TLC2652Y [TI]

Advanced LinCMOSE PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS; 高级LinCMOSE精密斩波稳定运算放大器
TLC2652Y
型号: TLC2652Y
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced LinCMOSE PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
高级LinCMOSE精密斩波稳定运算放大器

运算放大器 放大器电路 斩波器
文件: 总31页 (文件大小:474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
D008, JG, OR P PACKAGE  
Extremely Low Offset Voltage . . . 1 µV Max  
(TOP VIEW)  
Extremely Low Change on Offset Voltage  
With Temperature . . . 0.003 µV/°C Typ  
C
C
V
1
2
3
4
8
7
6
5
XA  
XB  
Low Input Offset Current  
IN–  
IN+  
DD+  
500 pA Max at T = – 55°C to 125°C  
A
OUT  
A
. . . 135 dB Min  
V
CLAMP  
VD  
DD–  
CMRR and k  
. . . 120 dB Min  
SVR  
D014, J, OR N PACKAGE  
(TOP VIEW)  
Single-Supply Operation  
Common-Mode Input Voltage Range  
Includes the Negative Rail  
C
C
INT/EXT  
CLK IN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XB  
XA  
No Noise Degradation With External  
NC  
IN–  
IN+  
NC  
CLK OUT  
Capacitors Connected to V  
DD–  
V
DD+  
OUT  
description  
CLAMP  
C RETURN  
The TLC2652 and TLC2652A are high-precision  
chopper-stabilized operational amplifiers using  
Texas Instruments Advanced LinCMOS  
process. This process in conjunction with unique  
chopper-stabilization circuitry produces opera  
tional amplifiers whose performance matches or  
exceeds that of similar devices available today.  
V
8
DD–  
FK PACKAGE  
(TOP VIEW)  
Chopper-stabilization techniques make possible  
extremely high dc precision by continuously  
nulling input offset voltage even during variation in  
temperature, time, common-mode voltage, and  
power supply voltage. In addition, low-frequency  
noise voltage is significantly reduced. This high  
precision, coupled with the extremely high input  
impedance of the CMOS input stage, makes the  
TLC2652 and TLC2652A an ideal choice for  
low-level signal processing applications such as  
strain gauges, thermocouples, and other  
transducer amplifiers. For applications that  
require extremely low noise and higher usable  
bandwidth, use the TLC2654 or TLC2654A  
device, which has a chopping frequency of  
10 kHz.  
3
4
2
1
20 19  
18  
CLK OUT  
NC  
NC  
V
NC  
IN–  
NC  
17  
5
6
7
8
16  
15  
14  
DD+  
NC  
OUT  
IN+  
9 10 11 12 13  
NC – No internal connection  
The TLC2652 and TLC2652A input common-mode range includes the negative rail, thereby providing superior  
performance in either single-supply or split-supply applications, even at power supply voltage levels as low as  
±1.9 V.  
Two external capacitors are required for operation of the device; however, the on-chip chopper-control circuitry  
is transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is made accessible  
to allow the user the option of controlling the clock frequency with an external frequency source. In addition, the  
clock threshold level of the TLC2652 and TLC2652A requires no level shifting when used in the single-supply  
configuration with a normal CMOS or TTL clock input.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production  
processing does not necessarily include testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
description (continued)  
Innovative circuit techniques are used on the TLC2652 and TLC2652A to allow exceptionally fast overload  
recovery time. If desired, an output clamp pin is available to reduce the recovery time even further.  
The device inputs and output are designed to withstand 100-mA surge currents without sustaining latch-up.  
Additionally the TLC2652 and TLC2652A incorporate internal ESD-protection circuits that prevent functional  
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be  
exercised in handling these devices as exposure to ESD may result in degradation of the device parametric  
performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The Q-suffix devices are characterized for operation from 40°C to125°C.  
The M-suffix devices are characterized for operation over the full military temperature range of 55°C to125°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
8 PIN  
14 PIN  
20 PIN  
CHIP  
FORM  
(Y)  
V
max  
IO  
T
A
SMALL  
OUTLINE  
(D008)  
CERAMIC  
DIP  
(JG)  
PLASTIC  
DIP  
SMALL  
OUTLINE  
(D014)  
CERAMIC  
DIP  
PLASTIC  
DIP  
CHIP  
CARRIER  
(FK)  
AT 25°C  
(P)  
(J)  
(N)  
0°C  
to  
70°C  
1 µV  
3 µV  
TLC2652AC-8D  
TLC2652C-8D  
TLC2652ACP TLC2652AC-14D  
TLC2652ACN  
TLC2652CN  
TLC2652Y  
TLC2652CP  
TLC2652C-14D  
40°C  
to  
85°C  
1 µV  
3 µV  
TLC2652AI-8D  
TLC2652A-8D  
TLC2652AIP  
TLC2652IP  
TLC2652AI-14D  
TLC2652I-14D  
TLC2652AIN  
TLC2652IN  
40°C  
to  
125°C  
3.5 µV  
TLC2652Q-8D  
55°C  
to  
125°C  
3 µV  
3.5 µV  
TLC2652AM-8D TLC2652AMJG TLC2652AMP TLC2652AM-14D TLC2652AMJ TLC2652AMN TLC2652AMFK  
TLC2652M-8D TLC2652MJG TLC2652MP TLC2652M-14D TLC2652MJ TLC2652MN TLC2652MFK  
The D008 and D014 packages are available taped and reeled. Add R suffix to the device type (e.g., TLC2652AC-8DR). Chips are tested at 25°C.  
functional block diagram  
DISTRIBUTION OF TLC2652  
INPUT OFFSET VOLTAGE  
V
DD+  
7
36  
32  
150 Units Tested From 1 Wafer Lot  
= ±5 V  
5
6
Clamp  
Circuit  
V
DD±  
= 25°C  
CLAMP  
OUT  
T
A
3
2
IN+  
IN–  
28  
24  
N Package  
+
C
IC A  
Main  
B
B
A
20  
16  
12  
8
+
Compensation-  
Biasing  
A
B
Circuit  
Null  
External Components  
C
C
XA  
XB  
4
8
4
0
C RETURN  
V
DD–  
–3  
–2  
V
–1  
0
1
2
3
– Input Offset Voltage – µV  
Pin numbers shown are for the D (14 pin), JG, and N packages.  
IO  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TLC2652Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLC2652C. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(13)  
(14)  
(12)  
(11)  
(10)  
(9)  
(8)  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
T max = 150°C  
J
80  
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
(1)  
PIN (7) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
FOR THE PINOUT, SEE THE FUNCTIONAL  
BLOCK DIAGRAM.  
(2)  
(4)  
(5)  
(7)  
90  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage V  
Supply voltage V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
DD+  
DD–  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16 V  
ID  
Input voltage, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±8 V  
I
Voltage range on CLK IN and INT/EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
– to V  
+ 5.2 V  
DD  
DD–  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
O
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Current into CLK IN and INT/EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or JG package . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V  
.
DD+  
DD–  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D008  
D014  
FK  
J
725 mV  
5.8 mW/°C  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
12.6 mW/°C  
8.0 mW/°C  
464 mW  
608 mW  
880 mW  
880 mW  
672 mW  
1008 mW  
640 mW  
377 mW  
494 mW  
715 mW  
715 mW  
546 mW  
819 mW  
520 mW  
145 mW  
190 mW  
275 mW  
275 mW  
210 mW  
315 mW  
200 mW  
950 mV  
1375 mV  
1375 mV  
1050 mV  
1575 mV  
1000 mV  
JG  
N
P
recommended operating conditions  
C SUFFIX  
I SUFFIX  
Q SUFFIX  
M SUFFIX  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
±1.9  
MAX  
Supply voltage, V  
±1.9  
±8  
±1.9  
±8  
±1.9  
±8  
±8  
V
V
DD±  
Common-mode input voltage, V  
Clock input voltage  
V
V
1.9  
V
V
V
DD+  
1.9  
V
V
1.9  
V
V
1.9  
IC  
DDDD+  
DD–  
DDDD+  
DDDD+  
V
V
DD–  
70  
+5  
V
DD–  
85  
+5  
V
V
DD–  
125  
+5  
V
V
DD–  
125  
+5  
V
DD–  
0
DD–  
40  
DD–  
40  
DD–  
55  
Operating free-air temperature, T  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
electrical characteristics at specified free-air temperature, V ± = ±5 V (unless otherwise noted)  
DD  
TLC2652C  
MIN TYP MAX  
TLC2652AC  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
25°C  
0.6  
3
0.5  
1
V
IO  
Input offset voltage  
µV  
Full range  
4.35  
2.35  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.003  
0.03  
0.06  
0.003  
0.03 µV/°C  
0.02 µV/mo  
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.003  
2
0.003  
2
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
pA  
IO  
100  
100  
100  
4
4
pA  
IB  
Full range  
100  
–5  
to  
3.1  
–5  
to  
3.1  
Common-mode input voltage  
range  
V
ICR  
R
= 50 Ω  
Full range  
V
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.7  
4.7  
4.8  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 kΩ,  
= 10 kΩ,  
= ±4 V,  
See Note 5  
See Note 5  
V
V
OM+  
L
L
4.7 4.9  
4.7  
4.7 4.9  
4.7  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
120  
120  
150  
135  
130  
150  
Large-signal differential  
voltage amplification  
A
VD  
V
O
R = 10 kΩ  
L
dB  
Hz  
µA  
Full range  
25°C  
f
ch  
Internal chopping frequency  
Clamp on-state current  
450  
450  
25°C  
25  
25  
25  
25  
R
= 100 kΩ  
L
Full range  
25°C  
100  
100  
100  
pA  
Clamp off-state current  
V
O
= 4 V to 4 V  
= 0,  
Full range  
100  
V
V
R
25°C  
120  
120  
140  
120  
120  
140  
O
IC  
Common-mode rejection  
ratio  
CMRR  
dB  
dB  
= V  
= 50 Ω  
min,  
ICR  
Full range  
S
V
V
= ±1.9 V to ±8 V,  
25°C  
120  
120  
135  
1.5  
120  
120  
135  
1.5  
Supply-voltage rejection ratio  
DD±  
k
SVR  
(V  
DD±  
/V )  
IO  
= 0,  
R
= 50 Full range  
25°C  
O
S
2.4  
2.5  
2.4  
mA  
2.5  
I
Supply current  
DD  
Full range  
Full range is 0° to 70°C.  
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°Cextrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
5. Output clamp is not connected.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
operating characteristics specified free-air temperature, V  
= ±5 V  
DD±  
TLC2652C  
TLC2652AC  
TEST  
CONDITIONS  
PARAMETER  
T
A
UNIT  
V/µs  
V/µs  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
2
1.5  
2.3  
1.8  
2.8  
2
1.5  
2.3  
1.8  
2.8  
SR+  
SR–  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V
R
C
= ±2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
3.1  
3.1  
Full range  
25°C  
f = 10 Hz  
94  
23  
94  
23  
140  
35  
Equivalent input noise voltage  
(see Note 6)  
V
n
nV/Hz  
f = 1 kHz  
25°C  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 10 kHz  
f = 10 kHz,  
25°C  
0.8  
0.8  
Peak-to-peak equivalent input  
noise voltage  
V
µV  
N(PP)  
25°C  
2.8  
2.8  
I
n
Equivalent input noise current  
25°C  
0.004  
0.004  
fA/Hz  
Gain-bandwidth product  
25°C  
25°C  
1.9  
1.9  
MHz  
R
C
= 10 k,  
= 100 pF  
L
L
R
C
= 10 k,  
= 100 pF  
L
L
Phase margin at unity gain  
48°  
48°  
φm  
Full range is 0° to 70°C.  
NOTE 6: This parameter is tested on a sample basis for the TLC2652A. For other test requirements, please contact the factory. This statement  
has no bearing on testing or nontesting of other parameters.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
electrical characteristics at specified free-air temperature, V ± = ±5 V (unless otherwise noted)  
DD  
TLC2652I  
TYP  
TLC2652AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
3
MIN  
TYP  
MAX  
1
25°C  
0.6  
0.5  
V
IO  
Input offset voltage  
µV  
Full range  
4.95  
2.95  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.003  
0.03  
0.06  
0.003  
0.03 µV/°C  
0.02 µV/mo  
VIO  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.003  
2
0.003  
2
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
pA  
IO  
150  
150  
150  
4
4
pA  
IB  
Full range  
150  
–5  
to  
3.1  
–5  
to  
3.1  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
Full range  
V
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.9  
150  
4.7  
4.7  
4.8  
4.9  
150  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 kΩ, See Note 5  
= 10 kΩ, See Note 5  
V
V
OM+  
L
L
4.7  
4.7  
120  
120  
4.7  
4.7  
135  
125  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
Large-signal differential  
voltage amplification  
A
VD  
V
O
= ±4 V,  
R = 10 kΩ  
L
dB  
Hz  
µA  
Full range  
25°C  
Internal chopping frequency  
Clamp on-state current  
450  
450  
25°C  
25  
25  
25  
25  
R
= 100 kΩ  
L
Full range  
25°C  
100  
100  
100  
pA  
Clamp off-state current  
V
O
= 4 V to 4 V  
= 0,  
Full range  
100  
V
V
R
25°C  
120  
120  
140  
120  
120  
140  
O
IC  
Common-mode rejection  
ratio  
CMRR  
dB  
dB  
= V  
= 50 Ω  
min,  
ICR  
Full range  
S
V
V
= ±1.9 V to ±8 V,  
25°C  
Full range  
25°C  
120  
120  
135  
1.5  
120  
120  
135  
1.5  
Supply-voltage rejection  
DD±  
k
SVR  
ratio (V  
DD±  
/V )  
IO  
= 0,  
R = 50 Ω  
S
O
O
2.4  
2.5  
2.4  
mA  
2.5  
I
Supply current  
V
= 0,  
No load  
DD  
Full range  
Full range is 40° to 85°C.  
NOTES: 4. Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT = 150°Cextrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
5. Output clamp is not connected.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
operating characteristics at specified free-air temperature, V  
= ±5 V  
DD±  
TLC2652I  
TYP  
TLC2652AI  
TEST  
CONDITIONS  
PARAMETER  
T
A
UNIT  
V/µs  
V/µs  
MIN  
2
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
2.8  
2
1.4  
2.3  
1.7  
2.8  
SR+  
SR–  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V
R
C
= ±2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
1.4  
2.3  
1.7  
3.1  
3.1  
Full range  
25°C  
f = 10 Hz  
94  
23  
94  
23  
140  
35  
Equivalent input noise voltage  
(see Note 6)  
V
n
nV/Hz  
f = 1 kHz  
25°C  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 1 kHz  
25°C  
0.8  
0.8  
Peak-to-peak equivalent input  
noise voltage  
V
µV  
N(PP)  
25°C  
2.8  
2.8  
I
n
Equivalent input noise current  
25°C  
0.004  
0.004  
pA/Hz  
f = 10 kHz,  
Gain-bandwidth product  
25°C  
25°C  
1.9  
1.9  
MHz  
R
C
= 10 k,  
= 100 pF  
L
L
R
C
= 10 k,  
= 100 pF  
L
L
Phase margin at unity gain  
48°  
48°  
φm  
Full range is 40° to 85°C.  
NOTE 6: This parameter is tested on a sample basis for the TLC2652A. For other test requirements, please contact the factory. This statement  
has no bearing on testing or nontesting of other parameters.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
electrical characteristics at specified free-air temperature, V ± = ±5 V (unless otherwise noted)  
DD  
TLC2652Q  
TLC2652M  
TLC2652AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
25°C  
0.6  
0.5  
3
8
Input offset voltage  
(see Note 7)  
V
IO  
µV  
Full range  
10  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.003 0.03  
0.003 0.03  
µV/°C  
µV/mo  
pA  
VIO  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.003 0.06  
2
0.003 0.02  
2
V
= 0,  
R = 50 Ω  
S
IC  
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
IO  
500  
500  
4
4
pA  
V
IB  
Full range  
500  
500  
–5  
to  
3.1  
–5  
to  
3.1  
Common-mode input  
voltage range  
V
R
= 50 Ω  
Full range  
ICR  
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.9  
150  
4.7  
4.7  
4.8  
4.9  
150  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 kΩ, See Note 5  
= 10 kΩ, See Note 5  
V
V
OM+  
L
L
4.7  
4.7  
120  
120  
4.7  
4.7  
135  
120  
Maximum negative peak  
output voltage swing  
OM–  
Full range  
25°C  
Large-signal differential  
voltage amplification  
A
VD  
V
O
= ±4 V,  
R = 10 kΩ  
L
dB  
Hz  
µA  
Full range  
25°C  
f
ch  
Internal chopping frequency  
Clamp on-state current  
450  
450  
25°C  
25  
25  
25  
25  
V
O
= 5 V to 5 V  
Full range  
25°C  
100  
500  
100  
500  
Clamp off-state current  
R
V
= 100 kΩ  
pA  
dB  
L
Full range  
= 0,  
25°C  
120  
120  
140  
120  
120  
140  
O
IC  
R
Common-mode rejection  
ratio  
CMRR  
V
= V min,  
ICR  
Full range  
= 50 Ω  
S
V
V
= ±1.9 V to ±8 V,  
25°C  
Full range  
25°C  
120  
120  
135  
1.5  
120  
120  
135  
1.5  
Supply-voltage rejection  
DD±  
k
dB  
SVR  
ratio (V  
DD±  
/V )  
IO  
= 0,  
R = 50 Ω  
S
O
O
2.4  
2.5  
2.4  
2.5  
I
Supply current  
V
= 0,  
No load  
mA  
DD  
Full range  
On products compliant to MIL-PRF-38535, this parameter is not production tested.  
Full range is 40° to 125°C for Q suffix, 55° to 125°C for M suffix.  
NOTES: 4. Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT = 150°Cextrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
5. Output clamp is not connected.  
A
7. This parameter is not production tested. Thermocouple effects preclude measurement of the actual V  
of these devices in high  
IO  
speed automated testing. V is measured to a limit determined by the test equipment capability at the temperature extremes. The  
IO  
test ensures that the stabilization circuitry is performing properly.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
operating characteristics specified free-air temperature, V  
= ±5 V  
DD±  
TLC2652Q  
TLC2652M  
TLC2652AM  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
2
1.3  
2.3  
1.6  
2.8  
SR+  
SR–  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
Equivalent input noise voltage  
V/µs  
V/µs  
V
R
C
= ±2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
3.1  
Full range  
25°C  
f = 10 Hz  
94  
23  
V
n
nV/Hz  
f = 1 kHz  
25°C  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 1 kHz  
25°C  
0.8  
V
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
µV  
N(PP)  
25°C  
2.8  
I
n
25°C  
0.004  
pA/Hz  
f = 10 kHz,  
Gain-bandwidth product  
R
C
= 10 k,  
= 100 pF  
25°C  
25°C  
1.9  
MHz  
L
L
R
L
C
L
= 10 k,  
= 100 pF  
φ
m
Phase margin at unity gain  
48°  
Full range is 40° to 125°C for the Q suffix, 55° to 125°C for the M suffix.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
electrical characteristics at V  
= ±5 V, T = 25°C (unless otherwise noted)  
DD±  
A
TLC2652Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
IO  
Input offset voltage  
0.6  
3
µV  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
0.003 0.006 µV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
I
I
2
4
pA  
pA  
IO  
Input bias current  
IB  
–5  
to  
3.1  
V
ICR  
Common-mode input voltage range  
R
S
= 50 Ω  
V
V
V
Maximum positive peak output voltage swing  
Maximum negative peak output voltage swing  
Large-signal differential voltage amplification  
Internal chopping frequency  
R
R
= 10 kΩ,  
= 10 kΩ,  
= ±4 V,  
See Note 5  
See Note 5  
4.7  
4.7  
120  
4.8  
4.9  
150  
V
OM+  
L
L
V
OM–  
A
VD  
V
O
R
= 10 kΩ  
dB  
Hz  
µA  
pA  
L
f
ch  
450  
Clamp on-state current  
R
= 100 kΩ  
25  
L
Clamp off-state current  
V
O
= 4 V to 4 V  
100  
2.4  
V
R
= 0,  
= 50 Ω  
V
IC  
= V  
min,  
ICR  
O
CMRR Common-mode rejection ratio  
120  
120  
140  
dB  
S
V
DD±  
= ±1.9 V to ±8 V,  
k
Supply-voltage rejection ratio (V  
/V )  
IO  
135  
1.5  
dB  
SVR  
DD±  
R
= 50 Ω  
V
O
= 0,  
S
I
Supply current  
V
O
= 0,  
No load  
mA  
DD  
NOTES: 4. Typicalvaluesarebasedontheinputoffsetvoltageshiftobservedthrough168hoursofoperatinglifetestatT = 150°Cextrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
5. Output clamp is not connected.  
A
operating characteristics at V  
= ±5 V, T = 25°C  
A
DD±  
TLC2652Y  
TYP  
2.8  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
2
MAX  
SR+  
SR–  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V/µs  
V/µs  
V
C
= ±2.3 V,  
R
= 10 k,  
O
L
L
= 100 pF  
2.3  
3.1  
f = 10 Hz  
94  
V
n
Equivalent input noise voltage  
nV/Hz  
µV  
f = 1 kHz  
23  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 1 kHz  
0.8  
V
Peak-to-peak equivalent input noise voltage  
N(PP)  
2.8  
I
n
Equivalent input noise current  
Gain-bandwidth product  
pA/Hz  
f = 10 kHz,  
R
C
= 10 k,  
L
L
1.9  
MHz  
C
= 100 pF  
L
L
φ
m
Phase margin at unity gain  
R
= 10 k,  
= 100 pF  
48°  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
I
Normalized input offset voltage  
Input bias current  
vs Chopping frequency  
1
IO  
vs Common-mode input voltage  
vs Chopping frequency  
vs Free-air temperature  
2
3
4
IB  
vs Chopping frequency  
vs Free-air temperature  
5
6
I
IO  
Input offset current  
Clamp current  
vs Output voltage  
vs Frequency  
7
8
V
V
Maximum peak-to-peak output voltage  
(OPP)  
vs Output current  
vs Free-air temperature  
9, 10  
11, 12  
Maximum peak output voltage  
Large-signal differential voltage amplification  
Chopping frequency  
OM  
vs Frequency  
vs Free-air temperature  
13  
14  
A
VD  
vs Supply voltage  
vs Free-air temperature  
15  
16  
vs Supply voltage  
vs Free-air temperature  
17  
18  
I
I
Supply current  
DD  
vs Supply voltage  
vs Free-air temperature  
19  
20  
Short-circuit output current  
Slew rate  
OS  
vs Supply voltage  
vs Free-air temperature  
21  
22  
SR  
Small-signal  
Large-signal  
23  
24  
Pulse response  
V
V
Peak-to-peak equivalent input noise voltage  
Equivalent input noise voltage  
vs Chopping frequency  
vs Frequency  
25, 26  
27  
N(PP)  
n
vs Supply voltage  
vs Free-air temperature  
28  
29  
Gain-bandwidth product  
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
30  
31  
32  
φ
m
Phase margin  
Phase shift  
vs Frequency  
13  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
NORMALIZED INPUT OFFSET VOLTAGE  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
vs  
CHOPPING FREQUENCY  
70  
60  
25  
20  
V
V
T
A
= ±5 V  
V
T
= ±5 V  
= 25°C  
DD±  
= 0  
DD±  
A
IC  
= 25°C  
50  
40  
30  
15  
10  
5
20  
10  
0
–10  
0
100  
1 k  
10 k  
100 k  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
Chopping Frequency – Hz  
V
IC  
– Common-Mode Input Voltage – V  
Figure 1  
Figure 2  
INPUT BIAS CURRENT  
vs  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
CHOPPING FREQUENCY  
100  
70  
V
V
V
= ±5 V  
= 0  
= 0  
DD±  
O
IC  
V
= ±5 V  
DD±  
= 0  
V
IC  
= 25°C  
60  
50  
T
A
40  
30  
20  
10  
10  
0
1
25  
45  
65  
85  
105  
125  
100  
1 k  
10 k  
100 k  
Chopping Frequency – Hz  
T
A
– Free-Air Temperature – °C  
Figure 3  
Figure 4  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
INPUT OFFSET CURRENT  
vs  
INPUT OFFSET CURRENT  
vs  
CHOPPING FREQUENCY  
FREE-AIR TEMPERATURE  
10  
8
25  
20  
15  
10  
5
V
V
T
A
= ±5 V  
V
V
= ±5 V  
= 0  
IC  
DD±  
= 0  
DD±  
IC  
= 25°C  
6
4
2
0
0
100  
25  
45  
65  
85  
105  
125  
1 k  
10 k  
100 k  
Chopping Frequency – Hz  
T
A
– Free-Air Temperature – °C  
Figure 5  
Figure 6  
MAXIMUM PEAK-TO-PEAK OUTPUT  
CLAMP CURRENT  
vs  
VOLTAGE  
vs  
OUTPUT VOLTAGE  
FREQUENCY  
100 µA  
10 µA  
1 µA  
10  
8
V
DD±  
A
= ±5 V  
= 25°C  
T
T
= 55°C  
= 125°C  
Positive Clamp Current  
A
100 nA  
6
10 nA  
T
A
4
1 nA  
100 pA  
10 pA  
2
0
Negative Clamp Current  
V
R
= ±5 V  
DD±  
= 10 kΩ  
L
1 pA  
100  
1 k  
10 k  
1 M  
4
4.2  
4.4  
4.6  
4.8  
5
f – Frequency – Hz  
|V | – Output Voltage – V  
O
Figure 7  
Figure 8  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
5
4.8  
4.6  
7.5  
V
T
A
= ±5 V  
DD±  
= 25°C  
V
T
A
= ±7.5 V  
DD±  
= 25°C  
7.3  
7.1  
V
OM+  
V
OM–  
V
V
OM+  
OM–  
4.4  
4.2  
4
6.9  
6.7  
0
0.4  
0.8  
1.2  
1.6  
2
0
0.4  
0.8  
1.2  
1.6  
2
|I | – Output Current – mA  
O
|I | – Output Current – mA  
O
Figure 9  
Figure 10  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5
8
2.5  
4
0
V
R
= ±7.5 V  
= 10 kΩ  
V
= ±5 V  
DD±  
L
DD±  
R = 10 kΩ  
L
0
2.5  
–4  
–8  
–5  
50 25  
–75  
0
25  
50  
75 100 125  
50 25  
–75  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
120  
100  
60°  
80°  
Phase Shift  
80  
60  
100°  
120°  
A
VD  
40  
20  
140°  
160°  
180°  
200°  
220°  
0
20  
40  
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
DD±  
L
L
T
A
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f – Frequency – Hz  
Figure 13  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
155  
V
R
= ±7.5 V  
= 10 kΩ  
= ±4 V  
DD±  
L
V
O
150  
145  
140  
135  
50 25  
–75  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
Figure 14  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
CHOPPING FREQUENCY  
vs  
CHOPPING FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
460  
450  
440  
430  
420  
410  
400  
540  
520  
500  
480  
460  
440  
420  
V
= ±5 V  
DD±  
T
= 25°C  
A
–75 50 25  
0
25  
50  
75  
100 125  
0
1
2
3
4
5
6
7
8
T – Free-Air Temperature – °C  
A
|V | – Supply Voltage – V  
DD±  
Figure 15  
Figure 16  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
2
1.6  
1.2  
2
V
= 0  
O
V
V
= ±7.5 V  
= ±5 V  
DD±  
No Load  
1.6  
1.2  
0.8  
0.4  
0
DD±  
T
= 25°C  
A
V
DD±  
= ±2.5 V  
T
= 55°C  
= 125°C  
A
0.8  
0.4  
0
T
A
V
= 0  
O
No Load  
–75 50 25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
T
A
– Free-Air Temperature – °C  
|V | – Supply Voltage – V  
DD ±  
Figure 17  
Figure 18  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
12  
8
15  
10  
5
V
T
A
= 0  
= 25°C  
V = ±5 V  
DD±  
V = 0  
O
O
4
V
ID  
= 100 mV  
V
ID  
= 100 mV  
0
0
–5  
–4  
–8  
V
ID  
= 100 mV  
–10  
–15  
V
ID  
= 100 mV  
–12  
0
1
2
3
4
5
6
7
8
–75 50 25  
0
25  
50  
75  
100 125  
|V | – Supply Voltage – V  
DD ±  
T
A
– Free-Air Temperature – °C  
Figure 19  
Figure 20  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
4
3
4
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
DD±  
L
L
SR–  
SR+  
SR–  
SR+  
3
2
1
2
1
R
C
T
A
= 10 kΩ  
= 100 pF  
= 25°C  
L
L
0
0
–75 50 25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
T
A
– Free-Air Temperature – °C  
|V | – Supply Voltage – V  
DD±  
Figure 21  
Figure 22  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
4
3
100  
75  
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
DD±  
L
L
T
A
2
50  
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
= 25°C  
DD±  
L
L
1
25  
0
0
T
A
–1  
–2  
25  
50  
–3  
–4  
–75  
–100  
0
5
10 15 20 25 30 35 40  
0
1
2
3
4
5
6
7
t – Time – µs  
t – Time – µs  
Figure 23  
Figure 24  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
vs  
vs  
CHOPPING FREQUENCY  
CHOPPING FREQUENCY  
1.8  
5
V
= ±5 V  
DD±  
R = 20 Ω  
S
V
R
= ±5 V  
DD±  
= 20 Ω  
1.6  
1.4  
1.2  
S
f = 0 to 1 Hz  
T
A
f = 0 to 1 Hz  
T
A
4
3
2
1
0
= 25°C  
= 25°C  
1
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
f
ch  
– Chopping Frequency – kHz  
f
ch  
– Chopping Frequency – kHz  
Figure 25  
Figure 26  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
100  
2.1  
R
C
T
A
= 10 kΩ  
= 100 pF  
= 25°C  
L
L
80  
2
1.9  
1.8  
60  
40  
20  
0
V
R
T
A
= ±5 V  
DD±  
= 20 Ω  
S
= 25°C  
1
10  
100  
1 k  
0
1
2
3
4
5
6
7
8
f – Frequency – Hz  
|V | – Supply Voltage – V  
CC±  
Figure 27  
Figure 28  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
50°  
2.6  
2.4  
2.2  
2
R
C
T
A
= 10 kΩ  
= 100 pF  
= 25°C  
L
L
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
DD±  
L
L
48°  
46°  
44°  
42°  
40°  
1.8  
1.4  
1.2  
0
1
2
3
4
5
6
7
8
–75 50 25  
0
25  
50  
75  
100 125  
|V | – Supply Voltage – V  
CC±  
T
A
– Free-Air Temperature – °C  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
FREE-AIR TEMPERATURE  
50°  
60°  
V
R
T
A
= ±5 V  
DD±  
= 10 kΩ  
L
= 25°C  
50°  
40°  
48°  
46°  
30°  
20°  
10°  
44°  
42°  
40°  
V
R
C
= ±5 V  
= 10 kΩ  
= 100 pF  
DD±  
L
L
0°  
0
200  
400  
600  
800  
1000  
–75 50 25  
0
25  
50  
75 100 125  
C
– Load Capacitance – pF  
T
A
– Free-Air Temperature – °C  
L
Figure 31  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
APPLICATION INFORMATION  
capacitor selection and placement  
The two important factors to consider when selecting external capacitors C  
and C  
are leakage and  
XB  
XA  
dielectric absorption. Both factors can cause system degradation, negating the performance advantages  
realized by using the TLC2652.  
Degradation from capacitor leakage becomes more apparent with the increasing temperatures. Low-leakage  
capacitors and standoffs are recommended for operation at T = 125°C. In addition, guard bands are  
A
recommended around the capacitor connections on both sides of the printed circuit board to alleviate problems  
caused by surface leakage on circuit boards.  
Capacitorswithhighdielectricabsorptiontendtotakeseveralsecondstosettleuponapplicationofpower, which  
directly affects input offset voltage. In applications where fast settling of input offset voltage is needed, it is  
recommended that high-quality film capacitors, such as mylar, polystyrene, or polypropylene, be used. In other  
applications, however, a ceramic or other low-grade capacitor can suffice.  
Unlike many choppers available today, the TLC2652 is designed to function with values of C and C in the  
XA  
XB  
range of 0.1 µF to 1 µF without degradation to input offset voltage or input noise voltage. These capacitors  
should be located as close as possible to the C and C pins and returned to either V or C RETURN. On  
XA  
XB  
DD–  
many choppers, connecting these capacitors to V  
is eliminated on the TLC2652.  
causes degradation in noise performance. This problem  
DD–  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
APPLICATION INFORMATION  
internal/external clock  
The TLC2652 has an internal clock that sets the chopping frequency to a nominal value of 450 Hz. On 8-pin  
packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin packages  
and the 20-pin FK package, the device chopping frequency can be set by the internal clock or controlled  
externally by use of the INT/EXT and CLK IN pins. To use the internal 450-Hz clock, no connection is necessary.  
If external clocking is desired, connect INT/EXT to V  
and the external clock to CLK IN. The external clock  
DD–  
trip point is 2.5 V above the negative rail; however, CLK IN can be driven from the negative rail to 5 V above  
the negative rail. If this level is exceeded, damage could occur to the device unless the current into CLK IN is  
limitedto±5mA. Whenoperatinginthesingle-supplyconfiguration, thisfeatureallowstheTLC2652tobedriven  
directly by 5-V TTL and CMOS logic. A  
0
divide-by-two frequency divider interfaces with  
V
T
A
= ±5 V  
DD±  
= 25°C  
CLK IN and sets the clock chopping frequency.  
The duty cycle of the external is not critical but  
should be kept between 30% and 60%.  
overload recovery/output clamp  
–5  
0
When large differential input voltage conditions  
are applied to the TLC2652, the nulling loop  
attempts to prevent the output from saturating by  
drivingC andC tointernally-clampedvoltage  
XA  
XB  
levels. Once the overdrive condition is removed,  
a period of time is required to allow the built-up  
charge to dissipate. This time period is defined as  
overload recovery time (see Figure 33). Typical  
overload recovery time for the TLC2652 is  
significantly faster than competitive products;  
however, if required, this time can be reduced  
further by use of internal clamp circuitry  
accessible through CLAMP if required.  
50  
0
10 20 30 40 50 60 70 80  
t – Time – ms  
Figure 33. Overload Recovery  
The clamp is a switch that is automatically activated when the output is approximately 1 V from either supply  
rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the closed-loop  
gain is reduced, and the TLC2652 output is prevented from going into saturation. Since the output must source  
sink current through the switch (see Figure 7), the maximum output voltage swing is slightly reduced.  
thermoelectric effects  
To take advantage of the extremely low offset voltage drift of the TLC2652, care must be taken to compensate  
for the thermoelectric effects present when two dissimilar metals are brought into contact with each other (such  
as device leads being soldered to a printed circuit board). Dissimilar metal junctions can produce thermoelectric  
voltages in the range of several microvolts per degree Celsius (orders of magnitude greater than the 0.01-µV/°C  
typical of the TLC2652).  
To help minimize thermoelectric effects, careful attention should be paid to component selection and  
circuit-board layout. Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the  
input signal path. Cancel thermoelectric effects by duplicating the number of components and junctions in each  
device input. The use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also  
beneficial.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
APPLICATION INFORMATION  
latch-up avoidance  
BecauseCMOSdevicesaresusceptibletolatch-upduetotheirinherentparasiticthyristors, theTLC2652inputs  
andoutputaredesignedtowithstand100-mAsurgecurrentswithoutsustaininglatch-up;however, techniques  
to reduce the chance of latch-up should be used whenever possible. Internal protection diodes should not, by  
design, be forward biased. Applied input and output voltages should not exceed the supply voltage by more than  
300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients  
should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails as close  
to the device as possible.  
The current path established if latch-up occurs is usually between the supply rails and is limited only by the  
impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latch-up  
occurring increases with increasing temperature and supply voltage.  
electrostatic discharge protection  
The TLC2652 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or  
below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in  
degradation of the device parametric performance.  
theory of operation  
Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational amplifier.  
This superior performance is the result of using two operational amplifiers, a main amplifier and a nulling  
amplifier, plus oscillator-controlled logic and two external capacitors to create a system that behaves as a single  
amplifier. With this approach, the TLC2652 achieves submicrovolt input offset voltage, submicrovolt noise  
voltage, and offset voltage variations with temperature in the nV/°C range.  
The TLC2652 on-chip control logic produces two dominant clock phases: a nulling phase and an amplifying  
phase. The term chopper-stabilized derives from the process of switching between these two clock phases.  
Figure 34 shows a simplified block diagram of the TLC2652. Switches A and B are make-before-break types.  
During the nulling phase, switch A is closed shorting the nulling amplifier inputs together and allowing the nulling  
amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input node.  
Simultaneously, external capacitor C stores the nulling potential to allow the offset voltage of the amplifier to  
XA  
remain nulled during the amplifying phase.  
Main Amplifier  
IN+  
IN–  
+
V
O
B
C
XB  
B
A
+
V
DD–  
Null  
Amplifier  
A
C
XA  
Figure 34. TLC2652 Simplified Block Diagram  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
APPLICATION INFORMATION  
theory of operation (continued)  
During the amplifying phase, switch B is closed connecting the output of the nulling amplifier to a noninverting  
input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also,  
external capacitor C  
nulled during the next nulling phase.  
stores the nulling potential to allow the offset voltage of the main amplifier to remain  
XB  
This continuous chopping process allows offset voltage nulling during variations in time and temperature over  
the common-mode input voltage range and power supply range. In addition, because the low-frequency signal  
path is through both the null and main amplifiers, extremely high gain is achieved.  
The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to  
choppingandthecapabilityofthecircuittoreducethisnoisewhilechopping. TheuseoftheAdvancedLinCMOS  
process, with its low-noise analog MOS transistors and patent-pending input stage design, significantly reduces  
the input noise voltage.  
The primary source of nonideal operation in chopper-stabilized amplifiers is error charge from the switches. As  
charge imbalance accumulates on critical nodes, input offset voltage can increase, especially with increasing  
chopping frequency. This problem has been significantly reduced in the TLC2652 by use of a patent-pending  
compensation circuit and the Advanced LinCMOS process.  
The TLC2652 incorporates a feed-forward design that ensures continuous frequency response. Essentially, the  
gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency of the  
main amplifier. As a result, the high-frequency response of the system is the same as the frequency response  
of the main amplifier. This approach also ensures that the slewing characteristics remain the same during both  
the nulling and amplifying phases.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
MECHANICAL DATA  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
18 17 16 15 14 13 12  
TERMINALS  
MIN  
MAX  
MIN  
MAX  
**  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
21  
22  
23  
24  
25  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
B SQ  
A SQ  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
MECHANICAL DATA  
J (R-GDIP-T**)  
CERAMIC DUAL-IN-LINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
A MAX  
B
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
14  
8
0.785  
0.785  
0.910  
0.975  
(19,94) (19,94) (23,10) (24,77)  
C
0.755  
(19,18) (19,18)  
0.755  
0.930  
(23,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
1
7
0.065 (1,65)  
0.045 (1,14)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.100 (2,54)  
0.070 (1,78)  
0.020 (0,51) MIN  
A
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0.100 (2,54)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.014 (0,36)  
0.008 (0,20)  
4040083/D 08/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
MECHANICAL DATA  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE PACKAGE  
0.400 (10,20)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.063 (1,60)  
0.015 (0,38)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL-STD-1835 GDIP1-T8  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23.37)  
0.975  
(24,77)  
A MAX  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21.59)  
0.940  
(23,88)  
A MIN  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14/18 PIN ONLY  
4040049/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2652, TLC2652A, TLC2652Y  
Advanced LinCMOS PRECISION CHOPPER-STABILIZED  
OPERATIONAL AMPLIFIERS  
SLOS019C – SEPTEMBER 1988 – REVISED FEBRUARY 1999  
MECHANICAL DATA  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLC2654

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654A

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC-14D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC-14DR

OP-AMP, 24uV OFFSET-MAX, 1.9MHz BAND WIDTH, PDSO14, PLASTIC, SOIC-14
TI

TLC2654AC-8D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC-8DG4

Advanced LinCMOS(TM) Low-Noise Chopper-Stabilized Operational Amplifier 8-SOIC
TI

TLC2654AC-8DR

Advanced LinCMOS(TM) Low-Noise Chopper-Stabilized Operational Amplifier 8-SOIC
TI

TLC2654AC14D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC8D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654ACL

OP-AMP, 24uV OFFSET-MAX, 1.9MHz BAND WIDTH, MBCY8, HERMETIC SEALED, METAL CAN-8
TI

TLC2654ACN

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654ACP

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI