TIOL111DMWT [TI]

具有集成浪涌保护功能的 IO-Link 器件收发器 | DMW | 10 | -40 to 125;
TIOL111DMWT
型号: TIOL111DMWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成浪涌保护功能的 IO-Link 器件收发器 | DMW | 10 | -40 to 125

文件: 总33页 (文件大小:1523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
具有集成浪涌保护功能的 TIOL111TIOL111x IO-Link 器件收发器  
1 特性  
2 应用  
1
7V 36V 电源电压  
IO-Link 传感器和传动器  
PNPNPN IO-Link 可配置输出  
工厂自动化  
工序自动化  
IEC 61131-9 COM1COM2 COM3 数据速  
率支持  
3 说明  
250mA 条件下,残余电压低,为 1.75V  
50mA 350mA 可配置电流限制  
TIOL111(x) 系列收发器使用 IO-Link 接口实现工业双  
向点到点通信。当此器件通过一个三线制接口连接至一  
IO-Link 主器件时,主器件能够发起通信并与远程节  
点交换数据,而此时 TIOL111(x) 则用作一个用于通信  
的完整物理层。  
耐受 ±65V 瞬态电压(时间低于 100µs)  
L+CQ L- 上具有高达 60V 的反极性保护  
L+ CQ 上有集成式 EMC 保护  
±16kV IEC 61000-4-2 ESD 接触放电  
±4kV IEC 61000-4-4 电气快速瞬变  
±1.2kV/500IEC 61000-4-5 浪涌  
这些器件能够承受高达 1.2kV (500) IEC 61000-4-  
5 浪涌,并具有集成反向极性保护。  
高达 1.5H 电感负载的快速消磁功能  
大电容负载驱动能力  
只需通过一个简单的引脚可编程接口,便可轻松连接到  
控制器电路。输出电流限制可使用外部电阻器进行配  
置。  
< 2µA CQ 泄露电流  
< 1.5mA 静态电源电流  
集成式 LDO 选项可支持高达 20mA 的电流  
此外,它们提供了故障报告和内部保护功能,可应对欠  
压、过流和过热条件。  
TIOL111:无 LDO  
TIOL11133.3V LDO  
TIOL11155V LDO  
器件信息(1)  
器件型号  
TIOL111  
封装  
封装尺寸(标称值)  
过热警告和热保护  
远程唤醒指示灯  
TIOL1113  
TIOL1115  
VSON (10)  
2.50mm x 3.00mm  
故障指示灯  
扩展环境温度:-40°C 125°C  
2.5mm x 3mm 10 引脚 VSON 封装  
(1) 如需了解所有可订购器件,请参阅产品说明书末尾的可订购产  
品附录。  
典型应用图  
TIOL111(x)  
VCC_OUT  
L+  
VOLTAGE  
REGULATOR  
0.1 µF  
100 V  
1 µF  
10 V  
10 kΩ  
RX  
10 kΩ  
TX  
EN  
Sensor  
Front-End  
Microcontroller  
CQ  
IO-Link Master  
DIAGNOSTICS  
and  
WAKE  
CONTROL  
NFAULT  
CUR_OK  
TMP_OK  
PWR_OK  
L-  
ILIM_ADJ  
RSET  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEV5  
 
 
 
 
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 19  
9.1 Application Information............................................ 19  
9.2 Typical Application ................................................. 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagrams ..................................... 11  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 接收文档更新通知 ................................................. 25  
12.2 社区资源................................................................ 25  
12.3 ....................................................................... 25  
12.4 静电放电警告......................................................... 25  
12.5 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 25  
7
8
4 修订历史记录  
Changes from Revision C (May 2019) to Revision D  
Page  
向数据表添加了器件号 TIOL1113 TIOL1115..................................................................................................................... 1  
将所有 TIOL111-3 更改为 TIOL1113 并将 TIOL111-5 更改为 TIOL1115 .............................................................................. 1  
Changes from Revision B (August 2018) to Revision C  
Page  
特性 高达 55V 的反极性保护更改为高达 60V 的反极性保护” ...................................................................................... 1  
Changed Supply voltage From: MIN = -55 V, MAX = 55 V To: MIN = -60 V, MAX = 60 V in the Absolute Maximum  
Ratings.................................................................................................................................................................................... 4  
Changed the Voltage difference Max value From: 55 V to 60 V Absolute Maximum Ratings............................................... 4  
Changed the IREV test conditions From: up to |55 V| To: up to |60 V| in the Electrical Characteristics.................................. 6  
Changed text From: "pins may not exceed 55 V DC at any time." To: "pins may not exceed 60 V DC at any time." in  
Reverse Polarity Protection ssection.................................................................................................................................... 14  
Changes from Revision A (October 2017) to Revision B  
Page  
Added VIM to the Electrical Characteristics table.................................................................................................................... 5  
Changes from Original (July 2017) to Revision A  
Page  
Changed From: 1.25 mW To: 125 mW in 公式 2 ................................................................................................................. 20  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
5 Pin Configuration and Functions  
DMW Package  
10-Pin (VSON)  
Top View  
VCC_IN/OUT  
1
2
3
4
5
10  
WAKE  
NFAULT  
RX  
9
L+  
Thermal  
Pad  
8
CQ  
TX  
7
L-  
EN  
6
ILIM_ADJ  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
IO-Link Interface  
CQ  
L+  
L-  
8
9
7
I/O  
IO-Link data signal (bidirectional)  
IO-Link supply voltage (24 V nominal)  
IO-Link ground potential  
POWER  
POWER  
Local Controller Interface  
Driver enable input signal from the local controller. Logic low sets the CQ output at Hi-Z. Weak internal pull-  
down.  
EN  
5
I
WAKE  
RX  
10  
3
OPEN-DRAIN Wake up indicator to the local controller. Connect this pin via pull-up resistor to VCC_IN/OUT.  
O
I
Receive data output to the local controller  
Transmit data input from the local controller. No effect if EN is low. Logic high sets low-side switch. Logic low  
sets high-side switch. Weak internal pull-up.  
TX  
4
Thermal Pad  
Connect to L- for optimal thermal and electrical performance  
Internal LDO  
VCC_IN/OUT  
Special Connect Pins  
ILIM_ADJ  
1
POWER  
3.3-V or 5-V linear regulator output; external 3.3-V or 5-V logic supply for option without LDO.  
6
2
I
Input for current limit adjustment. Connect resistor RSET between ILIM_ADJ and L-.  
Fault indicator output signal to the microcontroller. A low level indicates either an over- current, an  
undervoltage supply or an overtemperature condition.  
NFAULT  
OPEN-DRAIN  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–60  
–65  
MAX  
60  
65  
60  
6
UNIT  
V
Steady state voltage for L+ and CQ  
Supply voltage  
Transient pulse width < 100 µs for L+ and CQ  
V
Voltage difference  
|V(L+) – V(CQ)  
|
V
Logic supply voltage (TIOL111)  
Input logic voltage  
VCC_IN  
–0.3  
–0.3  
–5  
V
TX, EN, ILIM_ADJ  
6
V
Output current  
RX, WAKE, NFAULT  
5
mA  
°C  
Storage temperature, Tstg  
-55  
170  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are  
with reference to the L- pin, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
All pins  
±4000  
Contact discharge, per IEC 61000-4-2(2)(3)  
Electrical fast transient, per IEC 61000-4-4(2)  
Surge protection with 500 , per IEC 61000-4-5;  
±16000  
±4000  
V(ESD)  
Electrostatic discharge  
V
Pins L+, CQ and  
L-  
±1200  
(2)  
1.2/50 μs  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) Minimum 100-nF capacitor is required between L+ and L-. Minimum 1-µF capacitor is required between VCC_IN/OUT and L-.  
(3) Passing level is ±4500 V if the device is powered and EN=TX=HIGH.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
7
NOM  
24  
MAX  
36  
UNIT  
V
V(L+)  
Supply voltage  
3.3 V configuration  
5 V configuration  
3
3.3  
5
3.6  
V
V(VCC_IN)  
Logic level input voltage (TIOL111 only)  
4.5  
0
5.5  
V
RSET  
1/tBIT  
I(VCC_OUT)  
TA  
External resistor for CQ current limit  
Data rate (Communication mode)  
100  
250  
20  
kΩ  
kbps  
mA  
°C  
LDO output current (TIOL1113 and TIOL1115 only)  
Operating ambient temperature  
–40  
125  
150  
TJ  
Junction temperature  
°C  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
6.4 Thermal Information  
TIOL111(x)  
UNIT  
THERMAL METRIC(1)  
DMW (10 Pins)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
68.1  
60.1  
40.6  
13.4  
40.7  
25.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (L+)  
EN = LOW, no load  
1
2
1.5  
2.7  
mA  
mA  
I(L+)  
Quiescent supply current  
EN = HIGH, no load  
LOGIC-LEVEL INPUTS (EN, TX)  
VIL  
Input logic low voltage  
Input logic high voltage  
Pull-down (EN) resistance  
Pull-up (TX) resistance  
0.8  
V
V
VIH  
2
RPD  
RPU  
100  
200  
kΩ  
kΩ  
CONTROL OUTPUTS (WAKE, NFAULT)  
VOL  
IOZ  
Output logic low voltage  
IO = 4 mA  
0.5  
1
V
Output high impedance leakage  
Output in Hi-Z, VO = 0 V or VCC_IN/OUT  
–1  
µA  
DRIVER OUTPUT (CQ)  
I = 250 mA  
1.75  
1.5  
V
V
V
V
V
V
High-side driver residual voltage I = 200 mA  
I = 100 mA  
I = 250 mA  
I = 200 mA  
I = 100 mA  
1.1  
VDS(ON)  
1.75  
1.5  
Low-side driver residual voltage  
1.1  
High-side configuration, Rload = 26 Ω between CQ and  
L-, 18 V V(L+) 30 V  
14.5  
V
V
V
Voltage between CQ and L-  
during IO-Link Master wake-up  
pulse  
Low-side configuration, Rload = 24 Ω between CQ and  
L+, V(L+) = 20 V  
VIM  
4
4
Low-side configuration, Rload = 44 Ω between CQ and  
L+, V(L+) = 30 V  
IOZ  
CQ leakage  
EN = LOW, 0 V(CQ) (V(L+) - 0.1 V)  
RSET = 100 kΩ  
–2  
35  
2
70  
µA  
mA  
mA  
mA  
50  
350  
350  
IO(LIM)  
Driver output current limit  
RSET = 0 kΩ  
RSET = OPEN(1)  
300  
300  
400  
400  
(1) Current fault indication will be active. Current fault auto recovery will be de-activated.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
 
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RECEIVER INPUT (CQ)  
V(THH)  
V(THL)  
Input threshold “H”  
Input threshold “L"  
Receiver Hysteresis  
10.5  
8
13  
V
V
11.5  
V(L+) > 18 V  
V(HYS)  
0.75  
0.75  
V
(V(THH) - V(THL)  
)
(2)  
(3)  
V(THH)  
V(THL)  
Input threshold “H”  
Input threshold “L"  
Receiver Hysteresis  
See Note  
See Note  
V
V
(4)  
(5)  
See Note  
See Note  
V(L+) < 18 V  
V(HYS)  
VOL  
V
V
V
(V(THH) - V(THL)  
)
RX output low voltage  
RX output high voltage  
IOL = 4 mA  
0.4  
VCC_IN/  
OUT–0.5  
VOH  
IOL = –4 mA  
PROTECTION CIRCUITS  
L+ falling; NFAULT = Hi-Z  
L+ rising; NFAULT = LOW  
Rising to falling threshold  
6
V
V
V(UVLO)  
L+ under voltage lockout  
6.5  
V(UVLO,HYS)  
V(UVLO_IN)  
L+ under voltage hysteresis  
100  
mV  
V
VCC_IN falling; NFAULT = Hi-Z  
VCC_IN rising; NFAULT = LOW  
2.4  
2.5  
VCC_IN under voltage lockout  
(No LDO option)  
V
VCC_IN under voltage hysteresis  
(No LDO option)  
V(UVLO,HYS)  
Rising to falling threshold  
100  
mV  
T(WRN)  
T(SDN)  
T(HYS)  
Thermal warning  
125  
150  
°C  
°C  
°C  
Thermal shutdown  
Die temperature TJ  
160  
10  
Thermal hysteresis for shutdown  
EN = LOW, TX=x; V(CQ) < V(L-) or  
V(CQ) > V(L+), up to |36 V|  
50  
80  
µA  
µA  
EN = LOW, TX=x; V(CQ) < V(L-) or  
V(CQ) > V(L+), up to |60 V|  
Leakage current in reverse  
polarity  
IREV  
EN = HIGH, TX = LOW; V(CQ to L+) = 3 V  
EN = HIGH, TX = HIGH; V(CQ to L-) = -3 V  
550  
10  
µA  
µA  
LINEAR REGULATOR (LDO)  
TIOL1115  
TIOL1113  
4.75  
3.13  
5
5.25  
3.46  
1.9  
V
V
V
V(VCC_OUT)  
Voltage regulator output  
3.3  
Voltage regulator drop-out  
voltage  
TIOL1115  
TIOL1113  
V(DROP)  
REG  
ICC = 20 mA load current  
I(VCC_OUT) = 1 mA  
2.3  
1.7  
V
(V(L+) – V(VCC_OUT)  
)
Line regulation  
(dV(VCC_OUT)/dV(L+))  
mV/V  
Load regulation  
(dV(VCC_OUT)/V(VCC_OUT)  
LREG  
V(L+) = 24 V, I(VCC_OUT) = 100 µA to 20 mA  
100 kHz, I(VCC_OUT) = 20 mA  
1%  
)
PSSR  
Power Supply Rejection Ratio  
40  
dB  
(2) VTHH (min) = 5 V + (11/18) [V(L+) - 8 V]  
(3) VTHH (max) = 6.5 V + (13/18) [V(L+) - 8 V]  
(4) VTHL (min) = 4 V + (8/18) [V(L+) -8 V]  
(5) VTHL (max) = 6 V + (11/18) [V(L+) -8 V]  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SECTION NAME  
tPLH, tPHL  
tP(skew)  
Driver propagation delay  
600  
100  
800  
ns  
ns  
Driver propagation delay skew.  
See 6  
See 7  
See 8  
RL = 2 kΩ  
CL = 5 nF  
|tPLH - tPHL  
|
tPZH, tPZL  
tPHZ, tPLZ  
tr, tf  
Driver enable delay  
4
4
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
Driver disable delay  
R(SET) = 0 Ω  
Driver output rise, fall time  
Difference in rise and fall time  
Wake-up recognition begin  
Wake-up recognition end  
Wake-up output delay  
150  
50  
|tr – tf|  
tWU1  
45  
85  
60  
75  
tWU2  
100  
135  
140  
tpWAKE  
tSC  
See 10  
Current fault blanking time  
Current fault indication delay  
175  
200  
tpSC  
260  
50  
Current fault driver re-enable  
wait time  
tSCEN  
15  
30  
ms  
ms  
CQ re-enable delay after UVLO V(UVLO) rising threshold crossing time to  
t(UVLO)  
10  
(1)  
CQ enable time  
RECEIVER  
tND  
(2)  
Noise suppression time  
250  
300  
ns  
ns  
tPLH, tPHL  
Receiver propagation delay  
See 9 15-pF load on RX  
150  
(1) CQ output remains Hi-Z for this time  
(2) Noise suppression time is defined as the permissible duration of a receive signal above/below the detection threshold without detection  
taking place.  
版权 © 2017–2019, Texas Instruments Incorporated  
7
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
