新能源标准的应用。 地  址:罗湖区红岭路荔景大厦1214-1216室 联 系 人:吕清风 (先生) 销售工程师 电  话:0086-0755-25572508-816 手  机:13169917099 电子邮箱:lqf126@126.com 传  真:0086-0755-25571866
ETC

THX208

THX208采用专利技术、防过载防饱和,能满足绿色环保标准,为目前业界最小的的开关电源控制器集成电路。 特点: 1、防过载防饱和专利设计,能及时防范过载、开关变压器饱和、输出短路等故障; 2、采用经济型三极管为开关管;同时利用其放大作用完成启动,并将启动电阻的功耗减少10倍以上; 3、内置斜坡补偿电路、热保护电路、斜坡电流驱动电路; 4、无输出功耗可小于0.3W
NUVOTEM TALEM

THX208-7V

High-performance current - mode PWM regulator
ETC

THX208-8V

High-performance current - mode PWM regulator
ETC