TIBPSG507ACNT [TI]

13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR;
TIBPSG507ACNT
型号: TIBPSG507ACNT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR

时钟 输入元件 光电二极管 可编程逻辑
文件: 总19页 (文件大小:361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
JT OR NT PACKAGE  
(TOP VIEW)  
58-MHz Max Clock Rate  
Ideal for Waveform Generation and  
High-Performance State Machine  
Applications  
CLK  
I0  
V
CC  
I6  
I7  
I8  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
I1  
I2  
I3  
I4  
3
6-Bit Internal Binary Counter  
8-Bit Internal State Register  
Programmable Clock Polarity  
4
I9  
5
I10  
I11  
I12/OE  
Q7  
Q6  
Q5  
Q4  
6
I5  
7
Q0  
Q1  
Q2  
Q3  
GND  
8
Outputs Programmable for Registered or  
Combinational Operation  
9
10  
11  
12  
6-Bit Counter Simplifies Logic Equation  
Development in State Machine Designs  
Programmable Output Enable  
FK OR FN PACKAGE  
(TOP VIEW)  
description  
The TIBPSG507AC is  
a 13 × 80 × 8  
Programmable Sequence Generator (PSG) that  
offers the system designer unprecedented  
4
3
2
1
28 27 26  
25  
5
I2  
I3  
I4  
NC  
I5  
Q0  
Q1  
I8  
I9  
I10  
flexibility  
in  
a
high-performance  
6
24  
23  
field-programmable logic device. Applications  
such as waveform generators, state machines,  
dividers, timers, and simple logic reduction are all  
possible with the PSG. By utilizing the built
binary counter, the PSG is capable of generating  
complex timing controllers. The binary counter  
also simplifies logic equation development in state  
machine and waveform generator applicas.  
7
8
22 NC  
21 I11  
20 I12/OE  
19 Q7  
9
10  
11  
12 13 14 15 16 17 18  
The TIBPSG507AC contains 80 product (AND)  
terms, a 6-bit binary counter with control logic,  
eight S/R state holding registers, and eight  
outputs. The eight outputs can be individually  
NC – No internal connection  
programmed  
for  
either  
registered  
or  
combinational operation. The clock input is fuse  
programmable for either positive- or negative-  
edge operation.  
The 6-bit binary counter is trolled by a synchronous-clear and a count/hold function. Each control function  
has a nonregistered and registered option. When either SCLR0 or SCLR1 is taken high, the counter resets to  
zero on the next active clock edge. When either CNT/HLD0 or CNT/HLD1 is taken high, the counter is held at  
the present count and is not allowed to advance on the active clock edge. The SCLR function overrides the  
CNT/HLD feature when both lines are simultaneously high.  
Clock polarity is programmable through the clock polarity fuse. Leaving this fuse intact selects positive-edge  
triggering. Negative-edge triggering is selected by blowing this fuse. Pin 17 functions as an input and/or an  
output enable. When the output enable fuse is intact, all outputs are always enabled allowing pin 17 to be used  
strictly as aput. Blowing the output enable fuse lets pin 17 function as an output enable and an input. In this  
mode, the uts are enabled when pin 17 is low and are in a high-impedance state when pin 17 is high.  
PRODUCTION DATA information is current as of publication date.  
Copyright 1995, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
1
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
description (continued)  
The eight outputs can be individually programmed for combinational operation by blowing the output multiplexer  