3
2.5  
2
1.8  
1.6  
1.4  
1.2  
1
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
-40èC  
25èC  
125èC  
0.5  
0
En=High  
En=Low  
0
10  
20  
30  
40  
0
50  
100  
150  
200  
250  
L+ Supply Voltage (V)  
Load Current (mA)  
D001  
D002  
No Load  
TX = Open  
25°C  
1. Supply Current vs Supply Voltage  
2. Residual Voltage vs Load Current: High Side  
1.6  
1.4  
1.2  
1
400  
350  
300  
250  
200  
150  
100  
50  
Low Side  
High Side  
0.8  
0.6  
0.4  
0.2  
0
-40èC  
25èC  
125èC  
0
0
50  
100  
150  
200  
250  
0
20  
40  
60  
80  
100  
Load Current (mA)  
RSET (kW)  
D003  
D004  
3. Residual Voltage vs Load Current: Low Side  
4. Current Limit vs RSET  
14  
13  
12  
11  
10  
9
8
7
6
VTHH  
VTHL  
5
4
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35  
L+ Voltage (V)  
D005  
5. Receiver Threshold Boundaries  
8
版权 © 2017–2019, Texas Instruments Incorporated  
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
7 Parameter Measurement Information  
L+  
RL  
TX  
EN  
CQ  
RL  
CL  
Copyright © 2016, Texas Instruments Incorporated  
6. Test Circuit for Driver Switching  
VOH  
VOH  
80%  
80%  
TX  
50%  
CQ  
CQ  
tPHL  
tPLH  
VOH  
CQ  
50%  
20%  
20%  
VOL  
VOL  
VOL  
tr  
tf  
7. Waveforms for Driver Output Switching Measurements  
TX = LOW  
50%  
TX = HIGH  
50%  
EN  
EN  
tPZL  
tPLZ  
tPZH  
tPHZ  
V(L+) / 2  
CQ  
VOH  
80%  
50%  
VOL  
CQ  
50%  
20%  
V(L+) / 2  
8. Waveforms for Driver Enable/Disable Time Measurements  
CQ  
50%  
tPLH  
tPHL  
RX  
50%  
9. Receiver Switching Measurements  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
CQ  
< tWU1  
CQ  
tWU1 < t < tWU2  
CQ  
> tSC  
RX  
WAKE  
RX  
WAKE  
RX  
WAKE  
high  
high  
high  
tpWAKE  
high  
NFAULT  
NFAULT  
NFAULT  
tpSC  
a) Over-current due to transient  
b) Wake-up pulse from master  
c) Over-current due to fault condition  
10. Overcurrent and Wake Conditions for EN = H, TX = H (Full Lines);  
and TX = L (Red Dotted Lines)  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
8 Detailed Description  
8.1 Overview  
11 shows that the TIOL111 or TIOL111x driver output (CQ) can be used in either push-pull, high-side, or low-  
side configuration using the enable (EN) and transmit data (TX) input pins. The internal receiver converts the 24-  
V signal on the CQ line to standard logic levels on the receive data (RX) pin. A simple parallel interface is used  
to receive/transmit data and status information between the slave and the local controller.  
These devices have integrated IEC 61000-4-4/5 EFT and surge protection. In addition, tolerance to ±65-V  
transients enables flexibility to choose from a wider range of TVS diodes if an application requires higher levels  
of protection. These integrated robustness features will simplify the system level design by reducing external  
protection circuitry.  
TIOL111 or TIOL111x transceivers implement protection features for overcurrent, overvoltage and over-  
temperature conditions. The devices also provide a current-limit setting of the driver output current using an  
external resistor.  
The devices derive the low-voltage supply from the IO-Link L+ voltage (24 V nominal) via an internal linear  
regulator to provide power to the local controller and sensor circuitry.  
8.2 Functional Block Diagrams  
VCC_ IN  
L+  
RX  
TX  
EN  
CQ  
DIAGNOSTICS  
and  
WAKE  
CONTROL  
NFAULT  
CUR_OK  
TMP_OK  
PWR_OK  
L-  
ILIM_ADJ  
11. Block Diagram TIOL111  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
 
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
Functional Block Diagrams (接下页)  
VOLTAGE  
REGULATOR  
VCC_OUT  
L+  
RX  
TX  
EN  
CQ  
DIAGNOSTICS  
and  
CONTROL  
WAKE  
NFAULT  
CUR_OK  
TMP_OK  
PWR_OK  
L-  
ILIM_ADJ  
Copyright © 2016, Texas Instruments Incorporated  
12. Block Diagram TIOL111x  
8.3 Feature Description  
8.3.1 Wake Up Detection  
The TIOL111(x) may be operated in IO-Link mode or Standard Input / Output (SIO) mode. If the device is in SIO  
mode and the master node wants to initiate communication with the device node, the master drives the CQ line  
to the opposite of its present state, and will either sink or source the wake up current (500 mA) for the wake-up  
duration (typically 80 μs) depending on the CQ logic level as per the IO-Link specification. The TIOL111(x)  
detects this wake-up condition and communicates to the local microcontroller via the WAKE pin. The IO-Link  
communication specification requires the device node to switch to receive mode within 500 μs after receiving the  
wake-up signal.  
For overcurrent conditions shorter or longer than a valid wake-up pulse, the WAKE pin remains in a high-  
impedance (inactive) state. This is illustrated in 10.  
8.3.2 Current Limit Configuration  
The output current can be configured with an external resistor on ILIM_ADJ pin. The maximum settable current  
limit is 300 mA. This maximum setting specifies a minimum of 300 mA over temperature and voltage.  
Output disable due to current fault and current fault auto recovery features can be disabled by floating ILIM_ADJ  
pin. However, the current fault indication is still active in this configuration. This feature is useful when driving  
large capacitances.  
1. Current Limit Configuration  
NFAULT Indication During  
Fault  
Output Disable and Auto  
Recovery  
ILIM_ADJ Pin Condition  
CQ Current Limit  
RSET resistor to L-  
Connected to L-  
OPEN  
Variable  
300 mA  
300 mA  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
8.3.3 Current Fault Detection, Indication and Auto Recovery  
If the output current at CQ exceeds the internally-set current limit IO(LIM) for a duration longer than tSC, the  
NFAULT pin is driven logic low to indicate a fault condition. The output is turned off, but the LDO continues to  
function. The output periodically retries to check if the output is still in the over current condition. In this mode,  
the output is switched on for tSC in tSCEN intervals. Current fault auto recovery mode can be disabled by setting  
ILIM_ADJ = OPEN. See 5. Toggling EN will clear NFAULT.  
8.3.4 Thermal Warning, Thermal Shutdown  
If the die temperature exceeds T(WRN), the NFAULT flag is held low indicating a potential over temperature  
problem. When the TJ exceeds T(SDN), The output is disabled but the LDO remains operational. As soon as the  
temperature drops below the temperature threshold (and after T(HYS)), the internal circuit re-enables the driver,  
subject to the state of the EN and TX pins.  
8.3.5 Fault Reporting (NFAULT)  
NFAULT is driven low if either a current fault condition is detected, die temperature has exceeded T(WRN) or  
supply has dropped below the UVLO threshold. NFAULT returns to high-impedance as soon as all three fault  
conditions clear.  
Receive  
Only  
CUR_OK = Z  
WAKE = Z  
Driver = OFF  
LDO = ON  
Receive and  
Transmit  
Wake  
WAKE = L  
CQ at I  
O(LIM)  
CUR_OK = Z  
WAKE = Z  
Driver = ON  
LDO = ON  
CUR_OK = Z  
Driver = ON  
LDO = ON  
for t  
WU1  
< t < t  
WU2  
and RX TX  
C
Q
at I  
O
(LI  
M)  
Thermal  
Warning  
Current  
Fault  
T > T  
WRN  
CUR_OK = Z  
TMP_OK = L  
WAKE = Z  
WAKE = Z  
CUR_OK = L  
Driver = OFF  
LDO=ON  
CQ at I  
and T < T  
WRN  
O(LIM)  
Driver = EN/EN*  
LDO = ON  
Thermal  
Shutdown  
CUR_OK = Z  
TMP_OK = L  
WAKE = Z  
Current  
Fault Recovery  
WAKE = Z  
CUR_OK = L  
Driver = ON for tsc  
LDO=ON  
Driver = OFF  
LDO = ON  
NFAULT = [CUR_OK && PWR_OK && TMP_OK]  
13. Device State Diagram  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
8.3.6 Transceiver Function Tables  
2. Driver Function  
EN  
TX  
CQ  
COMMENT  
L / Open  
X
L
Hi-Z  
H
Device is in ready-to-receive state  
H
H
CQ is sourcing current (high-side drive)  
CQ is sinking current (low-side drive)  
H / Open  
L
3. Receiver Function  
CQ VOLTAGE  
V(CQ) < V(THL)  
V(THL) < V(CQ) < V(THH)  
V(THH) < V(CQ)  
Open  
RX  
H
?
COMMENT  
Normal receive mode, input low  
Indeterminate output, may be either high or low  
Normal receive mode, input high  
L
?
Indeterminate output, may be either high or low  
4. Wake-Up Function (tWU1 < t < tWU2  
)
EN  
TX  
CQ CURRENT  
WAKE  
COMMENT  
Device is in ready-to-receive state  
L / Open  
X
X
Z
Device receives high-level wake-up request from IO-  
Link Master  
H
H
H / Open  
L
| I(CQ) | 500 mA  
L
L
Device receives low-level wake-up request from IO-  
Link Master  
| I(CQ) | 500 mA  
5. Current Limit Indicator Function (t > tSC  
)
EN  
TX  
CQ CURRENT  
| I(CQ) | > IO(LIM)  
| I(CQ) | < IO(LIM)  
| I(CQ) | > IO(LIM)  
| I(CQ) | < IO(LIM)  
X
NFAULT  
COMMENT  
L
Z
L
Z
Z
CQ current exceeds the set limit for over tSC  
Normal operation  
H
H / Open  
CQ current exceeds the set limit for over tSC  
Normal operation  
H
L
L / Open  
X
Driver is disabled, Current limit indicator is inactive  
8.3.7 The Integrated Voltage Regulator (LDO)  
The TIOL1113 and TIOL1115 each have an integrated linear voltage regulator (LDO) which can supply power to  
external components. The voltage regulator is specified for L+ voltages in the range of 7 V to 36 V with respect  
to L-. The LDO is capable of delivering up to 20 mA.  
The LDO is designed to be stable with standard ceramic capacitors with values of 1 μF or larger at the output.  
X5R- and X7R-type capacitors are best because they have minimal variation in value and ESR over temperature.  
Maximum ESR should be less than 1 Ω. With tolerance and dc bias effects, the minimum capacitance to ensure  
stability is 1 μF.  
The voltage regulator has an internal 35-mA current limit to protect against initial startup inrush current due to  
large decoupling capacitors and accidental short circuit conditions.  
8.3.8 Reverse Polarity Protection  
Reverse polarity protection circuitry protects the devices against accidental reverse polarity connections to the  
L+, CQ and L- pins. The maximum voltage between any of the pins may not exceed 60 V DC at any time.  
14 and 15 shows all the possible connection combinations.  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
L+  
CQ  
L-  
L+  
DC  
DC  
CQ  
TIOL111(x)  
TIOL111(x)  
TIOL111(x)  
TIOL111(x)  
TIOL111(x)  
TIOL111(x)  
RL  
RL  
L-  
Correct  
Configuration  
Reverse Polarity Protected  
Fault Conditions  
L+  
CQ  
L-  
L+  
DC  
DC  
CQ  
RL  
RL  
L-  
Reverse Polarity Protected  
Fault Conditions  
Reverse Polarity Protected  
Fault Conditions  
L+  
CQ  
L-  
L+  
DC  
RL  
DC  
CQ  
RL  
L-  
Reverse Polarity Protected  
Fault Conditions  
Reverse Polarity Protected  
Fault Conditions  
14. High-Side Driver Configuration  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
L+  
L+  
CQ  
L-  
DC  
DC  
CQ  
TIOL111(x)  
TIOL111(x)  
TIOL111(x)  
TIOL111(x)  
RL  
RL  
L-  
Correct  
Reverse Polarity Protected  
Fault Conditions  
Configuration  
L+  
L+  
CQ  
L-  
DC  
DC  
CQ  
TIOL111(x)  
RL  
RL  
L-  
Reverse Polarity Protected  
Fault Conditions  
Reverse Polarity Protected  
Fault Conditions  
L+  
L+  
CQ  
L-  
DC  
DC  
CQ  
TIOL111(x)  
RL  
RL  
L-  
Reverse Polarity Protected  
Fault Conditions  
Reverse Polarity Protected  
Fault Conditions  
15. Low-Side Driver Configuration  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
8.3.9 Integrated Surge Protection and Transient Waveform Tolerance  
The L+ and CQ pins of the device are capable of withstanding up to 1.2 kV of 1.2/50 – 8/20 μs IEC 61000-4-5  
surge with a source impedance of 500 . The surge testing should be performed with a minimum 100 nF supply  
decoupling capacitor between L+ and L-, and 1 µF between VCC_IN/OUT and L-.  
External TVS diodes may be required for higher transient protection levels. The system designer should ensure  
that the maximum clamping voltage of the external diodes should be < 65 V at the desired current level. The  
device is capable of withstanding up to ±65-V transient pulses < 100 µs.  
Combination  
wave  
R
Generator  
EUT  
L+  
CQ  
L-  
Decoupling  
Network  
> 100 nF  
1.2/50 – 8/20 µs CWG  
R = 500 Ω  
16. Surge Test Setup  
8.3.10 Power Up Sequence (TIOL111)  
VCC_IN and L+ domains can be powered up in any sequence. In the event of L+ is powered and VCC_IN is not,  
the CQ pin will remain in high impedance.  
8.3.11 Undervoltage Lock-Out (UVLO)  
The device enters UVLO if the L+ voltage falls below V(UVLO). (For the device without the integrated LDO, the  
device monitors VCC_IN in addition to L+. UVLO happens if either supply falls below the threshold.)  
As soon as the supply falls below V(UVLO), NFAULT is pulled low, the LDO is turned off and the CQ output is  
disabled (Hi-Z). Receiver performance is not specified in this mode.  
When the supply rises above V(UVLO), NFAULT returns to Hi-Z (given no other fault conditions present) and the  
LDO will be enabled immediately. The CQ output is turned on after T(UVLO) delay.  
8.4 Device Functional Modes  
These devices can operate in three different modes.  
8.4.1 NPN Configuration (N-Switch SIO Mode)  
Set TX pin high (or open) and use EN pin as control for realizing the function of an N-switch (low-side  
configuration) on CQ.  
8.4.2 PNP Configuration (P-Switch SIO Mode)  
Set TX pin low and use EN pin as control for realizing the function of a P-switch (high-side configuration) on CQ.  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.3 Push-Pull, Communication Mode  
Set EN pin high and toggle TX as control for realizing the function of a push-pull output on CQ. 6, 7 and 表  
8 summarize the pin configurations to accomplish the functional modes.  
6. NPN Mode  
EN  
L / Open  
H
TX  
CQ  
Hi-Z  
H / Open  
H / Open  
N-Switch  
7. PNP Mode  
EN  
L / Open  
H
TX  
L
CQ  
Hi-Z  
L
P-Switch  
8. Push-Pull, Communication Mode  
EN  
TX  
X
CQ  
L / Open  
Hi-Z  
H
H
H
N-Switch  
P-Switch  
L
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
When TIOL111(x) is connected to an IO-Link master through a three-wire interface (17), the master can  
initiate communication and exchange data with a remote node with the TIOL111(x) IO-Link transceiver acting as  
a complete physical layer for the communication.  
9.2 Typical Application  
TIOL111(x)  
VCC_OUT  
L+  
VOLTAGE  
REGULATOR  
0.1 µF  
100 V  
1 µF  
10 V  
10 kΩ  
RX  
10 kΩ  
TX  
EN  
Sensor  
Front-End  
Microcontroller  
CQ  
IO-Link Master  
DIAGNOSTICS  
and  
WAKE  
CONTROL  
NFAULT  
CUR_OK  
TMP_OK  
PWR_OK  
L-  
ILIM_ADJ  
RSET  
17. Typical Application Schematic  
9.2.1 Design Requirements  
TIOL111 and TIOL111x IO-Link transceivers can be used in slave devices communicating with an IO-Link  
master, or as standard digital outputs to either sense or drive a wide range of sensors and loads. 9 shows  
recommended components for a typical system design.  
9. Design Parameters  
PARAMETERS  
Input voltage range (L+)  
VALUE  
24 V, 30 V (max)  
200 mA  
Output current (CQ)  
Output voltage (VCC_OUT), Pick TIOL1115  
5 V  
Maximum LDO output current (IVCC(OUT)  
)
5 mA  
Pull-up resistors for NFAULT and WAKE  
L+ decoupling capacitor  
10 kΩ  
0.1 µF / 100 V  
1 µF / 10 V  
10 kΩ  
LDO output capacitor  
ILIM_ADJ resistor (RSET  
)
Maximum Ambient Temperature, TA  
105 °C  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
 
 
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Maximum Junction Temperature Check  
For a 200 mA current limit:  
The maximum driver output current limit, IO(LIM) = 250 mA (allowed for current limit tolerance).  
The maximum voltage drop is given with VDS(ON) = 1.75 V.  
This causes a power consumption of:  
2&12 = 8&5(10) T +1(.+/) = 1.758 T 250 I# = 437.5 I9  
(1)  
For a 5 mA LDO current output,  
:
;
2&.&1 = k8.+ F 88%%_176 o x +8%%_176 = 30 F 5 V x 5 mA = 125 mW  
(2)  
(3)  
Total power dissipation,  
2& = 2&12 + 2&.&1 = 437.5 I9 + 125 I9 = 562.5 I9  
Multiply this value with the Junction-to-ambient thermal resistance of θJA = 68.1°C/W (taken from the Thermal  
Information table) to receive the difference between junction temperature, TJ, and ambient temperature, TA:  
¿6 = 6 F 6 = 2& x E,# = 562.5 I9 T 68.1°%/9 = 38.3°%  
,
#
(4)  
Add this value to the maximum ambient temperature of TA = 105°C to receive the final junction temperature:  
6
,FI=T  
= 6  
+ ¿6 = 105°% + 38.3°% = 143.3°%  
#FI=T  
(5)  
As long as TJ-max is below the recommended maximum value of 150°C, no thermal shutdown will occur.  
However, thermal warning may occur as the junction temperature is greater than TWRN  
.
Note that the modeling of the complete system may be necessary to predict junction temperature in smaller  
PCBs and/or enclosures without air flow.  
9.2.2.2 Driving Capacitive Loads  
These devices are capable of driving capacitive loads on the CQ output. Assuming a pure capacitive load without  
series/parallel resistance, the maximum capacitance that can be charged without triggering current fault can be  
calculated as:  
[I  
x t  
]
SC  
O LIM  
(
)
C
=
LOAD  
V
L+  
(
)
(6)  
Higher capacitive loads can be driven if a series resistor is connected between the CQ output and the load.  
Capacitive loads can be connected to L- or L+.  
9.2.2.3 Driving Inductive Loads  
The TIOL111(x) family is capable of magnetizing and demagnetizing inductive loads up to 1.5H. These devices  
contain internal circuitry that enables fast demagnetization when configured as either P-switch or N-switch mode.  
In P-switch configuration, the load inductor L is magnetized when the CQ output is driven high. When the PNP is  
turned off, there is a significant amount of negative inductive kick back at the CQ pin. This voltage is clamped  
internally at about -75 V.  
Similarly in N-switch configuration, the load inductor L is magnetized when the CQ output is driven low. When the  
NPN is turned off, there is a significant amount of positive inductive kick back at the CQ pin. This voltage is  
clamped internally at about 75 V.  
The equivalent protection circuits are shown in 18 and 19. The minimum value of the resistive load R can  
be calculated as:  
V
L+  
(
)
R =  
I
O(LIM)  
(7)  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
L+  
L+  
R
CQ  
CQ  
L
L
R
TIOL111(x)  
TIOL111(x)  
18. P-Switch Mode  
19. N-Switch Mode  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
9.2.3 Application Curves  
Time 1 ms/div  
Time 10 ms/div  
125 kHz  
20. CQ in Communication Mode  
21. CQ Power Up Delay, Low Side Mode  
Time 10 ms/div  
Time 50 ms/div  
22. CQ Power Up Delay, High Side Mode  
23. CQ in Current Fault, Low Side Mode  
Time 10 ms/div  
Time 50 ms/div  
25. CQ in Current Fault Auto Recovery,  
24. CQ in Current Fault, High Side Mode  
Low Side Mode  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
Time 20 ms/div  
Time 10 ms/div  
26. CQ in Current Fault Auto Recovery,  
27. IO-Link WAKE, Low Side Mode  
High Side Mode  
Time 10 ms/div  
Time 20 ms/div  
1.5-H Inductor  
With 100 Ω  
RSET = OPEN  
29. CQ Driving, Low Side Mode  
28. IO-Link WAKE, High Side Mode  
Time 10 ms/div  
1.5-H Inductor  
With 100 Ω  
RSET = OPEN  
30. CQ Driving, High Side Mode  
10 Power Supply Recommendations  
The TIOL111 and TIOL111x transceivers are designed to operate from a 24-V nominal supply at L+, which can  
vary by +12 V and -17 V from the nominal value to remain within the device's recommended supply voltage  
range of 7 V to 36 V. This supply should be buffered with at least a 100-nF/100-V capacitor.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
TIOL111, TIOL1113, TIOL1115  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Use of a 4-layer board is recommended for good heat conduction. Use layer 1 (top layer) for control signals,  
layer 2 as power ground layer for L-, layer 3 for the 24-V supply plane (L+), and layer 4 for the regulated  
output supply (VCC_IN/OUT).  
Connect the thermal pad to L- with maximum amount of thermal vias for best thermal performance.  
Use entire planes for L+, VCC_IN/OUT and L- to assure minimum inductance.  
The L+ terminal must be decoupled to ground with a low-ESR ceramic decoupling capacitor. The  
recommended minimum capacitor value is 100 nF. The capacitor must have a voltage rating of 50 V minimum  
(100 V depending on max sensor supply fault rating) and an X5R or X7R dielectric.  
The optimum placement of the capacitor is closest to the transceiver’s L+ and L- terminals to reduce supply  
drops during large supply current loads. See 31 for a PCB layout example.  
Connect all open-drain control outputs via 10 kΩ pull-up resistors to the VCC_IN/OUT plane to provide a  
defined voltage potential to the system controller inputs when the outputs are high-impedance.  
Connect the RSET resistor between ILIM_ADJ and L-.  
Decouple the regulated output voltage at VCC_IN/OUT to ground with a low-ESR, 1-μF, ceramic decoupling  
capacitor. The capacitor should have a voltage rating of 10 V minimum and an X5R or X7R dielectric.  
11.2 Layout Example  
VIA to Layer 2: Power Ground Plane (L-)  
VIA to Layer 3: 24V Supply Plane (L+)  
VIA to Layer 4: Regulated Supply Plane (VCC_IN/OUT)  
WAKE  
1uF/10V  
100nF/  
50V  
NFAULT  
L+  
CQ  
L-  
L+  
CQ  
L-  
RX  
TX  
EN  
Use Multiple Vias  
for L+ and L-  
Exposed Thermal  
Pad Area  
RSET  
31. Layout Example  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TIOL111, TIOL1113, TIOL1115  
www.ti.com.cn  
ZHCSGF4D JULY 2017REVISED JUNE 2019  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TIOL1113DMWR  
TIOL1113DMWT  
TIOL1115DMWR  
TIOL1115DMWT  
TIOL111DMWR  
TIOL111DMWT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DMW  
DMW  
DMW  
DMW  
DMW  
DMW  
10  
10  
10  
10  
10  
10  
1500 RoHS & Green  
250 RoHS & Green  
1500 RoHS & Green  
250 RoHS & Green  
1500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TL1113  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TL1113  
TL1115  
TL1115  
TL111  
TL111  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TIOL1115DMWR  
TIOL111DMWR  
TIOL111DMWT  
VSON  
VSON  
VSON  
DMW  
DMW  
DMW  
10  
10  
10  
1500  
1500  
250  
178.0  
178.0  
178.0  
13.5  
13.5  
13.5  
2.75  
2.75  
2.75  
3.35  
3.35  
3.35  
1.05  
1.05  
1.05  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TIOL1115DMWR  
TIOL111DMWR  
TIOL111DMWT  
VSON  
VSON  
VSON  
DMW  
DMW  
DMW  
10  
10  
10  
1500  
1500  
250  
189.0  
189.0  
189.0  
185.0  
185.0  
185.0  
36.0  
36.0  
36.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DMW0010A  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
2.6  
2.4  
C
1 MAX  
SEATING PLANE  
0.08 C  
1.65 0.1  
SYMM  
(0.2) TYP  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
5
6
2X  
2
SYMM  
11  
1.95 0.1  
1
10  
8X 0.5  
0.475  
0.275  
0.29  
0.19  
10X  
10X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
4223225/A 08/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMW0010A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
10X (0.575)  
(0.575)  
1
10  
10X (0.24)  
(0.725)  
SYMM  
11  
(1.95)  
8X (0.5)  
(R0.05) TYP  
5
6
(
0.2) VIA  
TYP  
SYMM  
(2.825)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223225/A 08/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMW0010A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.575)  
METAL  
TYP  
SYMM  
1
11  
10  
10X (0.24)  
(0.535)  
SYMM  
8X (0.5)  
(0.87)  
(R0.05) TYP  
5
6
2X (1.5)  
(2.825)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4223225/A 08/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TIOL112

具有低残余电压和集成浪涌保护功能的 IO-Link 器件收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOL1123

具有低残余电压、集成浪涌保护功能和 3.3V LDO 输出的 IO-Link 器件收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOL1123DRCR

具有低残余电压、集成浪涌保护功能和 3.3V LDO 输出的 IO-Link 器件收发器 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOL1123LYAHR

具有低残余电压、集成浪涌保护功能和 3.3V LDO 输出的 IO-Link 器件收发器 | YAH | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOL1125

具有低残余电压、集成浪涌保护功能和 5V LDO 输出的 IO-Link 器件收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOL1125DRCR

具有低残余电压、集成浪涌保护功能和 5V LDO 输出的 IO-Link 器件收发器 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOL112DRCR

具有低残余电压和集成浪涌保护功能的 IO-Link 器件收发器 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOS101

集成了浪涌保护功能的数字传感器输出驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOS1013

具有集成浪涌保护功能和 3.3V LDO 输出的数字传感器输出驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOS1013DMWR

具有集成浪涌保护功能和 3.3V LDO 输出的数字传感器输出驱动器 | DMW | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOS1013DMWT

具有集成浪涌保护功能和 3.3V LDO 输出的数字传感器输出驱动器 | DMW | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TIOS1015

具有集成浪涌保护功能和 5V LDO 输出的数字传感器输出驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI