TLC6C5912PWR [TI]

TLC6C5912 12 位移位寄存器 LED 驱动器 | PW | 20 | -40 to 105;
TLC6C5912PWR
型号: TLC6C5912PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLC6C5912 12 位移位寄存器 LED 驱动器 | PW | 20 | -40 to 105

驱动 驱动器 移位寄存器
文件: 总22页 (文件大小:744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLC6C5912  
ZHCSF22 MAY 2016  
TLC6C5912 12 通道移位寄存器 LED 驱动器  
1 特性  
此器件包含一个 12 位串入、并出移位寄存器,此寄存  
器为一个 12 D 类存储寄存器提供数据。移位和存  
储寄存器之间的数据传输分别在移位寄存器时钟  
(SRCK) 和寄存器时钟 (RCK) 的上升边沿上发生。当  
移位寄存器清零(CLR) 为高电平时,存储寄存器将数据  
传输到输出缓冲器 。一个CLR上的低电平将器件中的  
所有寄存器清零。将输出使能 (G) 保持为高电平将把  
输出缓冲器中的所有数据保存为低电平,并且所有漏极  
输出关闭。保持G为低电平将使得来自存储寄存器中的  
数据对于输出缓冲器不可见。  
1
3V 5.5V VCC 范围  
40V 最大额定输出  
12 路功率双扩散金属氧化物半导体 (DMOS) 晶体  
管输出:  
50mA 持续电流 (VCC = 5V) 或者  
200mA 脉宽调制 (PWM) 电流(单脉冲持续时间短  
1ms 且平均电流低于 50mAr)  
热关断保护  
针对多级的增强型级联  
所有寄存器由单一输入清零  
低功耗  
该器件包含一个 12 位串入并出移位寄存器。该寄存器  
为一个 12 D 类存储寄存器提供数据。移位寄存器  
和存储寄存器各自具备独立时钟。  
缓慢开关时间(t tf),非常有助于减少电磁干扰  
(EMI)  
20 引脚薄型小外形尺寸 (TSSOP)-PW 封装  
输出为低侧、漏极开路 DMOS 晶体管输出:额定输出  
40V 50mA 持续灌电流或者 200mA PWM 电流  
VCC = 5V 时,单脉冲持续时间短于 1ms 且平均电流  
低于 50mA)。该器件内置热关断保护,在人体模型和  
200V 机器模型测试中可提供高达 2000V 的静电放电  
(ESD) 保护。  
2 应用  
电器显示面板  
电梯显示面板  
PLC 功能指示器  
七段显示器  
TLC6C5912 的额定工作环境温度范围为 -40°C 至  
105°C。  
3 说明  
TLC6C5912 是一款单片、中等电压、低电流功率 12  
位移位寄存器,专为负载功率要求相对适中的系统(例  
LED)而设计。  
器件信息(1)  
器件型号  
TLC6C5912  
封装  
封装尺寸(标称值)  
薄型小外形尺寸封  
(TSSOP) (20)  
6.50mm x 4.40mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用电路原理图  
Power Supply  
4/3  
4/3  
MCU Serial  
Interface  
12-Bit Shift Register  
LED Driver  
12-Bit Shift Register  
LED Driver  
Typical Cascade Topology  
Power Supply  
I/Os  
12-Bit Shift-  
Register  
4/3  
MCU Serial  
Interface  
3 ´ 12 LED Matrix  
LED Driver  
Typical Scan Topology  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLIS180  
 
 
 
 
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application ................................................. 12  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 5  
6.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
9
10 Power Supply Recommendations ..................... 15  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 15  
12 器件和文档支持 ..................................................... 16  
12.1 社区资源................................................................ 16  
12.2 ....................................................................... 16  
12.3 静电放电警告......................................................... 16  
12.4 Glossary................................................................ 16  
13 机械、封装和可订购信息....................................... 16  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
2016 5 月  
*
最初发布版本  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TLC6C5912  
www.ti.com.cn  
ZHCSF22 MAY 2016  
5 Pin Configuration and Functions  
PW Package  
20-Pin TSSOP  
Top View  
V
1
2
3
4
20  
19  
18  
17  
GND  
CC  
SER_IN  
SRCK  
DRAIN0  
DRAIN1  
DRAIN11  
DRAIN10  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
CLR  
5
16  
15  
14  
13  
12  
11  
DRAIN9  
DRAIN8  
DRAIN7  
DRAIN6  
RCK  
6
7
8
9
SER_OUT  
10  
G
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Shift register clear, active-low: CLR is the signal used to clear all the registers. The  
storage register transfers data to the output buffer when shift register clear CLR is high.  
Driving CLR is low clears all the registers in the device.  
CLR  
9
I
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
DRAIN8  
DRAIN9  
DRAIN10  
DRAIN11  
3
4
O
O
O
O
O
O
O
O
O
O
O
O
5
6
7
8
Open-drain output: DRAIN0 to DRAIN11 are the LED current-sink channels. These pins  
connect to the LED cathodes, and they can survive up to 40-V LED supply voltage.  
13  
14  
15  
16  
17  
18  
Output enable, active-low: G is the LED channel enable and disable input pin. Having G  
low enables all drain channels according to the output-latch register content. When high, all  
channels are off.  
G
10  
20  
I
Power ground: GND is the ground reference pin for the device. This pin must connect to the  
ground plane on the PCB.  
GND  
Register clock: RCK is the storage register clock. The data in each shift register stage  
RCK  
12  
2
I
I
transfers to the storage register at the rising edge of RCK. Data in the storage register  
appears at the output whenever the output enable G̅ input signal is high.  
Serial-data input: SER IN is the serial data input. Data on SER IN loads into the internal  
register on each rising edge of SRCK.  
SER IN  
Copyright © 2016, Texas Instruments Incorporated  
3
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Serial-data output: SER OUT is the serial data output of the 12bit serial shift register. The  
purpose of this pin is to cascade several devices on the serial bus. By connecting the SER  
OUT pin to the SER IN input of the next device on the serial bus to cascade, the data  
transfers to the next device on the falling edge of SRCK. This can improve the cascade  
application reliability, as it can avoid the issue that the second device receives SRCK and  
data input at the same rising edge of SRCK.  
SER OUT  
11  
O
Shift-register clock: SRCK is the serial clock input. On each rising SRCK edge, data  
transfers from SER IN to the internal serial shift registers.  
SRCK  
VCC  
19  
1
I
I
Power supply: VCC is the power supply pin voltage for the device. TI recommends adding a  
0.1 μF ceramic capacitor close to the pin.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
8
UNIT  
VCC Logic supply voltage  
V
V
V
VI  
Logic input-voltage  
–0.3  
8
VDS Power DMOS drain-to-source voltage  
Continuous total dissipation  
42  
See Thermal Information  
Operating ambient temperature (Top)  
105  
°C  
°C  
°C  
TJ  
Operating junction temperature  
–40  
–55  
125  
165  
Tstg Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX UNIT  
VCC  
VIH  
VIL  
tsu  
th  
Supply voltage  
3
5.5  
V
V
High-level input voltage  
2.4  
Low-level input voltage  
0.7  
V
Setup time, SER IN high before SRCK↑  
Hold time, SER IN high after SRCK↑  
Pulse duration  
15  
15  
ns  
ns  
ns  
°C  
tw  
40  
TA  
Operating ambient temperature  
–40  
105  
4
Copyright © 2016, Texas Instruments Incorporated  
 
