TLC5944PWP [TI]

16-Channel, 12-Bit PWM LED Driver with 6-Bit Dot Correction and Pre-Charge FET; 16通道, 12位PWM LED驱动器, 6位点校正和预充电FET
TLC5944PWP
型号: TLC5944PWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-Channel, 12-Bit PWM LED Driver with 6-Bit Dot Correction and Pre-Charge FET
16通道, 12位PWM LED驱动器, 6位点校正和预充电FET

显示驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总36页 (文件大小:1219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
16-Channel, 12-Bit PWM LED Driver with  
6-Bit Dot Correction and Pre-Charge FET  
1
FEATURES  
23  
16 Channels, Constant Current Sink Output  
Thermal Shutdown (TSD):  
60-mA Capability (Constant Current Sink)  
Automatic shutdown at over-temperature  
conditions  
12-Bit (4096 Steps) Grayscale Control with  
PWM  
Restart under normal temperature  
6-Bit (64 Steps) Dot Correction with Sink  
Current  
Pre-Thermal Warning (PTW):  
High temperature operation alert  
Readable Error Information:  
Internal Pre-Charge FET to Prevent LED  
Ghosting Phenomenon on Multiplexed LED  
Systems  
LED Open Detection (LOD)  
Thermal Error Flag (TEF)  
Pre-Thermal Warning (PTW)  
LED Power-Supply Voltage up to 15 V  
VCC = 3.0 V to 5.5 V  
Noise Reduction:  
Constant Current Accuracy:  
4-channel grouped delay to prevent inrush  
current  
Channel-to-Channel = ±1%  
Device-to-Device = ±3%  
Operating Temperature: –40°C to +85°C  
CMOS Logic Level I/O  
30-MHz Data Transfer Rate  
APPLICATIONS  
Monochrome, Multicolor, Full-Color LED  
Displays Using Multiplexing System  
LED Signboards Using Multiplexing System  
33-MHz Grayscale Control Clock  
Continuous Base LED Open Detection (LOD):  
Detect LED opening and LED short to GND  
during display with auto output off function  
VLED  
LINEn  
VLED  
LINE0  
¼
¼
¼
OUT0  
OUT15  
SOUT  
XERR  
OUT0  
SIN  
OUT15  
SOUT  
XERR  
DATA  
SIN  
SCLK  
SCLK  
SCLK  
DCSEL  
VLED  
VLED  
VCC  
DCSEL  
DCSEL  
XLAT  
XLAT  
XLAT  
VUP  
VUP  
BLANK  
Controller  
VCC  
BLANK  
BLANK  
GSCLK  
IREF  
VCC  
GSCLK  
GSCLK  
FLAGS  
VCC  
GND  
VCC  
GND  
IREF  
READ  
TLC5944  
TLC5944  
XERR  
READ  
RIREF  
RIREF  
IC1  
ICn  
5
Typical Application Circuit (Multiple Daisy-Chained TLC5944s)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments, Incorporated.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
DESCRIPTION  
The TLC5944 is a 16-channel, constant current sink driver. Each channel is individually adjustable with 4096  
pulse-width modulated (PWM) steps and 64 constant sink current (dot correction) steps. The dot correction (DC)  
adjusts for brightness variations between LEDs. Both grayscale (GS) control and DC are accessible via a  
common serial interface port. The maximum current value of all 16 channels can be set by a single external  
resistor.  
The TLC5944 has an internal pre-charge FET to prevent the ghost-lighting phenomenon that occurs on  
multiplexed LED systems. The TLC5944 has three error detection circuits for LED open detection (LOD), a  
thermal error flag (TEF), and a pre-thermal warning (PTW). The LOD detects a broken or disconnected LED, and  
a shorted LED to GND during the display period. The TEF indicates a too-high temperature condition; when the  
TEF is set, all output drivers are turned off by the thermal shutdown (TSD) protection. Additionally, when the TEF  
is cleared, all output drivers are restarted. The PTW indicates that the IC is operating in a high temperature  
condition. The output drivers remain on when PTW is set.  
blank  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
TRANSPORT MEDIA,  
PRODUCT  
PACKAGE-LEAD  
ORDERING NUMBER  
TLC5944PWPR  
TLC5944PWP  
QUANTITY  
Tape and Reel, 2000  
Tube, 50  
TLC5944  
HTSSOP-28 PowerPAD™  
TLC5944RHBR  
TLC5944RHBT  
Tape and Reel, 3000  
Tape and Reel, 250  
TLC5944  
5 mm × 5 mm QFN-32  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)(2)  
Over operating free-air temperature range, unless otherwise noted.  
PARAMETER  
TLC5944  
–0.3 to +6.0  
–0.3 to +16  
6
UNIT  
V
VCC  
VUP  
Supply voltage, VCC  
Pre-charge voltage  
V
XERR  
mA  
mA  
IOUT  
VIN  
Output current (dc)  
Input voltage range:  
OUT0 to OUT15  
70  
–0.3 to VCC + 0.3  
V
SIN, SCLK, XLAT, BLANK, GSCLK, DCSEL, IREF  
SOUT, XERR  
Output voltage range  
–0.3 to VCC + 0.3  
V
V
VOUT  
OUT0 to OUT15  
–0.3 to VUP + 0.3  
TJ(max)  
TSTG  
Operating junction temperature  
Storage temperature range  
+150  
°C  
°C  
kV  
V
–55 to +150  
Human body model (HBM)  
Charged device model (CDM)  
2
ESD rating  
500  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not supported.  
(2) All voltage values are with respect to network ground terminal.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
RECOMMENDED OPERATING CONDITIONS  
At TA= –40°C to +85°C, unless otherwise noted.  
TLC5944  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DC Characteristics: VCC = 3 V to 5.5 V  
VCC  
VUP  
VO  
Supply voltage  
3.0  
3.0  
5.5  
V
V
Pre-charge voltage  
15  
Voltage applied to output  
High-level input voltage  
Low-level input voltage  
High-level output current  
OUT0 to OUT15  
VUP  
V
VIH  
VIL  
0.7 × VCC  
GND  
VCC  
V
0.3 × VCC  
V
IOH  
SOUT  
SOUT  
–1  
1
mA  
mA  
mA  
mA  
°C  
IOL  
Low-level output current  
XERR  
5
IOLC  
TA  
Constant output sink current  
Operating free-air temperature  
OUT0 to OUT15  
60  
+85  
–40  
–40  
Operating junction  
temperature  
TJ  
+125  
°C  
AC Characteristics: VCC = 3 V to 5.5 V  
fCLK (sclk)  
Data shift clock frequency  
SCLK  
30  
33  
MHz  
MHz  
Grayscale control clock  
frequency  
fCLK (gsclk)  
GSCLK  
TWH0/TWL0  
TWH1  
SCLK, GSCLK  
XLAT, BLANK  
SIN–SCLK  
10  
15  
5
ns  
ns  
ns  
ns  
ns  
Pulse duration  
Setup time  
TSU0  
TSU1  
BLANK–GSCLK↑  
XLAT–SCLK↑  
15  
100  
TSU2  
XLAT–SCLK↑  
(for SID reading only)  
TSU3  
20  
ns  
TSU4  
TSU5  
TH0  
DCSEL–SCLK↑  
DCSEL–XLAT↑  
SIN–SCLK↑  
10  
10  
3
ns  
ns  
ns  
ns  
ns  
ns  
TH1  
XLAT–SCLK↑  
DCSEL–SCLK↓  
DCSEL–XLAT↑  
10  
10  
100  
Hold time  
TH2  
TH3  
DISSIPATION RATINGS  
OPERATING FACTOR  
ABOVE TA = +25°C  
TA < +25°C  
POWER RATING  
TA = +70°C  
POWER RATING  
TA = +85°C  
POWER RATING  
PACKAGE  
HTSSOP-28 with  
31.67 mW/°C  
3958 mW  
2533 mW  
2058 mW  
PowerPAD soldered(1)  
HTSSOP-28 with  
16.21 mW/°C  
27.86 mW/°C  
2026 mW  
3482 mW  
1296 mW  
2228 mW  
1053 mW  
1811 mW  
PowerPAD not soldered(2)  
QFN-32(3)  
(1) With PowerPAD soldered onto copper area on printed circuit board (PCB); 2-oz. copper. For more information, see SLMA002 (available  
for download at www.ti.com).  
(2) With PowerPAD not soldered onto copper area on PCB.  
(3) The package thermal impedance is calculated in accordance with JESD51-5.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLC5944  
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
At VCC = 3.0 V to 5.5 V and TA = –40°C to +85°C. Typical values at VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
TLC5944  
PARAMETER  
TEST CONDITIONS  
IOH = –1 mA at SOUT  
MIN  
TYP  
MAX  
VCC  
0.4  
UNIT  
VOH  
VOL  
High-level output voltage  
VCC – 0.4  
V
V
V
IOL = 1 mA at SOUT  
IOL = 5 mA at XERR  
0
0
Low-level output voltage  
Input current  
0.4  
VIN = VCC or GND at SIN, SCLK, XLAT, GSCLK,  
BLANK, DCSEL  
IIN  
–1  
1
2
µA  
mA  
mA  
SIN/SCLK/GSCLK/XLAT/DCSEL = low, BLANK = high,  
DCn = 3Fh, VOUTn = 1 V, RIREF = 24 k  
ICC1  
ICC2  
1
5
SIN/SCLK/GSCLK/XLAT/DCSEL = low, BLANK = high,  
DCn = 3Fh, VOUTn = 1 V, RIREF = 1.6 kΩ  
10  
SCLK = 30 MHz, GSCLK = 33 MHz, SIN = 15 MHz,  
XLAT/DCSEL = low,  
BLANK = low during 4095 GSCLK period and high  
during 1 GSCLK period,  
GSn = FFFh, DCn = 3Fh, VOUTn = 1 V,  
RIREF = 1.6 kΩ  
ICC3  
17  
35  
60  
mA  
mA  
Supply current (VCC  
)
SCLK = 30 MHz, GSCLK = 33 MHz, SIN = 15 MHz,  
XLAT/DCSEL = low,  
BLANK = low during 4095 GSCLK period and high  
during 1 GSCLK period,  
GSn = FFFh, DCn = 3Fh, VOUTn = 1 V,  
RIREF = 820 Ω  
ICC4  
30  
60  
All OUTn = ON, DCn = 3Fh, VOUTn = VOUTfix = 1 V,  
RIREF = 1 k(see Figure 9), at OUT0 to OUT15  
IO(LC)  
Constant output current  
Leakage output current  
54  
66  
mA  
All OUTn for constant current driver, all output off,  
BLANK = high, VOUTn = VOUTfix = 15 V, VUP = 15 V,  
RIREF = 820 (see Figure 10), at OUT0 to OUT15  
IO(LKG)  
0.1  
µA  
All OUTn for pre-charge FET, all output off,  
BLANK = low, VOUTn = VOUTfix = 0 V, VUP = 15 V,  
RIREF = 820 (see Figure 10), at OUT0 to OUT15  
IO(LKG1)  
–10  
µA  
IO(LKG2)  
XERR, no error status, VOUTn = 5.5 V  
1
µA  
Constant current error  
(channel-to-channel)(1)  
All OUTn = ON, DCn = 3Fh, VOUTn = 1 V,  
RIREF = 820 , at OUT0 to OUT15  
ΔIO(LC)  
±1  
±3  
±3  
%
Constant current error  
(device-to-device)(2)  
All OUTn = ON, DCn = 3Fh, VOUTn = 1 V,  
RIREF = 820 , at OUT0 to OUT15  
ΔIO(LC1)  
ΔIO(LC2)  
±6  
±1  
%
All OUTn = ON, DCn = 3Fh, VOUTn = 1 V,  
RIREF = 820 , at OUT0 to OUT15  
Line regulation(3)  
±0.5  
%/V  
(1) The deviation of each output from the average of OUT0–OUT15 constant current. Deviation is calculated by the formula:  
IOUTn  
D (%) =  
- 1 ´ 100  
(IOUT0 + IOUT1 + ... + IOUT14 + IOUT15  
)
16  
.
(2) The deviation of the OUT0–OUT15 constant current average from the ideal constant current value.  
Deviation is calculated by the following formula:  
(IOUT0 + IOUT1 + ... IOUT14 + IOUT15  
)
- (Ideal Output Current)  
16  
D (%) =  
´ 100  
Ideal Output Current  
Ideal current is calculated by the formula:  
1.20  
IOUT(IDEAL) = 40.5 ´  
RIREF  
(3) Line regulation is calculated by this equation:  
(IOUTn at VCC = 5.5 V) - (IOUTn at VCC = 3.0 V)  
D (%/V) =  
100  
´
(IOUTn at VCC = 3.0 V)  
5.5 V - 3 V  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
ELECTRICAL CHARACTERISTICS (continued)  
At VCC = 3.0 V to 5.5 V and TA = –40°C to +85°C. Typical values at VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
TLC5944  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All OUTn = ON, DCn = 3Fh, VOUTn = 1 V to 3 V,  
RIREF = 820 , at OUT0 to OUT15  
ΔIO(LC3)  
Load regulation(4)  
±1  
±3  
%/V  
VUP = 3 V, VOUTn = 1 V, BLANK = high,  
OUT0 to OUT15  
RPCHG  
Pre-charge FET on-resistance  
1
3
kΩ  
T(TEF)  
T(HYST)  
T(PTW)  
T(HYSP)  
VLOD  
Thermal error flag threshold  
Thermal error flag hysteresis  
Pre-thermal warning threshold  
Pre-thermal warning hysteresis  
LED open detection threshold  
Reference voltage output  
Junction temperature(5)  
Junction temperature(5)  
Junction temperature(5)  
Junction temperature(5)  
All OUTn = ON  
+150  
+5  
+162  
+10  
+175  
+20  
°C  
°C  
°C  
°C  
V
+105  
+5  
+120  
+10  
+135  
+20  
0.2  
0.3  
0.4  
VIREF  
RIREF = 820 Ω  
1.16  
1.20  
1.24  
V
(4) Load regulation is calculated by the equation:  
(IOUTn at VOUTn = 3 V) - (IOUTn at VOUTn = 1 V)  
100  
D (%/V) =  
´
3 V - 1 V  
(IOUTn at VOUTn = 1 V)  
(5) Not tested. Specified by design.  
SWITCHING CHARACTERISTICS  
At VCC = 3.0 V to 5.5 V, TA = –40°C to +85°C, CL = 15 pF, RL = 68 , RIREF = 820 , VLED = 5.0 V, and VUP = 5.0 V. Typical  
values at VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
TLC5944  
PARAMETER  
Rise time  
TEST CONDITIONS  
SOUT (see Figure 6)  
MIN  
TYP  
MAX UNIT  
tR0  
tR1  
tF0  
tF1  
16  
ns  
30  
OUTn, DCn = 3Fh (see Figure 5)  
SOUT (see Figure 6)  
10  
16  
ns  
30  
OUTn, DCn = 3Fh (see Figure 5)  
10  
Fall time  
XERR, CL XERR = 100 pF, RL XERR = 1 k,  
VXERR = 5 V (see Figure 7)  
tF2  
50  
ns  
tD0  
tD1  
tD2  
tD3  
tD4  
tD5  
tD6  
tD7  
SCLKto SOUT  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DCSEL to SOUT  
BLANKto OUT0 sink current off  
GSCLKto OUT0/4/8/12  
GSCLKto OUT1/5/9/13  
GSCLKto OUT2/6/10/14  
GSCLKto OUT3/7/11/15  
XLATto IOUT (dot correction)  
20  
18  
42  
66  
90  
40  
5
20  
35  
50  
40  
73  
Propagation delay time  
106  
140  
50  
BLANKto pre-charge FET on, RL PRE = 10 k,  
constant current driver off (see Figure 8)  
tD8  
10  
35  
130  
10  
ns  
ns  
tON_ERR Output on-time error(1)  
GSn = 001h, GSCLK = 33 MHz  
–20  
(1) Output on-time error is calculated by the following formula: TON_ERR (ns) = tOUTON – TGSCLK. tOUTON is the actual on-time of the constant  
current driver. TGSCLK is the period of GSCLK.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLC5944  
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
XERR  
VUP  
XERR  
VCC  
33rd GSCLK Signal  
Control  
16  
VUP  
VCC  
After BLANK Goes Low  
LED Open Detection Data Latch  
(16 LOD)  
16  
LSB  
MSB  
SIN  
Grayscale Shift Register  
(12 Bits x 16 Channels)  
SOUT  
0
191  
192  
SCLK  
XLAT  
LSB  
MSB  
Grayscale Data Latch  
(12 Bits x 16 Channels)  
0
191  
LSB  
MSB  
Dot Correction Shift Register  
(6 Bits x 16 Channels)  
0
95  
192  
96  
LSB  
MSB  
Dot Correction Data Latch  
(6 Bits x 16 Channels)  
DCSEL  
0
95  
Grayscale  
Counter  
GSCLK  
BLANK  
12  
12-Bit PWM Timing Control  
16  
Thermal  
Detection  
96  
Output Switching Delay  
(4-Channel Unit)  
and  
Flag Control  
(+162°C/+120°C)  
16  
Reference  
Current  
Control  
Constant Current Sink Driver With Dot Correction  
(16 Channels)  
IREF  
GND  
16  
LED Open Detection  
(LOD, 16 Channels)  
VUP  
GND  
Pre-Charge FET  
(16 Channels)  
¼
OUT0  
OUT1  
OUT14 OUT15  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
DEVICE INFORMATION  
PWP PACKAGE  
RHB PACKAGE  
HTSSOP-28 PowerPAD  
5mm × 5mm QFN-32  
(TOP VIEW)  
(TOP VIEW)  
GND  
BLANK  
XLAT  
1
2
3
4
5
6
7
8
9
28 VCC  
27 IREF  
26 VUP  
OUT10  
15 OUT9  
OUT8  
14  
VUP  
25  
GSCLK  
25  
26  
16  
SCLK  
SIN  
24 SOUT  
23 XERR  
22 OUT15  
21 OUT14  
20 OUT13  
19 OUT12  
18 OUT11  
17 OUT10  
16 OUT9  
15 OUT8  
IREF  
VCC 27  
DCSEL  
OUT0  
OUT1  
OUT2  
28  
29  
30  
13 NC  
12 NC  
11 OUT7  
NC  
NC  
Thermal  
PAD  
Thermal  
Pad  
GND  
OUT6  
10  
BLANK 31  
OUT3 10  
OUT4 11  
OUT5 12  
OUT6 13  
OUT7 14  
32  
OUT5  
XLAT  
9
NC = No internal connection.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLC5944  
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
TERMINAL FUNCTIONS  
TERMINAL  
NAME  
SIN  
PWP  
RHB  
I/O  
DESCRIPTION  
Serial data input for grayscale and dot correction.  
5
2
I
Serial data shift clock for GS shift register and DC shift register. Schmitt buffer input. The shift  
register is selected by the DCSEL pin. Data present on the SIN pin are shifted into the shift  
register selected by DCSEL with the rising edge of the SCLK pin. Data in the selected shift  
register are shifted to the MSB side by 1-bit synchronizing to the rising edge of SCLK. The MSB  
data of the selected register appears on SOUT.  
SCLK  
4
1
I
Data in the GS and DC shift register are moved to the respective data latch with a low-to-high  
transition of this pin.  
XLAT  
3
6
32  
3
I
I
I
Shift register and data latch select. When DCSEL is low, SCLK/XLAT/SOUT are connected to the  
GS shift register and data latch. When DCSEL is high, SCLK/XLAT/SOUT are connected to the  
DC shift register and data latch. DCSEL should not be changed while SCLK is high.  
DCSEL  
GSCLK  
Reference clock for grayscale PWM control. If BLANK is low, then each rising edge of GSCLK  
increments the grayscale counter for PWM control.  
25  
24  
Blank (all constant current outputs off). When BLANK is high, all constant current outputs (OUT0  
through OUT15) are forced off, the grayscale counter is reset to '0', and the grayscale PWM  
timing controller is initialized. When BLANK is low, all constant current outputs are controlled by  
the grayscale PWM timing controller.  
BLANK  
2
31  
I
Constant current value setting. OUT0 through OUT15 sink constant current is set to the desired  
value by connecting an external resistor between IREF and GND.  
IREF  
27  
24  
23  
7
26  
23  
22  
4
I/O  
O
Serial data output for GS, DC, and status information data (SID). This output is connected to the  
MSB of the shift register selected by DCSEL.  
SOUT  
XERR  
OUT0  
Error output. Open-drain output. XERR goes low when LOD or TEF are set. XERR is in high  
impedance when error free.  
O
Constant current output. Each output can be tied to other outputs to increase the constant  
current.  
O
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
VCC  
8
5
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Constant current output  
Power-supply voltage  
Pre-charge FET power supply  
Power ground  
9
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
28  
26  
1
7
8
9
10  
11  
14  
15  
16  
17  
18  
19  
20  
21  
27  
25  
30  
VUP  
GND  
12, 13,  
28, 29  
NC  
No internal connection  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
PARAMETER MEASUREMENT INFORMATION  
PIN EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
VCC  
VCC  
INPUT  
SOUT  
GND  
GND  
Figure 1. SIN, SCLK, XLAT, DCSEL, BLANK, GSCLK  
Figure 2. SOUT  
OUTn  
XERR  
GND  
GND  
Figure 3. XERR  
Figure 4. OUT0 Through OUT15  
TEST CIRCUITS  
RL  
CL  
VCC  
GND  
VCC  
VCC  
IREF  
OUTn  
SOUT  
VLED  
VCC  
(1)  
(1)  
CL  
RIREF  
GND  
(1) CL includes measurement probe and jig  
capacitance.  
Figure 5. Rise Time and Fall Time Test Circuit for OUTn  
(1) CL includes measurement probe and jig  
capacitance.  
Figure 6. Rise Time and Fall Time Test Circuit for SOUT  
VCC  
RL XERR  
VUP VCC  
VCC  
VCC  
VUP  
XERR  
VXERR  
OUTn  
(1)  
CL XERR  
GND  
RL PRE  
CL  
GND  
Figure 8. Delay Time Test Circuit for Pre-Charge FET  
(1) CL XERR includes measurement probe and jig capacitance.  
Figure 7. Fall Time Test Circuit for XERR  
VCC  
OUT0  
OUTn  
VCC VUP  
IREF  
OUT0  
OUTn  
VCC  
VUP  
VCC  
IREF  
RIREF  
GND OUT15  
VOUTn  
RIREF  
GND OUT15  
VOUTn  
VOUTFIX  
VOUTFIX  
Figure 9. Constant Current Test Circuit for OUTn  
Figure 10. Leakage Current of Pre-Charge FET Test  
Circuit for OUTn  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLC5944  
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
TIMING DIAGRAMS  
TWH0, TWL0, TWH1  
:
VCC  
INPUT(1) 50%  
GND  
TWH  
TWL  
TSU0, TSU1, TSU2, TSU3, TSU4, TSU5, TH0, TH1, TH2, TH3  
:
VCC  
CLOCK  
50%  
INPUT(1)  
GND  
VCC  
TSU  
TH  
DATA/CONTROL  
50%  
INPUT(1)  
GND  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 11. Input Timing  
tR0, tR1, tF0, tF1, tF2, tD0, tD1, tD2, tD3, tD4, tD5, tD6  
:
VCC  
INPUT(1)  
50%  
GND  
tD  
VOH or VOUTn  
H
90%  
50%  
10%  
OUTPUT  
VOL or VOUTn  
L
tR or tF  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 12. Output Timing  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
tD8 only:  
VCC  
BLANK(1)  
50%  
GND  
tD8  
V
OUTnH  
OUTn  
50% ´ VUP  
V
OUTnL  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 13. Output Timing (Pre-Charge FET)  
DC0  
0A  
GS15 GS15 GS15 GS15 GS15  
8B  
GS0  
3B  
GS0  
2B  
GS0  
1B  
GS0  
0B  
GS15 GS15 GS15 GS15 GS15 GS15 GS15 GS15 GS15  
11C 10C 9C 8C 7C 6C 5C 4C 3C  
SIN  
11B  
10B  
9B  
7B  
TH0  
TSU0  
fCLK (SCLK)  
TWH0  
TSU2  
SCLK  
1
2
3
4
5
189  
190  
191  
192  
1
2
3
4
5
6
7
TH1  
TWH1 TSU3  
TH2  
TWL0  
XLAT  
TSU4  
Keep L Level  
TSU5  
SID Data are Transferred to GS Shift Register  
TSU1  
TWH1  
DCSEL  
BLANK  
GSCLK  
Shift Register Data are Transferred to GS Data Latch  
fCLK (GSCLK)  
TD1  
Latched Data  
for Gray Scale  
(Internal)  
Previous Data  
Latest Data  
TD0  
GS15 GS15 GS15 GS15 GS15 GS0  
3A  
GS0  
2A  
GS0  
1A  
GS0  
0A  
GS15  
11B  
LOD  
15  
LOD  
14  
LOD  
13  
LOD  
12  
LOD  
11  
LOD  
10  
LOD  
9
LOD  
8
SOUT  
10A  
9A  
8A  
7A  
6A  
DC  
GS15  
11A  
MSB  
tR0/tF0  
tD2  
(VOUTnH)  
OFF  
OUT  
ON  
(VOUTnL)  
0/4/8/12  
ON  
tD3  
tF1  
OFF  
ON  
OUT  
ON  
1/5/9/13  
tD4  
tR1  
OFF  
ON  
OUT  
ON  
2/6/10/14  
tD5  
OFF  
ON  
OUT  
ON  
3/7/11/15  
tD6  
ON  
ON  
Pre-Charge  
MOS  
OFF  
OFF  
OFF  
tD8  
Figure 14. Grayscale Data Write Timing  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLC5944  
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
DC0  
0A  
DC15 DC15 DC15 DC15 DC15  
2B  
DC0  
3B  
DC0  
2B  
DC0  
1B  
DC0  
0B  
DC15 DC15 DC15 DC15 DC15 DC15 DC14  
5C 4C 3C 2C 1C 0C 5C  
SIN  
5B  
4B  
3B  
1B  
TSU0  
TH0  
fCLK (SCLK)  
TWH0  
TSU2  
SCLK  
93  
94  
95  
96  
1
2
3
4
5
1
2
3
4
5
6
7
TH1 TWH1  
TH2  
TWL0  
XLAT  
TSU4  
Keep H Level  
DCSEL  
Latched Data  
for Dot Correction  
(Internal)  
Previous Data  
Latest Data  
tD0  
DC15 DC15 DC15 DC15 DC15  
4A 3A 2A 1A 0A  
DC0  
3A  
DC0  
2A  
DC0  
1A  
DC0  
0A  
DC15  
5B  
DC15 DC15 DC15 DC15 DC15 DC14 DC14  
0B  
SOUT  
4B  
3B  
2B  
1B  
5B  
4B  
GS  
MSB  
DC15  
5A  
tR0/tF0  
(IOUTnH)  
(IOUTnL)  
(IOUTnH)  
OUTn  
(IOUTnL  
)
(Current)  
tD7  
Figure 15. Dot Correction Data Write Timing  
The SCLK falling edge must be prior to the XLAT rising edge in case SID is read.  
GS0  
1
GS0  
0
GS15 GS15 GS15 GS15 GS15  
11A 10A 9A 8A 7A  
GS14 GS14 GS14 GS14 GS14 GS14 GS14  
9A 8A 7A 6A 5A 4A 3A  
GS0  
1A  
GS0  
0A  
SIN  
TSU2  
191 192  
1
2
3
4
5
13  
14  
15  
16  
17  
18  
19  
20 190 191 192  
SCLK  
TH1 TWH1 TSU3  
XLAT  
Keep L Level  
DCSEL  
SOUT  
tD0  
GS15  
11  
LOD  
15  
LOD  
14  
LOD  
13  
LOD  
12  
LOD  
3
LOD  
2
LOD  
1
LOD  
0
GS14  
5
GS0  
1
GS0 GS15  
11A  
TEF  
TEF1  
0
SID are entered in GS shift register at the first rising edge of SCLK with low level  
of DCSEL after XLAT. The SID readout consists of the saved LOD result at the  
33rd GSCLK rising edge in the previous display period and the saved TEF data  
and TEF1 at the rising edge of the first of SCLK after XLAT goes low.  
Figure 16. Status Information Data Read Timing  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
 
 
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
TYPICAL CHARACTERISTICS  
At VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
POWER DISSIPATION RATE  
vs FREE-AIR TEMPERATURE  
REFERENCE RESISTOR vs OUTPUT CURRENT  
100000  
10000  
1000  
4000  
3000  
2000  
1000  
0
TLC5944PWP  
PowerPAD Soldered  
24300  
9750  
TLC5944RHB  
3240  
4860  
1944  
TLC5944PWP  
PowerPAD Not Soldered  
1389  
2430  
1080  
1620  
884  
810  
1215  
972  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
Free-Air Temperature (°C)  
Output Current (mA)  
Figure 17.  
Figure 18.  
OUTPUT CURRENT vs OUTPUT VOLTAGE(1)  
OUTPUT CURRENT vs OUTPUT VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
TA = +25°C  
IO = 60 mA  
DC = 3Fh  
IO = 60 mA  
IO = 50 mA  
IO = 40 mA  
IO = 30 mA  
IO = 20 mA  
TA = -40°C  
TA = +25°C  
TA = +85°C  
IO = 10 mA  
IO = 2 mA  
IO = 5 mA  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage (V)  
Output Voltage (V)  
Figure 20.  
(1) When the output voltage is less than the maximum voltage of the  
LED open detection threshold (VLOD = 0.4 VMAX) while the LED is on,  
the LED is forced off by the auto output off function.  
Figure 19.  
ΔIOLC vs AMBIENT TEMPERATURE  
ΔIOLC vs OUTPUT CURRENT  
4
4
3
IO = 60 mA  
TA = +25°C  
3
2
2
1
1
0
0
-1  
-1  
-2  
-3  
-4  
-2  
VCC = 3.3 V  
VCC = 3.3 V  
VCC = 5 V  
-3  
VCC = 5 V  
-4  
-40  
-20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
Ambient Temperature (°C)  
Output Current (mA)  
Figure 21.  
Figure 22.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLC5944  
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
DOT CORRECTION LINEARITY  
ΔIOLC vs OUTPUT CURRENT  
(ABS Value)  
4
3
70  
60  
50  
40  
30  
20  
10  
0
VCC = 3.3 V  
TA = +25°C  
TA = +25°C  
2
IO = 60 mA  
1
0
-1  
-2  
-3  
-4  
IO = 30 mA  
RIREF Control  
Dot Correction Control at RIREF (60 mA)  
IO = 2 mA  
60  
0
10  
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
70  
10  
Output Current (mA)  
Dot Correction Data (dec)  
Figure 23.  
Figure 24.  
DOT CORRECTION LINEARITY  
(ABS Value)  
CONSTANT CURRENT OUTPUT  
VOLTAGE WAVEFORM  
70  
60  
50  
40  
30  
20  
10  
0
IO = 60 mA  
CH1-GSCLK  
(33 MHz)  
CH1 (2 V/div)  
CH2 (2 V/div)  
CH2-OUT0  
(GSData = 0x001h)  
CH3-OUT15  
(GSData = 0x001h)  
IOLCMax = 60 mA  
CH3 (2 V/div)  
TA = -40°C  
TA = +25°C  
TA = +85°C  
DC = 3Fh, TA = +25°C  
RL = 68 W, CL = 15 pF  
VLED = VUP = 5 V  
Time (25 ns/div)  
0
10  
20  
30  
40  
50  
60  
70  
Dot Correction Data (dec)  
Figure 25.  
Figure 26.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
DETAILED DESCRIPTION  
Setting for the Maximum Constant Sink Current Value  
On the TLC5944, the maximum constant current sink value for each channel, IOLCMax, is determined by an  
external resistor, RIREF, and GND pins. The RIREF resistor value is calculated with Equation 1:  
VIREF (V)  
RIREF (kW) =  
´ 40.5  
IOLCMax (mA)  
(1)  
Where:  
VIREF = the internal reference voltage on the IREF pin (typically 1.20 V)  
IOLCMax is the largest current for all outputs. Each output sinks the IOLCMax current when it is turned on and the dot  
correction is set to the maximum value of 3Fh (63d). The sink current for each output can be reduced by  
lowering the respective output dot correction data.  
RIREF must be between 810 (typ) and 24.3 k(typ) in order to keep IOLCMax between 2 mA and 60 mA. The  
output may become unstable when IOLCMax is set lower than 2 mA. However, output currents lower than 2 mA  
can be achieved by setting IOLCMax to 2 mA or higher, and then using dot correction to lower the output current.  
Figure 17 in the Typical Characteristics and Table 1 show the characteristics of the constant sink current versus  
the external resistor, RIREF  
.
Table 1. Maximum Constant Current Output versus  
External Resistor Value  
IOLCMax (mA, Typical)  
RIREF ()  
810  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
884  
972  
1080  
1215  
1389  
1620  
1944  
2430  
3240  
4860  
9720  
24300  
2
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLC5944  
 
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
Dot Correction (DC) Function  
The TLC5944 is able to individually adjust the output current of each channel (OUT0 to OUT15). This function is  
called dot correction (DC). The DC function allows users to individually adjust the brightness and color deviations  
of LEDs connected to the outputs OUT0 to OUT15. Each respective channel output current can be adjusted in  
64 steps from 0% to 100% of the maximum output current, IOLCMax. Dot correction data are entered into the  
TLC5944 via the serial interface.  
Equation 2 determines the sink current for each output (OUTn):  
DCn  
IOUTn (mA) = IOLCMax (mA) ´  
63d  
(2)  
Where:  
IOLCMax = the maximum channel current for each channel determined by RIREF  
DCn = the programmed dot correction value for OUTn (DCn = 0 to 63d)  
When the IC is powered on, the data in the dot correction shift register and data latch are not set to any default  
values. Therefore, DC data must be written to the DC latch before turning on the constant current output.  
Table 2 summarizes the DC data versus current ratio and set current value.  
Table 2. DC Data versus Current Ratio and Set Current Value  
SET CURRENT  
RATIO TO  
MAX CURRENT (%)  
OUTPUT CURRENT  
(mA, Typical)  
AT IOLCMax = 60 mA  
OUTPUT CURRENT  
(mA, Typical)  
AT IOLCMax = 2 mA  
DC DATA  
(Binary)  
DC DATA  
(Decimal)  
DC DATA  
(Hex)  
00 0000  
00 0001  
00 0010  
... ...  
0
1
00  
01  
0.0  
1.6  
0.0  
0.4  
0.000  
0.032  
0.064  
... ...  
2
02  
3.2  
0.8  
... ...  
61  
62  
63  
... ...  
3D  
3E  
3F  
... ...  
96.8  
98.4  
100.0  
... ...  
58.1  
59.0  
60.0  
11 1101  
11 1110  
11 1111  
1.937  
1.968  
2.000  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
 
 
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
Grayscale (GS) Function (PWM Operation)  
The pulse width modulation (PWM) operation is controlled by a 12-bit grayscale counter that is clocked on each  
rising edge of the grayscale reference clock (GSCLK). The counter is reset to zero when BLANK is high. The  
counter value is held at zero while BLANK is high, even if the GSCLK input is toggled high and low. After the  
falling edge of BLANK, the counter increments with each rising edge of GSCLK. Any constant current sink output  
(OUT0 through OUT15) with a nonzero value in the corresponding grayscale latch starts to sink current after the  
first rising edge of GSCLK following a high-to-low transition of BLANK. The internal counter keeps track of the  
number of GSCLK pulses. Each output channel stays on as long as the internal counter is equal to or less than  
the respective output GSCLK. Each channel turns off at the rising edge of GSCLK when the grayscale counter  
value is larger than the grayscale latch value.  
For example, an output that has a grayscale latch value of '1' turns on at the first rising edge of GSCLK after  
BLANK goes low. It turns off at the second rising edge of GSCLK. Figure 27 shows the PWM timing diagram.  
BLANK  
2048  
2049  
2050  
4094  
4095  
4096  
1
2 3 4  
¼
¼
GSCLK  
GSCLK counter starts to count GSCLK after BLANK goes low.  
No driver turns on when Gray Scale data is zero  
(VOUTnH)  
OUTn  
OFF  
ON  
(GSDATA = 000h)  
(VOUTnH)  
(VOUTnL)  
T = GSCLK ´ 1  
OUTn  
OFF  
ON  
(GSDATA = 001h)  
T = GSCLK ´ 2  
(VOUTnH)  
(VOUTnL)  
OUTn  
OFF  
ON  
(GSDATA = 002h)  
T = GSCLK ´ 3  
(VOUTnH)  
OUTn  
OFF  
(GSDATA = 003h)  
ON (VOUTnL)  
(VOUTnH)  
T = GSCLK ´ 2047  
T = GSCLK ´ 2048  
T = GSCLK ´ 2049  
OUTn  
OFF  
(GSDATA = 7FFh)  
ON (VOUTnL)  
(VOUTnH)  
OUTn  
OFF  
(GSDATA = 800h)  
ON  
(VOUTnL)  
(VOUTnH)  
(VOUTnL)  
OUTn  
OFF  
ON  
(GSDATA = 801h)  
(VOUTnH)  
T = GSCLK ´ 4093  
OUTn  
OFF  
(GSDATA = FFDh)  
ON (VOUTnL)  
(VOUTnH)  
T = GSCLK ´ 4094  
OUTn  
OFF  
ON (VOUTnL)  
(GSDATA = FFEh)  
(VOUTnH)  
(VOUTnL)  
T = GSCLK ´ 4095  
OUTn  
OFF  
ON  
(GSDATA = FFFh)  
OUTn does not turn on again until BLANK goes high to reset the  
grayscale clock and then goes low to enable all OUTn.  
OUTn turns on at first rising edge of GSCLK  
after BLANK goes low except when Grayscale data are zero.  
Figure 27. PWM Operation Timing  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLC5944  
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
When the IC powers on, the data in the grayscale shift register and latch are not set to any default value.  
Therefore, grayscale data must be written to the grayscale latch before turning on the constant current output.  
Additionally, BLANK should be held high when the device turns on, to prevent the outputs from turning on before  
the proper grayscale and dot correction values can be written. All constant current outputs are forced off when  
BLANK is high. Equation 3 determines the on time (tOUTON) for each output (OUTn).  
tOUTON (ns) = tGSCLK (ns) ´ GSn  
(3)  
Where:  
TGSCLK = the period of GSCLK  
GSn = the programmed grayscale value for OUTn (GSn = 0 to 4095d)  
If GS data change during a display period because XLAT goes high, and latches new GS data, the internal data  
latch registers are immediately updated. This action can cause the outputs to turn on or off unexpectedly. For  
proper operation, GS data should only be latched into the IC at the end of a display period when BLANK is high.  
Table 3 summarizes the GS data versus OUTn on duty and on time.  
Table 3. GS Data versus OUTn On Duty and OUTn On Time  
OUTn ON-TIME  
OUTn ON DUTY RATIO  
TO MAXIMUM CODE (%)  
(ns, Typical)  
AT 33-MHz GSCLK  
GS DATA (Binary)  
0000 0000 0000  
0000 0000 0001  
0000 0000 0010  
0000 0000 0011  
GS DATA (Decimal)  
GS DATA (Hex)  
0
000  
001  
002  
003  
---  
0.00  
0.02  
0
30  
1
2
0.05  
61  
3
0.07  
91  
---  
---  
---  
0111 1111 1111  
1000 0000 0000  
1000 0000 0001  
2047  
2048  
2049  
---  
7FF  
800  
801  
---  
49.99  
50.01  
50.04  
---  
62030  
62061  
62091  
---  
1111 1111 1101  
1111 1111 1110  
1111 1111 1111  
4093  
4094  
4095  
FFD  
FFE  
FFF  
99.95  
99.98  
100.00  
124030  
124061  
124091  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
 
 
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
Grayscale (GS) Shift Register and Data Latch  
The grayscale (GS) shift registers and data latches are each 192 bits in length, and set the PWM timing for each  
constant current driver. See Table 3 for the ON time duty of each GS data bit. Figure 28 shows the shift register  
and latch configuration. Refer to Figure 14 for the timing diagram for writing data into the GS shift register and  
latch.  
The driver on time is controlled by the data in the GS data latch. GS data present on the SIN pin are clocked into  
the GS shift register with each rising edge of the GSCLK pin when DCSEL is low. Data are shifted in MSB first.  
Data are latched from the shift register into the GS data latch with a rising edge on the XLAT pin. A DCSEL level  
change is allowed when SCLK is low and 100 ns after the rising edge of XLAT.  
When the device powers up, the data in the GS shift register and latches are not set to any default value.  
Therefore, GS data must be written to the GS latch before turning on the constant current output. Also, BLANK  
should be at a high level when powering on the device, because the constant current may be turned on as well.  
All constant current output is off when BLANK is at a high level. The status information data (SID) byte is  
overwritten on the most significant 18 bits of the grayscale shift register at the first rising edge of GSCLK after  
XLAT goes low.  
Grayscale Shift Register (12 Bits ´ 16 Channels)  
GS Data for OUT15  
MSB  
GS Data for OUT14  
175  
¼
GS Data for OUT1  
174  
GS Data for OUT0  
LSB  
191  
0
180  
179  
12  
11  
SIN  
SOUT  
(DCSEL = L)  
OUT15-Bit11  
(LOD-OUT15)  
OUT15-Bit0 OUT14-Bit11  
(LOD-OUT4) (LOD-OUT3)  
OUT14-Bit7  
OUT14-Bit6  
(PTW)  
¼
¼
¼
¼
OUT1-Bit0  
OUT0-Bit11  
OUT0-Bit0  
(TEF)  
SCLK  
(DCSEL = L)  
SID Data are Overwritten Between Bits 191 and 174  
¼
¼
¼
¼
GS Data for OUT15  
MSB  
GS Data for OUT14  
¼
GS Data for OUT1  
GS Data for OUT0  
LSB  
191  
0
180  
179  
12  
11  
XLAT  
¼
¼
¼
¼
OUT15-Bit11  
OUT15-Bit0 OUT14-Bit11  
OUT14-Bit7  
OUT14-Bit6  
OUT1-Bit0  
OUT0-Bit11  
OUT0-Bit0  
(DCSEL = L)  
Grayscale Data Latch (12 Bits ´ 16 Channels)  
192 Bits  
To PWM Timing Control Block  
Figure 28. Grayscale Shift Register and Data Latch Configuration  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TLC5944  
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
Dot Correction (DC) Shift Register and Data Latch  
The dot correction (DC) shift register and latches are each 96 bits long and are used to individually adjust the  
constant current value for each constant current driver. Each channel can be adjusted from 0% to 100% of the  
maximum LED current with 6-bit resolution. Table 2 describes the percentage of maximum current for each dot  
correction data. Figure 29 shows the shift register and latch configuration for DC data. Figure 15 illustrates the  
timing for writing data into the DC shift registers and latches. Each LED channel current is dot-corrected by the  
percentage value that corresponds to the data in the respective DC data latch. DC data present on the SIN pin  
are clocked, MSB first, into the DC shift register at each rising edge of the SCLK pin when DCSEL is high. Data  
are latched from the shift register into the DC data latch with a rising edge on the XLAT pin when DCSEL is high.  
A DCSEL level change is allowed when SCLK is low and 100 ns after the rising edge of XLAT.  
When the IC is powered on, the data in the DC shift register and data latch are not set to any default value.  
Therefore, dot correction data must be written to the DC latch before turning on the constant current output.  
Dot Correction Shift Register (6 Bits ´ 16 Channels)  
DC Data for OUT15  
MSB  
DC Data for OUT14  
¼
DC Data for OUT1  
DC Data for OUT0  
LSB  
95  
90  
89  
6
5
0
SIN  
SOUT  
(DCSEL = H)  
¼
¼
¼
OUT15-Bit5  
OUT15-Bit0 OUT14-Bit5  
OUT1-Bit0  
OUT0-Bit5  
OUT0-Bit0  
SCLK  
(DCSEL = H)  
¼
¼
¼
DC Data for OUT15  
MSB  
DC Data for OUT14  
¼
DC Data for OUT1  
DC Data for OUT0  
LSB  
95  
90  
89  
6
5
0
XLAT  
¼
¼
¼
OUT15-Bit5  
OUT15-Bit0 OUT14-Bit5  
OUT1-Bit0  
OUT0-Bit5  
OUT0-Bit0  
(DCSEL = H)  
Dot Correction Data Latch (6 Bits ´ 16 Channels)  
96 Bits  
To Constant Current Driver Block  
Figure 29. Dot Correction Shift Register and Latch Configuration  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
 
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
Status Information Data (SID)  
Status information data (SID) are 18-bit, read-only data. The 16-bit LED open detection (LOD) error, the thermal  
error flag (TEF), and the pre-thermal warning (PTW) are shifted out onto the SOUT pin with each rising edge of  
the serial data shift clock, SCLK. The 16 LOD bits for each channel and the two TEF bits are written into the 18  
most significant bits of the grayscale shift register at the rising edge of the first SCLK after XLAT goes low. As a  
result, the previous data in the 18 most significant bits of the grayscale information are lost at the same time. No  
data are loaded into the other 174 bits. Figure 30 shows the bit assignments. Figure 16 illustrates the read timing  
for the status information data.  
Status Information Data (SID) Configuration  
LOD Data of OUT15 to OUT0 (16 Bits)  
MSB  
17  
LSB  
0
¼
¼
16  
2
1
OUT15  
OUT14  
OUT0  
TEF Data  
PTW Data  
LOD Data  
LOD Data  
LOD Data  
The 16 LOD bits for each channel and the TEF and PTW bits  
overwrite the most significant 18 bits of the grayscale shift register  
at the rising edge of the first SCLK after XLAT goes low.  
¼
GS Data for OUT15  
MSB  
GS Data for OUT14  
¼
GS Data for OUT1  
GS Data for OUT0  
LSB  
191  
180  
179  
175  
174  
12  
11  
0
SIN  
SOUT  
(DCSEL = L)  
OUT15-Bit11  
(LOD-OUT15)  
OUT15-Bit0 OUT14-Bit11  
(LOD-OUT4) (LOD-OUT3)  
OUT14-Bit7  
(TEF)  
OUT14-Bit6  
(PTW)  
¼
¼
¼
¼
OUT1-Bit0 OUT0-Bit11  
OUT0-Bit0  
SCLK  
(DCSEL = L)  
Grayscale Shift Register (12 Bits ´ 16 Channels)  
Figure 30. Status Information Data Configuration  
The LOD data update at the rising edge of the next 33rd GSCLK of the subsequent PWM cycle; the LOD data  
are retained until the next 33rd GSCLK. LOD data are only checked for outputs that are turned on during the  
rising edge of the 33rd GSCLK pulse. A '1' in an LOD bit indicates an open LED condition for the corresponding  
channel. A '0' indicates normal operation. It is possible for LOD data to show a '0' even if the LED is open when  
the grayscale data are less than 20h (32d).  
The PTW and TEF bits indicate that the IC temperature is high and too high, respectively. The TEF flag also  
indicates that the IC has turned off all drivers to avoid damage by overheating the device. A '1' in the TEF bit  
means that the IC temperature has exceeded the detect temperature threshold of high side (T(TEF)) and the driver  
is forced off. A '0' in the TEF bit indicates the driver has not exceeded the high temperature. The PTW flag  
indicates that the IC temperature has exceeded the detect temperature threshold, but does not force the driver  
off. A '1' in the PTW bit indicates that the IC temperature has exceeded the pre-thermal warning threshold  
(T(PTW)) but does not force the driver off. A '0' in the PTW bit indicates normal operation with low-side  
temperature conditions. When the PTW is set, the IC temperature should be reduced by lowering the power  
dissipated in the driver to avoid a forced shutdown by the thermal shutdown circuit. This reduction can be  
accomplished by lowering the values of the GS or DC data.  
When the IC powers on, LOD data do not show correct values. Therefore, LOD data must be read from the 33rd  
GSCLK pulse input after BLANK goes low. Table 4 shows a truth table for both LOD and TEF.  
Table 4. LOD and TEF Truth Table  
CONDITION  
SID DATA  
LED OPEN DETECTION (LODn)  
THERMAL ERROR FLAG (TEF)  
PRE-THERMAL WARNING (PTW)  
Device temperature is lower than the  
high-side detect temperature  
Device temperature is lower than the  
low-side detect temperature  
LED is connected  
0
(VOUTn > VLOD  
)
(temp T(TEF) –T(HYST)  
)
(temp < T(PTW) – T(HYSP))  
Device temperature is higher than the  
high-side detect temperature and the  
driver is forced off  
Device temperature is higher than the  
low-side detect temperature  
LED is open or shorted to GND  
(VOUTn VLOD  
1
)
(temp T(PTW)  
)
(temp > T(TEF)  
)
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TLC5944  
 
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
Continuous Base LED Open Detection  
At the rising edge of the 33rd GSCLK after the falling edge of BLANK, the LED open detection (LOD) circuit  
checks the voltage of each constant current output (OUT0 through OUT15 = OUTn) that is turned on to detect  
open LEDs and short LEDs to GND. The channels corresponding to the LOD bit in the status information data  
(SID) register are set to '1' if the voltage of the OUTn pin (VOUTn) is less than the LED open detection threshold  
(VLOD = 0.3 VTYP). This status information can be read from the SOUT pin when DCSEL is low. No special test  
sequence is required for LED open detection.  
The LOD function automatically checks for open LEDs and short LEDs to GND during each grayscale PWM  
cycle. The SID information of LOD is latched into the LED open detection data latch and does not change until  
the rising edge of the 33rd GSCLK pulse following the next falling edge of BLANK. To eliminate false detection of  
open LEDs, the LED driver design must ensure that the TLC5944 output voltage is greater than VLOD when the  
outputs are on. The GS data must be 21h (33d) or more to get the LOD result. Figure 31 shows the LED open  
detection timing.  
BLANK  
4094 4096  
4093 4095  
1
2
3
4
30 31 32 33 34 35  
1
2
3
30 31 32 33 34 35  
GSCLK  
1st GSCLK Period  
If LOD error is detected  
OFF  
OUTn  
ON  
(Data = FFFh)  
VOUTn  
If no LOD error is detected  
GND  
If the OUTn voltage (VOUTn) is less than VLOD (0.3 V, typ) at the rising edge of the 33rd  
GSCLK after the falling edge of BLANK, the LOD sets the SID bit corresponding  
to the output channel in which LED is open or shorted to GND equal to ‘1’.  
OUTn is turned off at the 33rd falling edge of GSCLK if the LOD error flag is set.  
SID Value  
(Internal)  
Old LED open detection data  
New LED open detection data  
If no LOD error is detected  
Hi-Z  
Depends on LOD data  
Depends on previous  
XERR  
Low  
('L')  
If LOD error is detected  
LOD data  
If XERR goes low because of an LOD error,  
XERR is forced high when BLANK goes high.  
Figure 31. LED Open Detection (LOD) Timing  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
 
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
Thermal Shutdown and Thermal Error Flag  
The thermal shutdown (TSD) function turns off all of the constant current outputs on the IC immediately when the  
junction temperature (TJ) exceeds the threshold (T(TEF) = +162°C, typ) and sets the thermal error flag (TEF) to '1'.  
All outputs are latched off when TEF is set to '1'; TEF and PTW remain off until the next grayscale cycle after TJ  
drops below (T(TEF) – T(HYST)). TEF is set to '0' once TJ drops below (T(TEF) – T(HYST)), but the output does not turn  
on until the first GSCLK after BLANK goes low while TEF is set to '0'. Figure 32 illustrates the TEF/TSD/XERR  
timing sequence.  
XLAT  
SCLK  
BLANK  
4094 4096  
1
2
3
4
4093 4095  
1 3  
2
GSCLK  
TJ ³ T(TEF)  
TJ ³ T(TEF)  
TJ ³ T(PTW)  
TJ < T(TEF) - T(HYST)  
TJ ³ T(PTW)  
IC Junction  
TJ < T(PTW)  
TJ < T(PTW) - T(HYSP)  
Temperature (TJ)  
‘1’  
‘1’  
‘1’  
‘1’  
PTW in SID  
‘0’  
‘0’  
(Internal Data)  
TEF in SID  
‘0’  
‘0’  
(Internal Data)  
Hi-Z  
Hi-Z  
L’  
XERR  
OUTn  
L’  
OFF  
OFF  
OFF  
ON  
ON  
Figure 32. TEF/TSD/XERR Timing  
Internal Pre-Charge FET  
The internal pre-charge FET can prevent ghosting of multiplexed LED modules. One cause of this phenomenon  
is the charging current for parastic capacitance of the constant current output line and driver through the LED.  
One of the mechanisms is shown in Figure 33.  
In Figure 33, the constant current driver turns LED0-0 on at (1) and off at (2). After LED0-0 is turned off, OUT0  
voltage is pulled up to VCHG by LED0-0. This OUT0 node has some parasitic capacitance (such as the constant  
current driver output capacitance, and the board layout capacitance shown as C0-2). After LED0-0 turns off,  
SWPMOS0 is turned off and SWNMOS0 is turned on for LINE0, then LINE0 is pulled down to GND. Because  
there is a parastic capacitance between LINE0 and OUT0, OUT0 voltage is also pulled down to GND. After that,  
SWPMOS1 is turned on for next line (LINE1). When SWPMOS1 turns on, OUT0 voltage is pulled up from the  
ground voltage to VLED – VF. The charge current (ICHRG) flows to the parasitic capacitor (C0) through LED1-0,  
causing the LED to briefly turn on and creating the ghosting effect of LED1-0.  
The TLC5944 has an internal pre-charge FET to prevent ghosting. The power supply of the pre-charge FET must  
be connected to VLED (LED anode voltage). After a small delay after BLANK goes high, this FET pulls OUTn  
(OUT0 to OUT15) up to VLED. The charge current does not flow to C0 through LED1-0 when SWMOS1 is turned  
on and the ghosting is eliminated at (3). The pre-charge FET turns off as soon as BLANK goes low to avoid  
current flowing from VLED through the pre-charge FET.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TLC5944  
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
VLED  
Line 0 is VLED level.  
(Power-Supply for LED)  
ON  
OFF  
ON  
SW  
PMOS0  
Line 0 is GND level.  
SW  
SW  
PMOS1  
LED1-1  
LED1-2  
NMOS0  
OFF  
ON  
Line 1  
Line 1 is VLED level.  
SW  
¼
PMOS1  
OFF  
ON  
Parasitic Capacitor  
C2  
SW  
Line 1 is GND level.  
LED1-0  
NMOS1  
SW  
NMOS1  
C0  
C1  
OFF  
High  
Low  
ON  
VLED  
ICHRG  
BLANK  
OUT0  
SW  
PMOS0  
Line 0  
OFF  
VLED  
SW  
OUT0  
Voltage  
VCHG  
GND  
LED0-0  
LED0-1  
LED0-2  
NMOS0  
¼
VLED - VF  
OUT0  
OUT1  
OUT2  
50 mA  
LED0-0  
Ordinal  
LED Driver  
OUT0  
OUT1  
ON  
OUT2  
ON  
Current  
0 mA  
50 mA  
0 mA  
¼
ON  
LED1-0  
Current  
Constant Current  
IOUT = 50 mA  
(1) (2)  
(3)  
Ghost phenomenon is observed  
when Line 1 goes up to VLED.  
(4)  
OUT0 voltage is pulled down to GND side  
by the coupling with LED lamp capacitor  
between Line 0 and OUT0.  
Figure 33. LED Ghost-Lighting Phenomenon Mechanism  
VLED  
(Power-Supply for LED)  
SW  
Line 0 is VLED level.  
PMOS1  
LED1-1  
LED1-2  
ON  
SW  
Line 1  
PMOS0  
OFF  
Line 0 is GND level.  
¼
ON  
SW  
Parasitic Capacitor  
C2  
SW  
NMOS1  
NMOS0  
OFF  
LED1-0  
Line 1 is VLED level.  
ON  
SW  
C0  
C1  
VLED  
PMOS1  
OFF  
Line 1 is GND level.  
Disappearing ICHRG  
ON  
SW  
PMOS0  
SW  
NMOS1  
OFF  
Line 0  
High  
Low  
ON  
BLANK  
OUT0  
SW  
NMOS0  
LED0-0  
LED0-1  
LED0-2  
OFF  
ON  
¼
VUP  
OUT0  
OUT1  
OUT2  
PCHGON  
Signal  
OFF  
Pre-Charge MOS  
VLED  
OUT0  
VCHG  
GND  
Voltage  
VLED - VF  
PCHGON  
Timing  
Control  
BLANK  
50 mA  
0 mA  
LED0-0  
Current  
OUT0  
ON  
OUT0  
ON  
OUT0  
ON  
¼
50 mA  
0 mA  
LED1-0  
Current  
Constant Current  
IOUT = 50 mA  
TLC5944  
(1) (2)  
(3)  
(4)  
LED Driver  
Ghost phenomenon not seen  
Figure 34. LED Ghost-Lighting Mechanism by Pre-Charge FET  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
TLC5944  
www.ti.com ...................................................................................................................................................................................................... SBVS112JUNE 2008  
Auto Output Off  
The TLC5944 current consumption increases if any output (OUTn) is turned on and no LED is connected, the  
LED is an open circuit, or the output is shorted to GND. The TLC5944 has the auto output off function to reduce  
consumption current in these cases. This function turns off any OUTn where LED open has been detected to  
reduce the current into the VCC pin during error conditions. Figure 35 illustrates the auto output off function.  
Therefore, the LED anode voltage must be held over the LED forward voltage (VF) plus the maximum voltage of  
the LED open detection threshold (VLOD = 0.4 VMAX) while the LED is on, in any case. Otherwise, the LED is  
forced off by the auto output off function.  
VCC  
Higher  
Dissipation  
Current  
Lower  
BLANK  
4094 4096  
4093 4096  
1
2
3
4
30 31 32 33 34 35  
1
2
3
30 31 32 33 34 35  
GSCLK  
OFF  
If LOD error is detected  
Voltage of  
OUTn  
ON  
VOUTn  
If no LOD error is detected  
GND  
SID Register Value  
(Internal)  
Old LED open detection data  
New LED open detection data  
ON (if no LOD error detected)  
ON (if no LOD error detected)  
ON  
ON  
ON Signal of OUTn  
(Internal)  
OFF  
OFF  
(GS data = FFFh)  
OFF (if LOD error is detected)  
OFF (if LOD error is detected)  
Figure 35. Auto Output Off Function  
Noise Reduction  
Large surge currents may flow through the IC and the printed circuit board (PCB) on which the device is mounted  
if all 16 LED channels turn on simultaneously at the start of each grayscale cycle. This large current surge could  
introduce detrimental noise and electromagnetic interference (EMI) into other circuits. The TLC5944 turns on the  
LED channels in a series delay to provide a circuit soft-start feature. The output current sinks are grouped into  
four groups of four channels each. The first group is OUT0/4/8/12; the second group is OUT1/5/9/13; the third  
group is OUT2/6/10/14; and the fourth group is OUT3/7/11/15. Each group is turned on sequentially with a small  
delay between groups; Figure 14 shows this delay. Both turn-on and turn-off are delayed.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TLC5944  
 
TLC5944  
SBVS112JUNE 2008...................................................................................................................................................................................................... www.ti.com  
POWER DISSIPATION CALCULATION  
The device power dissipation must be below the power dissipation rate of the device package (illustrated in  
Figure 18) to ensure correct operation. Equation 4 calculates the power dissipation of the device:  
DCn  
PD = (VCC ´ ICC) + VOUT ´ IOLCMax ´ N ´  
´ dPWM  
63d  
(4)  
Where:  
VCC = device supply voltage  
ICC = device supply current  
VOUT = OUTn voltage when driving LED current  
IMAX = LED current adjusted by RIREF resistor  
DCn = maximum DC value for OUTn  
N = number of OUTn driving LED at the same time  
dPWM = duty ratio defined by BLANK pin or GS PWM value  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLC5944  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2008  
PACKAGING INFORMATION  
Orderable Device  
TLC5944PWP  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HTSSOP  
PWP  
28  
28  
32  
32  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TLC5944PWPR  
TLC5944RHBR  
TLC5944RHBT  
HTSSOP  
QFN  
PWP  
RHB  
RHB  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jun-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TLC5944PWPR  
TLC5944RHBR  
TLC5944RHBT  
HTSSOP PWP  
28  
32  
32  
2000  
3000  
250  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
7.1  
5.3  
5.3  
10.4  
5.3  
1.6  
1.5  
1.5  
12.0  
8.0  
16.0  
12.0  
12.0  
Q1  
Q2  
Q2  
QFN  
QFN  
RHB  
RHB  
5.3  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jun-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC5944PWPR  
TLC5944RHBR  
TLC5944RHBT  
HTSSOP  
QFN  
PWP  
RHB  
RHB  
28  
32  
32  
2000  
3000  
250  
346.0  
346.0  
190.5  
346.0  
346.0  
212.7  
33.0  
29.0  
31.8  
QFN  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TLC5944PWPG4

LED DISPLAY DRIVER, PDSO28, GREEN, PLASTIC, HTSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5944PWPR

16-Channel, 12-Bit PWM LED Driver with 6-Bit Dot Correction and Pre-Charge FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5944RHBR

16-Channel, 12-Bit PWM LED Driver with 6-Bit Dot Correction and Pre-Charge FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5944RHBRG4

LED DISPLAY DRIVER, PQCC32, 5 X 5 MM, GREEN, PLASTIC, QFN-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5944RHBT

16-Channel, 12-Bit PWM LED Driver with 6-Bit Dot Correction and Pre-Charge FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5944RHBTG4

LED DISPLAY DRIVER, PQCC32, 5 X 5 MM, GREEN, PLASTIC, QFN-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5944_1

16-Channel, 12-Bit PWM LED Driver with 6-Bit Dot Correction and Pre-Charge FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5945

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5945PWP

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5945PWPR

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5945RHB

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLC5945RHBR

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI