TLA2518IRTET [TI]

具有 SPI 接口和 GPIO 的小型 8 通道、12 位模数转换器 (ADC) | RTE | 16 | -40 to 85;
TLA2518IRTET
型号: TLA2518IRTET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SPI 接口和 GPIO 的小型 8 通道、12 位模数转换器 (ADC) | RTE | 16 | -40 to 85

转换器 模数转换器
文件: 总43页 (文件大小:2117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
具有 SPI 接口和 GPIO TLA2518 小型 8 通道 12 ADC  
1 特性  
2 应用  
1
小封装尺寸:  
WQFN 3mm × 3mm  
8 通道,可配置为以下任意组合:  
最多 8 个模拟输入、数字输入或数字输出  
用于 I/O 扩展的 GPIO:  
开漏、推挽数字输出  
宽工作范围:  
宏远程无线电单元 (RRU)  
电池管理系统 (BMS)  
串式逆变器  
中央逆变器  
3 说明  
TLA2518 是一款易于使用的 8 通道多路复用 12 位  
1MSPS 逐次逼近寄存器模数转换器 (SAR ADC)8 个  
通道可独立配置为模拟输入、数字输入或数字输出。  
该器件具有一个用于执行 ADC 转换过程的内部振荡  
器。  
AVDD2.35V 5.5V  
DVDD1.65V 5.5V  
温度范围:-40°C +85°C  
增强型 SPI 数字接口:  
高速 60MHz 接口  
TLA2518 通过兼容 SPI 的接口进行通信,并支持通过  
单次转换启动对多个数据样本求平均值。内置的可编程  
平均滤波器有助于降低来自模拟输入的噪声,并减少主  
机需要读取的数据样本数量。  
使用 >13.5MHz SPI 实现最大吞吐量  
可编程均值滤波器:  
用于求平均值的可编程样本大小  
利用内部转换求平均值  
16 位分辨率  
器件信息(1)  
器件型号  
TLA2518  
封装  
封装尺寸(标称值)  
WQFN (16)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
TLA2518 方框图和 应用  
Device Block Diagram  
Example Applications  
AVDD (VREF  
)
AIN / GPIO  
AIN / GPIO  
DECAP  
AVDD  
AIN / GPIO  
AIN / GPIO  
AIN / GPIO  
AIN / GPIO  
SPI  
Controller  
DVDD  
TLA2518  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
CS  
Programmable  
Averaging Filters  
ADC  
AIN / GPIO  
AIN / GPIO  
SCLK  
SDO  
SDI  
SPI Interface  
MUX  
VSIGNAL + noise  
Sequencer  
Pin CFG  
Reduced  
noise  
R1  
R2  
GND  
TLA2518  
+
Averaging  
Filters  
GPO Write  
GPI Read  
Controller  
TLA2518  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS980  
 
 
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 19  
7.5 TLA2518 Registers ................................................. 22  
Application and Implementation ........................ 29  
8.1 Application Information............................................ 29  
8.2 Typical Applications ................................................ 29  
Power Supply Recommendations...................... 32  
9.1 AVDD and DVDD Supply Recommendations......... 32  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 5  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Example .................................................... 33  
11 器件和文档支持 ..................................................... 34  
11.1 接收文档更新通知 ................................................. 34  
11.2 社区资源................................................................ 34  
11.3 ....................................................................... 34  
11.4 静电放电警告......................................................... 34  
11.5 Glossary................................................................ 34  
12 机械、封装和可订购信息....................................... 34  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2019) to Revision A  
Page  
已更改 将器件状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
5 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
AIN2/GPIO2  
AIN3/GPIO3  
AIN4/GPIO4  
AIN5/GPIO5  
1
2
3
4
12  
11  
10  
9
SDO  
CS  
Thermal  
Pad  
DVDD  
GND  
Not to scale  
Pin Functions  
PIN  
FUNCTION(1)  
DESCRIPTION  
NAME  
NO.  
15  
16  
1
AIN0/GPIO0  
AIN1/GPIO1  
AIN2/GPIO2  
AIN3/GPIO3  
AIN4/GPIO4  
AIN5/GPIO5  
AIN6/GPIO6  
AIN7/GPIO7  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
AI, DI, DO  
Channel 0; can be configured as either an analog input (default), digital input, or digital output.  
Channel 1; can be configured as either an analog input (default), digital input, or digital output.  
Channel 2; can be configured as either an analog input (default), digital input, or digital output.  
Channel 3; can be configured as either an analog input (default), digital input, or digital output.  
Channel 4; can be configured as either an analog input (default), digital input, or digital output.  
Channel 5; can be configured as either an analog input (default), digital input, or digital output.  
Channel 6; can be configured as either an analog input (default), digital input, or digital output.  
Channel 7; can be configured as either an analog input (default), digital input, or digital output.  
2
3
4
5
6
Analog supply input, also used as the reference voltage to the ADC; connect a 1-µF  
decoupling capacitor to GND.  
AVDD  
7
Supply  
Chip-select input pin; active low. The device takes control of the data bus when CS is low.  
The device starts converting the active input channel on the rising edge of CS. SDO goes hi-Z  
when CS is high.  
CS  
11  
DI  
DECAP  
DVDD  
GND  
8
Supply  
Supply  
Supply  
DI  
Connect a decoupling capacitor to this pin for the internal power supply.  
Digital I/O supply voltage; connect a 1-µF decoupling capacitor to GND.  
Ground for the power supply; all analog and digital signals are referred to this pin voltage.  
Serial clock for the SPI interface.  
10  
9
SCLK  
13  
14  
12  
SDI  
DI  
Serial data in for the device.  
SDO  
DO  
Serial data out for the device.  
Thermal pad  
Supply  
Exposed thermal pad; connect to GND.  
(1) AI = analog input, DI = digital input, and DO = digital output.  
Copyright © 2019, Texas Instruments Incorporated  
3
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
5.5  
UNIT  
V
DVDD to GND  
AVDD to GND  
5.5  
V
AINx / GPOx(2) to GND  
GND – 0.3 AVDD + 0.3  
V
Digital input to GND  
GND – 0.3  
–10  
5.5  
10  
V
Current through any pin except supply pins(3)  
Junction temperature, TJ  
Storage temperature, Tstg  
mA  
°C  
°C  
–40  
125  
150  
–60  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) AINx / GPIOx refers to pins 1, 2, 3, 4, 5, 6, 15, and 16.  
(3) Pin current must be limited to 10mA or less.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
DVDD  
Analog supply voltage  
Digital supply voltage  
2.35  
1.65  
3.3  
3.3  
5.5  
5.5  
V
V
ANALOG INPUTS  
FSR  
VIN  
Full-scale input range  
Absolute input voltage  
AINX - GND  
AINX - GND  
0
AVDD  
V
V
–0.1  
AVDD + 0.1  
TEMPERATURE RANGE  
TA Ambient temperature  
–40  
25  
85  
(1) AINx refers to AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.  
6.4 Thermal Information  
TLA2518  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
49.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.4  
24.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ΨJB  
24.7  
RθJC(bot)  
9.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
6.5 Electrical Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +85°C; typical values at TA = 25°C  
PARAMETER  
ANALOG INPUTS  
CSH Sampling capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
12  
pF  
DC PERFORMANCE  
Resolution  
No missing codes  
12  
±0.3  
±0.5  
±0.5  
±5  
bits  
LSB  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
Input offset error  
LSB  
V(OS)  
Post offset calibration  
Post offset calibration  
LSB  
Input offset thermal drift  
Gain error  
ppm/°C  
%FSR  
ppm/°C  
GE  
±0.05  
±5  
Gain error thermal drift  
AC PERFORMANCE  
AVDD = 5 V, fIN = 2 kHz  
AVDD = 3 V, fIN = 2 kHz  
71.5  
70.5  
dB  
dB  
SINAD Signal-to-noise + distortion ratio  
DECAP Pin  
Decoupling capacitor on DECAP  
pin  
0.1  
1
µF  
SPI INTERFACE (CS, SCLK, SDI, SDO)  
VIH  
VIL  
Input high logic level  
Input low logic level  
0.7 x DVDD  
–0.3  
5.5  
V
V
0.3 x DVDD  
Source current = 2 mA,  
DVDD > 2 V  
0.8 x DVDD  
0.7 x DVDD  
DVDD  
DVDD  
VOH  
Output high logic level  
Output low logic level  
V
V
Source current = 2 mA,  
DVDD 2 V  
Sink current = 2 mA, DVDD > 2 V  
0
0
0.4  
VOL  
Sink current = 2 mA, DVDD 2 V  
0.2 x DVDD  
GPIOs  
VIH  
Input high logic level  
Input low logic level  
0.7 x AVDD  
–0.3  
AVDD + 0.3  
0.3 x AVDD  
V
V
VIL  
GPO_DRIVE_CFG = push-pull,  
ISOURCE = 2 mA  
VOH  
Output high logic level  
0.8 x AVDD  
0
AVDD  
V
VOL  
IOH  
IOL  
Output low logic level  
ISINK = 2 mA  
0.2 x AVDD  
V
Output high source current  
Output low sink current  
VOH > 0.7 x AVDD  
VOL < 0.3 x AVDD  
5
5
mA  
mA  
POWER-SUPPLY CURRENTS  
Full throughput, AVDD = 5 V  
Full throughput, AVDD = 3 V  
No conversion, AVDD = 5 V  
470  
440  
10  
600  
550  
25  
IAVDD  
Analog supply current  
µA  
6.6 Timing Requirements  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +85°C; typical values at TA = 25°C  
MIN  
MAX  
UNIT  
CONVERSION CYCLE  
fCYCLE  
tCYCLE  
tACQ  
Sampling frequency  
1000  
kSPS  
s
ADC cycle-time period  
Acquisition time  
1 / fCYCLE  
300  
ns  
tQT_ACQ  
Quiet acquisition time  
10  
ns  
Copyright © 2019, Texas Instruments Incorporated  
5
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Timing Requirements (continued)  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +85°C; typical values at TA = 25°C  
MIN  
10  
MAX  
UNIT  
ns  
tD_CNVCAP  
tWH_CSZ  
tWL_CSZ  
Quiet conversion time  
Pulse duration: CS high  
Pulse duration: CS low  
10  
ns  
10  
ns  
SPI INTERFACE TIMINGS  
fCLK  
Maximum SCLK frequency  
60  
MHz  
ns  
tCLK  
Minimum SCLK time period  
16.67  
0.45  
0.45  
3.5  
1.5  
2
tPH_CK  
tPL_CK  
tSU_CSCK  
tSU_CKDI  
tHT_CKDI  
tD_CKCS  
SCLK high time  
0.55  
0.55  
tCLK  
tCLK  
ns  
SCLK low time  
Setup time: CS falling to the first SCLK capture edge  
Setup time: SDI data valid to the SCLK capture edge  
Hold time: SCLK capture edge to data valid on SDI  
Delay time: last SCLK falling to CS rising  
ns  
ns  
6
ns  
6.7 Switching Characteristics  
at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values  
at TA = –40°C to +85°C; typical values at TA = 25°C  
PARAMETER  
CONVERSION CYCLE  
Test Conditions  
MIN  
MAX  
UNIT  
tCONV  
tACQ  
ADC conversion time  
Acquisition time  
600  
ns  
ns  
400  
RESET  
AVDD 2.35 V,  
CDECAP = 1 µF  
tPU  
Power-up time for device  
5
5
ms  
ms  
Delay time; RST bit = 1b to device reset  
complete(1)  
tRST  
SPI INTERFACE TIMINGS  
tDEN_CSDO Delay time: CS falling to data enable  
tDZ_CSDO  
15  
15  
ns  
ns  
Delay time: CS rising to SDO going Hi-Z  
Delay time: SCLK launch edge to (next)  
data valid on SDO  
tD_CKDO  
16  
ns  
(1) RST bit is automatically reset to 0b after tRST  
.
6
版权 © 2019, Texas Instruments Incorporated  
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
Sample  
S
Sample  
S + 1  
CS  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (S)  
ACQ (S + 1)  
1. Conversion Cycle Timing  
tCLK  
tPH_CK  
tPL_CK  
SCLK(1)  
CS  
tSU_CKDI  
tHT_CKDI  
tSU_CSCK  
tD_CKCS  
SCLK(1)  
SDI  
tDEN_CSDO  
tDZ_CSDO  
tD_CKDO  
SDO  
SDO  
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.  
2. SPI-Compatible Serial Interface Timing  
版权 © 2019, Texas Instruments Incorporated  
7
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
0
45000  
39581  
-30  
30000  
-60  
-90  
25955  
15000  
-120  
-150  
0
0
100  
200 300  
Frequency (kHz)  
400  
500  
2048  
2049  
C008  
C001  
Output Code  
fIN = 2 kHz, SNR = 73.2 dB, THD = –92.1 dB  
Standard deviation = 0.49 LSB  
4. Typical FFT  
3. DC Input Histogram  
0.8  
0.4  
0
0.8  
0.4  
0
-0.4  
-0.8  
-0.4  
-0.8  
0
1024  
2048  
Output Code  
3072  
4095  
0
1024  
2048  
Output Code  
3072  
4095  
C002  
C004  
Typical DNL = ±0.5 LSB  
Typical INL = ±0.5 LSB  
5. Typical DNL  
6. Typical INL  
0.5  
0.3  
0.75  
0.45  
Maximum  
Minimum  
Maximum  
Minimum  
0.1  
0.15  
-0.1  
-0.3  
-0.5  
-0.15  
-0.45  
-0.75  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (èC)  
Temperature (èC)  
C003  
C005  
7. DNL vs Temperature  
8. INL vs Temperature  
8
版权 © 2019, Texas Instruments Incorporated  
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
0.5  
0.75  
Maximum  
Minimum  
Maximum  
Minimum  
0.3  
0.45  
0.1  
0.15  
-0.1  
-0.3  
-0.5  
-0.15  
-0.45  
-0.75  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C018  
C019  
9. DNL vs AVDD  
10. INL vs AVDD  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
0.05  
0.03  
0.01  
-0.01  
-0.03  
-0.05  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
C006  
C007  
11. Offset Error vs Temperature  
12. Gain Error vs Temperature  
2
1.2  
0.4  
-0.4  
-1.2  
-2  
0.05  
0.03  
0.01  
-0.01  
-0.03  
-0.05  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C016  
C017  
13. Offset Error vs AVDD  
14. Gain Error vs AVDD  
版权 © 2019, Texas Instruments Incorporated  
9
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
73.2  
73.1  
73  
11.8  
73.5  
12  
SINAD  
SNR  
ENOB  
SINAD  
SNR  
ENOB  
11.775  
11.75  
11.725  
11.7  
73  
11.85  
11.7  
11.55  
72.5  
72  
72.9  
72.8  
71.5  
11.4  
5.5  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
C009  
C010  
15. Noise Performance vs Temperature  
16. Noise Performance vs AVDD  
-90.3  
-90.5  
-90.7  
-90.9  
-91.1  
94.8  
94.4  
94  
-82  
-84  
-86  
-88  
-90  
-92  
96  
94  
92  
90  
88  
86  
THD  
SFDR(dBFS)  
THD  
SFDR  
93.6  
93.2  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C011  
C012  
17. Distortion Performance vs Temperature  
18. Distortion Performance vs AVDD  
485  
479  
473  
467  
461  
455  
500  
480  
460  
440  
420  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
2.5  
3
3.5  
4
AVDD (V)  
4.5  
5
5.5  
C013  
C014  
19. Analog Supply Current vs Temperature  
20. Analog Supply Current vs AVDD  
10  
版权 © 2019, Texas Instruments Incorporated  
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 5 V, DVDD = 1.8 V, and fSAMPLE = 1 MSPS (unless otherwise noted)  
500  
400  
300  
200  
100  
0
0
200  
400 600  
Throughput (kSPS)  
800  
1000  
C015  
21. Analog Supply Current vs Throughput  
版权 © 2019, Texas Instruments Incorporated  
11  
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLA2518 is a small, eight-channel, multiplexed, 12-bit, 1-MSPS, analog-to-digital converter (ADC) with an  
enhanced-SPI serial interface. The eight channels of the TLA2518 can be individually configured as either analog  
inputs, digital inputs, or digital outputs. The device uses an internal oscillator for conversion. The analog input  
channel selection can be auto-sequenced to simplify the digital interface with the host.  
The device features a programmable averaging filter that outputs a 16-bit result for enhanced resolution.  
7.2 Functional Block Diagram  
DECAP  
AVDD  
DVDD  
AIN0 / GPIO0  
AIN1 / GPIO1  
AIN2 / GPIO2  
AIN3 / GPIO3  
AIN4 / GPIO4  
AIN5 / GPIO5  
AIN6 / GPIO6  
AIN7 / GPIO7  
CS  
Averager  
1 to 128  
ADC  
SCLK  
SPI Interface  
SDO  
SDI  
MUX  
Sequencer  
Pin CFG  
GND  
GPO Write  
GPI Read  
12  
版权 © 2019, Texas Instruments Incorporated  
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
7.3 Feature Description  
7.3.1 Multiplexer and ADC  
The eight channels of the multiplexer can be independently configured as ADC inputs or general-purpose  
inputs/outputs (GPIOs). 22 shows that each input pin has ESD protection diodes to AVDD and GND. On  
power-up or after device reset, all eight multiplexer channels are configured as analog inputs.  
22 shows an equivalent circuit for pins configured as analog inputs. The ADC sampling switch is represented  
by ideal switch (SW) in series with the resistor RSW (typically 150 Ω) and the sampling capacitor, CSH (typically 12  
pF).  
GPO_VALUE[0]  
GPIO_CFG[0]  
AVDD  
GPI_VALUE[0]  
PIN_CFG[0]  
AIN0 / GPIO0  
RSW  
SW  
MUX  
CSH  
Multiplexer  
AVDD  
ADC  
AIN7 / GPIO7  
PIN_CFG[7]  
GPI_VALUE[7]  
GPIO_CFG[7]  
GPO_VALUE[7]  
22. Analog Inputs, GPIOs, and ADC Connections  
During acquisition, the SW switch is closed to allow the signal on the selected analog input channel to charge the  
internal sampling capacitor. During conversion, the SW switch is opened to disconnect the analog input channel  
from the sampling capacitor.  
The multiplexer channels can be configured as GPIOs in the PIN_CFG register. The direction of a GPIO (either  
as an input or an output) can be set in the GPIO_CFG register. The logic level on the channels configured as  
digital inputs can be read from the GPI_VALUE register. The digital outputs can be accessed by writing to the  
GPO_VALUE register. The digital outputs can be configured as either open-drain or push-pull in the  
GPO_DRIVE_CFG register.  
7.3.2 Reference  
The device uses the analog supply voltage (AVDD) as a reference for the analog-to-digital conversion process.  
TI recommends connecting a 1-µF, low-equivalent series resistance (ESR) ceramic decoupling capacitor  
between the AVDD and GND pins.  
7.3.3 ADC Transfer Function  
The ADC output is in straight binary format. 公式 1 computes the ADC resolution:  
1 LSB = VREF / 2N  
where:  
VREF = AVDD  
N = 12  
(1)  
13  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
23 and 1 detail the transfer characteristics for the device.  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
1 LSB  
AVDD/2 (AVDD/2 + 1 LSB)  
(AVDD œ 1 LSB)  
23. Ideal Transfer Characteristics  
1. Transfer Characteristics  
IDEAL OUTPUT  
CODE  
INPUT VOLTAGE FOR SINGLE-ENDED INPUT  
CODE  
DESCRIPTION  
1 LSB  
1 LSB to 2 LSBs  
NFSC  
NFSC + 1  
MC  
Negative full-scale code  
000  
001  
800  
801  
FFF  
Mid code  
(AVDD / 2) to (AVDD / 2) + 1 LSB  
(AVDD / 2) + 1 LSB to (AVDD / 2) + 2 LSB  
AVDD – 1 LSB  
MC + 1  
PFSC  
Positive full-scale code  
7.3.4 ADC Offset Calibration  
The variation in ADC offset error resulting from changes in temperature or AVDD can be calibrated by setting the  
CAL bit in the GENERAL_CFG register. The CAL bit is reset to 0 after calibration. The host can poll the CAL bit  
to check the ADC offset calibration completion status.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
7.3.5 Programmable Averaging Filter  
The TLA2518 features a built-in oversampling (OSR) function that can be used to average several samples. The  
averaging filter can be enabled by programming the OSR[2:0] bits in the OSR_CFG register. The averaging filter  
configuration is common to all analog input channels. 24 shows that the averaging filter module output is 16  
bits long. In manual conversion mode and auto-sequence mode, only the first conversion for the selected analog  
input channel must be initiated by the host; see the Manual Mode and Auto-Sequence Mode sections. As shown  
in 24, any remaining conversions for the selected averaging factor are generated internally. The time required  
to complete the averaging operation is determined by the sampling speed and number of samples to be  
averaged. As shown in 24, the 16-bit result can be read out after the averaging operation completes.  
Sample  
AINx  
(start of averaging)  
Sample  
AINx  
Sample  
AINx  
CS  
N œ 1 conversions triggered  
internally  
tAVG = N samples x tCYCLE  
SCLK  
SDO  
[15:0] Data  
16 clocks  
24. Averaging Example  
公式 2 provides the LSB value of the 16-bit average result.  
AVDD  
1 LSB =  
216  
(2)  
7.3.6 General-Purpose I/Os  
The eight channels of the TLA2518 can be independently configured as analog inputs, digital inputs, or digital  
outputs. 2 shows how the PIN_CFG and GPIO_CFG registers can be used to configure the device channels.  
2. Configuring Channels as Analog Inputs or GPIOs  
PIN_CFG[7:0]  
GPIO_CFG[7:0]  
GPO_DRIVE_CFG[7:0]  
CHANNEL CONFIGURATION  
Analog input (default)  
0
1
1
1
x
0
1
1
x
x
0
1
Digital input  
Digital output; open-drain driver  
Digital output; push-pull driver  
Digital outputs can be configured to logic 1 or 0 by writing to the GPO_VALUE register. Reading the GPI_VALUE  
register returns the logic level for all channels configured as digital inputs or digital outputs. The GPI_VALUE  
register can be read to detect a failure in external components, such as a floating pullup resistor or a low-  
impedance pulldown resistor, that prevents digital outputs being set to the desired logic level.  
7.3.7 Oscillator and Timing Control  
The device uses an internal oscillator for conversion. When using the averaging module, the host initiates the  
first conversion and subsequent conversions are generated internally by the device. Also, in autonomous mode  
of operation, the start of the conversion signal is generated by the device. 3 describes how the sampling rate  
can be controlled by the OSC_SEL and CLK_DIV[3:0] register fields when the device generates the start of the  
conversion.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
3. Configuring Sampling Rate for Internal Conversion Start Control  
OSC_SEL = 0  
OSC_SEL = 1  
CLK_DIV[3:0]  
SAMPLING FREQUENCY, fCYCLE  
(kSPS)  
CYCLE TIME,  
tCYCLE (µs)  
SAMPLING FREQUENCY,  
CYCLE TIME, tCYCLE  
(µs)  
fCYCLE (kSPS)  
31.25  
20.83  
15.63  
10.42  
7.81  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
1000  
666.7  
500  
1
1.5  
2
32  
48  
64  
333.3  
250  
3
96  
4
128  
192  
256  
384  
512  
768  
1024  
1536  
2048  
3072  
4096  
6144  
166.7  
125  
6
5.21  
8
3.91  
83  
12  
16  
24  
32  
48  
64  
96  
128  
192  
2.60  
62.5  
41.7  
31.3  
20.8  
15.6  
10.4  
7.8  
1.95  
1.3  
0.98  
0.65  
0.49  
0.33  
0.24  
5.2  
0.16  
The conversion time of the device, given by tCONV in the Switching Characteristics table, is independent of the  
OSC_SEL and CLK_DIV[3:0] configuration.  
7.3.8 Output Data Format  
25 shows various SPI frames for reading data. The data output is MSB aligned. If averaging is enabled the  
output data from the ADC are 16 bits long, otherwise the output data are 12 bits long. Optionally, a 4-bit channel  
ID can be appended at the end of the output data by configuring the APPEND_STATUS[1:0] field.  
CS  
SCLK  
12  
13  
14  
15  
16  
18  
19  
20  
17  
1
2
Data output when averaging is disabled  
OSR[2:0] = 00b  
12 SCLKs minimum. Remaining clocks optional.  
SDO  
LSB  
Channel ID  
MSB  
12 bit ADC data  
4 bits optional  
Data output when averaging is enabled  
OSR[2:0] > 00b  
16 SCLKs minimum. Remaining clocks optional.  
SDO  
LSB  
Channel ID  
MSB  
16 bit averaged ADC data  
4 bits optional  
25. SPI Frames for Reading Data  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
7.3.9 Device Programming  
7.3.9.1 Enhanced-SPI Interface  
The device features an enhanced-SPI interface that allows the host controller to operate at slower SCLK speeds  
and still achieve full throughput. As described in 4, the host controller can use any of the four SPI-compatible  
protocols (SPI-00, SPI-01, SPI-10, or SPI-11) to access the device.  
4. SPI Protocols for Configuring the Device  
SCLK POLARITY  
(At the CS Falling Edge)  
SCLK PHASE  
(Capture Edge)  
PROTOCOL  
CPOL_CPHA[1:0]  
DIAGRAM  
SPI-00  
SPI-01  
SPI-10  
SPI-11  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
00b  
01b  
10b  
11b  
26  
27  
26  
27  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00 protocol for data  
read and data write operations. To select a different SPI-compatible protocol, program the CPOL_CPHA[1:0]  
field. This first write operation must adhere to the SPI-00 protocol. Any subsequent data transfer frames must  
adhere to the newly-selected protocol.  
CS  
CS  
CPOL = 0  
CPOL = 0  
SCLK  
SCLK  
CPOL = 1  
CPOL = 1  
SDO  
0
MSB  
MSB-1  
LSB+1  
LSB  
MSB  
MSB-1  
LSB+1  
LSB  
SDO  
MSB-2  
27. Standard SPI Timing Protocol  
26. Standard SPI Timing Protocol  
(CPHA = 1)  
(CPHA = 0)  
7.3.9.2 Register Read/Write Operation  
The device supports the commands listed in 5 to access the internal configuration registers.  
5. Opcodes for Commands  
OPCODE  
0000 0000b  
0001 0000b  
0000 1000b  
0001 1000b  
0010 0000b  
COMMAND DESCRIPTION  
No operation  
Single register read  
Single register write  
Set bit  
Clear bit  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.3.9.2.1 Register Write  
A 24-bit SPI frame is required for writing data to configuration registers. The 24-bit data on SDI, as shown in 图  
28. consists of an 8-bit write command (0000 1000b), an 8-bit register address, and 8-bit data. The write  
command is decoded on the CS rising edge and the specified register is updated with the 8-bit data specified  
during the register write operation.  
CS  
SCLK  
18  
1
2
8
9
10  
16  
17  
24  
0000 1000b  
(WR_REG)  
SDI  
8-bit Address  
8-bit Data  
28. Register Write Operation  
7.3.9.2.2 Register Read  
Register read operation consists of two SPI frames: the first SPI frame initiates a register read and the second  
SPI frame reads data from the register address provided in the first frame. As shown in 29, the 8-bit register  
address and the 8-bit dummy data are sent over the SDI pin during the first 24-bit frame with the read command  
(0001 0000b). On the rising edge of CS, the read command is decoded and the requested register data are  
available for reading during the next frame. During the second frame, the first eight bits on SDO correspond to  
the requested register read. During the second frame, SDI can be used to initiate another operation or can be set  
to 0.  
CS  
SCLK  
18  
1
2
8
9
10  
16  
17  
24  
18  
1
2
8
9
10  
16  
17  
24  
0001 0000b  
(RD_REG)  
SDI  
8-bit Address  
0000 0000b  
Command  
8-bit Address  
8-bit Data  
Optional; can set SDI = 0  
SDO  
8-bit Register Data  
29. Register Read Operation  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
7.4 Device Functional Modes  
6 lists the functional modes supported by the TLA2518.  
6. Functional Modes  
FUNCTIONAL  
MODE  
CONVERSION CONTROL  
MUX CONTROL  
SEQ_MODE[1:0]  
Manual  
On-the-fly  
CS rising edge  
CS rising edge  
CS rising edge  
Register write to MANUAL_CHID  
First 5 bits after the CS falling edge  
Channel sequencer  
00b  
10b  
01b  
Auto-sequence  
The device powers up in manual mode and can be configured into either of these modes by writing the  
configuration registers for the desired mode.  
7.4.1 Device Power-Up and Reset  
On power-up, the BOR bit is set indicating a power-cycle or reset event. The device can be reset by setting the  
RST bit or by recycling the power on the AVDD pin.  
7.4.2 Manual Mode  
Manual mode allows the external host processor to directly select the analog input channel. 30 shows the  
steps for operating the device in manual mode.  
Idle  
SEQ_MODE = 0  
Configure channels as AIN/GPIO using PIN_CFG  
Select Manual mode  
(SEQ_MODE = 00b)  
Configure desired Channel ID in MANUAL_CHID field  
Host starts conversion and reads conversion result  
No  
Yes  
Same  
Channel ID?  
30. Device Operation in Manual Mode  
In manual mode, the command to switch to a new channel (indicated by cycle N in 31) is decoded by the  
device on the CS rising edge. The CS rising edge is also the start of the conversion signal, and therefore the  
device samples the previously selected MUX channel in cycle N+1. The newly selected analog input channel  
data are available in cycle N+2. For switching the analog input channel, a register write to the MANUAL_CHID  
field requires 24 clocks; see the Register Write section for more details. After a channel is selected, the number  
of clocks required for reading the output data depends on the device output data frame size; see the Output Data  
Format section for more details.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Sample  
AINx  
Sample  
AINx  
Sample  
AINy  
Sample  
AINz  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
Switch to AINy  
Switch to AINz  
Switch to AINx  
Data AINy  
SDO  
Data AINx  
24 clocks  
Data AINx  
100-ns  
MUX OUT = AINx  
MUX OUT = AINy  
MUX OUT = AINz  
MUX  
Cycle N  
Cycle (N + 1)  
Cycle (N + 2)  
31. Starting Conversions and Reading Data in Manual Mode  
7.4.3 On-the-Fly Mode  
In the on-the-fly mode of operation, the analog input channel is selected, as shown in 32, using the first five  
bits on SDI without waiting for the CS rising edge. Thus, the ADC samples the newly selected channel on the CS  
edge and there is no latency between the channel selection and the ADC output data.  
Sample  
AINx  
Sample  
AINx  
Sample  
AINy  
Sample  
AINz  
tCONV  
tCYCLE  
CS  
SCLK  
SDI  
2
2
1
24  
1
3
4
5
12  
1
3
4
5
12  
5 clocks  
SEQ_MODE =  
10b  
4-bit AINy ID  
1
4-bit AINz ID  
1
12 clocks  
Data AINx  
12 clocks  
SDO  
Data AINx  
24 clocks  
Data AINy  
MUX OUT = AINz  
MUX OUT = AINx  
100-ns  
MUX OUT = AINx  
MUX OUT = AINy  
MUX  
No Cycle Latency  
32. Starting Conversions and Reading Data in On-the-Fly Mode  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
The number of clocks required for reading the output data depends on the device output data frame size; see the  
Output Data Format section for more details.  
7.4.4 Auto-Sequence Mode  
In auto-sequence mode, the internal channel sequencer switches the multiplexer to the next analog input  
channel after every conversion. The desired analog input channels can be configured for sequencing in the  
AUTO_SEQ_CHSEL register. To enable the channel sequencer, set SEQ_START = 1b. After every conversion,  
the channel sequencer switches the multiplexer to the next analog input in ascending order. To stop the channel  
sequencer from selecting channels, set SEQ_START = 0b.  
In the example shown in 33, AIN2 and AIN6 are enabled for sequencing in AUTO_SEQ_CHSEL. The channel  
sequencer loops through AIN2 and AIN6 and repeats until SEQ_START is set to 0b. The number of clocks  
required for reading the output data depends on the device output data frame size; see the Output Data Format  
section for more details.  
Sample  
AINx  
Sample  
AIN2  
Sample  
AIN6  
Sample  
AIN2  
Sample  
AIN6  
tCYCLE  
CS  
SCLK  
SDI  
SEQ_START  
SDO  
Data AIN6  
Data AIN2  
Data AINx  
24 clocks  
Data AINx  
Data AIN2  
12 clocks  
MUX OUT = AIN2  
MUX OUT = AIN6  
MUX OUT = AIN2  
MUX OUT = AIN6  
MUX OUT = AINx  
MUX  
Scan channels AIN2 and AIN6 and repeat  
33. Starting Conversions and Reading Data in Auto-Sequence Mode  
Copyright © 2019, Texas Instruments Incorporated  
21  
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.5 TLA2518 Registers  
Table 7 lists the TLA2518 registers. All register offset addresses not listed in Table 7 should be considered as  
reserved locations and the register contents should not be modified.  
Table 7. TLA2518 Registers  
Address  
Acronym  
Register  
Name  
Section  
0x0  
0x1  
SYSTEM_STATUS  
GENERAL_CFG  
DATA_CFG  
SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]  
GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
DATA_CFG Register (Address = 0x2) [reset = 0x0]  
OSR_CFG Register (Address = 0x3) [reset = 0x0]  
OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
PIN_CFG Register (Address = 0x5) [reset = 0x0]  
0x2  
0x3  
OSR_CFG  
0x4  
OPMODE_CFG  
PIN_CFG  
0x5  
0x7  
GPIO_CFG  
GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_VALUE Register (Address = 0xB) [reset = 0x0]  
GPI_VALUE Register (Address = 0xD) [reset = 0x0]  
SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]  
0x9  
GPO_DRIVE_CFG  
GPO_VALUE  
0xB  
0xD  
0x10  
0x11  
0x12  
GPI_VALUE  
SEQUENCE_CFG  
CHANNEL_SEL  
AUTO_SEQ_CH_SEL  
Complex bit access types are encoded to fit into small table cells. Table 8 shows the codes that are used for  
access types in this section.  
Table 8. TLA2518 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups form  
a hierarchical structure and the  
array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of a  
register array.  
7.5.1 SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]  
SYSTEM_STATUS is shown in Figure 34 and described in Table 9.  
Return to the Summary Table.  
22  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
Figure 34. SYSTEM_STATUS Register  
7
6
5
4
3
2
1
0
RSVD  
SEQ_STATUS  
RESERVED  
R-0b  
OSR_DONE  
CRCERR_FUS  
E
RESERVED  
BOR  
R-1b  
R-0b  
R/W-0b  
R-0b  
R-0b  
R/W-1b  
Table 9. SYSTEM_STATUS Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
1b  
Description  
RSVD  
Reads return 1b.  
6
SEQ_STATUS  
R
0b  
Status of the channel sequencer.  
0b = Sequence stopped  
1b = Sequence in progress  
Reserved. Reads return 0b.  
5-4  
3
RESERVED  
OSR_DONE  
R
0b  
0b  
R/W  
Averaging status. Clear this bit by writing 1b to this bit.  
0b = Averaging in progress or not started; average result is not  
ready.  
1b = Averaging complete; average result is ready.  
2
CRCERR_FUSE  
R
0b  
Device power-up configuration CRC check status. To re-evaluate  
this bit, software reset the device or power cycle AVDD.  
0b = No problems detected in power-up configuration.  
1b = Device configuration not loaded correctly.  
Reserved. Reads return 0b.  
1
0
RESERVED  
BOR  
R
0b  
1b  
R/W  
Brown out reset indicator. This bit is set if brown out condition occurs  
or device is power cycled. Write 1b to this bit to clear the flag.  
0b = No brown out from the last time this bit was cleared.  
1b = Brown out condition detected or device power cycled.  
7.5.2 GENERAL_CFG Register (Address = 0x1) [reset = 0x0]  
GENERAL_CFG is shown in Figure 35 and described in Table 10.  
Return to the Summary Table.  
Figure 35. GENERAL_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH_RST  
R/W-0b  
CAL  
RST  
W-0b  
R/W-0b  
Table 10. GENERAL_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-3  
2
RESERVED  
CH_RST  
Reserved. Reads return 0b.  
Force all channels to be analog inputs.  
0b = Normal operation.  
R/W  
0b  
1b  
= All channels are set as analog inputs irrespective of  
configuration in other registers.  
1
0
CAL  
RST  
R/W  
W
0b  
0b  
Calibrate ADC offset.  
0b = Normal operation.  
1b = ADC offset is calibrated. After calibration is complete, this bit is  
set to 0b.  
Software reset all registers to default values.  
0b = Normal operation.  
1b = Device is reset. After reset is complete, this bit is set to 0b and  
BOR bit is set to 1b.  
Copyright © 2019, Texas Instruments Incorporated  
23  
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.5.3 DATA_CFG Register (Address = 0x2) [reset = 0x0]  
DATA_CFG is shown in Figure 36 and described in Table 11.  
Return to the Summary Table.  
Figure 36. DATA_CFG Register  
7
6
5
4
3
2
1
0
FIX_PAT  
R/W-0b  
RESERVED  
R-0b  
APPEND_STATUS[1:0]  
R/W-0b  
RESERVED  
R-0b  
CPOL_CPHA[1:0]  
R/W-0b  
Table 11. DATA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIX_PAT  
R/W  
0b  
Device outputs fixed data bits which can be helpful for debugging  
communication with the device.  
0b = Normal operation.  
1b = Device outputs fixed code 0xA5A repeatitively when reading  
ADC data.  
6
RESERVED  
R
0b  
0b  
Reserved. Reads return 0b.  
5-4  
APPEND_STATUS[1:0]  
R/W  
Append 4-bit channel ID or status flags to output data.  
0b = Channel ID is not appended to ADC data.  
1b = 4-bit channel ID is appended to ADC data.  
10b = Reserved.  
11b = Reserved.  
3-2  
1-0  
RESERVED  
R
0b  
0b  
Reserved. Reads return 0b.  
CPOL_CPHA[1:0]  
R/W  
This field sets the polarity and phase of SPI communication.  
0b = CPOL = 0, CPHA = 0.  
1b = CPOL = 0, CPHA = 1.  
10b = CPOL = 1, CPHA = 0.  
11b = CPOL = 1, CPHA = 1.  
7.5.4 OSR_CFG Register (Address = 0x3) [reset = 0x0]  
OSR_CFG is shown in Figure 37 and described in Table 12.  
Return to the Summary Table.  
Figure 37. OSR_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
OSR[2:0]  
R/W-0b  
Table 12. OSR_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-3  
2-0  
RESERVED  
OSR[2:0]  
Reserved. Reads return 0b.  
R/W  
0b  
Selects the oversampling ratio for ADC conversion result.  
0b = No averaging  
1b = 2 samples  
10b = 4 samples  
11b = 8 samples  
100b = 16 samples  
101b = 32 samples  
110b = 64 samples  
111b = 128 samples  
24  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
7.5.5 OPMODE_CFG Register (Address = 0x4) [reset = 0x0]  
OPMODE_CFG is shown in Figure 38 and described in Table 13.  
Return to the Summary Table.  
Figure 38. OPMODE_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
OSC_SEL  
R/W-0b  
CLK_DIV[3:0]  
R/W-0b  
Table 13. OPMODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-5  
4
RESERVED  
OSC_SEL  
Reserved. Reads return 0b.  
R/W  
0b  
Selects the oscillator for internal timing generation.  
0b = High-speed oscillator.  
1b = Low-power oscillator.  
3-0  
CLK_DIV[3:0]  
R/W  
0b  
Refer to section on oscillator and timing control for details.  
7.5.6 PIN_CFG Register (Address = 0x5) [reset = 0x0]  
PIN_CFG is shown in Figure 39 and described in Table 14.  
Return to the Summary Table.  
Figure 39. PIN_CFG Register  
7
6
5
4
3
2
1
0
PIN_CFG[7:0]  
R/W-0b  
Table 14. PIN_CFG Register Field Descriptions  
Bit  
7-0  
Field  
PIN_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure device channels AIN / GPIO [7:0] as analog inputs or  
GPIOs.  
0b = Channel is configured as analog input.  
1b = Channel is configured as GPIO.  
7.5.7 GPIO_CFG Register (Address = 0x7) [reset = 0x0]  
GPIO_CFG is shown in Figure 40 and described in Table 15.  
Return to the Summary Table.  
Figure 40. GPIO_CFG Register  
7
6
5
4
3
2
1
0
GPIO_CFG[7:0]  
R/W-0b  
Table 15. GPIO_CFG Register Field Descriptions  
Bit  
7-0  
Field  
GPIO_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure GPIO[7:0] as either digital inputs or digital outputs.  
0b = GPIO is configured as digital input.  
1b = GPIO is configured as digital output.  
Copyright © 2019, Texas Instruments Incorporated  
25  
 
 
 
 
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.5.8 GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]  
GPO_DRIVE_CFG is shown in Figure 41 and described in Table 16.  
Return to the Summary Table.  
Figure 41. GPO_DRIVE_CFG Register  
7
6
5
4
3
2
1
0
GPO_DRIVE_CFG[7:0]  
R/W-0b  
Table 16. GPO_DRIVE_CFG Register Field Descriptions  
Bit  
7-0  
Field  
GPO_DRIVE_CFG[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Configure digital outputs GPO[7:0] as open-drain or push-pull  
outputs.  
0b = Digital output is open-drain; connect external pullup resistor.  
1b = Push-pull driver is used for digital output.  
7.5.9 GPO_VALUE Register (Address = 0xB) [reset = 0x0]  
GPO_VALUE is shown in Figure 42 and described in Table 17.  
Return to the Summary Table.  
Figure 42. GPO_VALUE Register  
7
6
5
4
3
2
1
0
GPO_VALUE[7:0]  
R/W-0b  
Table 17. GPO_VALUE Register Field Descriptions  
Bit  
7-0  
Field  
GPO_VALUE[7:0]  
Type  
Reset  
Description  
R/W  
0b  
Logic level to be set on digital outputs GPO[7:0].  
0b = Digital output set to logic 0.  
1b = Digital output set to logic 1.  
7.5.10 GPI_VALUE Register (Address = 0xD) [reset = 0x0]  
GPI_VALUE is shown in Figure 43 and described in Table 18.  
Return to the Summary Table.  
Figure 43. GPI_VALUE Register  
7
6
5
4
3
2
1
0
GPI_VALUE[7:0]  
R-0b  
Table 18. GPI_VALUE Register Field Descriptions  
Bit  
7-0  
Field  
GPI_VALUE[7:0]  
Type  
Reset  
Description  
R
0b  
Readback the logic level on channels configured digital inputs.  
0b = Digital input is at logic 0.  
1b = Digital input is at logic 1.  
7.5.11 SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]  
SEQUENCE_CFG is shown in Figure 44 and described in Table 19.  
Return to the Summary Table.  
26  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
Figure 44. SEQUENCE_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
SEQ_START  
R/W-0b  
RESERVED  
R-0b  
SEQ_MODE[1:0]  
R/W-0b  
Table 19. SEQUENCE_CFG Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
0b  
Description  
RESERVED  
SEQ_START  
Reserved. Reads return 0b.  
R/W  
0b  
Control for start of channel sequence when using auto sequence  
mode (SEQ_MODE = 01b).  
0b = Stop channel sequencing.  
1b = Start channel sequencing in ascending order for channels  
enabled in AUTO_SEQ_CH_SEL register.  
3-2  
1-0  
RESERVED  
R
0b  
0b  
Reserved. Reads return 0b.  
SEQ_MODE[1:0]  
R/W  
Selects the mode of scanning of analog input channels.  
0b = Manual sequence mode; channel selected by MANUAL_CHID  
field.  
1b  
=
Auto  
sequence  
mode;  
channel  
selected  
by  
AUTO_SEQ_CH_SEL.  
10b = On-the-fly sequence mode.  
11b = Reserved.  
7.5.12 CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]  
CHANNEL_SEL is shown in Figure 45 and described in Table 20.  
Return to the Summary Table.  
Figure 45. CHANNEL_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
MANUAL_CHID[3:0]  
R/W-0b  
Table 20. CHANNEL_SEL Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7-4  
3-0  
RESERVED  
Reserved. Reads return 0b.  
MANUAL_CHID[3:0]  
R/W  
0b  
In manual mode (SEQ_MODE = 00b), this field contains the 4-bit  
channel ID of the analog input channel for next ADC conversion. For  
valid ADC data, the selected channel must not be configured as  
GPIO in PIN_CFG register. 1xxx = Reserved.  
0b = AIN0  
1b = AIN1  
10b = AIN2  
11b = AIN3  
100b = AIN4  
101b = AIN5  
110b = AIN6  
111b = AIN7  
7.5.13 AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]  
AUTO_SEQ_CH_SEL is shown in Figure 46 and described in Table 21.  
Return to the Summary Table.  
Copyright © 2019, Texas Instruments Incorporated  
27  
 
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 46. AUTO_SEQ_CH_SEL Register  
7
6
5
4
3
2
1
0
AUTO_SEQ_CH_SEL[7:0]  
R/W-0b  
Table 21. AUTO_SEQ_CH_SEL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
AUTO_SEQ_CH_SEL[7:0] R/W  
0b  
Select analog input channels AIN[7:0] in for auto sequencing mode.  
0b = Analog input channel is not enabled in scanning sequence.  
1b = Analog input channel is enabled in scanning sequence.  
28  
版权 © 2019, Texas Instruments Incorporated  
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register analog-to-digital converter (SAR ADC) are the input driver and the reference driver circuits. This section  
details some general principles for designing the input driver circuit, reference driver circuit, and provides some  
application circuits designed for the TLA2518.  
8.2 Typical Applications  
8.2.1 Mixed-Channel Configuration  
AVDD (VREF  
)
Digital Output (open-drain)  
Digital Output (push-pull)  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
SPI  
Controller  
Device  
Digital Input  
Digital Input  
47. DAQ Circuit: Single-Supply DAQ  
8.2.1.1 Design Requirements  
The goal of this application is to configure some channels of the TLA2518 as digital inputs, open-drain digital  
outputs, and push-pull digital outputs.  
8.2.1.2 Detailed Design Procedure  
The TLA2518 can support GPIO functionality at each input pin. Any analog input pin can be independently  
configured as a digital input, a digital open-drain output, or a digital push-pull output though the PIN_CFG and  
GPIO_CFG registers; see 2.  
8.2.1.2.1 Digital Input  
The digital input functionality can be used to monitor a signal within the system. 48 illustrates that the state of  
the digital input can be read from the GPI_VALUE register.  
版权 © 2019, Texas Instruments Incorporated  
29  
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
ADC  
From input device  
GPIx  
GPIx  
SW  
AVDD  
48. Digital Input  
8.2.1.2.2 Digital Open-Drain Output  
The channels of the TLA2518 can be configured as digital open-drain outputs supporting an output voltage up to  
5.5 V. An open-drain output, as shown in 49, consists of an internal FET (Q) connected to ground. The output  
is idle when not driven by the device, which means Q is off and the pullup resistor, RPULL_UP, connects the GPOx  
node to the desired output voltage. The output voltage can range anywhere up to 5.5 V, depending on the  
external voltage that the GPIOx is pulled up to. When the device is driving the output, Q turns on, thus  
connecting the pullup resistor to ground and bringing the node voltage at GPOx low.  
VPULL_UP  
Receiving Device  
ADC  
RPULL_UP  
GPOx  
ILOAD  
Q
49. Digital Open-Drain Output  
The minimum value of the pullup resistor, as calculated in 公式 3, is given by the ratio of VPULL_UP and the  
maximum current supported by the device digital output (5 mA).  
RMIN = (VPULL_UP / 5 mA)  
(3)  
The maximum value of the pullup resistor, as calculated in 公式 4, depends on the minimum input current  
requirement, ILOAD, of the receiving device driven by this GPIO.  
RMAX = (VPULL_UP / ILOAD  
)
(4)  
Select RPULL_UP such that RMIN < RPULL_UP < RMAX  
.
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
Typical Applications (接下页)  
8.2.1.2.3 Application Curve  
45000  
30000  
15000  
0
39581  
25955  
2048  
2049  
C001  
Output Code  
Standard deviation = 0.49 LSB  
50. DC Input Histogram  
8.2.2 Digital Push-Pull Output Configuration  
The channels of the TLA2518 can be configured as digital push-pull outputs supporting an output voltage up to  
AVDD. As shown in 51, a push-pull output consists of two mirrored opposite bipolar transistors, Q1 and Q2.  
The device can both source and sink current because only one transistor is on at a time (either Q2 is on and  
pulls the output low, or Q1 is on and sets the output high). A push-pull configuration always drives the line  
opposed to an open-drain output where the line is left floating.  
ADC  
AVDD  
Q1  
GPOx  
Digital  
output  
Q2  
51. Digital Push-Pull Output  
版权 © 2019, Texas Instruments Incorporated  
31  
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 AVDD and DVDD Supply Recommendations  
The TLA2518 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is  
used for the interface circuits. For supplies greater than 2.35 V, AVDD and DVDD can be shorted externally if  
single-supply operation is desired. The AVDD supply also defines the full-scale input range of the device.  
Decouple the AVDD and DVDD pins individually, as illustrated in 52, with 1-µF ceramic decoupling capacitors.  
The minimum capacitor value required for AVDD and DVDD is 200 nF and 20 nF, respectively. If both supplies  
are powered from the same source, a minimum capacitor value of 220 nF is required for decoupling.  
AVDD  
AVDD  
GND  
1 mF  
1 mF  
DVDD  
DVDD  
52. Power-Supply Decoupling  
32  
版权 © 2019, Texas Instruments Incorporated  
 
TLA2518  
www.ti.com.cn  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
10 Layout  
10.1 Layout Guidelines  
53 shows a board layout example for the TLA2518. Avoid crossing digital lines with the analog signal path and  
keep the analog input signals and the AVDD supply away from noise sources.  
Use 1-µF ceramic bypass capacitors in close proximity to the analog (AVDD) and digital (DVDD) power-supply  
pins. Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors. Connect the GND pin to  
the ground plane using short, low-impedance paths. The AVDD supply voltage also functions as the reference  
voltage for the TLA2518. Place the decoupling capacitor (CREF) for AVDD close to the device AVDD and GND  
pins and connect CREF to the device pins with thick copper tracks.  
10.2 Layout Example  
SCLK  
SDI  
DECAP  
AVDD  
AIN/GPIO  
53. Example Layout  
版权 © 2019, Texas Instruments Incorporated  
33  
 
TLA2518  
ZHCSJX7A JUNE 2019REVISED DECEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
34  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLA2518IRTER  
TLA2518IRTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
2518  
2518  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Dec-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLA2518IRTER  
TLA2518IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Dec-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLA2518IRTER  
TLA2518IRTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLA2528

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLA2528IRTER

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLA2528IRTET

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLA25GMA

Uplink Far Field Noise Suppression & Downlink SNR Enhancing Microphone Amplifier with Earpiece Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLA290LP

Telecom Filter, 8 Function(s), DIP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

TLA290LS

Telecom Filter, 8 Function(s)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

TLA3700

Audio Line Matching Transformer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
FILTRAN

TLA3700-1

Audio Line Matching Transformer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
FILTRAN

TLA3700-2

Audio Line Matching Transformer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
FILTRAN

TLA3700-2

General Purpose Audio Transformer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
APITECH

TLA3853

Audio Line Matching Transformer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
FILTRAN

TLA3853-1

Audio Line Matching Transformer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
FILTRAN