TLC6C5912  
www.ti.com.cn  
ZHCSF22 MAY 2016  
6.4 Thermal Information  
TLC6C5912  
PW (TSSOP)  
20 PINS  
114.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.1  
61.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.7  
ψJB  
60.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
VCC = 5 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
DRAIN0 to DRAIN11,  
drain-to-source voltage  
40  
V
V
IOH = –20 μA  
IOH = –4 mA  
4.9  
4.5  
4.99  
4.69  
High-level output voltage,  
SER OUT  
VOH  
VCC = 5 V  
VCC = 5 V  
IOH = 20 μA  
0.001 0.01  
Low-level output voltage,  
SER OUT  
VOL  
V
IOH = 4 mA  
0.25  
0.2  
0.4  
IIH  
IIL  
High-level input current  
Low-level input current  
VCC = 5 V, VI = VCC  
VCC = 5 V, VI = 0  
μA  
μA  
–0.2  
0.1  
All outputs off  
All outputs on  
1
VCC = 5 V,  
No clock signal  
ICC  
Logic supply current  
μA  
µA  
μA  
130 170  
Logic supply current at  
frequency  
ICC(FRQ)  
IDSX  
fSRCK = 5 MHz, CL = 30 pF, all outputs on  
300  
VDS = 30 V, VCC = 5 V  
0.1  
Off-state drain current  
VDS = 30 V, TC = 125°C, VCC = 5 V  
0.15  
7.4  
0.3  
8.6  
9.6  
ID = 20 mA, VCC = 5 V, TA = 25°C, single channel ON  
ID = 20 mA, VCC = 5 V, TA = 25°C, all channels ON  
ID = 20 mA, VCC = 3.3 V, TA = 25°C, single channel ON  
ID = 20 mA, VCC = 3.3 V, TA = 25°C, all channels ON  
ID = 20 mA, VCC = 5 V, TA = 105°C, single channel ON  
ID = 20 mA, VCC = 5 V, TA = 105°C, all channels ON  
ID = 20 mA, VCC = 3.3 V, TA = 105°C, single channel ON  
ID = 20 mA, VCC = 3.3 V, TA = 105°C, all channels ON  
6
6.7  
8.9  
7.9  
9.3 11.2  
10.6 12.3  
11.2 12.9  
13 14.5  
13.7 16.4  
15.6 18.2  
175 200  
15  
8.7  
Static drain-source on-state  
resistance  
rDS(on)  
Ω
9.1  
10.3  
11.6  
12.8  
150  
TSHUTDOWN Thermal shutdown trip point  
tHYS Hysteresis  
°C  
°C  
6.6 Switching Characteristics  
VCC = 5 V, TA = 25°C  
PARAMETER  
Propagation delay time, low-to-high-level output from G  
TEST CONDITIONS  
MIN TYP MAX UNIT  
tPLH  
tPHL  
tr  
210  
75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Propagation delay time, high-to-low-level output from G  
Rise time, drain output  
CL = 30 pF, ID = 48 mA  
250  
200  
35  
tf  
Fall time, drain output  
tpd  
tor  
Propagation delay time, SRCKto SEROUT  
SEROUT rise time (10% to 90%)  
SEROUT fall time (90% to 10%)  
CL = 30 pF, ID = 48 mA  
CL = 30 pF  
20  
tof  
CL = 30 pF  
20  
Copyright © 2016, Texas Instruments Incorporated  
5
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
Switching Characteristics (continued)  
VCC = 5 V, TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
f(SRCK)  
Serial clock frequency  
CL = 30 pF, ID = 20 mA  
10  
MHz  
ns  
tSRCK_WH  
tSRCK_WL  
SRCK pulse duration, high  
SRCK pulse duration, low  
30  
30  
ns  
12  
11  
8
3
10  
9
7
6
5
4
2
1
SRCK  
SER IN  
1
0
CLR  
SER OUT  
Figure 1. SER IN to SER OUT Waveform  
Figure 1 shows the SER IN to SER OUT waveform. The output signal appears on the falling edge of the shift  
register clock (SRCK) because there is a phase inverter at SER OUT (see Figure 2). As a result, it takes seven  
and a half periods of SRCK for data to transfer from SER IN to SER OUT.  
5 V  
50%  
tPHL  
G
Output  
SRCK  
50%  
0 V  
tPLH  
10 V  
90%  
tr  
90%  
10%  
10%  
tf  
0.5 V  
5 V  
50%  
0 V  
5 V  
0 V  
tsu  
th  
SER IN  
50%  
50%  
tw  
Switching Times, Input Setup and Hold Waveforms  
50%  
SRCK  
50%  
tpd  
tpd  
SER OUT  
50%  
50%  
SER OUT Propagation Delay Waveform  
Figure 2. Switching Times and Voltage Waveforms  
Figure 2 shows the switching times and voltage waveforms. Tests for all these parameters took place using the  
test circuit shown in Figure 12.  
6
Copyright © 2016, Texas Instruments Incorporated  
 
 
TLC6C5912  
www.ti.com.cn  
ZHCSF22 MAY 2016  
6.7 Typical Characteristics  
Conditions for Figure 5 and Figure 6: Single channel on; conditions for Figure 7, Figure 8, and Figure 9: All channels on.  
700  
600  
500  
400  
300  
200  
100  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
All Channels Off  
All Channels On  
TA = -40èC  
TA = 25èC  
TA = 105èC  
0
0.1  
1
10  
100  
3
3.5  
4
4.5  
5
5.5  
6
Frequency (MHz)  
Supply Voltage (V)  
D001  
D002  
VCC = 5 V  
VCC  
Figure 3. Supply Current vs Frequency  
Figure 4. Supply Current vs Supply Voltage  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
TA = -40èC  
TA = 25èC  
TA = 105èC  
TA = -40èC  
TA = 25èC  
TA = 105èC  
2
2
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Drain Current (mA)  
Drain Current (mA)  
D003  
D004  
VCC = 5 V  
VCC = 3.3 V  
Figure 5. Drain-to-Source On-State Resistance  
vs Drain Current (Single Channel On)  
Figure 6. Drain-to-Source On-State Resistance  
vs Drain Current (Single Channel On)  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
4
4
TA = -40èC  
TA = 25èC  
TA = 105èC  
TA = -40èC  
TA = 25èC  
TA = 105èC  
2
2
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Drain Current (mA)  
Drain Current (mA)  
D005  
D006  
VCC = 5 V  
VCC = 3.3 V  
Figure 7. Drain-to-Source On-State Resistance  
vs Drain Current (All Channels On)  
Figure 8. Drain-to-Source On-State Resistance  
vs Drain Current (All Channels On)  
Copyright © 2016, Texas Instruments Incorporated  
7
 
 
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Conditions for Figure 5 and Figure 6: Single channel on; conditions for Figure 7, Figure 8, and Figure 9: All channels on.  
18  
16  
14  
12  
10  
8
400  
350  
300  
250  
200  
150  
100  
50  
tPLH  
tPHL  
tr  
tf  
6
4
TA = 105èC  
TA = 25èC  
TA = -40èC  
2
0
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Supply Voltage (V)  
Ambient Temperature (èC)  
D007  
D008  
I(ds) = 20 mA  
Figure 9. Drain-to-Source On-State Resistance  
vs Supply Voltage  
Figure 10. Switching Time vs Ambient Temperature  
8
Copyright © 2016, Texas Instruments Incorporated  
 
TLC6C5912  
www.ti.com.cn  
ZHCSF22 MAY 2016  
7 Parameter Measurement Information  
5 V  
10 V  
VCC  
CLR  
ID  
RL = 200 W  
SRCK  
Output  
MCU  
DRAIN  
SER IN  
CL = 30 pF  
RCK  
(see Note A)  
G
GND  
Copyright © 2016, Texas Instruments Incorporated  
A. CL includes probe and jig capacitance.  
Figure 11. Resistive-Load Test Circuit  
12  
11  
8
7
6
5
4
3
10  
9
2
1
SRCK  
SER IN  
G
RCK  
0
1
0
0
CLR  
DRAIN0  
DRAIN1  
DRAIN10  
DRAIN11  
0
0
Figure 12. Voltage Waveforms  
Figure 11 and Figure 12 show the resistive-load test circuit and voltage waveforms. One can see from Figure 12  
that with G held low and CLR held high, the status of each drain changes on the rising edge of the register clock,  
indicating the transfer of data to the output buffers at that time.  
Copyright © 2016, Texas Instruments Incorporated  
9
 
 
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLC6C5912 device is a monolithic, medium-voltage, low current 12-bit shift register designed to drive  
relatively moderate load power such LEDs. The device contains a 12-bit serial-in, parallel-out shift register that  
feeds a 12-bit D-type storage register. Thermal shutdown protection is also built-into the device.  
8.2 Functional Block Diagram  
G
RCK  
DRAIN0  
CLR  
D
D
SRCK  
C1  
C1  
CLR  
D
CLR  
D
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
SER IN  
C1  
C1  
CLR  
D
CLR  
D
C1  
C1  
CLR  
D
CLR  
D
C1  
C1  
CLR  
CLR  
D
D
C1  
CLR  
C1  
CLR  
DRAIN10  
DRAIN11  
GND  
D
D
C1  
C1  
CLR  
D
CLR  
D
C1  
C1  
CLR  
CLR  
D
C1  
CLR  
SER OUT  
8.3 Feature Description  
8.3.1 Thermal Shutdown  
The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 175°C  
(typical). The thermal shutdown forces the device to have an open state when the junction temperature exceeds  
the thermal trip threshold. Once the junction temperature decreases to less than 160°C (typical), the device  
begins to operate again.  
10  
Copyright © 2016, Texas Instruments Incorporated  
TLC6C5912  
www.ti.com.cn  
ZHCSF22 MAY 2016  
Feature Description (continued)  
8.3.2 Serial-In Interface  
The TLC6C598 device contains an 8-bit serial-in, parallel out shift register that feeds an 8-bit D-type storage  
register. Data transfer through both the shift and storage registers on the rising edge of the shift register clock  
(SRCK) and the register clock (RCK), respectively. The storage transfers data to the output buffer when shift  
register clear (CLR) is high.  
8.3.3 Clear Register  
A logic low on CLR clears all registers in the device. TI suggests clearing the device during power up or  
initialization.  
8.3.4 Cascade Through SER OUT  
By connecting the SER OUT pin to the SER IN input of the next device on the serial bus to cascade, the data  
transfers to the next device on the falling edge of SRCK. This can improve the cascade application reliability, as  
it can avoid that the second device receives SRCK and data input at the same rising edge of SRCK.  
8.3.5 Output Control  
Holding the output enable (G) high holds all data in the output buffers low, and all drain outputs are off. Holding  
G low makes data from the storage register transparent to the output buffers. When data in the output buffers is  
low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs are capable of sink-  
current. This pin also be used for global PWM dimming.  
8.4 Device Functional Modes  
8.4.1 Operation With VCC < 3 V  
This device works normally during 3 V VCC 5.5 V, when operation voltage is lower than 3 V. The behavior of  
device cannot be ensured, including communication interface and current capability.  
8.4.2 Operation With 5.5 V VCC 8 V  
The device works normally during this voltage range, but reliability issues may occurs while the device works for  
a long time in this voltage range.  
Copyright © 2016, Texas Instruments Incorporated  
11  
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLC6C5912 device is a serial-in, parallel-out, power logic 8-bit shift register with low-side open-drain DMOS  
output rating of 40 V and 50-mA continuous sink-current capabilities when VCC= 5 V. The device is designed to  
drive resistive loads and is particularly well-suited as an interface between a microcontroller and LEDs or lamps.  
The device also provides up to 2000 V of ESD protection when tested using the human body model and 200 V  
when using the machine model.  
9.2 Typical Application  
Figure 13 shows a typical cascade application circuit with two TLC6C5912 chips configured to cascade topology.  
The MCU generates all the input signals.  
12  
Copyright © 2016, Texas Instruments Incorporated  
TLC6C5912  
www.ti.com.cn  
ZHCSF22 MAY 2016  
Typical Application (continued)  
Battery 9 V–40 V  
3 V–5.5 V  
DRAIN0 DRAIN1  
VCC  
DRAIN10 DRAIN11  
SER IN  
SRCK  
GND  
MCU  
G
SER OUT  
CLR  
RCK  
DRAIN0 DRAIN1  
VCC  
DRAIN10 DRAIN11  
SER IN  
SRCK  
GND  
G
SER OUT  
CLR  
RCK  
Figure 13. Typical Application Circuit  
9.2.1 Design Requirements  
Table 1 lists the parameters for this design example.  
Table 1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
9 V to 40 V  
3.3 V  
Vbattery  
VCC _ 1  
I(D0), I(D1), I(D2), I(D3) , I(D4), I(D5), I(D6), I(D7), I(D8), I(D9), I(D10), I(D11)  
VCC _ 2  
30 mA  
5 V  
I(D12), I(D13), I(D14), I(D15) , I(D16), I(D17), I(D18), I(D19), I(D20), I(D21), I(D122),  
I(D23)  
50 mA  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
To begin the design process, the designer must decide on a few parameters:  
Vsupply: LED supply voltage  
VDx: LED forward voltage  
I: LED current  
After determining the parameters, calculate the resistor in series with LED using Equation 1.  
Rx = (Vsupply – VDx) / I  
(1)  
9.2.3 Application Curve  
Figure 14. TLC6C5912 Application Waveform  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
TLC6C5912  
www.ti.com.cn  
ZHCSF22 MAY 2016  
10 Power Supply Recommendations  
The TLC6C5912 device is designed to operate from an input voltage supply range from 3 V to 5.5 V. This input  
supply should be well regulated. TI recommends placing the ceramic bypass capacitors near the VCC pin.  
11 Layout  
11.1 Layout Guidelines  
There are no special layout requirement for the digital signal pins. The only requirement is placing the ceramic  
bypass capacitors near the corresponding pin.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-flow  
path from the package to the ambient is through the cooper on the PCB. Maximizing the copper coverage is  
extremely important when the design does not include heat sinks attached to the PCB on the other side of the  
package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias should be either plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
11.2 Layout Example  
Vcc  
SER IN  
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
1
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
14  
GND  
SRCK  
DRAIN11  
DRAIN10  
DRAIN9  
DRAIN8  
DRAIN7  
DRAIN5  
CLR  
G
8
9
13  
12  
11  
DRAIN6  
RCK  
10  
SER OUT  
Figure 15. Layout Recommendation  
版权 © 2016, Texas Instruments Incorporated  
15  
TLC6C5912  
ZHCSF22 MAY 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件提供的最新数据。本数据随时可能发生变更并且  
不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
16  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC6C5912PWR  
ACTIVE  
TSSOP  
PW  
20  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
6C5912I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TLC6C5912QDWRQ1

汽车类电源逻辑 12 位移位寄存器 LED 驱动器 | DW | 20 | -40 to 125
TI

TLC6C5912QPWRQ1

汽车类电源逻辑 12 位移位寄存器 LED 驱动器 | PW | 20 | -40 to 125
TI

TLC6C598

TLC6C598 8 位移位寄存器 LED 驱动器
TI

TLC6C598-Q1

Power Logic 8-BIT SHIFT REGISTER LED DRIVER
TI

TLC6C598-Q1_15

Power Logic 8-Bit Shift Register LED Driver
TI

TLC6C598CQDRQ1

汽车类电源逻辑 8 位移位寄存器 LED 驱动器 | D | 16 | -40 to 125
TI

TLC6C598PWR

TLC6C598 8 位移位寄存器 LED 驱动器 | PW | 16 | -40 to 105
TI

TLC6C598QDRQ1

Power Logic 8-BIT SHIFT REGISTER LED DRIVER
TI

TLC6C598QPWRQ1

Power Logic 8-BIT SHIFT REGISTER LED DRIVER
TI

TLC7135

1/2-DIGIT PRECISION ANALOG-TO-DIGITAL CONVERTERS
TI

TLC7135C

4 1/2-DIGIT PRECISION ANALOG-TO-DIGITAL CONVERTERS
TI

TLC7135CDW

4 1/2-DIGIT PRECISION ANALOG-TO-DIGITAL CONVERTERS
TI