TL432LIAQDBZRQ1 [TI]

具有经优化的基准电流的汽车类可调节精密并联稳压器 | DBZ | 3 | -40 to 125;
TL432LIAQDBZRQ1
型号: TL432LIAQDBZRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有经优化的基准电流的汽车类可调节精密并联稳压器 | DBZ | 3 | -40 to 125

光电二极管 稳压器
文件: 总35页 (文件大小:1734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
具有经优化的基准电流的 TL431LI-Q1/TL432LI-Q1 可编程并联稳压器  
1 特性  
3 说明  
1
符合汽车类 应用要求  
TL431LI-Q1 是一款可调节三端并联稳压器,在适用的  
汽车级、商用级和军用级温度范围内具有额定的热稳定  
性。可以通过两个外部电阻器将输出电压设置为 Vref  
(约为 2.495V)和 36V 之间的任意值。该器件的输出  
阻抗典型值为 0.3Ω,其有源输出电路可提供快速导通  
特性,从而可在板载稳压、可调节电源和开关电源等多  
种 应用中完美地替代齐纳二极管。这款器件是业界通  
TL431-Q1 的引脚对引脚替代品,具有经优化的 Iref  
IIdev 性能。TL431LI-Q1 的较低 Iref IIdev 值可帮助  
设计人员提高系统精度和降低泄漏电流。TL432LI-Q1  
具有与 TL431LI-Q1 完全相同的功能和电气规格,但是  
具有不同的 DBZ 封装引脚排布。  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 1–40°C +125°C 的环境工作  
温度范围  
器件温度等级 0–40°C +150°C 的环境工作  
温度范围  
25°C 下的基准电压容差  
0.5%B 级)  
1%A 级)  
最低输出电压典型值:2.495V  
可调输出电压:Vref 36V  
等级 1 最大温漂 27mV  
等级 0 最大温漂 34mV  
输出阻抗典型值 0.3Ω  
灌电流能力  
TL431LI-Q1 具有 AB 两个等级,初始容差(在  
25°C 下)分别为 1% 0.5%TL431LI-Q1 还具有两  
个温度等级,即等级 1(在器件型号中用“Q”表示)和  
等级 0(在器件型号中用“E”表示),最大环境工作温  
度分别为 125°C 150°CTL43xLI-Q1 等级 1 的额  
定工作温度范围为 –40°C 125°C,等级 0 –40°C  
150°C;其低输出温漂可确保在整个温度范围内保  
持良好稳定性。  
Imin = 0.6mA(最大值)  
IKA = 15mA(最大值)  
基准输入电流 IREF0.4μA(最大值)  
整个温度范围内的基准输入电流偏差 II(dev)0.3μA  
(最大值)  
2 应用  
器件信息(1)  
逆变器和电机控制  
器件型号  
TL43xLI-Q1  
封装(引脚)  
SOT-23 (3)  
封装尺寸(标称值)  
直流/直流转换器  
LED 照明  
2.90mm x 1.30mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
车载充电器 (OBC)  
信息娱乐系统和仪表组  
引擎管理传动器  
变速器  
动力转向  
动力总成排气传感器  
交流发电机起动器  
简化原理图  
Input  
V
KA  
I
KA  
V
ref  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBA4  
 
 
 
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 12  
10 Applications and Implementation...................... 13  
10.1 Application Information.......................................... 13  
10.2 Typical Applications .............................................. 13  
10.3 System Examples ................................................. 22  
11 Power Supply Recommendations ..................... 25  
12 Layout................................................................... 25  
12.1 Layout Guidelines ................................................. 25  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 器件支持................................................................ 26  
13.2 文档支持................................................................ 26  
13.3 相关链接................................................................ 26  
13.4 接收文档更新通知 ................................................. 26  
13.5 支持资源................................................................ 26  
13.6 ....................................................................... 27  
13.7 静电放电警告......................................................... 27  
13.8 Glossary................................................................ 27  
14 机械、封装和可订购信息....................................... 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 9  
8.1 Temperature Coefficient............................................ 9  
8.2 Dynamic Impedance ............................................... 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 11  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2019) to Revision A  
Page  
将器件状态从预告信息更改为生产数据.............................................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
5 Device Comparison Table  
DEVICE PINOUT  
INITIAL ACCURACY  
OPERATING FREE-AIR TEMPERATURE (TA)  
TL431LI-Q1  
TL432LI-Q1  
Q: -40°C to 125°C  
E: -40°C to 150°C  
A: 1% B: 0.5%  
6 Pin Configuration and Functions  
TL431LI-Q1 DBZ Package  
3-Pin SOT-23  
TL432LI-Q1 DBZ Package  
3-Pin SOT-23  
Top View  
Top View  
1
2
CATHODE  
REF  
1
2
REF  
ANODE  
3
ANODE  
3
CATHODE  
Pin Functions  
PIN NUMBER  
NAME  
TL431LI-Q1  
TL432LI-Q1  
TYPE  
DESCRIPTION  
DBZ  
DBZ  
ANODE  
3
1
2
3
2
1
O
I/O  
I
Common pin, normally connected to ground  
Shunt current/Voltage input  
CATHODE  
REF  
Threshold relative to common anode  
Copyright © 2019, Texas Instruments Incorporated  
3
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
37  
UNIT  
V
VKA  
IKA  
Cathode Voltage(2)  
Continuos Cathode Current Range  
Reference Input Current  
–10  
–5  
18  
mA  
mA  
C
II(ref)  
TJ  
10  
Operating Junction Temperature Range  
Storage Temperature Range  
–40  
–65  
150  
150  
Tstg  
C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ANODE, unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
7.3 Recommended Operating Conditions  
MIN  
MAX  
36  
UNIT  
V
VKA  
IKA  
Cathode Voltage  
VREF  
0.6  
Continuous Cathode Current Range  
15  
mA  
C
TL43xLIxQ  
TL43xLIxE  
–40  
–40  
125  
150  
TA  
Operating Free-Air Temperature(1)  
C
(1) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ can affect reliability. Please see the Semiconductor and IC  
Package Thermal Metrics Application Report for more information.  
7.4 Thermal Information  
TL43xLI  
THERMAL METRIC(1)  
DBZ  
3 PINS  
371.7  
145.9  
104.7  
23.9  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-boardthermal resistance  
C/W  
C/W  
C/W  
C/W  
C/W  
Junction-to-top characterization resistance  
Junction-to-board characterization resistance  
ψJB  
102.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report.  
4
版权 © 2019, Texas Instruments Incorporated  
 
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
7.5 Electrical Characteristics  
over recommended operating conditions, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CIRCUIT  
TEST CONDITIONS  
TL43xLIAx devices  
MIN TYP MAX  
2470 2495 2520  
2483 2495 2507  
UNIT  
mV  
Vref  
Reference Voltage  
See 14  
VKA = Vref, IKA = 1 mA  
TL43xLIBx devices  
TL43xLIxQ devices  
mV  
Deviation of reference  
input voltage over full  
temperature range  
10  
14  
27  
34  
mV  
VI(dev)  
See 14  
See 15  
VKA = Vref, IKA = 1 mA  
(1)  
TL43xLIxE devices  
mV  
Ratio of change in  
reference voltage to the  
change in cathode  
voltage  
ΔVKA = 10 V - Vref  
–1.4 –2.7  
mV/V  
ΔVref  
ΔVKA  
/
IKA = 1 mA  
ΔVKA = 36 V - 10 V  
–1  
–2  
mV/V  
µA  
Iref  
Reference Input Current See 15  
IKA = 1 mA, R1 = 10k, R2 = ∞  
IKA = 1 mA, R1 = 10k, R2 = ∞  
0.2  
0.4  
Deviation of reference  
input current over full  
temperature range  
II(dev)  
See 15  
See 14  
0.1  
0.3  
µA  
(1)  
Minimum cathode  
current for regulation  
Imin  
Ioff  
|ZKA  
VKA = Vref  
0.6  
1
mA  
Off-state cathode  
current  
See 16  
See 14  
VKA = 36 V, Vref = 0  
0.1  
µA  
(2)  
|
Dynamic Impedance  
VKA = Vref, IKA = 1 mA to 15 mA  
0.3 0.75  
(1) The deviation parameters VI(dev) and II(dev) are defined as the differences between the maximum and minimum values obtained over the  
rated temperature range. For more details on VI(dev) and how it relates to the average temperature coefficient, see the Temperature  
Coefficient section.  
(2) The dynamic impedance is defined by |ZKA| = ΔVKA/ΔIKA. For more details on |ZKA| and how it relates to VKA, see the Temperature  
Coefficient section.  
版权 © 2019, Texas Instruments Incorporated  
5
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6 Typical Characteristics  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature  
ranges of the various devices.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2520  
2515  
2510  
2505  
2500  
2495  
2490  
2485  
2480  
2475  
IKA = 1 mA  
Vka = Vref  
IKA = 1 mA  
-50 -25 0 25 50 75 100 125 150  
TA - Free-Air Temperature - °C  
-50 -25  
0
TA - Free-Air Temperature - °C  
25 50 75 100 125 150  
Book  
2. Reference Current versus Free-Air Temperature  
1. Reference Voltage versus Free-Air Temperature  
0.064  
15  
VKA = 36 V  
VREF = 0 V  
VKA = Vref  
TA = 25°C  
12  
0.056  
0.048  
0.04  
9
6
0.032  
0.024  
0.016  
0.008  
0
3
0
-3  
-50 -25  
0
25 50 75 100 125 150  
0
0.5  
1
1.5  
2
VKA - Cathode Voltage -V  
2.5  
3
TA - Free-Air Temperature - °C  
4. Off-State Cathode Current  
versus Free-Air Temperature  
D003  
3. Cathode Current versus Cathode Voltage  
-0.35  
75  
200  
160  
120  
80  
VKA = 3 V to 36 V  
Gain  
Phase  
-0.4  
60  
45  
30  
15  
0
-0.45  
-0.5  
-0.55  
-0.6  
-0.65  
-0.7  
40  
-0.75  
-0.8  
0
10M  
-50 -25  
0
25 50 75 100 125 150  
Temperature (°C)  
100  
1k  
10k 100k  
f - Frequency - Hz  
1M  
D006  
Gain  
5. Ratio of Delta Reference Voltage to Delta Cathode  
6. Small-Signal Voltage Amplification  
Voltage versus Free-Air Temperature  
versus Frequency  
6
版权 © 2019, Texas Instruments Incorporated  
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
I
= 10 mA  
= 25°C  
100  
50  
KA  
IKA = 1 mA  
TA = 25°C  
T
A
30  
20  
Output  
232 Ω  
10  
5
I
KA  
15 kΩ  
3
2
9 µF  
1
+
0.5  
0.3  
0.2  
8.25 kΩ  
0.1  
GND  
1k  
10k 100k  
f - Frequency - Hz  
1M  
7. Test Circuit for Voltage Amplification  
8. Reference Impedance versus Frequency  
6
1 kΩ  
TA = 25èC  
Input  
Output  
5
4
I
KA  
50 Ω  
3
Output  
+
2
1
0
GND  
-1  
0
1
2
3
4
5
6
7
t - Time - ms  
puls  
10. Pulse Response  
9. Test Circuit for Reference Impedance  
15  
12  
9
220 Ω  
A VKA = Vref  
B VKA = 5 V  
C VKA = 10 V  
Output  
Pulse  
Stable Region  
50 Ω  
Generator  
f = 100 kHz  
6
GND  
3
0
0.001  
0.01  
0.1  
1
CL - Load Capacitance - µF  
10  
CTLo4p3y  
The areas under the curves represent conditions that may cause the  
device to oscillate. For curves B and C, R2 and V+ are adjusted to  
establish the initial VKA and IKA conditions, with CL = 0. VBATT and CL  
then are adjusted to determine the ranges of stability.  
12. Stability Boundary Conditions for All TL431LI-Q1,  
TL432LI-Q1 Devices  
11. Test Circuit for Pulse Response  
版权 © 2019, Texas Instruments Incorporated  
7
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
150 Ω  
I
KA  
+
V
BATT  
C
L
TEST CIRCUIT FOR CURVE A  
I
KA  
R1 = 10 kΩ  
150 Ω  
C
L
+
R2  
V
BATT  
TEST CIRCUIT FOR CURVES B, C, AND D  
13. Test Circuits for Stability Boundary Conditions  
8
版权 © 2019, Texas Instruments Incorporated  
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
8 Parameter Measurement Information  
Input  
V
KA  
I
KA  
V
ref  
14. Test Circuit for VKA = Vref  
Input  
R1  
V
KA  
I
KA  
I
ref  
R2  
V
ref  
R1  
R2  
æ
ö
V
KA  
= V  
ref ç  
1 +  
+ I × R1  
ref  
÷
è
ø
15. Test Circuit for VKA > Vref  
Input  
V
KA  
I
off  
16. Test Circuit for Ioff  
8.1 Temperature Coefficient  
The deviation of the reference voltage, Vref, over the full temperature range is known as VI(dev). The parameter of  
VI(dev) can be used to find the temperature coefficient of the device. The average full-range temperature  
coefficient of the reference input voltage, αVref, is defined as:  
αVref is positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the  
lower temperature. The full-range temperature coefficient is an average and therefore any subsection of the rated  
operating temperature range can yield a value that is greater or less than the average. For more details on  
temperature coefficient, refer to the Voltage Reference Selection Basics White Paper.  
版权 © 2019, Texas Instruments Incorporated  
9
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.2 Dynamic Impedance  
DVKA  
DIKA  
ZKA  
=
The dynamic impedance is defined as  
. When the device is operating with two external resistors  
DV  
z' =  
(see 15), the total dynamic impedance of the circuit is given by  
D
I , which is approximately equal to  
R1  
ZKA 1+  
÷
R2  
«
.
The VKA of the TL431LI-Q1 can be affected by the dynamic impedance. The TL431LI-Q1 test current Itest for VKA  
is specified in the Electrical Characteristics. Any deviation from Itest can cause deviation on the output VKA. 17  
shows the effect of the dynamic impedance on the VKA  
.
Itest  
IKA  
IKA(min)  
0
VKA (V)  
P
ë
 
17. Dynamic Impedance  
10  
版权 © 2019, Texas Instruments Incorporated  
 
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
9 Detailed Description  
9.1 Overview  
This standard device has proven ubiquity and versatility across a wide range of applications, ranging from power  
to signal path. This is due to its key components containing an accurate voltage reference and op amp, which  
are very fundamental analog building blocks. TL43xLI-Q1 is used in conjunction with its key components to  
behave as a single voltage reference, error amplifier, voltage clamp or comparator with integrated reference.  
TL43xLI-Q1 can be operated and adjusted to cathode voltages from 2.495 V to 36 V, making this part optimal for  
a wide range of end equipments in industrial, auto, telecom and computing. In order for this device to behave as  
a shunt regulator or error amplifier, >0.6mA (Imin(max)) must be supplied in to the cathode pin. Under this  
condition, feedback can be applied from the Cathode and Ref pins to create a replica of the internal reference  
voltage.  
Various reference voltage options can be purchased with initial tolerances (at 25°C) of 0.5% (denoted by B), and  
1% (denoted by A). TL431LI-Q1 and TL432LI-Q1 are both functionally the same, but have different pinout  
options.  
9.2 Functional Block Diagram  
CATHODE  
+
_
REF  
V
ref  
ANODE  
18. Equivalent Schematic  
CATHODE  
REF  
ANODE  
19. Detailed Schematic  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
9.3 Feature Description  
TL43xLI-Q1 consists of an internal reference and amplifier that outputs a sink current based on the difference  
between the reference pin and the virtual internal pin. The sink current is produced by the internal Darlington  
pair, shown in 19. A Darlington pair is used for this device to be able to sink a maximum current of 15 mA.  
When operated with enough voltage headroom (2.495 V) and cathode current (IKA), TL43xLI-Q1 forces the  
reference pin to 2.495 V. However, the reference pin can not be left floating, as it needs IREF 0.4 µA (see the  
Specifications). This is because the reference pin is driven into an npn, which needs base current in order  
operate properly.  
When feedback is applied from the Cathode and Reference pins, TL43xLI-Q1 behaves as a Zener diode (refer to  
23 for a circuit example), regulating to a constant voltage dependent on current being supplied into the  
cathode. This is due to the internal amplifier and reference entering the proper operating regions. The same  
amount of current needed in the above feedback situation must be applied to this device in open loop, servo, or  
error amplifying implementations for it to be in the proper linear region giving TL43xLI-Q1 enough gain.  
Unlike many linear regulators, TL43xLI-Q1 is internally compensated to be stable without an output capacitor  
between the cathode and anode. However, if it is desired to use an output capacitor, 12 can be used as a  
guide to assist in choosing the correct capacitor to maintain stability.  
9.4 Device Functional Modes  
9.4.1 Open Loop (Comparator)  
When the cathode/output voltage or current of TL43xLI-Q1 is not being fed back to the reference/input pin in any  
form, this device is operating in open loop. With proper cathode current (Ika) applied to this device, TL43xLI-Q1  
has the characteristics shown in 18. With such high gain in this configuration, TL43xLI-Q1 is typically used as  
a comparator. Since the reference is integrated, TL43xLI-Q1 is the preferred choice when users are trying to  
monitor a certain level of a single signal. Refer to the Using the TL431 as a Voltage Comparator Application  
Report for more details on open loop comparator applications on the TL431LI-Q1.  
9.4.2 Closed Loop  
When the cathode/output voltage or current of TL43xLI-Q1 is being fed back to the reference/input pin in any  
form, this device is operating in closed loop. The majority of applications involving TL43xLI-Q1 use it in this  
manner to regulate a fixed voltage or current. The feedback enables this device to behave as an error amplifier,  
computing a portion of the output voltage and adjusting it to maintain the desired regulation. This is done by  
relating the output voltage back to the reference pin in a manner to make it equal to the internal reference  
voltage, which can be accomplished through resistive or direct feedback.  
12  
版权 © 2019, Texas Instruments Incorporated  
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
10 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
As this device has many applications and setups, there are many situations that this data sheet can not  
characterize in detail. The linked application notes help the designer make the best choices when using this part.  
Designing with the Improved TL431LI Application Note provides a deeper understanding of this accuracy of the  
device in a flyback optocoupler application. Setting the Shunt Voltage on an Adjustable Shunt Regulator  
Application Note assists designers in setting the shunt voltage to achieve optimum accuracy for this device.  
10.2 Typical Applications  
10.2.1 Comparator With Integrated Reference  
Vsup  
Rsup  
Vout  
CATHODE  
R1  
VL  
RIN  
REF  
V
IN  
+
R2  
2.5V  
ANODE  
20. Comparator Application Schematic  
版权 © 2019, Texas Instruments Incorporated  
13  
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.2 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
1. Design Parameters  
DESIGN PARAMETER  
Input Voltage Range  
Input Resistance  
EXAMPLE VALUE  
0 V to 5 V  
10 kΩ  
Supply Voltage  
24 V  
Cathode Current (Ik)  
Output Voltage Level  
Logic Input Thresholds VIH/VIL  
5 mA  
~2 V – VSUP  
VL  
10.2.3 Detailed Design Procedure  
When using TL43xLI-Q1 as a comparator with reference, determine the following:  
Input voltage range  
Reference voltage accuracy  
Output logic input high and low level thresholds  
Current source resistance  
10.2.3.1 Basic Operation  
In the configuration shown in 20, TL43xLI-Q1 behaves as a comparator, comparing the VREF pin voltage to the  
internal virtual reference voltage. When provided a proper cathode current (IK), TL43xLI-Q1 has enough open  
loop gain to provide a quick response. This can be seen in 21 where the RSUP = 10 kΩ (IKA = 500 µA) situation  
responds much slower than RSUP = 1 kΩ (IKA = 5 mA). With the TL43xLI-Q1 max operating current (IMIN) being 1  
mA, operation below that can result in low gain, leading to a slow response.  
10.2.3.1.1 Overdrive  
Slow or inaccurate responses can also occur when the reference pin is not provided enough overdrive voltage.  
This is the amount of voltage that is higher than the internal virtual reference. The internal virtual reference  
voltage is within the range of 2.495 V ±(0.5% or 1.0%), depending on which version is being used. The more  
overdrive voltage provided, the faster the TL43xLI-Q1 responds.  
For applications where TL43xLI-Q1 is being used as a comparator, it is best to set the trip point to greater than  
the positive expected error (that is +1.0% for the A version). For fast response, setting the trip point to >10% of  
the internal VREF suffices.  
For minimal voltage drop or difference from Vin to the ref pin, TI recommends to use an input resistor <10 kΩ to  
provide Iref.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
10.2.3.2 Output Voltage and Logic Input Level  
For TL43xLI-Q1 to properly be used as a comparator, the logic output must be readable by the receiving logic  
device. This is accomplished by knowing the input high and low level threshold voltage levels, typically denoted  
by VIH and VIL.  
As seen in 21, the output low level voltage of the TL43xLI in open-loop/comparator mode is approximately 2  
V, which is typically sufficient for 5 V supplied logic. However, this does not work for 3.3 V and 1.8 V supplied  
logic. To accommodate this, a resistive divider can be tied to the output to attenuate the output voltage to a  
voltage legible to the receiving low voltage logic device.  
The output high voltage of the TL43xLI is equal to VSUP due to TL43xLI-Q1 being open-collector. If VSUP is much  
higher than the maximum input voltage tolerance of the maximum logic, the output must be attenuated to  
accommodate the reliability of the outgoing logic.  
When using a resistive divider on the output, make sure the sum of the resistive divider (R1 and R2 in 20) is  
much greater than RSUP to not interfere with the ability of the TL43xLI to pull close to VSUP when turning off.  
10.2.3.2.1 Input Resistance  
TL43xLI-Q1 requires an input resistance in this application to source the reference current (IREF) needed from  
this device to be in the proper operating regions while turning on. The actual voltage seen at the ref pin is VREF  
=
VIN - IREFRIN. Because IREF can be as high as 0.4 µA, it is recommended to use a resistance small enough that  
mitigates the error that IREF creates from VIN.  
10.2.4 Application Curves  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
Vin  
Vka(Rsup=10kW)  
Vka(Rsup=1kW)  
0.5  
0
-0.5  
-0.001  
-0.0006  
-0.0002  
0.0002  
0.0006  
0.001  
Time (s)  
D001  
21. Output Response With Various Cathode Currents  
版权 © 2019, Texas Instruments Incorporated  
15  
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.2.5 Precision LED Lighting Current Sink Regulator  
VCC  
VCC  
R1 =  
IOUT  
hFE  
IKA  
VREF  
RS  
IOUT  
=
VCC  
IOUT  
R1  
TL431LI-Q1  
RS  
GND  
22. LED Lighting Current Sink Regulator  
10.2.5.1 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Supply Voltage (VI(BATT)  
)
5 V  
Sink Current (IO)  
100mA  
5 mA  
Cathode Current (Ik)  
10.2.5.2 Detailed Design Procedure  
When using the TL43xLI-Q1 as a constant current sink, determine the following:  
Output current range  
Output current accuracy  
Power consumption for TL43xLI-Q1  
10.2.5.2.1 Basic Operation  
In the configuration shown, TL43xLI-Q1 acts as a control component within a feedback loop of the constant  
current sink. Working with an external passing component such as a BJT, TL43xLI-Q1 provides precision current  
sink with accuracy set by itself and the sense resistor RS. The LEDs are lit based on the desired current sink and  
regulated for accurate brightness and color.  
16  
版权 © 2019, Texas Instruments Incorporated  
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
10.2.5.2.1.1 Output Current Range and Accuracy  
The output current range of the circuit is determined by the equation shown in the configuration. Keep in mind  
that the VREF equals to 2.495 V. When choosing the sense resistor RS, it needs to generate 2.495 V for the  
TL43xLI-Q1 when IO reaches the target current. If the overhead voltage of 2.495 V is not acceptable, consider  
lower voltage reference devices such as the TLV43x-Q1 or TLVH43x-Q1.  
The output current accuracy is determined by both the accuracy of TL43xLI-Q1 chosen, as well as the accuracy  
of the sense resistor RS. The internal virtual reference voltage of TL43xLI-Q1 is within the range of 2.495 V  
±(0.5% or 1.0%), depending on which version is being used. Another consideration for the output current  
accuracy is the temperature coefficient of the TL43xLI-Q1 and RS. Refer to the Electrical Characteristics of these  
parameters.  
10.2.5.2.2 Power Consumption  
For TL43xLI-Q1 to properly be used as a control component in this circuit, the minimum operating current needs  
to be reached. This is accomplished by setting the external biasing resistor in series with the TL43xLI-Q1.  
For TL43xLI, the minimum operating current is 0.6 mA and with margin consideration, most of the designs set  
this current to be higher than 0.6 mA. To achieve lower power consumption, consider devices such as the  
ATL43x-Q1 and ATL43xLI-Q1.  
版权 © 2019, Texas Instruments Incorporated  
17  
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.2.6 Shunt Regulator/Reference  
RSUP  
R1  
R2  
V
SUP  
V
O
=
1 +  
V
)
ref  
(
R1  
0.1%  
CATHODE  
REF  
V
ref  
TL431LI-Q1  
CL  
ANODE  
R2  
0.1%  
23. Shunt Regulator Schematic  
10.2.6.1 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
3. Design Parameters  
DESIGN PARAMETER  
Reference Initial Accuracy  
Supply Voltage  
EXAMPLE VALUE  
1.0%  
24 V  
Cathode Current (Ik)  
5 mA  
Output Voltage Level  
2.495 V–36 V  
2 µF  
Load Capacitance  
Feedback Resistor Values and Accuracy (R1 and R2)  
10 kΩ  
10.2.6.2 Detailed Design Procedure  
When using TL43xLI-Q1 as a shunt regulator, determine the following:  
Input voltage range  
Temperature range  
Total accuracy  
Cathode current  
Reference initial accuracy  
Output capacitance  
10.2.6.2.1 Programming Output/Cathode Voltage  
To program the cathode voltage to a regulated voltage, a resistive bridge must be shunted between the cathode  
and anode pins with the mid point tied to the reference pin. This can be seen in 23, with R1 and R2 being the  
resistive bridge. The cathode/output voltage in the shunt regulator configuration can be approximated by the  
equation shown in 23. The cathode voltage can be more accurate determined by taking in to account the  
cathode current:  
Vo=(1+R1/R2)VREF-IREFR1  
(1)  
For this equation to be valid, TL43xLI-Q1 must be fully biased so that it has enough open loop gain to mitigate  
any gain error. This can be done by meeting the Imin spec denoted in the Specifications.  
18  
版权 © 2019, Texas Instruments Incorporated  
 
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
10.2.6.2.2 Total Accuracy  
When programming the output above unity gain (VKA=VREF), TL43xLI-Q1 is susceptible to other errors that can  
effect the overall accuracy beyond VREF. These errors include:  
R1 and R2 accuracies  
VI(dev): Change in reference voltage over temperature  
ΔVREF / ΔVKA: Change in reference voltage to the change in cathode voltage  
|zKA| - Dynamic impedance, causing a change in cathode voltage with cathode current  
Worst case cathode voltage can be determined taking all of the variables in to account. The Setting the Shunt  
Voltage on an Adjustable Shunt Regulator Application Note assists designers in setting the shunt voltage to  
achieve optimum accuracy for this device.  
10.2.6.2.3 Stability  
Though TL43xLI-Q1 is stable with no capacitive load, the device that receives the output voltage of the shunt  
regulator can presents a capacitive load that is within the TL43xLI-Q1 region of stability, shown in 12. Also,  
designers can use capacitive loads to improve the transient response or for power supply decoupling. When  
using additional capacitance between Cathode and Anode, refer to 12. Also, the Understanding Stability  
Boundary Conditions Charts in TL431, TL432 Data Sheet Application Note provides a deeper understanding of  
this devices stability characteristics and aids the user in making the right choices when choosing a load  
capacitor.  
10.2.6.2.4 Start-up Time  
As shown in 24, TL43xLI-Q1 has a fast response up to approximately 2 V and then slowly charges to the  
programmed value. This is due to the compensation capacitance (shown in 19) the TL43xLI-Q1 has to meet  
the stability criteria. Despite the secondary delay, TL43xLI-Q1 still has a fast response suitable for many clamp  
applications.  
10.2.6.3 Application Curves  
27  
Vsup  
24  
Vka=Vref  
R1=10kW & R2=10kW  
R1=38kW & R2=10kW  
21  
18  
15  
12  
9
6
3
0
-3  
-6  
-5E-6  
-3E-6  
-1E-6  
1E-6  
3E-6  
5E-6  
Time (s)  
D001  
24. TL43xLI-Q1 Start-Up Response  
版权 © 2019, Texas Instruments Incorporated  
19  
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.2.7 Isolated Flyback with Optocoupler  
VOUT  
VIN AC  
VDD  
VPC  
VSC  
VDD  
HV  
UCC28740  
PWM Controller  
UCC24636  
SR Controller  
VS  
FB  
DRV  
DRV  
TBLK  
CS  
TL431LI-Q1  
GND  
25. Isolated Flyback with Optocoupler  
10.2.7.1 Design Requirements  
The TL431LI-Q1 is used in the feedback network on the secondary side in an isolated flyback with optocoupler  
design. 25 shows the simplified flyback converter with the TL431LI-Q1. For this design example, use the  
parameters in 4 as the input parameters. In this example, a simplified design procedure will be discussed. The  
compensation network for the feedback network is beyond the scope of this section. Details on compensation  
network can be found in the Compensation Design with TL431 for UCC28600 Application Report.  
4. Design Parameters  
DESIGN PARAMETER  
Voltage Output  
EXAMPLE VALUE  
15 V  
Secondary Side Feedback Loop Accuracy  
< 3%  
10.2.7.2 Detailed Design Procedure  
The goal of this design is to design a high accuracy feedback network to meet 3% VOUT accuracy requirements  
over the full temperature range. To meet the design requirements, the total secondary side feedback loop error  
has to be below 3%. To meet these requirements, it is necessary to take full advantage of the improved  
temperature drift, Iref(min), and II(dev) of the TL431LI-Q1.  
VOUT  
Rs  
Error|Iref  
R1 = 40.2 kΩ  
IREF  
TL431LI-Q1  
Error|Vref  
R2 = 8.06 kΩ  
26. Feedback Quiescent Current  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
10.2.7.2.1 TL431 Feedback Loop Error Calculation  
26 shows the simplified version of the feedback network. The accuracy of the output voltage is dependent on  
the regulation voltage accuracy of the TL431LI-Q1. A simplified VOUT can be seen in 公式 2, but this equation  
does not include errors that deviates the output.  
R1  
VOUT = V ì(1+  
) + R1ì(Iref  
40.2kW  
)
ref  
R2  
VOUT = (2.495 V)ì(1+  
VOUT = 14.955V  
) + 40.2kW ì(0.4mA)  
8.06kW  
(2)  
The primary sources of error are the Error|Vref and Error|Iref. The Error|Vref primarily consists of the errors that  
affect the internal bandgap voltage reference of the TL431LI-Q1. This consists of errors from the initial accuracy,  
temperature drift, ratio of change in reference voltage to the change in cathode voltage, and dynamic impedance.  
The benefit of the TL431LI-Q1 is its low temperature drift, VI(dev), which allows the Vref to be more accurate  
across the full temperature range compared to typical TL431LI-Q1 devices. 公式 3 shows a simplified worst case  
Vref with initial accuracy and temperature drift.  
V (Error |Vref ) = V ì(1+Initial Accuracy) + VI(dev) +...  
ref  
ref  
V (Error |Vref ) = 2.495V ì(1+ 0.5%) +17mV +...  
ref  
V (Error |Vref ) ö 2.524V  
ref  
(3)  
The Error|Iref in 26 is dependent on the Iref and II(dev) along with R1. The TL431LI-Q1 has improved Iref and  
II(dev) which allows the values of the resistor R1 to be increased to save power. Typically optocoupler feedback  
design requires the Iref to be taken into account when doing VOUT calculations but the error comes from the  
deviation from the maximum to typical value of Iref. In addition to this, the II(dev) is the temperature deviation on  
the Iref current which affects the overall reference current into the TL431LI-Q1. 公式 4 shows the VOUT of the  
TL431LI-Q1 for 26, which includes the improved Iref and II(dev). The VOUT equation assumes that the resistors  
R1 and R2 have a 0.5% accuracy tolerance.  
R1  
VOUT(Error |Iref ) = Vref (Error |Vref ) ì(1+  
) +R1ì(Iref +II(dev))  
R2  
40.2kW ì(1+ 0.5%)  
8.06kW ì(1- 0.5%)  
VOUT(Error |Iref ) = (2.495 V ì(1+ 0.5%) + 0.017 V)ì(1+  
)
+40.2kW ì(1+ 0.5%)ì(0.4mA + 0.3mA)  
VOUT = 15.270 V  
(4)  
Comparing the calculated VOUT without and without error, the expected worst case max error is 2.1% which  
meets the 3% error target.  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
 
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.3 System Examples  
V
I(BATT)  
R
2N222  
(see Note A)  
2N222  
30 Ω  
4.7 kΩ  
0.01 µF  
TL431LI-Q1  
V
O
R1  
0.1%  
R2  
R1  
R2  
æ
ö
V
=
1 +  
V
ref  
O
ç
÷
0.1%  
è
ø
R should provide cathode current 0.6 mA to the TL431LI-Q1 at minimum V(BATT)  
.
27. Precision High-Current Series Regulator  
V
I(BATT)  
IN  
OUT  
uA7805  
V
O
Common  
TL431LI-Q1  
R1  
R2  
R1  
V
1
V
ref  
=
+
(
(
O
+
Vref 5 V  
Minimum V  
=
O
R2  
28. Output Control of a Three-Terminal Fixed Regulator  
V
V
O
I(BATT)  
R1  
R2  
R1  
V
1
V
(
ref  
=
+
(
O
TL431LI-Q1  
R2  
29. High-Current Shunt Regulator  
V
I(BATT)  
V
O
R1  
TL431LI-Q1  
C
(see Note A)  
R2  
Refer to the stability boundary conditions in 12 to determine allowable values for C.  
30. Crowbar Circuit  
22  
版权 © 2019, Texas Instruments Incorporated  
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
System Examples (接下页)  
IN  
OUT  
LM317  
Adjust  
V
V 5 V, 1.5 A  
O
I(BATT)  
8.2 kΩ  
243 Ω  
0.1%  
TL431LI-Q1  
243 Ω  
0.1%  
31. Precision 5-V, 1.5-A Regulator  
V
V 5 V  
O
I(BATT)  
R
b
(see Note A)  
27.4 kΩ  
0.1%  
TL431LI-Q1  
27.4 kΩ  
0.1%  
Rb should provide cathode current 0.6 mA to the TL431LI-Q1.  
32. Efficient 5-V Low-Dropout (LDO) Regulator Configuration  
12 V  
V
CC  
6.8 kΩ  
10 kΩ  
5 V  
10 kΩ  
+
0.1%  
TL598  
X
Not  
TL431LI-Q1  
Used  
10 kΩ  
0.1%  
Feedback  
33. PWM Converter With Reference  
版权 © 2019, Texas Instruments Incorporated  
23  
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
System Examples (接下页)  
R3  
(see Note A)  
V
I(BATT)  
R4  
R1B  
R2B  
R1A  
(see Note A)  
R1B  
R2B  
Low Limit = 1 +  
High Limit = 1 +  
Vref  
TL431LI-Q1  
R1A  
R2A  
Vref  
LED on When Low Limit < V  
< High Limit  
I(BATT)  
R2A  
Select R3 and R4 to provide the desired LED intensity and cathode current 0.6 mA to the TL431LI-Q1 at the  
available VI(BATT)  
.
34. Voltage Monitor  
650  
12 V  
R
2 k  
TL431LI-Q1  
C
12 V  
12 V – V  
On  
Delay = R × C × ln  
 
 
!
!
Off  
ref  
"
#
35. Delay Timer  
R
CL  
I
O
0.1%  
Vref  
RCL  
V
I(BATT)  
Iout  
R1  
+ IKA  
=
=
VI(BATT  
R1  
)
TL431LI-Q1  
I
O
I
+
KA  
h
FE  
36. Precision Current Limiter  
V
I(BATT)  
I
O
Vref  
I
=
O
RS  
TL431LI-Q1  
R
S
0.1%  
37. Precision Constant-Current Sink  
24  
版权 © 2019, Texas Instruments Incorporated  
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
11 Power Supply Recommendations  
When using TL43xLI-Q1 as a Linear Regulator to supply a load, designers typically use a bypass capacitor on  
the output/cathode pin. When doing this, be sure that the capacitance is within the stability criteria shown in 图  
12.  
To not exceed the maximum cathode current, be sure that the supply voltage is current limited. Also, be sure to  
limit the current being driven into the Ref pin, as not to exceed the absolute maximum rating.  
For applications shunting high currents, pay attention to the cathode and anode trace lengths, adjusting the width  
of the traces to have the proper current density.  
12 Layout  
12.1 Layout Guidelines  
Bypass capacitors must be placed as close to the part as possible. Current-carrying traces need to have widths  
appropriate for the amount of current they are carrying; in the case of the TL43xLI-Q1, these currents are low.  
12.2 Layout Example  
TL432LI-Q1 - DBZ  
(TOP VIEW)  
Rref  
REF  
Vin  
1
2
ANODE  
3
Rsup  
CATHODE  
GND  
Vsup  
CL  
GND  
38. DBZ Layout Example  
版权 © 2019, Texas Instruments Incorporated  
25  
TL431LI-Q1  
TL432LI-Q1  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 器件命名规则  
TI 通过分配后缀和前缀来区分 TL43xLI-Q1 系列的所有组合。更多详细信息和可以订购的组合请参见封装选项附  
。  
TL431LI X X XXX X XX  
Initial  
Accuracy  
Operating Free-Air Package  
Type  
Package  
Quantity Qualification  
Product  
1: TL431LI  
Temperature  
B: 0.5%  
Q: -40°C to 125°C  
DBZ: SOT-23-3  
R: Tape & Reel  
Q1: AEC-Q100  
2: TL432LI*  
A: 1%  
E: -40°C to 150°C  
*(Cathode and REF  
pins are switched)  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《了解 TL431/TL432 数据表中的稳定性边界条件图》  
德州仪器 (TI)《在可调节并联稳压器上设置并联电压》  
德州仪器 (TI)《使用改进的 TL431LI 进行设计》  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
5. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TL431LI-Q1  
TL432LI-Q1  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.5 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
26  
版权 © 2019, Texas Instruments Incorporated  
TL431LI-Q1  
TL432LI-Q1  
www.ti.com.cn  
ZHCSJO9A MAY 2019REVISED NOVEMBER 2019  
13.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TL431LIAEDBZRQ1  
TL431LIAQDBZRQ1  
TL431LIBEDBZRQ1  
TL431LIBQDBZRQ1  
TL432LIAEDBZRQ1  
TL432LIAQDBZRQ1  
TL432LIBEDBZRQ1  
TL432LIBQDBZRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
23CP  
22TP  
23DP  
22UP  
23EP  
22VP  
23FP  
22WP  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TL431LIAEDBZRQ1  
TL431LIAQDBZRQ1  
TL431LIBEDBZRQ1  
TL431LIBQDBZRQ1  
TL432LIAEDBZRQ1  
TL432LIAQDBZRQ1  
TL432LIBEDBZRQ1  
TL432LIBQDBZRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TL431LIAEDBZRQ1  
TL431LIAQDBZRQ1  
TL431LIBEDBZRQ1  
TL431LIBQDBZRQ1  
TL432LIAEDBZRQ1  
TL432LIAQDBZRQ1  
TL432LIBEDBZRQ1  
TL432LIBQDBZRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TL432LIBCDBZR

具有经优化的基准电流的可调节精密分流稳压器(引脚布局:RKA) | DBZ | 3 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TL432LIBEDBZRQ1

具有经优化的基准电流的汽车类可调节精密并联稳压器 | DBZ | 3 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TL432LIBIDBZR

具有经优化的基准电流的可调节精密分流稳压器(引脚布局:RKA) | DBZ | 3 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TL432LIBQDBZR

具有经优化的基准电流的可调节精密分流稳压器(引脚布局:RKA) | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TL432LIBQDBZRQ1

具有经优化的基准电流的汽车类可调节精密并联稳压器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TL432LS

Low Voltage Adjustable Precision Shunt Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IKSEMICON

TL432M3

Adjustable shunt regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYSTEKEC

TL432M3-A-T1-G

Adjustable shunt regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYSTEKEC

TL432M3-B-T1-G

Adjustable shunt regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYSTEKEC

TL432N3

Adjustable shunt regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYSTEKEC

TL432N3-A-T1-G

Adjustable shunt regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYSTEKEC

TL432N3-B-T1-G

Adjustable shunt regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYSTEKEC