TLC59291RGER [TI]

具有低静态电流和完全自诊断功能的 8/16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85;
TLC59291RGER
型号: TLC59291RGER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低静态电流和完全自诊断功能的 8/16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85

驱动 驱动器
文件: 总48页 (文件大小:2110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
TLC59291 用于 LED 灯且具有 7 位亮度控制、低静态电流和完全自诊断的  
8/16 通道、恒流 LED 驱动器  
1 特性  
2 应用范围  
1
8/16 个支持开关控制的恒定灌电流输出通道  
电流能力:  
工业用 LED 指示灯  
照明  
LED 视频显示  
1mA - 40mA (VCC 3.6V)  
1mA - 50mA (VCC > 3.6V)  
3 说明  
全局亮度控制:7 位(128 色阶)  
电源电压范围:3V 5.5V  
LED 电源电压:高达 10V  
恒定电流精度:  
TLC59291 是一款 8/16 通道恒定灌电流 LED 驱动  
器。每个通道可通过向内部寄存器写入数据进行开关。  
所有 16 个通道的恒定电流值均由单个外部电阻设置,  
并且支持 128 色阶全局亮度控制 (BC)。  
通道间 = ±3%(典型值)  
器件间 = ±2%(典型值)  
TLC59291 具有六类错误标志:LED 开路检测  
(LOD)LED 短路检测 (LSD)、输出漏电检测 (OLD)、  
基准引脚短路检测 (ISF)、预热报警 (PTW) 以及热故  
障标志 (TEF)。此外,LOD LSD 功能还具有无形检  
测模式 (IDM),可在输出关闭时检测这些故障。故障检  
测结果可通过串行接口端口读取。  
低静态电流  
SOUT 可配置为 8 通道或 16 通道输出  
支持无形检测模式的 LED 开路检测 (LOD)/LED 短  
路检测 (LSD)  
输出漏电检测 (OLD) 可检测 3µA 漏电  
预热报警 (PTW)  
TLC59291 在正常工作模式下拥有低静态电流,并且还  
可在所有输出关闭时进入省电模式,从而将总电流消耗  
设为 10uA(典型值)。  
热关断 (TSD  
)
电流基准引脚短路标志 (ISF)  
10µA 流耗的省电模式  
器件信息(1)  
欠压锁定可设置默认数据  
通道间 2ns 延迟开关可最大限度减少浪涌电流  
运行温度:-40°C 85°C  
器件型号  
TLC59291  
封装  
VQFN (24)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用电路(以菊花链方式连接的多个 TLC59291)  
VLED  
OUT0 - - - - - - - - - - OUT15  
OUT0 - - - - - - - - - - OUT15  
DATA  
SIN  
SOUT  
SIN  
SOUT  
Controller  
VCC  
SCLK  
LAT  
VCC  
SCLK  
LAT  
SCLK  
LAT  
TLC59291  
IC1  
TLC59291  
ICn  
VCC  
VCC  
BLANK  
BLANK  
IREF  
BLANK  
IREF  
GND  
GND  
RIREF  
RIREF  
GND  
GND  
GND  
GND  
3
SID read  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSA96  
 
 
 
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 28  
8.5 Register Maps......................................................... 31  
Application and Implementation ........................ 37  
9.1 Application Information............................................ 37  
9.2 Typical Application ................................................. 37  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 8  
6.7 Timing Diagrams....................................................... 9  
6.8 Typical Characteristics............................................ 21  
Parameter Measurement Information ................ 23  
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
8.2 Functional Block Diagram ....................................... 24  
9
10 Power Supply Recommendations ..................... 38  
11 Layout................................................................... 39  
11.1 Layout Guidelines ................................................. 39  
11.2 Layout Example .................................................... 39  
12 器件和文档支持 ..................................................... 40  
12.1 文档支持 ............................................................... 40  
12.2 社区资源................................................................ 40  
12.3 ....................................................................... 40  
12.4 静电放电警告......................................................... 40  
12.5 Glossary................................................................ 40  
13 机械、封装和可订购信息....................................... 40  
7
8
4 修订历史记录  
Changes from Original (September 2015) to Revision A  
Page  
特性通道间 = ±1%(典型值)更改为 通道间 = ±3%(典型值)” ............................................................................... 1  
Deleted device number TLC5929 From the Electrical Characteristics table.......................................................................... 6  
Changed ΔIOL(C0) Test Condition in Electrical Characteristics From: BC = 7Fh, RIREF = 1.6 kTo: BC = 0Eh, RIREF  
=
3.6 k, ................................................................................................................................................................................... 7  
Changed the ΔIOL(C1) values in Electrical Characteristics From: TYP = ±2%, MAX = ±4% To TYP = 1% , MAX =  
÷3%: ....................................................................................................................................................................................... 7  
Deleted device number TLC5929 From the Switching Characteristics table......................................................................... 8  
Changed text From: "with the 1-bit data" To: "with the 16-bit data" in the Function Control Data Writing section ............. 34  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
5 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
(Top View)  
1
2
3
4
5
6
18 BLANK  
17 OUT15  
16 OUT14  
15 OUT13  
14 OUT12  
13 OUT11  
LAT  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
Thermal Pad  
(Bottom Side)  
Pin Functions  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
BLANK PIN, has two configures:  
When FC9(BLANK Mode) = 0, Blank pin worked as SOUT select pin:  
a. When BLANK = Low, SOUT is connected to the bit 7 of the 16-bit shift register, worked as 8ch  
device;  
b. When BLANK = High, SOUT is connected to the bit 15 of the 16-bit shift register, worked as  
16ch device;  
BLANK  
18  
I
When FC9(BLANK Mode) = 1, Blank pin worked as OUTPUT enable pin;  
a. When BLANK = Low, all constant current outputs are controlled by the on/off control data in the  
data latch.  
b. When BLANK = High, all OUTx are forced off  
Ground  
GND  
IREF  
22  
20  
Maximum current programming terminal.  
A resistor connected between IREF and GND sets the maximum current for every constant-current  
output. When this terminal is directly connected to GND, all outputs are forced off. The external  
resistor should be placed close to the device and must be in the range of 1.32 kΩ to 66 kΩ.  
I/O  
Data latch.  
The rising edge of LAT latches the data from the common shift register into the output on/off data  
latch. At the same time, the data in the common shift register are replaced with SID, which is  
selected by SIDLD. See the Output On/Off Data Latch section and Status Information Data (SID)  
section for more details.  
LAT  
1
I
Copyright © 2015–2016, Texas Instruments Incorporated  
3
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
OUT0  
NO.  
2
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
DESCRIPTION  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
3
4
5
6
7
8
Constant-current sink outputs.  
9
Multiple outputs can be configured in parallel to increase the constant-current capability. Different  
voltages can be applied to each output.  
10  
11  
12  
13  
14  
15  
16  
17  
Serial data shift clock.  
Data present on SIN are shifted to the LSB of the 16-bit shift register with the SCKI rising edge. Data  
in the shift register are shifted toward the MSB at each SCLK rising edge. The MSB data of the  
common shift register appear on SOUT.  
SCLK  
SIN  
24  
23  
I
I
Serial data input for the 16-bit common shift register.  
When SIN is high, a '1' is written to the LSB of the common shift register at the rising edge of SCLK.  
Serial data output of the 16-bit common shift register.  
When FC9(BLANK Mode) = 0 and BLANK = LOW;  
SOUT is connected to the bit 7 of the 16-bit shift register. Data are clocked out at the SCLK rising  
SOUT  
VCC  
19  
21  
O
edge.  
In other case:  
SOUT is connected to the bit 15 of the 16-bit shift register. Data are clocked out at the SCLK rising  
edge.  
Power-supply voltage  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
MIN  
–0.3  
MAX  
UNIT  
V
(2)  
Supply voltage, VCC  
6
Input voltage  
SIN, SCLK, LAT, BLANK, IREF  
SOUT  
–0.3 VCC + 0.3  
–0.3 VCC + 0.3  
V
V
Output voltage  
Output current (DC)  
OUT0 to OUT15  
OUT0 to OUT15  
–0.3  
11  
65  
V
mA  
°C  
°C  
Operating junction temperature, TJ (max)  
Storage temperature, TSTG  
150  
150  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to device ground terminal.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±2000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
At TA= –40°C to 85°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DC Characteristics: VCC = 3 V to 5.5 V  
VCC  
VO  
Supply voltage  
3
3.3  
5.5  
V
V
Voltage applied to output  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
OUT0 to OUT15  
10  
VIH  
VIL  
IOH  
IOL  
SIN, SCLK, LAT, BLANK  
SIN, SCLK, LAT, BLANK  
SOUT  
0.7 × VCC  
GND  
VCC  
V
0.3 × VCC  
V
–2  
2
mA  
mA  
mA  
mA  
°C  
°C  
SOUT  
OUT0 to OUT15  
OUT0 to OUT15  
3 V VCC 3.6 V  
40  
50  
85  
125  
IOLC  
Constant output sink current  
3.6 V < VCC 5.5 V  
TA  
TJ  
Operating free-air temperature range  
–40  
–40  
Operating junction temperature range  
AC Characteristics: VCC = 3 V to 5.5 V  
fCLK (SCLK)  
tWH0  
tWL0  
tWH1  
tWH2  
tWL2  
tSU0  
tSU1  
tSU2  
tH0  
Data shift clock frequency  
SCLK  
33  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
10  
10  
20  
40  
40  
5
SCLK  
Pulse duration  
(see Figure 1 and Figure 3)  
LAT  
BLANK  
BLANK  
SIN to SCLK↑  
LATto SCLK↑  
SCLK to LAT↑  
SIN to SCLK↑  
LATto SCLK↑  
LATto SCLK ↓  
Setup time  
(see Figure 1, Figure 3 and  
Figure 4)  
200  
10  
3
Hold time  
(see Figure 1, Figure 3, and  
Figure 13)  
tH1  
10  
40  
tH2  
6.4 Thermal Information  
TLC59291  
RGE (VQFN)  
24 PINS  
38.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
45.3  
16.9  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
16.9  
RθJC(bot)  
6.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
6.5 Electrical Characteristics  
At VCC = 3 V to 5.5 V and TA = –40°C to 85°C. Typical values at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
High-level output voltage  
Low-level output voltage  
LED open detection threshold  
IOH = –2 mA at SOUT  
VCC – 0.4  
VCC  
VOL  
IOL = 2 mA at SOUT  
0.4  
V
VLOD  
VLSD0  
VLSD1  
VLSD2  
VLSD3  
VIREF  
IIN  
All OUTn = on  
0.25  
0.30  
0.35  
V
All OUTn = on, detection voltage code = 0h  
All OUTn = on, detection voltage code = 1h  
All OUTn = on, detection voltage code = 2h  
All OUTn = on, detection voltage code = 3h  
RIREF = 1.3 kΩ  
0.32 × VCC 0.35 × VCC 0.38 × VCC  
0.42 × VCC 0.45 × VCC 0.48 × VCC  
0.52 × VCC 0.55 × VCC 0.58 × VCC  
0.62 × VCC 0.65 × VCC 0.68 × VCC  
V
V
LED short detection threshold  
V
V
Reference voltage output  
Input current  
1.175  
–1  
1.205  
1.235  
1
V
VIN = VCC or GND at SIN, SCLK, LAT, and BLANK  
μA  
SIN/SCLK/LAT = Low, BLANK = High, all OUTn = off,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = open  
ICC0  
2
5
3
7
mA  
mA  
SIN/SCLK/LAT = Low, BLANK = High, all OUTn = off,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = 3.6 kΩ  
(IOUT = 18.3 mA target)  
ICC1  
SIN/SCLK/LAT/BLANK =Low, All OUTn = on,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = 3.6 kΩ  
(IOUT = 18.3 mA target)  
ICC2  
ICC3  
ICC4  
ICC5  
5
3
7
4
mA  
mA  
mA  
mA  
SIN/SCLK/LAT/BLANK =Low, All OUTn = on,  
VOUTn = 0.8 V, BC = 0Eh, RIREF = 1.6 kΩ  
(IOUT = 2 mA target)  
Supply current (VCC  
)
SIN/SCLK/LAT/BLANK = Low, All OUTn = on,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = 1.6 kΩ  
(IOUT = 41.3 mA target)  
9
11  
14  
VCC = 5 V, SIN/SCLK/LAT/BLANK = Low,  
All OUTn = on, VOUTn = 0.8 V, BC = 7Fh,  
RIREF = 1.3 k(IOUT = 50.8 mA target)  
11  
VCC = 5 V, SIN/SCLK/LAT/BLANK = Low,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = 1.3 kΩ  
(IOUT = 50.8 mA target), all output data off with power-  
save mode enabled  
ICC6  
10  
40  
µA  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 7Fh,  
RIREF = 1.6 kΩ  
IOL(C0)  
IOL(C1)  
38.5  
47.3  
41.3  
50.8  
44.1  
54.3  
mA  
mA  
Constant output sink current  
(OUT0 to OUT15, see  
Figure 28)  
VCC = 5 V, All OUTn = on, VOUTn = VOUTfix = 1 V,  
BC = 7Fh, RIREF = 1.3 kΩ  
IOL(KG0)  
IOL(KG1)  
IOL(KG2)  
TJ = 25°C  
TJ = 85°C(1)  
TJ = 125°C(1)  
0.1  
0.2  
0.8  
μA  
μA  
μA  
Output leakage current  
(OUT0 to OUT15, see  
Figure 28)  
BLANK = high, VOUTn = VOUTfix  
10 V, RIREF = 1.6 kΩ  
=
0.3  
(1) Not tested; specified by design.  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Electrical Characteristics (continued)  
At VCC = 3 V to 5.5 V and TA = –40°C to 85°C. Typical values at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Constant-current error  
(channel-to-channel, OUT0 to  
OUT15)(2)  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 0Eh,  
RIREF = 3.6 k, TA = 25°C  
ΔIO(LC0)  
±3%  
±6%  
Constant-current error  
(device-to-device, OUT0 to  
OUT15)(3)  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 7Fh,  
RIREF = 1.6 k, TA = 25°C  
ΔIOL(C1)  
±1%  
±3%  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 7Fh,  
RIREF = 1.6 kΩ  
ΔIOL(C2)  
ΔIOL(C3)  
Line regulation(4)  
Load regulation(5)  
±0.1  
±0.5  
±1  
±3  
%/V  
%/V  
All OUTn = on, VOUTn = 0.8 V to 3 V, VOUTfix = 0.8 V,  
BC = 7Fh, RIREF = 1.6 kΩ  
TTEF  
THYS  
TPTW  
Thermal error flag threshold  
Thermal error flag hysteresis  
Pre-thermal warning threshold  
Junction temperature(1)  
Junction temperature(1)  
Junction temperature(1)  
150  
5
165  
10  
180  
20  
°C  
°C  
°C  
125  
138  
150  
(2) The deviation of each output from the average of OUT0 to OUT15 constant-current. Deviation is calculated by the formula:  
é
ê
ê
ê
ê
ê
ê
ë
ù
ú
ú
ú
I
OLC(n)  
D (%) = 100 x  
-1  
ú
ú
ú
û
é
ê
ù
I
+ I  
OLC(0) OLC(1)  
+...+ I  
+ I  
OLC(14) OLC(15)  
(
)
ú
ê
16  
ú
ë
û
.
(3) The deviation of the OUT0 to OUT15 constant-current average from the ideal constant-current value. Deviation is calculated by the  
formula:  
é
ê
ê
ê
ê
ê
ê
ë
ù
ú
ú
ú
ú
ú
ú
û
é
ù
I
+ I  
OLC(0) OLC(1)  
+...+ I  
+ I  
OLC(14) OLC(15)  
(
)
ê
ú
ê
ë
16  
ú
û
D (%) = 100 x  
- (Ideal Output Current)  
Ideal Output Current  
æ
ç
è
ö
1.20  
I
= 54 x  
÷
O(LC _IDEAL)  
R
IREF ø  
Ideal current is calculated by the formula:  
(4) Line regulation is calculated by the formula:  
é
ê
ù
I
at V  
= 5.5 V  
-
I
at V  
= 3 V  
(
) (OLC(n)  
)
OLC(n)  
CC  
CC  
ú
D (%) = 100 x  
ê
ú
û
2.5 x  
I
(
at V = 3 V  
CC  
)
OLC(n)  
ë
(5) Load regulation is calculated by the equation:  
æ
ç
ç
è
ö
I
(
at V  
= 3 V - I  
at V  
= 1 V  
) (OLC(n)  
)
OLC(n)  
OUTn  
OUTn  
÷
D (%) = 100 x  
÷
ø
2 x  
I
(
at V = 1 V  
OUTn  
)
OLC(n)  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
6.6 Switching Characteristics  
At VCC = 3 V to 5.5 V, TA = –40°C to 85°C, CL = 15 pF, RL = 82 , RIREF = 1.3 k, and VLED = 5 V.  
Typical values at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
40  
10  
40  
8
MAX  
UNIT  
ns  
tR0  
tR1  
tF0  
tF1  
tD0  
At SOUT  
15  
60  
15  
60  
22  
Rise time  
At OUTn, BC = 7Fh  
At SOUT  
ns  
ns  
Fall time  
At OUTn, BC = 7Fh  
SCLKto SOUT↑↓  
ns  
ns  
LATor BLANK↑↓ to OUT0 sink current on/off,  
BC = 7Fh  
tD1  
tD2  
tD3  
35  
2
65  
6
ns  
ns  
ns  
Propagation delay  
OUTn on/off to OUTn + 1 on/off, BC = 7Fh  
LATto power-save mode by data writing for all output  
off  
400  
tD4  
tD5  
SCLKto normal mode operation  
100  
100  
µs  
ns  
BLANK↑↓ to SOUT↑↓ when BLANK MODE=0  
Output on/off data = all '1',  
BLANK low pulse = 40 ns, BC = 7Fh  
tON_ERR  
fOSC  
Output on-time error(1)  
–30  
12  
20  
28  
ns  
Internal oscillator  
frequency  
20  
MHz  
(1) Output on-time error (tON_ERR) is calculated by the formula: tON_ERR (ns) = tOUT_ON – 40 ns. tOUT_ON is the actual on-time of OUTn.  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
6.7 Timing Diagrams  
tWH0, tWL0, tWH1, tWH2, tWL2  
:
VIH  
Input(1) 50%  
VIL  
tWH  
tWL  
tSU0, tSU1, tH0, tH1  
:
VIH  
SCLK Input(1)  
50%  
VIL  
tSU  
tH  
VIH  
SIN/LAT Input(1)  
50%  
VIL  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 1. Input Timing  
tR0, tR1, tF0, tF1, tD0, tD1, tD2  
:
VIH  
Input(1)  
50%  
VIL  
tD  
VOH or VOUTnH  
90%  
50%  
10%  
Output  
VOL or VOUTnL  
tR or tF  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 2. Output Timing  
Copyright © 2015–2016, Texas Instruments Incorporated  
9
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Timing Diagrams (continued)  
DATA  
0A  
DATA  
15B  
DATA DATA DATA DATA  
14B 12B 11B  
13B  
DATA  
3B  
DATA DATA  
2B 1B  
DATA  
0B  
DATA  
15C  
DATA  
14C  
DATA DATA DATA  
11C  
DATA  
10C  
SIN  
SCLK  
LAT  
13C  
12C  
tH1  
tH0  
tSU0  
tWH0  
tSU1  
1
2
3
4
5
1
2
3
4
5
6
13  
14  
15  
16  
tWH1  
tWL0  
tSU2  
Shift Register  
LSB Data  
(Internal)  
DATA  
0A  
SID  
0A  
DATA DATA DATA  
13B  
DATA  
12B  
DATA DATA  
3B  
2B  
DATA  
1B  
Selected SID  
0B  
DATA  
15C  
DATA  
14C  
DATA  
13C  
DATA  
12C  
DATA  
11C  
15B  
14B  
DATA  
0B  
Shift Register  
LSB + 1 Data  
(Internal)  
DATA  
1A  
SID  
1A  
SID  
0A  
DATA  
15B  
DATA  
14B  
DATA  
13B  
DATA DATA  
3B  
DATA  
2B  
Selected SID  
1B  
SID  
0B  
DATA  
15C  
DATA DATA  
14C  
DATA  
12C  
4B  
13C  
DATA  
1B  
Shift Register  
MSB - 1 Data  
(Internal)  
DATA  
14A  
SID  
14A  
SID  
13A  
SID  
12A  
SID  
11A  
SID  
10A  
SID  
1A  
SID  
0A  
DATA  
15B  
SID  
13B  
SID  
12B  
SID  
11B  
SID  
10B  
SID  
9B  
Selected SID  
14B  
DATA  
14B  
Shift Register  
MSB Data  
(Internal)  
DATA  
15A  
SID  
15A  
SID  
14A  
SID  
13A  
SID  
12A  
SID  
11A  
SID  
2A  
SID  
1A  
DATA  
0A  
SID  
14B  
SID  
13B  
SID  
12B  
SID  
11B  
SID  
10B  
Selected SID  
15B  
DATA  
15B  
Output On/Off  
Data Latch  
(Internal)  
DATA15A–0A  
DATA15B–0B  
Control  
Data Latch  
(Internal)  
Latest Control Data  
DATA  
15A  
SID  
15A  
SID  
14A  
SID  
13A  
SID  
12A  
SID  
11A  
SID  
2A  
SID  
1A  
SID  
0A  
SID  
14B  
SID  
13B  
SID  
12B  
SID  
11B  
SID  
10B  
Selected  
SID  
SOUT  
DATA  
15B  
tD0  
tR0/tF0  
tWH2  
BLANK  
tWL2  
tD1  
tD1  
OFF  
OFF  
(1)  
OUTn  
ON  
OFF  
ON  
tOUTON  
tD2  
tD2  
OFF  
OFF  
(1)  
ON  
OUTn+1  
ON  
tD1  
OFF  
OFF  
ON  
(2)  
(3)  
(4)  
ON  
OUTn  
OUTn  
OUTn  
tF1  
tD1  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
tR1  
OFF  
OFF  
OFF  
ON  
(1) On/off latched data is '1'.  
(2) On/off latched data change from '1' to '0' at second LAT signal.  
(3) On/off latched data change from '0' to '1' at second LAT signal.  
(4) On/off latched data is '0'.  
Figure 3. Write for ON/Off Data and Output Timing (BLANK Mode = 1)  
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Timing Diagrams (continued)  
DATA  
0A  
DATA  
15B  
DATA DATA  
14B  
13B  
DATA DATA  
2B 1B  
DATA  
0B  
DATA  
7C  
DATA  
6C  
DATA DATA  
0C  
SIN  
SCLK  
LAT  
1C  
tH0  
tWH0  
tSU0  
tH1  
1
2
3
1
2
7
8
6
14  
15  
16  
tWH1  
tSU2  
Shift Register  
LSB Data  
(Internal)  
DATA  
0A  
DATA DATA  
15B  
14B  
DATA DATA  
2B  
1B  
DATA  
0B  
DATA  
7C  
DATA  
1C  
DATA  
0C  
Shift Register  
LSB + 1 Data  
(Internal)  
DATA  
1A  
DATA DATA  
0A  
15B  
DATA DATA  
3B  
2B  
DATA  
1B  
DATA  
0B  
DATA  
2C  
DATA  
1C  
Shift Register  
MSB - 1 Data  
(Internal)  
DATA  
14A  
DATA DATA  
13A  
12A  
DATA DATA  
0A  
15B  
DATA  
14B  
DATA  
14B  
DATA  
14B  
DATA  
14B  
Shift Register  
MSB Data  
(Internal)  
DATA  
15A  
DATA DATA  
14A  
13A  
DATA DATA  
1A  
0A  
DATA  
15B  
DATA  
15B  
DATA  
15B  
DATA  
15B  
Output On/Off  
Data Latch  
(Internal)  
DATA15A–0A  
DATA15B–0B  
Control  
Data Latch  
(Internal)  
Latest Control Data  
DATA  
15A  
DATA DATA  
13A  
DATA DATA  
1A  
0A  
DATA  
15B  
DATA  
7B  
DATA  
6B  
DATA  
0B  
DATA  
7C  
SOUT  
14A  
tD0  
tR0/tF0  
tD5  
BLANK  
OFF  
(1)  
OUT  
ON  
tD1  
tD1  
OFF  
OFF  
ON  
tD2  
tD2  
OFF  
(1)  
ON  
OUTn+1  
ON  
tD1  
OFF  
ON  
(2)  
(3)  
(4)  
ON  
OUTn  
OUTn  
OUTn  
tD1  
tD1  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
(1) If the on/off latched data is changed from “0” to “1” at 1’st LAT signal, changed from “1” to “0” at second LAT signal.  
(2) If the on/off latched data is changed from “0” to “1” at 1’st LAT signal, changed from “1” to “1” at second LAT signal.  
(3) If the on/off latched data is changed from “1” to “0” at 1’st LAT signal, changed from “0” to “1” at second LAT signal.  
(4) if the on/off latched data is “0”.  
Figure 4. Write for On/Off Data and Output Timing (BLANK Mode = 0)  
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Timing Diagrams (continued)  
Low  
SIN  
SCLK  
LAT  
1
2
3
14 15  
16  
1
2
3
4
5
6
BLANK  
Don’t Care  
1
PSMODE Bit in  
Control Data Latch  
(Internal)  
On/Off Control  
Data Latch  
(Internal)  
Previous On/Off Data  
All Data are 0  
OFF  
OFF  
OUT0  
OUT1  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OUT15  
Power-Save  
Mode  
Normal Mode  
Normal Mode  
Power-Save Mode  
Normal Mode  
tD3  
tD4  
More Than 100 µA  
ICC  
(The Current  
of VCC)  
Less Than 100 µA  
Figure 5. Power-Save Mode  
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Timing Diagrams (continued)  
SCLK  
LAT  
Common Shift  
Register Bits[15:0]  
(Internal)  
LOD/TEF Data  
These data are copied to the on/off data latch at LAT rising edge.  
Common Shift  
Register Bit 16  
(Internal)  
0
Output On/Off  
Data (Internal)  
Previous On/Off Data  
New Latched GS Data  
SIDLD Data  
(Internal)  
01 (LOD is selected)  
High  
Low  
BLANK  
OUTn  
Resumed with T  
going down.  
All outputs are forced off  
by TSD function.  
J
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
T
J
³ T  
T ³ T  
J TEF  
TEF  
T
< T  
- T  
T
³ T  
T ³ T  
J PTW  
J
TEF HYST  
J
PTW  
Device Junction  
Temperature (TJ)  
T
< T  
T < T  
J PTW  
J
PTW  
PTW is not reset at LAT rising edge because SIDLD  
does not select LOD. PTW is reset to 0 when the  
device junction temperature is less than T  
SIDLD selects LOD.  
and  
PTW  
1
1
1
1
PTW in SID  
(Internal Data)  
0
TEF is reset to 0at LAT riging edge for  
on/off data writing when the device junction  
PTW is set to 1 when device  
junction temperature is greater  
temperature is less than T  
selects LOD.  
and SIDLD  
TEF  
than T  
.
1
PTW  
TEF in SID  
(Internal Data)  
0
0
TEF is set to 1 when device junction  
temperture is grerater than T  
.
TEF  
Figure 6. PTW/TEF/TSD Timing (LOD Selected)  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Timing Diagrams (continued)  
Low  
SIN  
SCLK  
LAT  
1
2
3
4
5
1
2
3
13  
14  
15  
16  
Don’t Care  
BLANK  
1
PSMODE bit  
in Control Data  
Latch (Internal)  
Output On/Off  
Control Data  
Latch (Internal)  
Previous On/Off Data  
All Data are 0  
OFF  
OFF  
OUT0  
OUT1  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OUT15  
Power-Save  
Mode  
Normal mode (No power save mode)  
Normal mode  
Normal Mode  
Power-Save mode (ICC = 30 µA,(typ))  
Depend on output on-off data  
Because it takes about 50 µs return to normal  
mode, 1'st SCLK rising edge should be input  
50 µs or more before OUTn is turned on.  
When PSMODE bit is 0, the device does not into  
the power save mode even if output on-off data is all "0".  
Figure 7. Power-Save Mode Timing  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Timing Diagrams (continued)  
SIDLD in FC  
data latch  
(Internal)  
01b  
High  
BLANK  
(working as enable pin)  
Low  
Set current by external  
resistor and BC data  
, all output is  
When BLANK signal is High  
forced off even if the IDM on time has not  
been passed the selected time.  
Programmed output current  
OUTn current  
for LED lighting  
0mA  
0 µA  
0mA  
Selected output current by “IDMCUR”  
bit in the function control latch  
2/10/20 µA  
2/10/20 µA  
OUTn current  
for IDM  
0uA  
LOD data is held in SID holder while  
BLANK is high level or the data is held in  
SID holder when IDM working time has  
passed.  
Selected on time by IDMTIM bit  
in the function control latch.  
SID holder  
data  
LOD  
LOD  
XXXXh  
LOD  
XXXXh  
Old data  
(Internal)  
LOD data goes through SID holder while BLANK is low level or IDM working time is not passed.  
LOD  
0000h  
16 bit LOD  
LOD  
0000h  
LOD  
0000h  
LOD  
XXXXh  
circuit output  
data (Internal)  
LOD  
XXXXh  
LOD data is not stable just after BLANK goes low.  
LAT  
17 bit common  
shift register data  
(Internal)  
Latched output on-off data  
SID is loaded into the shift register  
Figure 8. IDM Operation Timing with LOD Selected and IDM Enabled  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Timing Diagrams (continued)  
SIDLD in FC  
data latch  
(Internal)  
01b  
High  
BLANK  
Low  
Set current by external  
resistor and BC data  
When BLANK signal is “H” , all output is  
forced off even if the IDM on time has not  
been passed the selected time.  
Programmed output current  
OUTn current  
for LED lighting  
0mA  
0mA  
0 µA  
The output for IDM is not turned on because  
IDM is disabled by “IDMCUR” setting.  
OUTn current  
for IDM  
0 µA  
0 µA  
LOD data is held in SID holder while  
BLANK is high level.  
SID holder  
data  
(Internal)  
LOD  
Old data  
LOD  
XXXXh  
LOD  
XXXXh  
LOD data goes through SID holder while BLANK is low level.  
16 bit LOD  
circuit output  
data (Internal)  
LOD  
0000h  
LOD  
LOD  
XXXXh  
LOD  
0000h  
0000h  
LOD  
XXXXh  
LOD data is not stable just after BLANK goes low.  
LAT  
17 bit common  
shift register data  
(Internal)  
Latched on-off control data  
SID is loaded into the shift register  
Figure 9. IDM Operation Timing with LOD Selected and IDM Disabled  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Timing Diagrams (continued)  
High  
DATA  
1A  
DATA  
0A  
DATA DATA DATA DATA DATA  
13B 12B  
DATA DATA DATA DATA  
3B 2B 1B 0B  
DATA DATA DATA DATA  
16C 15C 14C 13C  
SIN  
16B 15B  
14B  
Low  
SCLK  
LAT  
14  
15  
16  
1
2
3
---  
1
2
3
4
5
13  
14  
15  
16  
Shift register  
LSB Data  
(Internal)  
SID  
0A  
DATA DATA  
2A 1A  
DATA  
16B  
SID  
0B  
DATA  
0A  
DATA DATA DATA  
13B  
DATA DATA DATA  
3B  
DATA DATA  
16C 15C  
15B  
14B  
2B  
1B  
0
1
DATA  
0B  
Shift register  
LSB +1 Data  
(Internal)  
SID  
1A  
DATA  
16B  
DATA  
1A  
SID  
0A  
DATA DATA  
15B  
14B  
DATA DATA DATA  
2B  
SID  
1B  
DATA DATA  
2A  
SID DATA  
0B  
4B  
3B  
16C  
3A  
1
0
DATA  
1B  
Shift register  
MSB -1 Data  
(Internal)  
DATA  
16A  
DATA  
15A  
SID  
15B  
SID  
15A  
SID DATA DATA DATA  
14A 13A 12A 11A  
SID  
1A  
SID DATA  
16B  
DATA  
0
SID SID  
14B 13B  
0A  
0
DATA  
15B  
SID data selected by SIDLD bit is loaded into the common  
shift register at LAT rising edge except SIDLDis 00b.  
Shift register  
MSB Data  
(Internal)  
DATA  
16A  
DATA DATA  
0
DATA  
16B  
SID SID  
15A 14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
1A  
SID  
0A  
SID SID  
15B 14B  
1
0
0
Output on-off  
data latch  
(Internal)  
DATA15A-0A  
Old on-off data  
SIDLDin FC  
data latch  
(Internal)  
XXb  
LOD data is selected when SIDLD is 01h. LSD data is selected when SIDLDis set to10b. OLD  
data is selected when SID is set to 11b. No SID data is loaded whenSIDLDis 00h.  
DATA DATA  
0
DATA  
16A  
SID  
2A  
SID  
1A  
SID  
0A  
SID  
15B  
SID  
14B  
SID  
15A  
SID  
14A  
SID SID  
13A 12A  
DATA  
16B  
SOUT  
1
Low  
16 bit SID data  
Low  
BLANK  
Selected detector data by SIDLD is held in SID holder while BLANK is high level. Or the data is held in SID holder when IDM  
working time is passed. The held data is loaded into the common shift register as SID except the case SIDLD is 00h.  
SID holder  
data  
(Internal)  
Detector data Detector data  
XXXXh XXXXh  
LOD data goes through SID holder while BLANK is low level or IDM working time is not passed.  
16 bit LOD or  
LSD or OLD  
data (Internal)  
Detector data  
0000h  
Detector data  
0000h  
Detector  
XXXXh  
Detector data  
XXXXh  
The detectors data are not stable just after BLANK signal goes low.  
Figure 10. SID Read Timing  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Timing Diagrams (continued)  
DATA DATA DATA DATA DATA DATA  
SIN  
DATA DATA DATA DATA  
3B 2B 1B 0B  
DATA DATA DATA DATA DATA DATA  
15C 14C 13C 12C 11C 10C  
0A  
15B 14B  
13B  
12B 11B  
SCLK  
LAT  
1
2
3
4
5
1
2
3
4
5
6
13  
14  
15  
16  
Shift register  
LSB Data  
(Internal)  
SID  
0A  
DATA  
0A  
SID  
0B  
DATA DATA DATA DATA  
13B  
DATA DATA DATA  
3B  
DATA DATA DATA DATA DATA  
13C 12C  
16B  
15B  
14B  
2B  
1B  
16C 15C  
14C  
0
1
DATA  
0B  
Shift register  
LSB +1Data  
(Internal)  
SID  
1A  
DATA  
16B  
DATA  
1A  
SID  
0A  
DATA DATA  
15B  
14B  
DATA DATA DATA  
2B  
SID DATA DATA DATA DATA  
0B  
SID  
1B  
4B  
3B  
16C  
15C  
14C 13C  
1
0
DATA  
1B  
Shift register  
DATA  
15A  
SID  
15A  
SID DATA DATA DATA  
11A  
SID  
1A  
SID DATA  
0A  
SID  
15B  
SID SID  
14B 13B  
SID  
12B  
SID  
11B  
SID  
10B  
MSB -1Data  
(Internal)  
14A 13A  
12A  
16B  
0
DATA  
15B  
Shift register  
MSB Data  
(Internal)  
DATA  
16A  
DATA  
16B  
SID SID  
15A 14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
1A  
SID  
0A  
SID SID  
15B 14B  
SID  
13B  
SID SID  
12B 11B  
0
0
Output on-off  
data latch  
(Internal)  
DATA15B-0B  
DATA15A-0A  
Control data  
Latch  
(Internal)  
Control data is not changed from previous data  
DATA  
16B  
DATA  
16A  
SID  
15B  
SID  
14B  
SID  
13B  
SID  
12B  
SID  
11B  
SID  
15A  
SID  
14A  
SID SID  
13A 12A  
SID  
2A  
SID  
1A  
SID  
0A  
SOUT  
Low  
Low  
BLANK  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OUTn(1)  
OUTn(2)  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OUTn(3)  
OUTn(4)  
ON  
OFF  
OFF  
ON  
These dotted lines are output pulse timing for IDM  
(1) On/off latch data is '1'.  
(2) On/off latch data change from '1' to '0' at second LAT signal.  
(3) On/off latch data is change from '0' to '1' at second LAT signal.  
(4) On/off latch data is '0'.  
Figure 11. On-Off Control Data Write Timing (BLANK Mode = 1)  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Timing Diagrams (continued)  
DATA  
0C  
DATA DATA DATA DATA  
SIN  
DATA DATA DATA  
2B 1B 0B  
DATA DATA  
7C 6C  
DATA  
1C  
0A  
15B 14B  
13B  
SCLK  
LAT  
1
2
3
14  
15  
16  
1
2
7
8
Shift register  
LSB Data  
(Internal)  
DATA  
0A  
DATA DATA  
15B 14B  
DATA DATA DATA  
2B 1B 0B  
DATA  
7C  
DATA DATA  
0C  
1C  
Shift register  
LSB +1Data  
(Internal)  
DATA DATA DATA  
1A  
0A 15B  
DATA DATA DATA  
3B 2B 1B  
DATA  
1C  
DATA  
0B  
DATA  
2C  
Shift register  
DATA DATA DATA  
14A  
13A 12A  
DATA DATA DATA  
0A 15B 14B  
DATA  
14B  
DATA  
14B  
DATA  
14B  
MSB -1Data  
(Internal)  
Shift register  
MSB Data  
(Internal)  
DATA DATA DATA  
15  
DATA DATA DATA  
0A  
DATA  
15B  
DATA  
15B  
DATA  
15B  
A
14A 13A  
1A  
15B  
Output on-off  
data latch  
(Internal)  
DATA15B-0B  
DATA 7C-0C  
DATA15A-0A  
Control data  
Latch  
(Internal)  
Latest control data  
DATA  
0B  
DATA DATA  
14A 13A  
DATA  
1A  
DATA  
7B  
DATA  
15A  
DATA DATA  
0A 15B  
DATA  
6B  
DATA  
7C  
SOUT  
BLANK  
OFF  
OFF  
ON  
OUTn(1)  
OUTn+1(1)  
OUTn(2)  
ON  
OFF  
OFF  
ON  
ON  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
OUTn(3)  
OUTn(4)  
ON  
OFF  
OFF  
OFF  
ON  
(1) If the on/off latched data is changed from “0” to “1” at 1’st LAT signal, changed from “1” to “0” at 2’nd LAT signal.  
(2) If the on/off latched data is changed from “0” to “1” at 1’st LAT signal, changed from “1” to “1” at 2’nd LAT signal.  
(3) If the on/off latched data is changed from “1” to “0” at 1’st LAT signal, changed from “0” to “1” at 2’nd LAT signal.  
(4) If the on/off latched data is “0”.  
Figure 12. On-Off Control Data Write Timing (BLANK Mode = 0)  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Timing Diagrams (continued)  
DATA  
15C  
DATA  
0A  
DATA DATA DATA DATA  
14B  
DATA DATA DATA DATA  
2B  
DATA DATA DATA DATA DATA  
14C 13C 12C 11C 10C  
DATA  
15B  
SIN  
13B  
12B 11B  
3B  
1B  
0B  
SCLK  
LAT  
1
2
3
4
5
1
2
3
4
5
6
13  
14  
15  
16  
tH2  
Shift register  
LSB Data  
(Internal)  
SID  
0A  
DATA  
0A  
DATA  
0B  
DATA DATA DATA DATA  
13B  
DATA DATA DATA  
3B 2B 1B  
DATA DATA DATA DATA DATA  
13C 12C  
16B 15B  
14B  
16C 15C  
0
14C  
1
Shift register  
LSB +1 Data  
(Internal)  
SID  
1A  
DATA  
1A  
DATA  
1B  
SID DATA DATA DATA  
14B  
DATA DATA DATA  
4B  
DATA DATA DATA DATA DATA  
15C  
0A  
16B  
15B  
3B  
2B  
0B  
16C  
14C 13C  
1
0
Shift register  
MSB -1 Data  
(Internal)  
DATA  
15A  
DATA  
15B  
SID  
15A  
SID DATA DATA DATA  
11A  
SID  
1A  
SID DATA  
0A  
DATA DATA DATA DATA DATA  
14B 13B 12B 11B 10B  
14A 13A  
12A  
16B  
1
Shift register  
MSB Data  
(Internal)  
DATA  
16B  
DATA  
16A  
SID SID  
15A 14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
1A  
SID  
0A  
DATA DATA DATA DATA DATA  
15B 14B 13B 12B 11B  
0
1
Output Oo-off  
data  
(Internal)  
DATA15A-0A  
DATA15A-0A  
Function control  
Latch Data  
(Internal)  
Old function control data  
DATA15B-0B  
DATA  
16A  
SID  
2A  
SID  
1A  
SID  
0A  
DATA DATA DATA DATA DATA  
15B 14B 13B 12B 11B  
SID  
15A  
SID  
14A  
SID SID  
13A 12A  
DATA  
16B  
SOUT  
Low  
High  
Figure 13. Function Control Data Write Timing  
20  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
6.8 Typical Characteristics  
At TA = 25°C, unless otherwise noted.  
100  
60  
50  
40  
30  
20  
10  
0
66.0  
33.0  
13.2  
IOLCMax = 40 mA  
IOLCMax = 30 mA  
IOLCMax = 20 mA  
10  
6.60  
4.40  
3.30  
2.64  
2.20  
30  
IOLCMax = 2 mA  
IOLCMax = 10 mA  
IOLCMax = 5 mA  
1.89  
1.65  
40  
IOLCMax = 1 mA  
1.47  
1.32  
50  
1
0
10  
20  
IOLCMax (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage (V)  
VCC = 3.3 V  
BC = 7Fh  
VOUTn = 0.8 V  
Figure 14. Reference Resistor vs Output Current  
Figure 15. OUTn Current vs Output Voltage  
46  
45  
44  
43  
42  
41  
40  
39  
38  
60  
50  
40  
30  
20  
10  
0
IOLCMax = 50 mA  
IOLCMax = 40 mA  
IOLCMax = 30 mA  
IOLCMax = 20 mA  
TA = -40°C  
TA = +25°C  
TA = +85°C  
IOLCMax = 2 mA  
IOLCMax = 10 mA  
IOLCMax = 5 mA  
IOLCMax = 1 mA  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage (V)  
Output Voltage (V)  
VCC = 3.3 V  
VOUTn = 0.8 V  
BC = 7Fh  
RIREF = 1.58 kΩ  
VCC = 5 V  
50 mA = 1 V  
BC = 7Fh  
VOUTn = 0.8 V  
Figure 16. OUTn Current vs Output Voltage  
Figure 17. OUTn Current vs Output Voltage  
56  
55  
54  
53  
52  
51  
50  
49  
48  
3
2
1
0
-1  
-2  
-3  
TA = -40°C  
TA = +25°C  
TA = +85°C  
VCC = 3.3 V  
VCC = 5 V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
10  
20  
30  
40  
50  
Output Voltage (V)  
Output Current (mA)  
VCC = 5 V  
VOUTn = 1 V  
BC = 7Fh  
RIREF = 1.28 kΩ  
BC = 7Fh  
VOUTn = 0.8 V  
50 mA = 1 V  
Figure 18. OUTn Current vs Output Voltage  
Figure 19. Constant-Current Error  
vs Output CurrenT set by RIREF or BC Data (Channel-to-  
Channel)  
Copyright © 2015–2016, Texas Instruments Incorporated  
21  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, unless otherwise noted.  
3
60  
50  
40  
30  
20  
10  
0
VCC = 3.3 V  
VCC = 5 V  
IO = 2 mA  
2
1
IO = 5 mA  
IO = 10 mA  
IO = 20 mA  
IO = 40 mA  
0
-1  
-2  
-3  
IO = 50 mA  
VCC = 3.3 V  
VCC = 5 V  
-40  
-20  
0
20  
40  
60  
80  
100  
0
16  
32  
48  
64  
80  
96  
112  
128  
Temperature (°C)  
BC Data (Decimal)  
RIREF = 1.28 kΩ  
VOUTn = 0.8 V  
Figure 20. Constant-Current Error  
vs Ambient Temperature (Channel-to-Channel)  
Figure 21. Global Brightness  
Control Linearity  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
2
0
0
0
10  
20  
30  
40  
50  
-40  
-20  
0
20  
40  
60  
80  
100  
Output Current (mA)  
RIREF = 1.6 kΩ  
All Outpts on  
Ambient Temperature (°C)  
RIREF = 1.6 kΩ  
BC = 7Fh  
SIN = 17.5 MHz  
BC = 7Fh  
SCLK = 35 MHz  
SIN = 17.5 MHz  
SCLK = 35 MHz  
All Outpts on  
Figure 22. Supply Current  
vs Output Current Set by RIREF  
Figure 23. Supply Current  
vs Ambient Temperature  
30  
25  
20  
15  
10  
5
CH1 (5 V/div)  
CH1-BLANK  
CH2-OUT0  
CH2 (2 V/div)  
CH3 (2 V/div)  
CH3-OUT1  
CH4-OUT15  
CH4 (2 V/div)  
VCC = 3.3 V  
VCC = 5 V  
0
Time (20 ns/div)  
BC = 7Fh  
-40  
-20  
0
20  
40  
60  
80 100  
VCC = 3.3 V  
VLED = 5 V  
RIREF = 1.6 kΩ  
CL = 15 pF  
Ambient Temperature (°C)  
RL = 100 Ω  
BC = 7Fh  
RIREF = 1.6 kΩ  
SIN = SCLK = Low  
Power-Save Mode  
Figure 25. Constant-Current Output  
Voltage Waveform  
Figure 24. Supply Current in Power-Save Mode  
vs Ambient Temperature  
22  
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
7 Parameter Measurement Information  
RL  
CL  
VCC  
GND  
VCC  
IREF  
OUTn  
VLED  
(1)  
RIREF  
(1) CL includes measurement probe and jig capacitance.  
Figure 26. Rise Time and Fall Time Test Circuit for OUTn  
VCC  
SOUT  
VCC  
(1)  
CL  
GND  
(1) CL includes measurement probe and jig capacitance.  
Figure 27. Rise Time and Fall Time Test Circuit for SOUT  
VCC  
OUT0  
OUTn  
VCC  
IREF  
RIREF  
GND OUT15  
VOUTn  
VOUTfix  
Figure 28. Constant-Current Test Circuit for OUTn  
Copyright © 2015–2016, Texas Instruments Incorporated  
23  
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLC59291 is a 8/16-channel constant current sink LED driver. Each channel can be turned on-off by writing  
data to an internal register. The constant current value of all 16 channels is set by a single external resistor and  
128 steps for the global brightness control (BC).  
The TLC59291 has six type error flags: LED open detection (LOD), LED short detection (LSD), output leak  
detection (OLD), reference terminal short detection (ISF), Pre thermal warning (PTW) and thermal error flag  
(TEF). In addition, the LOD and LSD functions have invisible detection mode (IDM) that can detect those errors  
even when the output is off. The error detection results can be read via a serial interface port.  
8.2 Functional Block Diagram  
VCC  
VCC  
16 bit LOD or 16 bit LSD data or 16 bit OLD data  
RESET  
UVLO  
LSB  
MSB  
Bit 7/15  
Select  
SIN  
SOUT  
LOAD  
SELECT  
Common shift register  
0
15  
SCLK  
2
16  
LSB  
MSB  
All off  
Output On-Off data Latch  
16  
0
15  
16  
LSB  
MSB  
16  
Control data latch  
(Global brightness control, LSD voltage select,  
loaded error select, other function control)  
1
LAT  
Blank  
Mode  
0
15  
4
3
1
BLANK  
SID  
Selector  
2
2
7
To all  
analog  
circuit  
ERROR  
SELECT  
Power  
save  
control  
2
IDM timing  
control  
OSC  
Temp  
Error  
Status  
ISF  
BC  
RESET  
165C  
138C  
Thermal  
Detector  
16  
2
SID  
Holder  
On-Off control with output delay  
ISF  
Reference  
current  
control  
16  
IREF  
16channels constant current sink driver  
with 7bit global brightness control  
16  
ERROR  
SELECT  
VLSD  
SELECT  
LED Open Detection (LOD) / LED Short Detection (LSD)  
/Output Leak Detection (OLD)  
Detection  
Voltage  
GND  
GND  
OUT0 OUT1  
OUT2  
OUT13 OUT14 OUT15  
24  
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
8.3 Feature Description  
8.3.1 Maximum Constant Sink Current  
The maximum output current of each channel (IO(LCmax)) is programmed by a single resistor (RIREF) that is placed  
between the IREF and GND pins. The current value can be calculated by Equation 1:  
V
(V)  
IREF  
R
(KW) =  
x 54.8  
IREF  
I
(mA)  
O(CLmax)  
Where:  
VIREF = the internal reference voltage on IREF (typically 1.205 V when the global brightness control  
data are at maximum.  
IO(LCmax) = 1 mA to 40 mA ( VCC 3.6 V), or 1 mA to 50 mA (VCC > 3.6 V) at OUT0 to OUT15 (BC =  
7Fh)  
(1)  
IO(LCmax) is the highest current for each output. Each output sinks IO(LCmax) current when it is turned on with the  
maximum global brightness control (BC) data. Each output sink current can be reduced by lowering the global  
brightness control value. RIREF must be between 1.32 kΩ and 66 kΩ to hold IO(LCmax) between 50 mA (typical) and  
1 mA (typical). Otherwise, the output may be unstable. Output currents lower than 1 mA can be achieved by  
setting IO(LCmax) to 1 mA or higher and then using the global brightness control to lower the output current.  
Figure 14 and Table 1 show the characteristics of the constant-current sink versus the external resistor, RIREF  
.
Table 1. Maximum Constant Current Output versus  
External Resistor Value  
IO(LCmax) (mA)  
RIREF (kΩ, typ)  
1.32  
50 (VCC > 3.6 V only)  
45 (VCC > 3.6 V only)  
1.47  
40  
35  
30  
25  
20  
15  
10  
5
1.65  
1.89  
2.20  
2.64  
3.30  
4.40  
6.60  
13.2  
2
33  
1
66  
Copyright © 2015–2016, Texas Instruments Incorporated  
25  
 
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
8.3.2 Global Brightness Control (BC) Function  
The TLC59291 has the ability to adjust the output current of all constant current outputs simultaneously. This  
function is called global brightness control (BC). The global BC for all outputs (OUT0 to OUT15) can be set with  
a 7-bit word. The global BC adjusts all output currents in 128 steps from 0% to 100%. where 100% corresponds  
to the maximum output current set by RIREF. Equation 2 calculates the actual output current. BC data can be set  
via the serial interface.  
I
(mA) x BC  
O(LCmax)  
I
(mA) =  
O(LCn)  
127d  
Where:  
IO(LCmax) = the maximum constant-current value for each output determined by RIREF  
.
BC = the global brightness control value in the control data latch (0h to 127d)  
(2)  
Table 2 shows the BC data versus the constant-current ratio against IO(LCmax)  
.
Table 2. BC Data versus Constant-Current Ratio Against IO(LCmax)  
BC DATA  
RATIO OF OUTPUT  
CURRENT TO IO(LCmax)  
(%)  
IO(LC)  
(mA, IO(LCmax)= 40mA,  
typ)  
IO(LC)  
BINARY  
000 0000  
000 0001  
000 0010  
∙ ∙ ∙  
DECIMAL  
HEX  
00  
(mA, IO(LCmax)= 1mA, typ)  
0
0
0
0
1
01  
0.8  
0.31  
0.63  
∙ ∙ ∙  
0.01  
0.02  
∙ ∙ ∙  
2
02  
1.6  
∙ ∙ ∙  
125  
126  
127  
∙ ∙ ∙  
7D  
7E  
7F  
∙ ∙ ∙  
111 1101  
111 1110  
111 1111  
98.4  
99.2  
100.0  
39.4  
39.7  
40.0  
0.98  
0.99  
1.00  
8.3.3 Thermal Shutdown (TSD) and Thermal Error Flag (TEF)  
The thermal shutdown (TSD) function turns off all constant-current outputs when the junction temperature (TJ)  
exceeds the threshold (TTEF = 165°C, typical) and sets all LOD data bit to ‘1’. When the junction temperature  
drops below (TTEF – THYST), the output control starts. The TEF is remains ‘1’ until LAT is input even if low  
temperature. Figure 6 shows a timing diagram and Table 3 shows a truth table for TEF.  
8.3.4 Pre-Thermal Warning (PTW)  
The PTW function indicates that the IC junction temperature is high. The PTW is set and all LSD data bit are set  
to “1” while the IC junction temperature exceeds the temperature threshold (TPTW = 138 °C, typical). Then OUTn  
are not forced off. When the PTW is set, the IC temperature should be reduced by lowering the power dissipated  
in the driver to avoid a forced shutdown by the thermal shutdown circuit. This reduction can be accomplished by  
lowering the values of the BC data. When the IC junction temperature decreases below the temperature of TPTW  
,
PTW is reset. Figure 6 shows a timing diagram and Table 3 shows a truth table for PTW.  
26  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
 
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
8.3.5 Current Reference Terminal – IREF Terminal - Short Flag (ISF)  
The ISF function indicates that IREF terminal is short to GND with low impedance. When IREF is set, all OLD  
data bit is set to “1”. Then all outputs (OUTn) are forced off and remain off until the short is removed. Table 3  
shows the truth table for ISF.  
Table 3. TEF/PTW/ISF Truth Table  
CORRESPONDING DATA BITS  
TEF  
Device temperature is lower than Device temperature is lower than  
high-side detect temperature pre-thermal warning temperature  
(temperature TTEF (temperature TPTW  
PTW  
ISF  
IN SID  
IREF terminal is not shorted  
Depends on LOD/LSD/OLD  
)
)
Device temperature is higher  
than high-side detect  
temperature and all outputs are  
Device temperature is higher  
than pre-thermal warning  
temperature  
IREF terminal is shorted to GND SID is all 1s for TEF when SIDLD  
with low impedance and all  
outputs (OUT0 to OUT15) are  
forced off  
bit = '01'. SID is all 1s for PTW  
when SIDLD = '10'. SID is all 1s  
for ISF when SIDLD = '11'.  
forced off (temperature >TTEF  
)
(temperature > TPTW)  
8.3.6 Noise Reduction  
Large surge currents may flow through the IC and the board on which the device is mounted if all 16 outputs turn  
on simultaneously when BLANK goes low or on-off data changes at LAT rising edge with BLANK low. These  
large current surges could induce detrimental noise and electromagnetic interference (EMI) into other circuits.  
The TLC59291 turns the outputs on in 2ns series delay for each output to provide a circuit soft-start feature.  
Copyright © 2015–2016, Texas Instruments Incorporated  
27  
 
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Blank Mode Selection (BLKMS)  
The device has two configuration for BLANK pin, which is decided by BIT[9] in FC register. When BLANK mode  
= 1, the device is in ENABLE mode, BLANK pin is worked as OUTPUT enable pin: when BLANK=Low, all  
constant current outputs are controlled by the on/off control data in the data latch; when BLANK=High, all OUTx  
are forced off.  
When BLANK mode = 0, the device is in SOUT mode, BLANK pin is worked as SOUT select pin; when BLANK=  
Low, SOUT is connected to the bit7 of the 16-bit shift register, worked as 8 channel device; when BLANK= High,  
SOUT is connected to the bit15 of the 16-bit shift register, worked as 16ch device. If device is already in  
ENABLE mode and we want to switch to SOUT mode, the new FC data with BIT[9]=0 must be input. Then it  
enter SOUT mode.  
If device is already in SOUT mode and the user wants to switch to ENABLE mode. First make sure BLANK pin is  
high, SOUT is connected with bit15 of common shift register. Then input the new FC data with BIT[9] = 1. The  
device enters ENABLE mode  
When the IC is powered on, SOUT mode is selected as default value. Refer to table 7 for detail.  
8.4.2 Power-Save Mode  
In this mode, the device dissipation current becomes 30 µA (typical). When “PSMODE” bit is ‘1’, the power save  
mode is enabled. Then if LAT rising edge is input to write all ‘0’ data into the output on-off data latch or to write  
any data into the control data latch when the on-off data latch are all ‘0’, TLC5929 goes into the power save  
mode. When SCLK rising edge is input, the device returns to normal operation. The power-save mode timing is  
shown in Figure 7.  
8.4.3 LED Open Detection (LOD)  
LOD detects the fault caused by LED open circuit or a short from OUTn to ground by comparing the OUTn  
voltage to the LOD detection threshold voltage level (VLOD = 0.3 V typical). If the OUTn voltage is lower than  
VLOD, that output LOD bit is set to '1' to indicate an open LED. Otherwise, the LOD bit is set to '0'. LOD data are  
only valid for outputs programmed to be on. LOD data for outputs programmed to be off are always '0' (Table  
11).  
The LOD data are stored into a 16-bit register called SID holder at BLANK rising edge when “SIDLD” bits is set  
to ‘01b’ (Table6) or when Invisible Detection Mode (IDM) is enabled, the LOD data are stored to SID holder at  
the end timing of IDM working time.  
The stored LOD data can be read out through the common shift register as Status Information Data (SID) from  
SOUT pin. LOD/LSD data are not valid until 0.5 µs after the falling edge of BLANK.  
8.4.4 LED Short Detection (LSD)  
LSD data detects the fault caused by a shorted LED by comparing the OUTn voltage to the LSD detection If the  
OUTn voltage is higher than the programmed voltage, that output LSD bit is set to '1' to indicate a shorted LED.  
Otherwise, the LSD bit is set to'0'. LSD data are only valid for outputs programmed to be on. LSD data for  
outputs programmed to be off are always '0' (Table 4).  
The LSD data are stored into a 16-bit register called SID holder at BLANK rising edge when “SIDLD” bits is set to  
‘10b’ (Table6) or when Invisible Detection Mode (IDM) is enabled, the LSD data are stored to SID holder at the  
end timing of IDM working time. The stored LSD data can be read out through the common shift register as  
Status Information Data (SID) from SOUT pin. LOD/LSD data are not stabled until 0.5 µs after the falling edge of  
BLANK. Therefore, BLANK must be low for at least that time.  
The LSD need to be executed after propagation delay, “td4” or more from the device operation resumed from the  
power save mode because LOD does not work during the power save mode.  
28  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Device Functional Modes (continued)  
8.4.5 Invisible Detection Mode (IDM)  
Invisible Detection Mode (IDM) is the mode which can detect LOD and LSD when output on-off data is set to off  
state. When “IDMCUR” bit in the control data latch are set any data except “00b”, OUTn start to sink the current  
set by the “IDMCUR” bit at BLANK falling edge and OUTn stop to sink the current at BLANK rising signal or the  
time set by “IDMTIM” has passed. When OUTn is stopped, the selected SID data by “SIDLD” bit are latched to  
into SID holder.  
When IDM mode is enabled, OLD is always set to disable. When “IDMCUR” bit in the control data latch is set  
“00b”, OUTn doesn’t start to sink the current set. Figure 29 shows LOD/LSD/OLD/IDM circuit. Figure 8 shows  
IDM operation timing and Table 5 shows a truth table for LOD/LSD/OLD.  
IDM can only be working when FC[9] = 1.  
8.4.6 Output Leakage Detection (OLD)  
Output leak detection (OLD) detects a fault caused by OUTn is short to GND with high resistance by comparing  
the OUTn voltage to the LSD detection threshold voltage when output on-off data is set to off state. Also OLD  
can detect the short between adjacent pins. Small current is sourced from OUTn turned off to LED to detect LED  
leaking when “SIDLD” bit are ‘11b’ and BLANK is low. OLD operation is disabled when SIDLD bit are set any  
data except “11b” and then the sourced current is stopped. Also OLD is disabled when Invisible Detection Mode  
(IDM) is enabled. If the OUTn voltage is lower than the programmed LSD threshold voltage, that output OLD bit  
is set to '1' to indicate a leaking LED. Otherwise, the OLD bit is set to '0'. OLD result is valid for outputs  
programmed to off only. The OLD data is latched into SID holder when BLANK goes high. OLD data for outputs  
not programmed to off are always '0'. The OLD need to be executed after propagation delay, “td4” or more from  
the device operation resumed from the power save mode because OLD does not work during the power save  
mode.  
VCC  
VLED  
OLD  
Control  
2 mA (typ)  
LED Lamp  
LSD/OLD Data  
‘1’ = Error  
OUTn  
On/Off  
Control  
Up to  
50 mA  
VLSD  
2 mA/10 mA/20 mA  
IDM  
Control  
(typ)  
LOD Data  
‘1’ = Error  
GND  
VLOD  
Figure 29. LOD/LSD/OLD/IDM Circuit  
8.4.7 Status Information Data (SID)  
The status information data (SID) contains the status of the LED Open Detection (LOD), LED Short Detection  
(LSD), Output Leakage Detection (OLD), Pre-Thermal Warning (PTW), Thermal Shutdown (TSD) and Thermal  
Error Flag (TEF) and Current Reference Terminal – IREF Terminal - Short Flag (ISF). The loaded SID data can  
be selected by “SIDLD” bits in the control data latch. When the MSB of the common shift register is set to '0', the  
selected SID overwrites lower 16-bit data in the common shift register data at the rising edge of LAT after the  
data in the common shift register are copied to the output on-off data latch. If the common shift register MSB is  
'1', the selected SID does not overwrite the 16-bit data in the common shift register  
Copyright © 2015–2016, Texas Instruments Incorporated  
29  
 
 
 
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
After being copied into the common shift register, new SID data are not available until new data are written into  
the common shift register. If new data are not written, the LAT signal is ignored. To recheck SID without  
changing the on-off control data, reprogram the common shift register with the same data currently programmed  
into the on-off data latch. When LAT goes high, the output on-off data is not changed, but new SID data are  
loaded into the common shift register. LOD, LSD, OLD, PTW, TEF, ISF are shifted out of SOUT with each rising  
edge of SCLK. The SID need to be read out after td4 or more from the device operation resumed from the power  
save mode.  
The SID reading must be delayed for a duration of tD4 or more after the device resumes operation from the  
power-save mode because SID does not indicate correct data during the power-save mode. The SID load  
configuration and SID read timing are shown in Figure 10 and Figure 30, respectively.  
Selected SID (16 bits) by SIDLD Data in the Control Data Latch  
MSB  
LSB  
Selected Selected Selected Selected Selected  
SID for SID for SID for SID for SID for  
OUT15 OUT14 OUT13 OUT12 OUT11  
Selected Selected Selected Selected Selected  
SID for SID for SID for SID for SID for  
OUT4  
OUT3  
OUT2  
OUT1  
OUT0  
15  
14  
13  
12  
11  
3
2
1
0
4
SID are loaded to the  
common shift register  
at the rising edge of  
LAT when the common  
shift register MSB is 0.  
No data are loaded  
into the MSB of the  
common shift register  
MSB = ‘0’  
LSB  
Latch Common Common Common Common Common  
Select Data Bit Data Bit Data Bit Data Bit Data Bit  
Common Common Common Common Common  
Data Bit Data Bit Data Bit Data Bit Data Bit  
SIN  
SOUT  
Bit  
15  
14  
13  
12  
11  
4
3
2
1
0
SLCK  
16  
15  
14  
13  
12  
11  
3
2
1
0
4
Common Shift Register (17 Bits)  
Figure 30. SID Load Configuration  
Table 4. SID Load Assignment  
BIT NUMBER  
LOADED INTO  
COMMON SHIFT  
REGISTER  
SIDLD  
1/0 BIT  
SELECTED  
DETECTOR  
CHECKED OUTn  
DESCRIPTION  
00b  
01b  
No detector selected  
No data loaded  
The data in the common shift register are not changed.  
The data in the common shift register are updated with LOD or TEF data.  
All bits '1' = device junction temperature (TJ) is high (TJ > TTEF) and all  
outputs are forced off by the thermal shutdown function.'1 = OUTn shows  
lower voltage than the LED open detection threshold (VLOD).  
0 = normal operation.  
OUT0  
OUT1  
∙ ∙  
0
1
LED open detection  
(LOD)  
∙ ∙ ∙  
14  
15  
0
OUT14  
OUT15  
OUT0  
OUT1  
∙ ∙ ∙  
The data in the common shift register are updated with LSD or PTW data.  
All bits '1' = device junction temperature (TJ) is high (TJ > TPTW).  
1 = OUTn shows higher voltage than the LED short detection threshold  
(VLSD) selected by LSDVLT.  
1
LED short detection  
(LSD)  
10b  
11b  
∙ ∙ ∙  
14  
15  
0
OUT14  
OUT15  
OUT0  
OUT1  
∙ ∙ ∙  
0 = normal operation.  
The data in the common shift register are updated with OLD or ISF data.  
All bits '1' = IREF pin is shorted to GND with low impedance.  
1 = OUTn is leaking to GND with greater than 3µA.  
0 = normal operation.  
1
Output leakage  
detection (OLD)  
∙ ∙ ∙  
14  
15  
OUT14  
OUT15  
30  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Table 5. LOD/LSD/OLD Truth Table  
LOD  
LSD  
OLD  
CORRESPONDING BIT IN SID  
OUTn does not leak to GND (VOUTn  
VLSD when constant-current output off  
>
LED is not opened  
(VOUTn > VLOD  
LED is not shorted (VOUTn VLSD  
)
0
)
and OUTn source current on)  
Current leaks from OUTn to internal  
GND, or OUTn is shorted to external  
LED is shorted between anode and  
cathode, or shorted to higher voltage  
LED is open or shorted to GND  
(VOUTn VLOD  
GND with high impedance (VOUTn  
1
)
side (VOUTn > VLSD  
)
VLSD when constant-current output off  
and OUTn source current on)  
8.5 Register Maps  
8.5.1 Register and Data Latch Configuration  
The TLC59291 has one common shift register and two control data latch. The common shift register is 16-bits in  
length and two control data latch is 16-bits length. When SCLK is '0' at LAT rising edge, the 16-bits common shift  
register are copied into the output on-off data latch. Also when SCLK is '1' at LAT rising edge the 16-bits data are  
copied into the control data latch. Figure 31 shows the common shift register and two control data latches  
configuration.  
SID 16 bit  
Common shift register (16 bits)  
LSB  
MSB  
Common Common Common Common  
Data bit  
15  
Common Common Common Common  
Data bit  
4
Common  
Data bit  
11  
Common  
Data bit  
0
SIN  
Data bit Data bit  
14  
Data bit  
12  
Data bit  
3
Data bit Data bit  
2
SOUT  
13  
1
SCLK  
15  
14  
13  
12  
11  
---  
3
2
1
0
4
16 bit  
Output on - off data latch (16 bits)  
LSB  
0
MSB  
15  
---  
13  
12  
2
1
14  
11  
4
3
The latch pulse  
OUTON OUTON  
14 13  
OUTON  
2
OUTON  
15  
OUTON  
3
OUTON OUTON  
0
OUTON OUTON  
12 11  
OUTON  
4
comes from LAT  
pin when SCLK  
signal = 0.  
1
0
16 bit  
To output on-off control circuit  
16 bit  
Control data latch (16 bits)  
LSB  
0
MSB  
15  
10  
9
8
13  
IDM  
12  
7
---  
6
14  
11  
The latch pulse  
comes from LAT  
pin when SCLK  
signal = 1.  
LSD LSD  
detect detect  
voltage1 voltage0  
Power  
save  
enable  
Brightness  
control  
(BC) 6  
Brightness  
control  
(BC) 0  
IDM  
current  
select 1  
IDM  
current  
select 0  
IDM  
SID load  
control  
0
SID load  
control  
1
working working  
time 0  
time 1  
2 bit  
1 bit  
2 bit  
2 bit  
2 bit  
7 bit  
To LSD  
circuit  
To output constant current  
control circuit  
To IDM  
To SID  
To power To IDM  
save mode working time  
current  
control  
circuit  
data load  
control  
circuit  
control  
circuit  
control  
circuit  
Figure 31. Common Shift Register and Control Data Latches Configuration  
Copyright © 2015–2016, Texas Instruments Incorporated  
31  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Register Maps (continued)  
8.5.1.1 Common Shift Register  
The 16-bit common shift register is used to shift data from the SIN pin into the TLC59291. The data shifted into  
the register are used for the data writing for output on-off control, global brightness control, and some functions  
control. The register LSB is connected to SIN. On each SCLK rising edge, the data on SIN are shifted into the  
register LSB and all bits are shifted towards the MSB.  
SOUT can be connected to either bit 15 or bit 7 of common shift register depending on BLANK signal and control  
data setting.  
Also Status Information Data (SID) selected by the load select data in the control data latch are loaded to the  
common shift register when LAT rising edge is input with SCLK is “0” of the shift register.  
When the device powered up, the data in the 16-bit common shift register is set to all “0”.  
8.5.1.2 Output On/Off Data Latch  
The output on/off data latch is 16 bits long and sets the on or off status for each constant-current output.  
When FC[9] = 1 and BLANK is high, all outputs are forced off. But then the data in the latch are not changed. In  
other case, the corresponding output is turned on if the data in the output on-off data latch are '1' and remains off  
if the data are '0'.  
When the IC is initially powered on, the data in the data latch is set to all “0”.  
The output on/off data latch configuration is shown in Figure 32 and the data bit assignment is shown in Table 6.  
From common shift register  
16 bit  
Output on-off data latch (16 bits)  
LSB  
0
MSB  
15  
---  
13  
12  
2
1
14  
11  
4
3
OUTON OUTON OUTON  
14  
13  
OUTON OUTON  
12 11  
OUTON OUTON OUTON OUTON  
1
OUTON  
4
15  
2
3
0
16 bit  
To output on off control circuit  
Figure 32. Output On/Off Data Latch Configuration  
Table 6. On/Off Control Data Latch Bit Assignment  
BIT NUMBER  
BIT NAME  
OUTON0  
OUTON1  
OUTON2  
∙ ∙ ∙  
CONTROLLED CHANNEL  
0
1
OUT0  
OUT1  
OUT2  
∙ ∙ ∙  
2
∙ ∙ ∙  
13  
14  
15  
OUTON13  
OUTON14  
OUTON15  
OUT13  
OUT14  
OUT15  
32  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
Figure 33. Output On/Off Data Latch  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. Output On/Off Data Latch  
Bit  
[15]  
[14]  
[13]  
[12]  
[11]  
[10]  
[9]  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
Description  
OUTON15  
OUTON14  
OUTON13  
OUTON12  
OUTON11  
OUTON10  
OUTON9  
OUTON8  
OUTON7  
OUTON6  
OUTON5  
OUTON4  
OUTON3  
OUTON2  
OUTON1  
OUTON0  
When IC is powered up, these all data are set to “0”  
0 = output OFF (default)  
1 = output ON  
[8]  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
8.5.1.3 Control Data Latch  
The control data latch is 16-bit in length and contains the Global Brightness Control (BC) Function data, Status  
Information Data (SID) load select data, Blank Mode Selection (BLKMS) data, the current value for Invisible  
Detection Mode (IDM), IDM working time, and Power-Save Mode enable control data.  
When the device is powered up, the data in this data latch are set to the default values shown in Table 8.  
The function control data latch configuration is shown in Figure 34.  
From common shift register  
16 bit  
Control data latch (16bits)  
LSB  
0
MSB  
15  
10  
9
8
13  
12  
7
---  
6
14  
11  
BLANK  
Mode  
Select1  
BLANK  
Mode  
Select0  
Power  
save  
enable  
Brightness  
control  
(BC) 6  
Brightness  
control  
(BC) 0  
IDM  
current  
select 1  
IDM  
current  
select 0  
IDM  
IDM  
working working  
SID load  
control  
0
SID load  
control  
1
time 1  
time 0  
2 bit  
1 bit  
2 bit  
2 bit  
2 bit  
7 bit  
To BLANK  
To output constant current  
control circuit  
To IDM  
To power  
save mode  
control  
To IDM  
working  
time control  
circuit  
To SID  
current  
control  
circuit  
Mode  
select  
circuit  
data load  
control  
circuit  
circuit  
Figure 34. Function Control Data Latch Configuration  
Copyright © 2015–2016, Texas Instruments Incorporated  
33  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Figure 35. Control Data Latch  
15  
1
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. Control Data Latch  
Bit  
Field  
Type  
Reset  
Description  
[15]  
PSMODE  
R/W  
1b  
Power save mode enable (Default value = ‘1b’)  
The data selects power save mode enable or disable. When the  
mode is enabled, the device goes into power save mode if all  
data in the on/off data latch are “0”. Table 15 shows the power  
save mode truth table. Figure 7 shows the power save mode  
operation timing.  
[14:13]  
[12:11]  
[10]  
IDMTIM  
IDMCUR  
LSDVLT  
R/W  
R/W  
R/W  
00b  
00b  
1b  
IDM working time select (Default value = ‘00b’)  
The data selects the time of output current sink at OUTn for IDM  
to detect LED open detection (LOD) or LSD without visible  
lighting. Table 15 shows the work time truth table.Figure 9  
shows the IDM operation timing.  
IDM current select (Default value = ‘00b’)  
The data selects the sink current at OUTn for IDM to detect LED  
open detection (LOD) or LSD without visible lighting. Table 14  
shows the current value truth table. Figure 9 shows the IDM  
operation timing.  
LSD detection voltage select. (Default value = ‘1b’)  
These two bits select the detection threshold voltage for the LED  
short detection (LSD). Table 12 shows the detect voltage truth  
table.  
[9]  
BLKMS  
SIDLD  
R/W  
R/W  
0b  
BLANK Mode Select (Default value = ‘0b’)  
The data selects the working mode for BLANK pin. Table 11  
shows the truth table.  
[8:7]  
00b  
SID load control (Default value = ‘00b’)  
The data selects the SID data loaded to the common register  
when LAT pulse is input for on-off data writing. Table 10 shows  
the selected data truth table.  
[6:0]  
BCALL  
R/W  
1111111b Global brightness control (Default value = ‘1111111b’)  
The 7-bit data controls the current of all output with 128 steps  
between 0~100% of the maximum current value set by a  
external resistor. Table 13 shows the current value truth table.  
8.5.1.4 Output On/Off Data Write Timing and Output Control  
When SCLK = “0” at LAT rising edge, the output on-off data can be updated with the 16-bit data in the shift  
register after the data are stored to the shift register using SIN and SCLK signals. When the on-off data latch is  
updated, SID is loaded into the shift register except SID load control is “00b”. See Figure 11.  
When BLANK = SOUT mode, the timing is show in Figure 12.  
8.5.1.5 Function Control Data Writing  
When SCLK = “1” at LAT rising edge, the control data latch can be updated with the 16-bit data in the shift  
register after the data are stored to the shift register using SIN and SCLK signals. When the control data latch is  
updated, SID is not loaded into the shift register.  
If the device is in SOUT mode (FC[9] = 0) and BLANK = Low, SOUT is connected with BIT 7 of common shift  
register. Then FC data can’t be input and not valid. See Figure 13  
34  
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
8.5.1.6 Function Control (FC) Data  
The FC data latch is 16 bits long and is used to adjust output current values for LED brightness, select the SID,  
BLANK mode select, the output current for IDM, the output on time for IDM, and power-save mode  
enable/disable. When the IC is powered on, the control data latch is set to the default value (E67Fh).The control  
data latch truth tables are shown in Table 9 through Table 14.  
Table 9. Global Brightness Control (BC) Truth Table  
BCALL (BIT 6:0)  
0000000  
0000001  
∙ ∙ ∙  
Brightness Control for all Output with Output Current  
Output current of OUTn is set to IO(LCmax) × 0%  
IO(LCmax) × 0.8%  
∙ ∙ ∙  
1111110  
1111111  
IO(LCmax) × 99.2%  
IO(LCmax) × 100%  
Table 10. SID Load Control Truth Table  
SIDLD  
SID LOADED TO THE COMMON SHIFT REGISTER  
BIT 8  
BIT 7  
0
0
1
1
0
1
0
1
No data is loaded (default value)  
LED open detection (LOD) or thermal error flag (TEF) data are loaded  
LED short detection (LSD) or pre-thermal warning (PTW) data are loaded  
Output leakage detection (OLD) or IREF pin short flag (ISF) data are loaded  
Table 11. BLANK Mode Selection Table  
BLKMS (BIT 9)  
BLANK MODE SELECTION  
0
1
SOUT mode, BLANK pin worked as SOUT 8/16 select signal (default)  
Enable mode, BLANK pin worked as OUTPUT enable  
Table 12. LSD Threshold Voltage Truth Table  
LSDVLT (BIT 10)  
LED SHORT DETECTION (LSD) THRESHOLD VOLTAGE  
VLSD0 (0.35 × VCC typ)  
0
1
VLSD3 (0.65 × VCC typ, default value)  
Table 13. Current Select for IDM  
IDMCUR  
SINK CURRENT AT OUTn FOR INVISIBLE DETECTION MODE (IDM)  
BIT 12  
BIT 11  
0
0
1
1
0
1
0
1
IDM is disabled (default value)  
2 µA (typ)  
10 µA (typ)  
20 µA (typ)  
Table 14. IDM Work-Time Truth Table  
IDMTIM  
INVISIBLE DETECTION MODE (IDM) WORKING TIME  
BIT 14  
BIT 13  
0
0
1
1
0
1
0
1
All outputs are turned on for 17 OSC clocks (0.85 µs typ)  
All outputs are turned on for 33 OSC clocks (1.65 µs typ)  
All outputs are turned on for 65 OSC clocks (3.25 µs typ)  
All outputs are turned on for 129 OSC clocks (6.45 µs tyicalp, default value)  
Copyright © 2015–2016, Texas Instruments Incorporated  
35  
 
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Table 15. Power-Save Mode Truth Table  
PSMODE (BIT 15)  
POWER-SAVE MODE FUNCTION  
Power-save mode is disabled.  
0
The device does not go into power-save mode even if the bits in the output on/off data latch  
are all '0'.  
Power save mode is enabled (default value).  
1
The device goes into power-save mode when the bits in the output on/off data latch are all  
'0'.  
36  
Copyright © 2015–2016, Texas Instruments Incorporated  
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The device is a 8/16-channel, constant sink current, LED driver. This device is typically connected in series to  
drive many LED lamps with only a few controller ports. On/Off control data and FC control data can be written  
from the SIN input terminal. The device has six type error flags: LED open detection (LOD), LED short detection  
(LSD), output leak detection (OLD), reference terminal short detection (ISF), Pre themal warning (PTW) and  
thermal error flag (TEF).  
9.2 Typical Application  
In this application, the device VCC and LED lamp anode voltages are supplied from different power supplies.  
VLED  
OUT0 - - - - - - - - - - OUT15  
OUT0 - - - - - - - - - - OUT15  
DATA  
SIN  
SOUT  
SIN  
SOUT  
Controller  
VCC  
SCLK  
LAT  
VCC  
SCLK  
LAT  
SCLK  
LAT  
TLC59291  
IC1  
TLC59291  
ICn  
VCC  
VCC  
BLANK  
BLANK  
IREF  
BLANK  
IREF  
GND  
GND  
RIREF  
RIREF  
GND  
GND  
GND  
GND  
3
SID read  
Figure 36. Multiple Daisy-chained TLC59291 Devices  
9.2.1 Design Requirements  
The parameters for the design example are shown in Table 16.  
Table 16. Design Parameters  
PARAMETER  
VALUE  
VCC input voltage range  
3 V to 5.5 V  
LED lamp (VLED) input voltage range  
SIN, SCLK, LAT, and GSCLK voltage range  
Maximum LED forward voltage (VF) + 0.3 V (knee voltage)  
Low level = GND, High level = VCC  
9.2.2 Detailed Design Procedure  
To begin the design process, a few parameters must be decided upon. The designer needs to know the  
following:  
Maximum output constant-current value for each color LED lamp.  
Maximum LED forward voltage (VF).  
Which error flags are used.  
Copyright © 2015–2016, Texas Instruments Incorporated  
37  
 
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
9.2.3 Application Curves  
Time = 400 ns/div  
Time = 400 ns/div  
Figure 37. Output Waveform When BLANK_Mode = 0  
Figure 38. Output Waveform When BLANK_Mode = 1  
10 Power Supply Recommendations  
The VCC power supply voltage should be decoupled by placing a 0.1-µF ceramic capacitor close to the VCC pin  
and GND plane. Depending on the panel size, several electrolytic capacitors must be placed on the board  
equally distributed to get a well regulated LED supply voltage (VLED). The VLED voltage ripple must be less than  
5% of it nominal value. Futhremore, the VLED must be set to the voltage calculated by Equation 3.  
VLED > VF + 0.4 V (10-mA constant-current example)  
(3)  
Where  
VF = maximum forward voltage of all LEDs.  
38  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TLC59291  
www.ti.com.cn  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
11 Layout  
11.1 Layout Guidelines  
Place the decoupling capacitor near the VCC pin and GND plane  
Place the current programming resistor RIREF close to the IREF pin an the IREFGND pin.  
Route the GND pattern as widely as possible for large GND currents.  
The routing wire between the LED cathode side and the device OUTXn pin must be as short and straight as  
possible to reduce wire inductance.  
When several ICs are chained, symmetric placements are recommended.  
11.2 Layout Example  
Figure 39. Layout  
版权 © 2015–2016, Texas Instruments Incorporated  
39  
TLC59291  
ZHCSE50A SEPTEMBER 2015REVISED MARCH 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
40  
版权 © 2015–2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC59291RGER  
TLC59291RGET  
ACTIVE  
VQFN  
VQFN  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TLC  
59291  
ACTIVE  
RGE  
NIPDAU  
TLC  
59291  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.2) TYP  
2.45 0.1  
7
12  
EXPOSED  
SEE TERMINAL  
DETAIL  
THERMAL PAD  
13  
6
2X  
SYMM  
25  
2.5  
18  
1
0.3  
24X  
20X 0.5  
0.2  
19  
24  
0.1  
C A B  
SYMM  
24X  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
4219013/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.45)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(R0.05)  
TYP  
25  
SYMM  
(3.8)  
20X (0.5)  
13  
6
(
0.2) TYP  
VIA  
7
12  
(0.975) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219013/A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.08)  
(0.64) TYP  
19  
24  
24X (0.6)  
1
25  
18  
24X (0.25)  
(R0.05) TYP  
SYMM  
(0.64)  
TYP  
(3.8)  
20X (0.5)  
13  
6
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219013/A 05/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLC59291RGET

具有低静态电流和完全自诊断功能的 8/16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85
TI

TLC5929DBQ

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929DBQR

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929PWP

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929PWPR

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929RGER

具有 7 位全局亮度控制、省电模式和自诊断功能的 16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85
TI

TLC5929RGET

具有 7 位全局亮度控制、省电模式和自诊断功能的 16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85
TI

TLC5930

12-CHANNEL LED DRIVER
TI

TLC5930PWP

12-CHANNEL LED DRIVER
TI

TLC5930PWPG4

12 Channel LED Driver 24-HTSSOP -20 to 85
TI

TLC5930PWPR

12 Channel LED Driver 24-HTSSOP -20 to 85
TI

TLC5930PWPRG4

12 Channel LED Driver 24-HTSSOP -20 to 85
TI