TLC2942IDBLE [TI]

High-Performance Dual Phase-Locked Loop Building Block 38-SSOP;
TLC2942IDBLE
型号: TLC2942IDBLE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

High-Performance Dual Phase-Locked Loop Building Block 38-SSOP

文件: 总28页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
DB PACKAGE  
Dual TLC2932 by Multichip Module (MCM)  
Technology  
(TOP VIEW)  
Voltage-Controlled Oscillator (VCO)  
Section:  
– Complete Oscillator Using Only One  
LOGIC V  
VCO V  
BIAS1  
1
DD1  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
DD1  
SELECT1  
2
VCO OUT1  
VCOIN1  
VCO GND1  
VCOINHIBIT1  
PFD INHIBIT1  
NC  
3
External Bias Resistor (R  
)
BIAS  
F
F
–A1  
–B1  
4
IN  
– Recommended Lock Frequency Range:  
22 MHz to 50 MHz (V = 5 V ±5%,  
5
IN  
DD  
PFD OUT1  
6
T = 20°C to 75°C, ×1 Output)  
A
LOGIC GND1  
7
11 MHz to 25 MHz (V  
= 5 V ±5%,  
DD  
GND  
NC  
GND  
8
T = 20°C to 75°C, ×1/2 Output)  
A
NC  
9
– Output Frequency . . . ×1 and ×1/2  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
Selectable  
NC  
NC  
Includes a High-Speed Edge-Triggered  
Phase Frequency Detector (PFD) With  
Internal Charge Pump  
GND  
GND  
LOGIC V  
VCO V  
DD2  
DD2  
SELECT2  
BIAS2  
Independent VCO, PFD Power-Down Mode  
VCO OUT2  
VCOIN2  
F
F
–A2  
VCO GND2  
VCOINHIBIT2  
PFD INHIBIT2  
NC  
IN  
description  
–B2 17  
IN  
PFD OUT2 18  
The TLC2942 is a multichip module product that  
uses two TLC2932 chips. The TLC2932 chip is  
composed of a voltage-controlled oscillator and  
an edge-triggered phase frequency detector. The  
oscillation frequency range of each VCO is set by  
LOGIC GND2 19  
NC – No internal connection  
an external bias resistor (R  
) and each VCO output can be a ×1 or ×1/2 output frequency. Each high speed  
BIAS  
PFD with internal charge pump detects the phase difference between the reference frequency input and signal  
frequency input from the external counter. The VCO and the PFD have inhibit functions that can be used as a  
power-down mode. The high-speed and stable oscillation capability of the TLC2932 makes the TLC2942  
suitable for use in dual high-performance phase-locked loop (PLL) systems.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SMALL OUTLINE  
(DB)  
–20°C to 75°C  
TLC2942IDB  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
functional block diagram  
VCO  
INHIBIT1  
VCO  
INHIBIT2  
VCO OUT1 VCO OUT2  
SELECT1  
SELECT2  
14 22  
34  
2
3
15  
24  
36  
VCO_1  
VCO_2  
VCOIN1  
VCOIN2  
16  
17  
4
5
F
F
–A2  
–B2  
F
F
–A1  
–B1  
IN  
IN  
PFD_1  
33  
PFD_2  
21  
IN  
IN  
6
18  
PFD OUT1 PFD OUT2  
PFD INHIBIT1 PFD INHIBIT2  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
Terminal Functions  
TERMINAL  
NAME  
BIAS1  
I/  
O
DESCRIPTION  
NO.  
37  
I
VCO1 bias supply. An external resistor (R  
the oscillation frequency range.  
1) between VCO V  
BIAS  
and BIAS1 supplies bias for adjusting  
and BIAS2 supplies bias for adjusting  
DD1  
BIAS2  
25  
I
VCO2 bias supply. An external resistor (R  
the oscillation frequency range.  
) between VCO V  
BIAS2  
DD2  
F
IN  
F
IN  
F
IN  
–A1  
–A2  
–B1  
4
16  
5
I
I
I
Input reference frequency 1. The frequency f(REF IN)1 is applied to F -A1.  
IN  
Input reference frequency 2. The frequency f(REF IN)2 is applied to F -A2.  
IN  
Input for VCO1 external counter output frequency f(F -B)1. F -B1 is nominally provided from the external  
IN IN  
counter (see Figure 28).  
F
IN  
–B2  
17  
I
Input for VCO2 external counter output frequency f(F -B)2. F -B2 is nominally provided from the external  
IN IN  
counter (see Figure 28).  
GND  
8, 12,  
27,31  
Ground  
LOGIC V  
LOGIC V  
1
Logic1 supply voltage. LOGIC V  
from the other supply lines to reduce cross-coupling between power supplies.  
supplies voltage to internal logic 1. LOGIC V  
should be separate  
should be separate  
DD1  
DD2  
DD1  
DD1  
13  
Logic2 supply voltage. LOGIC V supplies voltage to internal logic 2. LOGIC V  
from the other supply lines to reduce cross-coupling between power supplies.  
DD2  
DD2  
LOGIC GND1  
LOGIC GND2  
NC  
7
Ground for the internal logic 1  
19  
Ground for the internal logic 2  
9, 10, 11,  
20, 28,  
29, 30,  
32  
No internal connection  
PFD INHIBIT1  
PFD INHIBIT2  
33  
I
I
PFD inhibit 1 control. When PFD INHIBIT1 is high, PFD OUT1 is in the high-impedance state (see  
Table 4).  
21  
PFD inhibit 2 control. When PFD INHIBIT2 is high, PFD OUT2 is in the high-impedance state (see  
Table 5).  
PFD OUT1  
PFD OUT2  
SELECT1  
6
18  
2
O
O
I
PFD1 output. When the PFD INHIBIT1 is high, PFD OUT1 is in the high-impedance state.  
PFD2 output. When the PFD INHIBIT2 is high, PFD OUT2 is in the high-impedance state.  
VCO1 output frequency select. When SELECT1 is high, the VCO1 output frequency is 1/2 and when  
SELECT1 is low, the output frequency is 1 (see Table 1).  
SELECT2  
14  
I
VCO2 output frequency select. When SELECT2 is high, the VCO2 output frequency is 1/2 and when  
SELECT2 is low, the output frequency is 1 (see Table 1).  
VCO GND1  
VCO GND2  
VCOINHIBIT1  
VCOINHIBIT2  
VCO OUT1  
VCO OUT2  
35  
23  
34  
22  
3
Ground for VCO1  
Ground for VCO2  
I
VCO1 inhibit control. When VCOINHIBIT1 is high, VCO OUT1 is low (see Table 2).  
VCO2 inhibit control. When VCOINHIBIT2 is high, VCO OUT2 is low (see Table 3).  
VCO1 output. When VCOINHIBIT1 is high, VCO OUT1 is low.  
VCO2 output. When VCOINHIBIT2 is high, VCO OUT2 is low.  
O
O
15  
38  
VCO V  
VCO1 supply voltage. VCO V  
DD1  
supplies voltage for VCO1. VCO V  
should be separated from LOGIC  
DD1  
DD1  
V
DD1  
and LOGIC V  
and VCO V 2 to reduce cross-coupling between power supplies.  
DD2  
DD  
VCO V  
26  
36  
24  
VCO2 supply voltage. VCO V  
supplies voltage for VCO2. VCO V  
should be separated from LOGIC  
DD2  
DD2  
DD2  
V
DD1  
and LOGIC V  
DD2  
and VCO V 1 to reduce cross-coupling between power supplies.  
DD  
VCOIN1  
VCOIN2  
I
I
VCO1 control voltage input. Nominally the external loop filter output1 connects to VCOIN1 to control VCO1  
oscillation frequency.  
VCO2 control voltage input. Nominally the external loop filter output2 connects to VCOIN2 to control VCO2  
oscillation frequency.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
detailed description  
multichip module  
TheTLC2942isamultichipmodule(MCM)productthatusestwoTLC2932chips. Anewlydevelopedleadframe  
for TLC2942IBD is specially shaped and cut in the package to electrically isolate one chip from another. The  
two chips are completely independent from each other to perform the best stable oscillation and locking. If  
asynchronouslockingoperationisrequiredforthesetwoPLLblocks, eachTLC2942VCOandPFDcanachieve  
the same stability as the single chip TLC2932IPW.  
Three NC terminals are on both sides of the package between chip1 and chip2 due to the lead frame shape.  
To avoid performance degradation, special attention is needed for each PLL block PCB layout especially for  
supply voltage lines and GND patterns.  
voltage-controlled oscillator (VCO)  
VCO1 and VCO2 have the same typical characteristics. Each VCO oscillation frequency is determined by an  
external resistor (R  
)connectedbetweeneachVCOV and BIAS terminals. The oscillation frequency and  
BIAS  
DD  
range depends on this register value. The bias resistor value for the minimum temperature coefficient is  
nominally 3.3 kwith V = 3 V and nominally 2.2 kwith V = 5 V. For the lock frequency range refer to  
DD  
DD  
the recommended operating conditions. Figure 1 shows the typical frequency variation and VCO control  
voltage.  
VCO Oscillation Frequency Range  
Bias Resistor (R  
)
BIAS  
1/2 V  
DD  
VCO Control Voltage (VCOIN)  
Figure 1. VCO1 and VCO2 Oscillation Frequency  
VCO output frequency 1/2 divider  
SELECT1 and SELECT2 select between f  
and 1/2 f  
for the VCO output frequencies as shown in Table 1.  
osc  
osc  
Table 1. SELECT1 and SELECT2 Function Table  
VCO1 OUTPUT  
FREQUENCY  
VCO2 OUTPUT  
FREQUENCY  
SELECT1  
SELECT2  
f
Low  
Low  
f
osc1  
osc2  
1/2 f  
osc1  
High  
High  
1/2 f  
osc2  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
VCO inhibit function  
Each VCO has an externally controlled inhibit function that inhibits the VCO output. The VCO oscillation is  
stopped during a high level on VCOINHIBIT, so the high level can also be used as the power-down mode. The  
VCO output maintains a low level during the power-down mode (see Table 2 and Table 3).  
Table 2. VCO1 Inhibit Function  
VCOINHIBIT1  
Low  
VCO1 OSCILLATOR  
VCO OUT1  
Active  
VCO1 I  
DD  
Active  
Stop  
Normal  
High  
Low  
Power Down  
Table 3. VCO2 Inhibit Function  
VCOINHIBIT2  
Low  
VCO2 OSCILLATOR  
VCO OUT2  
Active  
VCO2 I  
DD  
Active  
Stop  
Normal  
High  
Low  
Power Down  
PFD operation  
The PFD is a high-speed, edge-triggered detector with an internal charge pump. The PFD detects the phase  
difference between two frequency inputs supplied to F –A and F –B as shown in Figure 2. Nominally the  
IN  
IN  
reference is supplied to F –A, and the frequency from the external counter output is fed to F –B.  
IN  
IN  
F
F
A1,  
IN  
A2  
IN  
F
F
B1,  
B2  
IN  
IN  
V
OH  
PFD OUT1,  
PFD OUT2  
Hi-Z  
V
OL  
Figure 2. PFD Function Timing Chart  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
PFD output control  
A high level on PFD INHIBIT places the PFD OUT in the high-impedance state and the PFD stops phase  
detection as shown in Table 4 and Table 5. A high level on PFD INHIBIT also can be used as the power-down  
mode for the PFD.  
Table 4. PFD1 Inhibit Function  
PFD INHIBIT1  
Low  
DETECTION  
Active  
PFD OUT1  
Active  
PFD1 I  
DD  
Normal  
High  
Stop  
Hi-Z  
Power Down  
Table 5. PFD2 Inhibit Function Table  
PFD INHIBIT2  
Low  
DETECTION  
Active  
PFD OUT2  
Active  
PFD2 I  
DD  
Normal  
High  
Stop  
Hi-Z  
Power Down  
schematics  
VCO block schematic (VCO1, VCO2)  
R
BIAS  
Ring Oscillator  
1/2  
M
U
X
VCO  
Output  
Bias  
Circuit  
VCO OUT1,  
VCO OUT2  
VCOIN1,  
VCOIN2  
(VCO control)  
SELECT1,2  
VCOINHIBIT  
PFD block schematic (PFD1, PFD2)  
Charge Pump  
V
DD  
F
F
–A  
–B  
IN  
PFD OUT  
Detector  
IN  
PFD INHIBIT  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (each supply), V  
Input voltage range (each input), V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
+ 0.5 V  
I
DD  
Input current (each input), I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
I
Output current (each output), I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O
Continuous total power dissipation, at (or below) T = 25°C (see Note 2) . . . . . . . . . . . . . . . . . . . . . . 1160 mW  
Operating free-air temperature range, T  
A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20°C to 75°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values are with respect to network GND.  
2. For operation above 25°C free-air temperature, derate linearly at the rate of 9.3 mW/°C.  
recommended operating conditions  
MIN NOM  
MAX  
3.15  
5.25  
UNIT  
V
V
= 3 V  
= 5 V  
2.85  
4.75  
0
3
5
DD  
Supply voltage, V  
(each supply, see Note 3)  
V
DD  
DD  
Input voltage, V , (all inputs except VCOIN1, VCOIN2)  
V
DD  
V
mA  
V
I
Output current, I (each output)  
O
0
±2  
VCO control voltage at each VCOIN1, VCOIN2  
0.9  
14  
22  
7
V
DD  
21  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
Lock frequency, (each VCO) (×1 output)  
MHz  
MHz  
50  
10.5  
25  
Lock frequency, (each VCO) (×1/2 output)  
11  
2.2  
1.5  
3.3  
2.2  
4.3  
3.3  
Bias resistor, (each BIAS), R  
R
kΩ  
°C  
BIAS1, BIAS2  
Operating temperature, T  
–20  
75  
A
NOTE 3: ItisrecommendedthatLOGICV  
each other.  
andVCOV  
DD1  
orLOGICV  
andVCOV shouldbeatthesamevoltageandseparatedfrom  
DD2  
DD1  
DD2  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
VCO1, VCO2 electrical characteristics, V  
= 3 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
I
= 2 mA  
= 2 mA  
2.4  
OH  
OH  
OL  
I
0.3  
2.1  
V
OL  
SELECT1, SELECT2,  
VCOINHIBIT2, VCOINHIBIT1  
V
IT  
Input threshold voltage  
0.9  
1.5  
V
SELECT1, SELECT2,  
VCOINHIBIT2, VCOINHIBIT1  
I
I
Input current  
V = V or GND  
I DD  
±1  
µA  
Z
Input impedance  
VCOIN2, VCOIN1  
VCOIN = 1/2 V  
See Note 4  
10  
0.01  
5
MΩ  
µA  
i(VCOIN)  
DD(INH)  
DD(VCO)  
DD  
I
I
VCO supply current (inhibit) (each chip)  
VCO supply current (each chip)  
1
See Note 5  
15  
mA  
NOTES: 4. The current into VCO V  
and LOGIC V  
when VCOINHIBIT = V , and the PFD is inhibited.  
whenVCOIN=1/2V , R =3.3k, VCOINHIBIT=GND, andthePFDisinhibited.  
DD BIAS  
DD  
andLOGICV  
DD DD  
5. ThecurrentintoVCOV  
DD  
DD  
PFD1, PFD2 electrical characteristic, V  
= 3 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
I
I
= 2 mA  
= 2 mA  
2.7  
OH  
OH  
0.2  
V
OL  
OL  
PFD INHIBIT = high,  
= V or GND  
I
High-impedance output current  
High-level input voltage  
±1  
µA  
OZ  
V
O
DD  
F
F
–A1, F –B1,  
IN  
IN  
IN  
V
2.7  
0.9  
V
IH  
–A2, F –B2  
IN  
F
IN  
–A1, F –B1,  
IN  
V
V
Low-level input voltage  
Input threshold voltage  
Input capacitance  
0.5  
2.1  
V
V
IL  
FIN–A2, F –B2  
IN  
PFD INHIBIT2, PFD INHIBIT1  
1.5  
5
IT  
F
IN  
F
IN  
–A1, F –B1,  
IN  
C
pF  
i
–A2, F –B2  
IN  
F
IN  
F
IN  
–A1, F –B1,  
IN  
Z
i
Input impedance  
10  
MΩ  
–A2, F –B2  
IN  
I
I
High-impedance state PFD supply current  
PFD supply current  
See Note 6  
See Note 7  
0.1  
0.1  
1
µA  
DD(Z)  
1.5  
mA  
DD(PFD)  
NOTES: 6. The current into LOGIC V , when F –A and F –B = GND, PFD INHIBIT= V , no load, and VCO OUT is inhibited.  
DD  
DD  
IN  
IN  
DD  
= 3 V rectangular wave, PFD INHIBIT = GND, no load,  
7. The current into LOGIC V  
when F –A and F –B = 1 MHz with V  
IN IN I(PP)  
and VCO OUT is inhibited.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
VCO1, VCO2 operating characteristics, V  
= 3 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
µs  
R
R
= 3.3 k,  
BIAS1, BIAS2  
f
t
Operating oscillation frequency  
Time to stable oscillation  
15  
19  
23  
osc  
VCOIN1, VCOIN2 = 1/2 V  
DD  
See Note 8  
10  
14  
s(fosc)  
C
C
C
C
R
= 15 pF,  
= 50 pF,  
= 15 pF,  
= 50 pF,  
See Figure 3  
7
14  
6
L
L
L
L
t
Rise time  
ns  
ns  
r
f
See Figure 3  
See Figure 3  
See Figure 3  
12  
t
Fall time  
10  
, R  
BIAS1 BIAS2  
= 3.3 k,  
Duty cycle at VCO OUT  
45%  
50%  
55%  
VCOIN1, VCOIN2 = 1/2 V  
DD  
R
R
= 3.3 k,  
BIAS1, BIAS2  
VCOIN1, VCOIN2 = 1/2 V  
= –20°C to 75°C  
α
Temperature coefficient of oscillation frequency  
,
0.04  
%/°C  
(fosc)  
DD  
T
A
R
R
= 3.3 k,  
BIAS1, BIAS2  
VCOIN1, VCOIN2 = 1.5 V,  
= 2.85 V to 3.15 V  
k
Supply voltage coefficient of oscillation frequency  
Jitter absolute (see Note 9)  
0.02  
100  
%/mV  
ps  
SVS(fosc)  
V
DD  
R
= 3.3 kΩ  
BIAS1  
NOTES: 8. The time period to stabilize the VCO oscillation frequency after VCOINHIBIT is changed to a low level.  
9. The LPF circuit is shown in Figure 28 with calculated values listed in Table 9. Jitter performance is highly dependent on circuit layout  
and external device characteristics. The jitter specification was made with a carefully designed PCB with no device socket.  
PFD1, PFD2 operating characteristics, V  
= 3 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f
t
t
t
t
t
t
Maximum operating frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
20  
MHz  
max  
PLZ  
PHZ  
PZL  
PZH  
r
21  
23  
50  
50  
30  
30  
10  
10  
ns  
ns  
See Figures 4 and 5 and Table 4  
11  
10  
2.3  
2.1  
ns  
ns  
C
= 15 pF,  
See Figure 4  
L
Fall time  
f
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
VCO1, VCO2 electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
OH  
V
OL  
V
IT  
High-level output voltage  
Low-level output voltage  
Input threshold voltage  
I
= 2 mA  
= 2 mA  
4
V
V
V
OH  
OL  
I
0.5  
3.5  
SELECT1, SELECT2,  
VCOINHIBIT1, VCOINHIBIT2  
1.5  
2.5  
I
I
Input current  
SELECT1, SELECT2,  
VCOINHIBIT1, VCOINHIBIT2  
V = V or GND  
I DD  
±1  
µA  
Z
Input impedance  
VCOIN1, VCOIN2  
VCOIN = 1/2 V  
See Note 4  
10  
0.01  
15  
MΩ  
µA  
i(VCOIN)  
DD(INH)  
DD(VCO)  
DD  
I
I
VCO supply current (inhibit) (each chip)  
VCO supply current (each chip)  
1
See Note 10  
35  
mA  
NOTES: 4. The current into VCO V  
DD  
and LOGIC V when VCOINHIBIT = V , and the PFD is inhibited.  
DD DD  
10. ThecurrentintoVCOV  
andLOGICV  
whenVCOIN=1/2V , R =2.2k, VCOINHIBIT=GND, andthePFDisinhibited.  
DD  
DD  
DD BIAS  
PFD1, PFD2 electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
I
I
= 2 mA  
4.5  
OH  
OH  
= 2 mA  
0.2  
V
OL  
OL  
PFD INHIBIT1, PFD INHIBIT2 = high,  
= V or GND  
I
High-impedance output current  
±1  
µA  
V
OZ  
V
O
DD  
F
F
–A1, F –B1,  
IN  
IN  
IN  
V
V
V
High-level input voltage  
Low-level input voltage  
Input threshold voltage  
Input capacitance  
4.5  
1.5  
IH  
IL  
IT  
–A2, F –B2  
IN  
F
IN  
–A1, F –B1,  
IN  
1
V
FIN–A2, F –B2  
IN  
PFD INHIBIT2,  
PFD INHIBIT1  
2.5  
5
3.5  
V
F
IN  
F
IN  
–A1, F –B1,  
IN  
C
pF  
MΩ  
i
–A2, F –B2  
IN  
F
IN  
F
IN  
–A1, F –B1,  
IN  
Z
Input impedance  
10  
i
–A2, F –B2  
IN  
I
I
High-impedance state PFD supply current  
PFD supply current (each chip)  
See Note 6  
See Note 11  
0.1  
1
3
µA  
DD(Z)  
0.15  
mA  
DD(PFD)  
NOTES: 6. The current into LOGIC V , when F –A and F –B = GND, PFD INHIBIT= V , no load, and VCO OUT is inhibited.  
DD  
DD  
IN  
IN  
DD  
= 5-V rectangular wave, PFD INHIBIT = GND, no load,  
11. The current into LOGIC V  
and  
when F –A and F –B = 1 MHz with V  
IN IN I(PP)  
VCO OUT is inhibited.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
VCO1, VCO2 operating characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
µs  
R
R = 2.2 k,  
BIAS1, BIAS2  
f
t
Operating oscillation frequency  
Time to stable oscillation  
32  
41  
50  
osc  
VCOIN1, VCOIN2 = 1/2 V  
DD  
See Note 8  
10  
10  
s(fosc)  
C
C
C
C
R
= 15 pF,  
= 50 pF,  
= 15 pF,  
= 50 pF,  
See Figure 3  
5.5  
8
L
L
L
L
t
Rise time  
ns  
ns  
r
f
See Figure 3  
See Figure 3  
See Figure 3  
5
10  
t
Fall time  
6
R
= 2.2 k,  
BIAS1, BIAS2  
Duty cycle at VCO OUT  
45%  
50%  
55%  
VCOIN1, VCOIN2 = 1/2 V  
DD  
R
R
= 2.2 k,  
BIAS1, BIAS2  
Temperature coefficient of oscillation frequency VCOIN1, VCOIN2 = 1/2 V  
= –20°C to 75°C  
α
,
0.06  
%/°C  
(fosc)  
DD  
T
ope  
R
R
= 2.2 k,  
BIAS1, BIAS2  
VCOIN1, VCOIN2 = 2.5 V,  
= 4.75 V to 5.25 V  
Supply voltage coefficient of oscillation fre-  
quency  
k
0.006  
100  
%/mV  
ps  
SVS(fosc)  
V
DD  
Jitter absolute (see Note 9)  
R
= 3.3 kΩ  
BIAS1  
NOTES: 8. The time period to stabilize the VCO oscillation frequency after VCOINHIBIT is changed to a low level.  
9. The LPF circuit is shown in Figure 28 with calculated values listed in Table 9. Jitter performance is highly dependent on circuit layout  
and external device characteristics. The jitter specification was made with a carefully designed PCB with no device socket.  
PFD1, PFD2 operating characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f
t
t
t
t
t
t
Maximum operating frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
40  
MHz  
max  
PLZ  
PHZ  
PZL  
PZH  
r
21  
20  
40  
40  
20  
20  
10  
10  
ns  
ns  
See Figures 4 and 5 and Table 4  
7.3  
6.5  
2.3  
1.7  
ns  
ns  
C
= 15 pF,  
See Figure 4  
L
Fall time  
f
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
90%  
10%  
90%  
10%  
VCO OUT1,  
VCO OUT2  
t
r
t
f
Figure 3. VCO Output Voltage Waveform  
V
V
DD  
GND  
DD  
F
F
A1,  
A2  
IN  
IN  
GND  
V
DD  
V
DD  
F
F
B1,  
B2  
IN  
IN  
GND  
GND  
V
V
DD  
DD  
PFD INHIBIT1,  
PFD INHIBIT2  
50%  
50%  
GND  
GND  
t
t
PHZ  
PLZ  
t
r
t
f
V
V
OH  
DD  
90%  
50%  
90%  
PFD OUT1,  
PFD OUT2  
50%  
10%  
50%  
50%  
10%  
V
OL  
GND  
t
PZL  
t
PZH  
(a) OUTPUT PULLDOWN  
(see Figure 5 and Table 6)  
(b) OUTPUT PULLUP  
(see Figure 5 and Table 6)  
F
IN  
–A and F –B are for reference phase only, not for timing.  
IN  
Figure 4. PFD Output Voltage Waveform  
Table 6. PFD1 and PDF2 Output Test Conditions  
V
DD  
PARAMETER  
R
C
S
1
S
2
L
L
Test Point  
t
t
t
t
t
t
PZH  
PHZ  
r
S1  
Open  
Close  
Close  
Open  
R
L
PFD OUT  
1 kΩ  
15 pF  
DUT  
PZL  
PLZ  
f
S2  
C
L
Figure 5. PFD1 and PFD2 Output Test Conditions  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
TYPICAL CHARACTERISTICS  
VCO OSCILLATION FREQUENCY  
VCO OSCILLATION FREQUENCY  
vs  
vs  
VCO CONTROL VOLTAGE  
VCO CONTROL VOLTAGE  
40  
30  
20  
100  
80  
V
R
= 3 V  
DD  
V
R
= 5 V  
DD  
20°C  
75°C  
= 2.2 kΩ  
BIAS  
= 1.5 kΩ  
25°C  
BIAS  
20°C  
25°C  
60  
75°C  
40  
10  
0
20  
0
1
2
3
0
1
2
3
4
5
V
– VCO Control Voltage – V  
I (VCOIN)  
V
– VCO Control Voltage – V  
I (VCOIN)  
Figure 6  
Figure 7  
VCO OSCILLATION FREQUENCY  
vs  
VCO OSCILLATION FREQUENCY  
vs  
VCO CONTROL VOLTAGE  
VCO CONTROL VOLTAGE  
80  
60  
40  
20  
0
40  
V
R
= 5 V  
DD  
V
R
= 3 V  
DD  
= 2.2 kΩ  
BIAS  
= 3.3 kΩ  
BIAS  
20°C  
20°C  
30  
20  
75°C  
75°C  
25°C  
25°C  
10  
0
0
1
2
3
4
5
0
1
2
3
V
I (VCOIN)  
– VCO Control Voltage – V  
V
I (VCOIN)  
– VCO Control Voltage – V  
Figure 8  
Figure 9  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
TYPICAL CHARACTERISTICS  
VCO OSCILLATION FREQUENCY  
vs  
VCO OSCILLATION FREQUENCY  
vs  
VCO CONTROL VOLTAGE  
VCO CONTROL VOLTAGE  
40  
30  
20  
80  
60  
40  
20  
0
V
R
= 3 V  
V
R
= 5 V  
DD  
DD  
= 4.3 kΩ  
= 3.3 kΩ  
BIAS  
BIAS  
75°C  
25°C  
20°C  
25°C  
10  
0
75°C  
20°C  
0
1
2
3
0
1
2
3
4
5
V
I (VCOIN)  
– VCO Control Voltage – V  
V
– VCO Control Voltage – V  
I (VCOIN)  
Figure 10  
Figure 11  
VCO OSCILLATION FREQUENCY  
VCO OSCILLATION FREQUENCY  
vs  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
60  
30  
V
= 5 V  
V
= 3 V  
DD  
DD  
VCOIN = 1/2 V  
T
A
VCOIN = 1/2 V  
T
A
DD  
DD  
= 25°C  
= 25°C  
50  
25  
40  
30  
20  
20  
15  
10  
1.5  
2
2.5  
3
3.5  
2
2.5  
3
3.5  
4
4.5  
R
– Bias Resistor – kΩ  
R
– Bias Resistor – kΩ  
BIAS  
BIAS  
Figure 12  
Figure 13  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
TYPICAL CHARACTERISTICS  
TEMPERATURE COEFFICIENT OF  
TEMPERATURE COEFFICIENT OF  
OSCILLATION FREQUENCY  
vs  
OSCILLATION FREQUENCY  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
0.4  
0.3  
0.2  
0.1  
0
0.4  
V
= 3 V  
DD  
V
= 5 V  
DD  
VCOIN = 1/2 V  
T
A
DD  
= 20°C to 75°C  
VCOIN = 1/2 V  
DD  
T
A
= 20°C to 75°C  
0.3  
0.2  
0.1  
0
2
2.5  
3
3.5  
4
4.5  
3.3  
– Bias Resistor – kΩ  
1.5  
2
2.5  
3
3.5  
2.2  
BIAS  
R
BIAS  
R
– Bias Resistor – kΩ  
Figure 14  
Figure 15  
VCO OSCILLATION FREQUENCY  
VCO OSCILLATION FREQUENCY  
vs  
vs  
VCO SUPPLY VOLTAGE  
VCO SUPPLY VOLTAGE  
48  
44  
24  
R
= 2.2 kΩ  
R
= 3.3 kΩ  
BIAS  
BIAS  
VCOIN = 1/2 V  
DD  
T
A
VCOIN = 1.5 V  
= 25°C  
= 25°C  
T
A
22  
40  
36  
32  
20  
18  
16  
4.75  
5
5.25  
2.85  
3
3.15  
V – VCO Supply Voltage – V  
DD  
V
DD  
– VCO Supply Voltage – V  
Figure 16  
Figure 17  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
TYPICAL CHARACTERISTICS  
SUPPLY VOLTAGE COEFFICIENT OF VCO  
SUPPLY VOLTAGE COEFFICIENT OF VCO  
OSCILLATION FREQUENCY  
OSCILLATION FREQUENCY  
vs  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
0.05  
0.04  
0.03  
V
= 2.85 V to 3.15 V  
V
= 4.75 V to 5.25 V  
DD  
VCOIN = 1/2 V  
DD  
VCOIN = 1/2 V  
DD  
T
A
DD  
T
A
= 25°C  
= 25°C  
0.01  
0.02  
0.01  
0
0.005  
0
1.5  
2
2.5  
3
3.5  
2
2.5  
3
3.5  
4
4.5  
R
– Bias Resistor – kΩ  
R
– Bias Resistor – kΩ  
BIAS  
BIAS  
Figure 18  
Figure 19  
RECOMMENDED LOCK FREQUENCY  
RECOMMENDED LOCK FREQUENCY  
(×1 OUTPUT)  
vs  
(×1 OUTPUT)  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
60  
50  
40  
V
T
= 4.75 V to 5.25 V  
= 20°C to 75°C  
30  
V
T
A
= 2.85 V to 3.15 V  
= 20°C to 75°C  
DD  
A
DD  
25  
20  
15  
30  
20  
10  
10  
2
2.5  
3
3.5  
4
4.5  
1.5  
2
2.5  
3
3.5  
R
– Bias Resistor – kΩ  
R
– Bias Resistor – kΩ  
BIAS  
BIAS  
Figure 20  
Figure 21  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
TYPICAL CHARACTERISTICS  
RECOMMENDED LOCK FREQUENCY  
RECOMMENDED LOCK FREQUENCY  
(×1/2 OUTPUT)  
vs  
(×1/2 OUTPUT)  
vs  
BIAS RESISTOR  
BIAS RESISTOR  
30  
25  
20  
V
= 4.75 V to 5.25 V  
DD  
15  
V
T
= 2.85 V to 3.15 V  
DD  
= 20°C to 75°C  
T
= 20°C to 75°C  
A
A
SELECT = V  
SELECT = V  
DD  
DD  
12.5  
10  
15  
10  
5
7.5  
5
2
2.5  
R
3
3.5  
4
4.5  
1.5  
2
2.5  
3
3.5  
– Bias Resistor – kΩ  
R
– Bias Resistor – kΩ  
BIAS  
BIAS  
Figure 22  
Figure 23  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
gain of VCO and PFD  
Figure 24 is a block diagram of the PLL. The  
Divider  
divider N value depends on the input frequency  
and the desired VCO output frequency according  
(K = 1/N)  
N
to the system application requirements. The K  
p
and K values are obtained from the operating  
V
PFD  
(K )  
VCO  
(K )  
characteristics of the device as shown in Figure  
p
V
f
REF  
24. K is defined from the phase detector V and  
p
OL  
TLC2942  
LPF  
V
specifications and the equation shown in  
OH  
Figure 24(b). K is defined from Figures 8, 9, 10,  
and 11 as shown in Figure 24(c).  
V
(K )  
f
V
OH  
The parameters for the block diagram with the  
units are as follows:  
(a)  
K : VCO gain (rad/s/V)  
V
2π π  
0
π
2π  
f
MAX  
K : PFD gain (V/rad)  
p
V
OH  
K : LPF gain (V/V)  
f
K : countdown divider gain (1/N)  
N
f
MIN  
V
OL  
external counter  
Range of  
Comparison  
When a large N counter is required by the  
application, there is a possibility that the PLL  
response becomes slow due to the counter  
response delay time. In the case of a high  
frequency application, the counter delay time  
should be accounted for in the overall PLL design.  
V
V
IN MIN  
IN MAX  
V – V  
OH OL  
4π  
2π(f  
– f )  
MAX MIN  
K
=
K
=
p
V
V
– V  
IN MAX  
(c)  
IN MIN  
(b)  
Figure 24. Example of a PLL Block Diagram  
R
BIAS  
The external bias resistor sets the VCO center frequency with 1/2 V applied to the VCOIN terminal. However,  
DD  
for optimum temperature performance, a resistor value of 3.3 kwith a 3-V supply, or a resistor value of  
2.5 kfor a 5-V supply is recommended. For the most accurate results, a metal-film resistor is the better choice,  
but a carbon-compositiion resistor can be used with excellent results also. A 0.22-µF capacitor should be  
connected from the BIAS terminal to ground as close to the device terminals as possible.  
hold-in range  
From the technical literature, the maximum hold-in range for an input frequency step for the three types of filter  
configurations shown in Figure 25 is as follows:  
0.8 K  
K
K ( )  
(1)  
p
H
V
f
Where  
K () = the filter transfer function value at ω = ∞  
f
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
low-pass-filter (LPF) configurations  
Many excellent references are available that include detailed design information about LPFs and they should  
be consulted for additional information. Lag-lead filters or active filters are often used. Examples of LPFs are  
shown in Figure 25. When the active filter of Figure 25(c) is used, the reference should be applied to F -B  
IN  
because of the amplifier inversion. Also, in practical filter implementations, C2 is used as additional filtering at  
the VCO input. The value of C2 should be equal to or less than one-tenth the value of C1.  
C2  
R1  
V
I
V
O
R1  
C1  
R2  
V
I
V
O
C2  
R2  
C1  
T1 = C1R1  
T2 = C1R2  
C1  
T1 = C1R1  
V
I
A
V
O
R1  
T1 = C1R1  
T2 = C1R2  
(a) LAG FILTER  
(b) LAG-LEAD FILTER  
(c) ACTIVE FILTER  
Figure 25. LPF Examples for PLL  
the passive filter  
The transfer function for the low-pass filter shown in Figure 25(b) is:  
V
O
1
s
s
T2  
(2)  
V
(
)
T1 T2  
1
IN  
Where  
T1  
R1 C1 and T2  
R2 C1  
Using this filter makes the closed loop PLL system a type 1 second-order system. The response curves of this  
system to a unit step are shown in Figure 26.  
the active filter  
When using the active filter shown in Figure 25(c), the phase detector inputs must be reversed since the filter  
adds an additional inversion. Therefore, the input reference frequency should be applied to the F -B terminal  
IN  
and the output of the VCO divider should be applied to the input reference terminal, F -A.  
IN  
The transfer function for the active filter shown in Figure 25(c) is:  
1
s
R2 C1  
R1 C1  
(3)  
F(s)  
s
Using this filter makes the closed loop PLL system a type 2 second-order system. The response curves of this  
system to a unit step are shown in Figure 27.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
1.9  
1.8  
= 0.1  
1.7  
= 0.2  
1.6  
= 0.3  
1.5  
= 0.4  
1.4  
= 0.6  
= 0.5  
1.3  
= 0.7  
1.2  
= 0.8  
1.1  
1
0.9  
= 1.0  
0.8  
= 1.5  
0.7  
0.6  
= 2.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ω
ω t = 4.5  
n s  
nt  
Figure 26. Type 1 Second-Order Step Response  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
1.9  
1.8  
1.7  
1.6  
ζ = 0.1  
ζ = 0.2  
ζ = 0.3  
1.5  
1.4  
1.3  
ζ = 0.4  
ζ = 0.5  
ζ = 0.6  
ζ = 0.7  
1.2  
1.1  
1
0.9  
0.8  
ζ = 0.8  
ζ = 1.0  
0.7  
0.6  
0.5  
ζ = 2.0  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ω
nt  
Figure 27. Type 2 Second-Order Step Response  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
basic design example  
The following design example presupposes that the input reference frequency and the required frequency of  
the VCO are within the respective ranges of the device.  
Assume the loop has to have a 100-µs settling time (t ) with a countdown divider N value = 8. Using the Type  
s
1, second-order response curves of Figure 26, a value of 4.5 radians is selected for ω t with a damping factor  
n s  
of 0.7. This selection gives a good combination for settling time, accuracy, and loop gain margin. The initial  
parameters are summarized in Table 7. The loop constants, K and K , are calculated from the data sheet  
V
p
specifications and Table 8 shows these values.  
The natural loop frequency is calculated as follows:  
Since  
t
4.5  
(4)  
n s  
Then  
4.5  
100  
45 k-radians sec  
Table 7. Design Parameters  
n
s
PARAMETER  
SYMBOL  
VALUE  
8
UNITS  
Divider value  
N
t
Lockup time  
100  
4.5  
µs  
Radian value to selected lockup time  
Damping factor  
ω t  
n
rad  
ζ
0.7  
Table 8. Device Specifications  
PARAMETER  
VCO gain  
SYMBOL  
VALUE  
UNITS  
76.6  
Mrad/V/s  
MHz  
MHz  
V
f
f
70  
MAX  
K
V
20  
5
MIN  
V
V
IN MAX  
0.9  
V
IN MIN  
PFD gain  
K
p
0.342357  
V/rad  
Using the low-pass filter in Figure 25(b) and divider N value, the transfer function for phase and frequency are  
shown in equations 5 and 6. Note that the transfer function for phase differs from the transfer function for  
frequency by only the divider N value. The difference arises from the fact that the feedback for phase is unity  
while the feedback for frequency is 1/N.  
Hence, transfer function of Figure 24 (a) for phase is:  
K
K
2(s)  
1(s)  
p
(
V
1
s
T2  
T2  
(5)  
)
N
T1 T2  
K
K
K
K
p
p
V
V
2
s
s
1
N (T1 T2)  
N (T1 T2)  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
and the transfer function for frequency is:  
F
F
K
K
OUT(s)  
REF(s)  
p
V
)
1
s
T2  
T2  
(6)  
(
T1 T2  
K
K
K
K
p
p
V
V
2
s
s
1
N (T1 T2)  
N (T1 T2)  
2
2
The standard two-pole denominator is D = s + 2 ζ ω s + ω and comparing the coefficients of the denominator  
n
n
of equation 5 and 6 with the standard two-pole denominator gives the following results:  
K
K
p
V
(7)  
n
N
(T1 T2)  
Solving for T1 + T2  
K
K
p
V
2
T1 T2  
N
n
and by using this value for T1 + T2 in equation 7 the damping factor is:  
n
N
(8)  
T2  
2
K
V
K
p
V
solving for T2:  
T2  
2
N
(9)  
K
K
p
then by substituting for T2 in equation 7 and solving for T1 as given in equation 10:  
K
K
p
2
2
V
N
(10)  
T1  
K
K
n
N
p
V
n
From the circuit constants and the initial design parameters then:  
K
K
v
p
2
N
1
C1  
R1  
R2  
(11)  
(12)  
2
K
K
n
p
N
V
n
2
N
1
C1  
K
K
n
p
V
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
The capacitor, C1, is usually chosen between 1 µF and 0.1 µF to allow for reasonable resistor values and  
physical capacitor size. In this example, C1 is chosen to be 0.1 µF and the corresponding R1 and R2 calculated  
values are listed in Table 9.  
Table 9. Calculated Values  
PARAMETER  
SYMBOL  
VALUE  
45000  
3.277  
UNITS  
rad/sec  
Natural angular frequency  
ω
n
K = (K K )/N  
Mrad/sec  
V
p
Lag-lead filter  
15870  
16000  
Calculated value  
Nearest standard value  
R1  
Calculated value  
Nearest standard value  
308  
300  
R2  
C1  
Selected value  
0.1  
µF  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
The evaluation and operation schematic for the TLC2942I is shown in Figure 28.  
AV  
DD  
V
DD  
PLL1  
(digital)  
VCO  
1
2
3
4
5
6
7
38  
37  
36  
35  
34  
33  
8
LOGIC V  
SELECT  
VCO V  
DD  
DD  
R1  
1/2 f  
BIAS  
osc  
0.22 µF  
R3  
C1  
VCO OUT  
VCOIN  
REF IN  
DGND  
F
–A  
–B  
IN  
IN  
C2  
R2  
VCO GND  
F
VCOINHIBIT  
AGND  
PFD OUT  
PFD INHIBIT  
GND  
Phase  
Comparator  
LOGIC GND (Digital)  
DGND  
Divide  
By  
N
S1  
S2  
S3  
PLL2  
DGND  
R4 R5  
R6  
DV  
DD  
R
resistor  
BIAS  
Figure 28. Evaluation and Operation Schematic  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
APPLICATION INFORMATION  
PCB layout considerations  
The TLC2942I contains high frequency analog oscillators; therefore, very careful breadboarding and  
printed-circuit-board (PCB) layout is required for evaluation.  
The following design recommendations benefit the TLC2942I user:  
External analog and digital circuitry should be physically separated and shielded as much as possible to  
reduce system noise.  
RF breadboarding or RF PCB techniques should be used throughout the evaluation and production  
process.  
Wide ground leads or a ground plane should be used on the PCB layouts to minimize parasitic inductance  
and resistance. The ground plane is the better choice for noise reduction.  
LOGIC V  
and VCO V  
should be separate PCB traces and connected to the best filtered supply point  
DD  
DD  
available in the system to minimize supply cross-coupling.  
VCO V to GND and LOGIC V to GND should be decoupled with a 0.1-µF capacitor placed as close  
DD  
DD  
as possible to the appropriate device terminals.  
The no-connection (NC) terminal on the package should be connected to GND.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC2942  
HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK  
SLAS146B – NOVEMBER 1996 – REVISED JUNE 1997  
MECHANICAL DATA  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
28 PIN SHOWN  
0,38  
0,65  
28  
M
0,15  
0,22  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°8°  
1,03  
0,63  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
8
14  
16  
20  
24  
28  
30  
38  
DIM  
3,30  
2,70  
6,50  
5,90  
6,50  
5,90  
7,50  
6,90  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
9,90  
12,30  
4040065 /C 10/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLC2942IDBR

High-Performance Dual Phase-Locked Loop Building Block 38-SSOP -40 to 85
TI

TLC2942PW

HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK
TI

TLC2942_06

HIGH-PERFORMANCE DUAL PHASE-LOCKED LOOP BUILDING BLOCK
TI

TLC2943

HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK
TI

TLC2943DB

HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK
TI

TLC2943IDB

HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK
TI

TLC2943IDBR

HIGH-PERFORMANCE DUAL PHASE-LOCKED BUILDING BLOCK
TI

TLC2H-433-5

UHF Narrow Band FM Low Cost multi channel radio modules
RADIOMETRIX

TLC32040

ANALOG INTERFACE CIRCUIT
TI

TLC32040C

ANALOG INTERFACE CIRCUITS
TI

TLC32040CFN

ANALOG INTERFACE CIRCUITS
TI

TLC32040CN

ANALOG INTERFACE CIRCUITS
TI