fuse. After power up, the device must be initialized to the desired state. When the output multiplexer fuse is left  
intact, registered operation is selected.  
The TIBPSG507AC is characterized for operation from 0°C to 75°C.  
6-BIT COUNTER CONTROL FUNCTION TABLE (see Note 1)  
CNT/HLD1  
CNT/HLD0  
SCLR1  
SCLR0  
OPERATION  
counter active  
L
X
X
X
H
L
X
X
H
X
L
X
H
L
L
H
X
L
hronous clear  
synchronous clear  
hold counter  
L
L
hold counter  
NOTE 1: When all fuses are blown on a product line (AND), its output will be high. When all fuses  
are blown on a sum line (OR), its output will be low. All product and sum terms are low  
on devices with fuses intact.  
S/R FUNCTION TABLE (see Note 2)  
CLK POLARITY FUSE  
INTACT  
CLK  
S
R
L
STATE REGISTER  
Q
L
0
INTACT  
L
H
L
INTACT  
H
H
L
H
INTACT  
H
L
INDET  
BLOWN  
Q
L
0
BLOWN  
L
H
L
BLOWN  
H
H
H
BLOWN  
H
INDET  
Output state is indeterminate  
NOTE 2: After power up, the device must be initialized to its desired state. Q is the state of the  
0
S/R register before the active clock edge.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
2
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
functional block diagram (positive logic)  
CLK  
8
6
State Registers  
C1  
1  
80 x 38  
Binary Counter  
CTR 6  
G2  
1S  
1R  
1S  
1R  
1CT = 0  
&
6
54 x 80  
6
6
8
8
6 x  
8 x  
C0 – C5  
C1/2,3+  
G3  
6
8
1CT = 0  
C1  
80  
8 x  
1S  
8
8
8
8
12  
1
13  
13  
13 x  
I0 – I11  
I12/OE  
1R  
Output Cell  
1
C1  
8
8
8 x  
1S  
1
Q0 – Q7  
8
8
1R  
G1  
EN  
denotes fused inputs  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
3
logic diagram (positive logic)  
1
CLK  
7360  
Binary Counter  
Functional  
Logic Symbol  
2
0
I0  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
I10  
I11  
3
4
5
CTR 6  
G2  
5
C0  
C1  
C2  
C3  
C4  
C5  
CNT/HLD1  
SCLR1  
7
10  
15  
20  
25  
1CT = 0  
23  
22  
CLK  
C1/2,3+  
G3  
21  
20  
CNT/HLD0  
SCLR0  
19  
1CT = 0  
18  
17  
PRE/OE  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
26  
7361  
41  
CTR  
C0  
C1  
C2  
C3  
C4  
C5  
53  
54  
SCLR0  
1S  
C1  
1R  
SCLR1  
CNT/HLD0  
1S  
C1  
1R  
58  
62  
66  
CNT/HLD1  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
1S  
C1  
1R  
70  
74  
1S  
C1  
1R  
1S  
C1  
1R  
MUX  
1
8
9
1S  
C1  
1R  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
G1  
7362  
7363  
7364  
7365  
7366  
7367  
7368  
69  
MUX  
1
1S  
C1  
1R  
78  
82  
86  
G1  
MUX  
1
10  
11  
13  
14  
15  
16  
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
G1  
MUX  
1
1S  
C1  
1R  
G1  
MUX  
1
1S  
1  
1R  
90  
91  
G1  
All inputs to AND gates, exclusive-OR gates, and multiplexers with a blown link assume the logic-1 state.  
All OR gate inputs with a blown link assume the logic-0 state.  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
CC  
Input voltage (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
Voltage applied to disabled output (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 75°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
NOTE 3: These ratings apply except for programming pins during a programming cycle or during the diagnostic mode.  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
5.5  
UNIT  
V
V
V
V
Supply voltage  
4.75  
2
5
CC  
IH  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
V
0.8  
V
IL  
I
I
3.2  
16  
mA  
mA  
OH  
OL  
Clock high  
6
6
t
w
ns  
Pulse duration  
Clock low  
Input or feedback to S/Rinputs  
12  
Input or feedto S/Rinputs  
Input or feedback to SCLR0  
Input or fek to CNT/HLD0  
Input or feedback at S/R inputs  
Input or feedback at SCLR0  
Input or feedback at CNT/HLD0  
19  
20  
25  
0
t
Setup time before CLK active transition  
ns  
su  
t
Hold time after CLK active transition  
0
ns  
h
0
T
A
Operating free-air temperature  
0
25  
75  
°C  
Internal setup and hold times, t feedback to SCLR1, feedback to CNT/HLD1; t feedback at SCLR1 and feedback at CNT/HLD1, are  
su  
max  
See the OR term loading section and Figure 3.  
h
guaranteed by f  
specifications. The active transition of CLK is determined by the programmed state of the CLK polarity fuse.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
6
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I = 18 mA  
MIN TYP  
MAX  
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 4.75 V,  
= 4.75 V,  
= 4.75 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
= 5.25 V,  
1.2  
IK  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
I
I
= 3.2 mA  
= 16 mA  
= 2.7 V  
2.4  
3.2  
V
OH  
OL  
OZH  
OZL  
I
OH  
I
0.25  
0.5  
20  
V
OL  
I
I
I
I
I
I
I
V
V
µA  
µA  
mA  
µA  
mA  
mA  
mA  
pF  
pF  
pF  
O
= 0.4 V  
–20  
0.1  
O
V = 5.5 V  
I
V = 2.7 V  
I
20  
IH  
V = 0.4 V  
I
0.25  
–130  
210  
IL  
V
O
= 0.5 V  
30  
O
See Note 4,  
V = 2 V  
Outputs open  
156  
7
CC  
C
C
C
f = 1 MHz,  
f = 1 MHz,  
f = 1 MHz,  
i
I
V = 2 V  
O
11  
14  
o
V = 2 V  
CLK  
clk  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITION  
MIN TYP  
MAX  
UNIT  
6-Bit counter with SCLR1 or CNT/HLD1  
6-Bit counter with SCLR0  
58  
40  
33  
45  
65  
55  
50  
60  
§
f
MHz  
max  
6-Bit counter with CNT/HLD0  
With external feedback (see Figure 1)  
R1 = 300 Ω,  
R2 = 390 Ω,  
See Figure 6  
#
Q (nonregistered)  
6
3
6
1
1
25  
10  
20  
10  
10  
ns  
CLK  
t
pd  
Q (registered)  
I or Feedback  
OE↓  
Q egistered)  
ns  
ns  
ns  
t
t
Q
Q
6
6
en  
OE↑  
dis  
All typical values are at V  
= 5 V, T = 25°C.  
A
OS  
CC  
This parameter approximates I . The condition V = 0.5 V takes tester noise into account. Not more than one output should be shorted at a  
time and duration of the short circuit should not exceed one second.  
O
§
#
See the f  
calculations section.  
max  
The active edge of CLK is determined by the programmed state of the CLK polarity fuse.  
CLK to Q (nonregistered) is the same for data clocked from the counter or state registered.  
t
pd  
NOTE 4: When the clock is programmefor negitive edge, then V = 4.5 V. When the clock is programmed for positive edge, then V = 0.  
I
I
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
7
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
f
calculations  
max  
The following are the different speeds that can be achieved when using the TIBPSG507AC as a state machine.  
The way the 6-bit counter is controlled will largely determine the operating frequency of the state machine.  
1
f
for a 6-bit counter using SCLR1 or CNT/HLD1 =  
where setup time t for input  
su  
max  
t
t
CLK to Q  
su  
or feedback to the S/R inputs = 12 ns and propagation delay time t CLK to Q for the internal S/R  
pd  
pd  
registers = 5 ns (difference in t from CLK and feedback, 25 to 20).  
pd  
1
1
Thus: f  
for this condition  
58 MHz.  
max  
(12 + 5) ns  
17 ns  
1
f
for a 6-bit counter using SCLR0 for reset =  
where setup time t for input or  
su  
max  
t
t
CLK to Q  
su  
pd  
feedback to the SCLR0 inputs = 20 ns and propagation delay time t CLK to Q for the internal S/R  
pd  
registers = 5 ns (difference in t from CLK and feedback, 25 to 20)  
pd  
1
1
Thus: f  
for this condition  
40 MHz.  
max  
(20 + 5) ns  
25 ns  
1
f
for a 6-bit counter using CNT/HLD0 for reset =  
where setup time t for input or  
su  
max  
t
t
CLK to Q  
su  
feedback to CNT/HLD0 = 25 ns and propagation delay me t CLK to Q for the internal S/R registers = 5 ns  
pd  
pd  
(difference in t from CLK and feedback, 25 to 20).  
pd  
1
Thus: f  
for this condition  
33 MHz.  
max  
(25 + 5) ns  
30 ns  
programming information  
Texas Instruments programmable logic devices an be programmed using widely available software and  
inexpensive device programmers.  
Complete programming specifications, ithms, and the latest information on hardware, software, and  
firmware are available upon request. Inforation on programmers that are capable of programming Texas  
Instruments programmable logic is also available, upon request, from the nearest TI sales office, local  
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
8
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
t
Min Clock Period Using This Path  
min(1)  
t
Min Clock Period using This Path  
min(2)  
t
Min Clock Period Using This Path  
min(3)  
Dedicated Inputs  
Counter or Internal SRs  
SCLR0  
or  
CNT/HLD0  
t
su(3)  
Feedback Lines  
t
min(2)  
SR  
t
CLK  
su(2)  
I to Internal S or R  
SR  
SR  
CLK Internal  
Out SRs  
CLK  
SR  
t
min(1)  
t
CLK Internal to Output Response  
pd(3)  
t
I to Output S or R  
su(1)  
t
t
CLK to Q Pin  
SR  
pd(2)  
pd(1)  
I to Output Pin  
Dedicated Inputs  
Output Pin  
Figure 1. Timing Model  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
9
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
glossary — timing model  
tpd  
Maximum time interval from the time a signal edge is received at any input pin to the time any logically  
affected combinational output pin delivers a response.  
(1)  
pd(2)  
pd(3)  
t
t
Maximum time interval from a positive edge on the clock input pin to data delivery on the output pin  
corresponding to any output SR register.  
Maximum time interval from the positive edge on the clock input pin to the response on any logically  
affected combinational configured output (at the pin), where data orign is any internal SR register  
or counter bit.  
t
t
t
t
t
t
t
Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input pin when data affects thor R line of any output SR register.  
su(1)  
su(2)  
su(3)  
Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input pin when data affects the S or R line of any internal SR register.  
Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input pin only when entering data on the CNT/HLD0 line.  
) — Minimum time interval that must be allowed between the data edge on any dedicated input and the  
active clock edge on the clock input pin only when entering data on the SCLR0 line.  
su(4  
— Minimum clock period (or 1/[maximum frequcy]) that the device will accommodate when using  
feedback from any internal SR register or counter bit to feed the S or R line of any output SR register.  
min(1)  
min(2)  
min(3)  
— Minimum clock period (or 1/[maximum freqncy]) that the device will accommodate when using  
feedback from any internal SR register to feed the S or R line of any internal SR register.  
— Minimum clock period (or 1/[maximum frequency]) that the device will accommodate when using  
feedback from any internal SR regir counter bit to feed SCLR0 or CNT/HLD0.  
PARAMETER VALUES FOR TIMING MODEL  
t
t
t
= 20 ns  
= 10 ns  
= 25 ns  
t
t
t
t
2 ns  
= 12 ns  
= 25 ns  
= 20 ns  
t
t
t
= 17 ns  
= 17 ns  
= 25 ns  
pd(1)  
pd(2)  
pd(3)  
su
su(2)  
su(3)  
su(4)  
min(1)  
min(2)  
min(3)  
INTERNAL NODE NUMBERS  
SCLR0  
SCLR1  
25  
CNTHLD0 28  
CNTHLD1 SET 29  
RESET 30  
P0-P7  
Q0-Q7  
SET 31-38  
SET 26  
RESET 27  
RESET 39-46  
RESET 47-54  
C0-C5  
55-60  
Use t = 19 ns for applications where the setup time for S/Rinputs are required.  
su  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
10  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
diagnostics  
A diagnostic mode is provided that allows the user to inspect the contents of the state registers. The following  
are step-by-step procedures required for the diagnostics.  
Step 1.  
Step 2.  
Step 3.  
Disable all outputs by taking pin 17 (OE) high (see Note 5).  
Take pin 8 (Q0) to V to enable the diagnostics test sequence.  
Apply appropriate levels of voltage to pins 11 (Q3), 13 (Q4), and 14 (Q5) to select the desired  
state register (see Table 1).  
IHH  
The voltage level monitored on pin 9 will indicate the state of the selected state register.  
NOTE 5: If pin 17 is being used as an input to the array, then pin 7 (I5) must be taken to V  
before pin 17 is taken high.  
IHH  
V
V
IHH  
I5  
Pin 7  
IH  
OE  
Pin 17  
100 ns  
V
V
OHH  
OH  
Q0  
Pin 8  
V
V
OL  
100 ns  
OHH  
V
OH  
V
OL  
V
OH  
V
OL  
Q3, Q4, Q5  
Pins 11, 13, 14  
100 ns  
Q1  
Pin 9  
V
IHH  
= 10.25 V min, 10.5 V nom, 10.75 V max  
Figure 2. Diagnostics Waveforms  
Table 1. ressing State Registers  
Ding Diagnostics  
REGISTER BINARY ADDRESS  
BURIED REGISTER  
PIN 11  
PIN13  
L
PIN 14  
L
SELECTED  
L
L
SCLR0  
L
H
SCLR1  
L
L
HH  
L
CNT/HLD0  
L
H
CNT/HLD1  
P0  
L
H
H
L
H
HH  
L
P1  
L
HH  
HH  
HH  
L
P2  
L
H
P3  
L
HH  
L
P4  
H
H
H
H
H
H
H
H
H
P5  
L
H
P6  
L
HH  
L
P7  
H
C0  
H
H
C1  
H
HH  
L
C2  
HH  
HH  
HH  
C3  
H
C4  
HH  
C5  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
11  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
PRINCIPLES OF OPERATION  
PSG design theory  
Most state machine and waveform generator designs can be simplified with the PSG by referencing all or part  
of each sequence to a binary count. The internal state registers can then be used to keep track of which binary  
count sequence is in operation, to store input data and keep track of internally generated status bits, or as output  
registers when connected to a nonregistered output cell. State registers can also be used to expand the binary  
counter when a larger counter is needed.  
Through the use of the binary counter, the number of product lines and state registers required for a design is  
usually reduced. In addition, the designer does not have to be concerned about generating wait states where  
the outputs are unaffected because these can be timed from the binarnter. For detailed information and  
examples using this design concept, see A Designer’s Guide to the TIBPSG507 applications report.  
OR term loading  
As shown in Figure 3 and by the f  
calculation, f  
is affected by the number of terms connected to each OR  
max  
max  
array line. Theoretically, f  
is calculated as:  
max  
1
f
=
max  
t
t
CLK to Q  
su  
Since the setup time (input or feedback to S/R) varies h the number of terms connected to each OR array  
line, (due to capacitance loading) f will also vary. Figure 3 illustrates the relationship between the number  
pd  
max  
of terms connected per OR line and the setup time.  
Use Figure 3 to determine the worst-case setup time for a particular application. Identify the OR array line with  
the maximum number of terms connected. Count the number of terms and use the graph to determine the setup  
time.  
WORST-ASE SETUP TIME  
(input or feedback to SR)  
vs  
”OR” TERM LOAD  
20  
V
T
= 4.75 V  
CC  
= 75°C  
A
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0
20  
40  
60  
80  
Maximum Number of OR Terms Connected  
Figure 3  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
12  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
f
with external feedback  
max  
The configuration shown is a typical state-machine design with feedback signals sent off-chip. This external  
feedback could go back to the device inputs or to a second device in a multi-chip state machine. The slowest  
path defining the clock period is the sum of the clock-to-output delay time and the setup time for the input or  
feedback signals (t + t CLK to Q).  
su  
pd  
1
Thus: f  
with external feedback =  
max  
t
t
CLK to Q  
su  
pd  
Internal  
SR  
Registers  
CLK  
Logic  
Array  
Input  
Output  
SR  
Registers  
Next Device  
t
pd  
t
su  
CLK to Q  
Figure 4  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
13  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
APPLICATION INFORMATION  
The TIBPSG507AC is used in this application to generate the required memory timing control signals (RAS, CAS,  
etc.) for the memory timing controller.  
RFC  
Dynamic RAM  
Bank0  
1 Meg x 32 Bit  
TMS4C1027  
Refresh  
Timer  
Dynamic  
Memory  
Controller  
SN74ALS6301  
A0-A8  
RAS0  
CAS0  
W
REFREQ  
REFEQ  
Memory  
Timing  
Controller  
TIBPSG507A  
Bank1  
1 Meg x 32 Bit  
TMS4C1027  
OSC  
CLK  
RFC  
Clock  
Generator  
A0-A8  
Q0-Q8  
V
CC  
RAS1  
CAS1  
W
LE  
RESET  
RAASI  
I  
M
MC1  
WAIT  
R/W  
A22  
Bank2  
1 Meg x 32 Bit  
TMS4C1027  
A0-A8  
AS  
ALE  
OE  
RAS2  
CAS2  
W
CS  
Microprocessor  
SN74ALS6301  
Bank3  
1 Meg x 32 Bit  
TMS4C1027  
A0-A8  
Address  
RAS3  
CAS3  
W
2
SEL0,1  
Memory Bank Signals  
Data  
For detailed information, please see the Systems Solution for Static Column Decode Application Report.  
Figure 5  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
14  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
5 V  
S1  
R1  
From Output  
Under Test  
Test  
Point  
C
R2  
L
(see Note A)  
LOAD CIRCUIT FOR  
3-STATE OUTPUTS  
3.5 V  
0.3 V  
High-Level  
Pulse  
3.5 V  
0.3 V  
1.5 V 1.5 V  
Timing  
Input  
1.5 V  
t
w
t
h
t
su  
3.5 V  
0.3 V  
3.5 V  
0.3 V  
Data  
Input  
Lw-Level  
Pulse  
1.5 V  
1.5 V 1.5 V  
1.5 V  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3.5 V  
0.3 V  
Output  
Control  
(low–level  
3.5 V  
0.3 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
Input  
enabling)  
t
en  
t
pd  
t
t
t
dis  
pd  
V
OH  
In-Phase  
Output  
3.3 V  
1.5 V  
1.5 V  
1.5 V  
Waveform 1  
S1 Closed  
(see Note B)  
1.5 V  
V
+0.5 V  
OL  
V
OL  
V
OL  
t
pd  
pd  
t
dis  
V
OH  
t
en  
Out-of-Phase  
Output  
(see Note D)  
1.5 V  
V
OH  
Waveform 2  
S1 Open  
(see Note B)  
V
OL  
1.5 V  
V
–0.5 V  
OH  
0 V  
VOLTAGE WAVEFORMS  
PROPAGATION DELMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS  
NOTES: A. C includes probe and jig capacitance and is 50 pF for t and t , 5 pF for t  
pd en dis  
.
L
B. Waveform1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2  
is for an output wh internal conditions such that the output is high except when disabled by the output control.  
C. All input pulses ve the following characteristics: PRR 1 MHz, t = t 2 ns, duty cycle = 50%.  
r
f
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.  
E. Equivalent loads may be used for testing.  
Figure 6. Load Circuit and Voltage Waveforms  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
15  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
200  
175  
150  
125  
V
CC  
= 5.25 V  
V
CC  
= 5 V  
100  
75  
V
CC  
= 4.75 V  
50  
25  
0
0
25  
50  
75  
T
A
– Free-Air Temperature – °C  
Figure 7  
POWER DISSIPATION  
vs  
REQUENCY  
1000  
950  
900  
800  
750  
700  
T
= 0°C  
A
T
= 25°C  
A
T
= 50°C  
A
1
2
4
7
10  
20  
40  
70 100  
f – Frequency – MHz  
Figure 8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
16  
TIBPSG507AC  
13 × 80 × 8 PROGRAMMABLE SEQUENCE GENERATOR  
SRPS002D – D3029, MAY 1987 – REVISED NOVEMBER 1995  
TYPICAL CHARACTERISTICS  
PROPAGATION DELAY TIME  
PROPAGATION DELAY TIME  
vs  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
V
= 5 V  
CC  
R1 = 300 Ω  
R2 = 390 Ω  
T
A
t
(I or Feedback to Q)  
PHL  
= 25°C  
t
(I or Feedback to Q)  
PLH  
t
t
t
t
(I or Feedback to Q)  
(I or Feedback to Q)  
(CLK to Q)  
t
t
(CLK to Q)  
PHL  
PLH  
PLH  
PHL  
PLH  
PHL  
6
(CLK to Q)  
(CLK to Q)  
4
2
0
R1 = 300 Ω  
R2 = 390 Ω  
C
= 50 pF  
= 25°C  
L
T
A
0
0
100  
200  
300  
400  
500  
600  
4.75  
5
5.25  
C
– Load Capacitance – pF  
V
CC  
– Supply Voltage – V  
L
Figure 10  
Figure 9  
PROPAGATION DELAY TIME  
vs  
PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
NUMBER OF OUTPUTS SWITCHING  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
t
(I or Feedback to Q)  
PHL  
t
(I or Feedback o Q)  
PHL  
t
(I or Feedback to Q)  
t
(I or Feedback to Q)  
PLH  
PLH  
t
t
(CLK to Q)  
(CLK to Q)  
PLH  
PHL  
t
t
(CLK to Q)  
(CLK to Q)  
PLH  
PHL  
6
6
V
= 5 V  
CC  
4
2
0
4
2
0
V
= 5 V  
R1 = 300 Ω  
R2 = 390 Ω  
CC  
R1 = 300 Ω  
R2 = 390 Ω  
C
C
T
= 50 pF  
L
= 50 pF  
= 25°C  
L
A
0
25  
0
50  
75  
0
1
2
3
4
5
6
7
8
– Free-Air Temperature – °C  
Number of Outputs Switching  
Figure 11  
Figure 12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
17  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TIBPSG507AMFK

IC,SIMPLE-PLD,PLS-TYPE,TTL,LLCC,28PIN,CERAMIC
TI

TIBPSG507AMJT

IC,SIMPLE-PLD,PLS-TYPE,TTL,DIP,24PIN,CERAMIC
TI

TIBPSG507CFK

OT PLD, 12ns, CQCC28
TI

TIBPSG507CFN

OT PLD, 12ns, PQCC28
TI

TIBPSG507CJT

OT PLD, 12ns, CDIP24
TI

TIBPSG507CNT

OT PLD, 12ns, PDIP24
TI

TIBPSG507MFK

OT PLD, 12ns, CQCC28
TI

TIBPSG507MJT

OT PLD, 12ns, CDIP24
TI

TIC-L019-16

RJ45 Integrated Connector
ETC

TIC-L065-16

RJ45 Integrated Connector
ETC

TIC10024-Q1

具有 SPI 的汽车类 35V 多开关检测接口 (MSDI)
TI

TIC10024QDCPRQ1

具有 SPI 的汽车类 35V 多开关检测接口 (MSDI) | DCP | 38 | -40 to 125
TI