TLIN2027-Q1 [TI]

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器;
TLIN2027-Q1
型号: TLIN2027-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器

文件: 总44页 (文件大小:2346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
TLIN2027-Q1 不具有显性状态超时供故障保护功能LIN 收发器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准  
车身电子装置和照明  
信息娱乐系统与仪表组  
混合动力电动汽车和动力总成系统  
被动安全  
– 温度等140°C 125°C TA  
– 器HBM 认证等级±8kV  
– 器CDM 认证等级±1.5kV  
• 符LIN 2.0LIN 2.1LIN 2.2LIN 2.2 A 和  
ISO/DIS 17987-4 标准请参阅开关特性)  
• 符合适用LIN SAE J2602 推荐实践的要求  
• 支ISO 9141 (K-Line)  
• 支24 V 应用  
LIN 传输数据速率高20kbps  
• 宽工作范围  
电器  
3 说明  
TLIN2027-Q1 是一款本地互连网络 (LIN) 物理层收发  
集成了唤醒和保护功能兼容 LIN 2.0LIN 2.1、  
LIN 2.2LIN 2.2 A ISO/DIS 17987-4 标准。LIN 是  
一种单线双向总线通常用于数据传输速率高达 20  
kbps 的车载网络。TLIN2027-Q1 旨在为 24V 应用提  
供支持具有更宽的工作电压和额外的总线故障保护。  
4V 48V 电源电压  
±60V LIN 总线故障保护  
LIN 接收器支持高达 100 kbps 的数据传输速率从而  
实现更快的内联编程。TLIN2027-Q1 使用一个可降低  
电磁辐(EME) 的限流波形整形驱动器将 TXD 输入上  
的数据流转化为一个 LIN 总线信号。接收器将数据流  
转化为逻辑电平信号此信号通过开漏 RXD 引脚发送  
到微处理器。睡眠模式可实现超低电流消耗该模式允  
许通LIN 总线EN 引脚进行唤醒。  
• 休眠模式超低电流消耗允许以下类型的唤醒事  
:  
LIN 总线  
– 通EN 引脚实现本地唤醒  
• 无显性状态超时  
• 上电和断电无干扰运行  
• 保护特性:  
VSUP 欠压保护  
– 热关断保护  
– 系统级未供电节点或接地断开失效防护。  
• 采SOIC (8) 和无引线VSON (8) 封装提高了自  
动光学检(AOI) 能力  
器件信息  
封装(1)  
封装尺寸标称值)  
4.90mm x 3.91mm  
3.00mm x 3.00mm  
器件型号  
SOIC (D) (8)  
TLIN2027-Q1  
VSON (DRB) (8)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VBAT  
VBAT  
VSUP  
VSUP  
VREG  
VSUP  
VREG  
VSUP  
VDD  
VDD  
VDD  
VDD  
Commander  
Node  
VSUP  
VSUP  
Pull-up  
NC NC  
NC NC  
EN  
EN  
8
3
7
8
3
7
2
2
VDD  
VDD  
I/O  
I/O  
MCU w/o  
pull-up  
MCU w/o  
pull-up  
VDD I/O  
VDD I/O  
1 k  
LIN  
LIN  
LIN Bus  
LIN Bus  
MCU  
6
MCU  
6
LIN Controller  
or  
SCI/UART  
LIN Controller  
or  
SCI/UART  
1
4
1
4
200 pF  
200 pF  
RXD  
TXD  
RXD  
TXD  
GND  
5
GND  
5
简化版原理图指挥官模式  
简化版原理图响应者模式  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF59  
 
 
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................21  
9.3 Feature Description...................................................21  
9.4 Device Functional Modes..........................................25  
10 Application and Implementation................................27  
10.1 Application Information........................................... 27  
10.2 Typical Application.................................................. 27  
11 Power Supply Recommendations..............................28  
12 Layout...........................................................................29  
12.1 Layout Guidelines................................................... 29  
12.2 Layout Example...................................................... 30  
13 Device and Documentation Support..........................31  
13.1 Documentation Support.......................................... 31  
13.2 Receiving Notification of Documentation Updates..31  
13.3 支持资源..................................................................31  
13.4 Trademarks.............................................................31  
13.5 Electrostatic Discharge Caution..............................32  
13.6 术语表..................................................................... 32  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 ESD Ratings - IEC ..................................................... 4  
7.4 Thermal Information ...................................................4  
7.5 Recommended Operating Conditions ........................5  
7.6 Electrical Characteristics ............................................5  
7.7 Switching Characteristics ...........................................7  
7.8 Timing Requirements .................................................9  
7.9 Typical Characteristics..............................................10  
8 Parameter Measurement Information..........................12  
9 Detailed Description......................................................21  
9.1 Overview...................................................................21  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (December 2021) to Revision C (March 2022)  
Page  
• 删除了原理图后面的注释.................................................................................................................................... 1  
Changed VLOGIC absolute maximum rating MAX from 5.5 V to 6 V................................................................... 4  
Changes from Revision A (October 2020) to Revision B (December 2021)  
Page  
• 将从支12V 应用更改为支24V 应用....................................................................................................1  
• 将4V 36V 电源电压更改4V 48V 电源电压................................................................................ 1  
• 将±45V LIN 总线故障保护更改为±60V LIN 总线故障保护.......................................................................1  
• 通篇将“领导者”更改为“指挥官”.................................................................................................................. 1  
• 通篇将“跟随者”更改为“响应者”.................................................................................................................. 1  
• 将ISO/DIS 179874.2 标准更改ISO/DIS 179874 标准.............................................................1  
Changed ISO/DIS 179874.2 standards To ISO/DIS 179874 standards in the Overview ......................... 21  
Changed ISO/DIS 179871.2 standards To ISO/DIS 179871 standards in the Related Documentation ...31  
Changed ISO/DIS 179874.2 standards To ISO/DIS 179874 standards in the Related Documentation ...31  
Changes from Revision * (July 2020) to Revision A (October 2020)  
Page  
Changed REN typical from 350 kto 205 k.................................................................................................... 5  
Changed THREC(MIN) 0.442 to 0.422..................................................................................................................7  
5 说明)  
集成电阻器、静电放(ESD) 和故障保护功能支持设计人员在其应用中节省布板空间。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
RXD  
EN  
1
2
3
4
8
7
6
5
NC  
RXD  
EN  
1
2
3
4
8
7
6
5
NC  
V
VSUP  
LIN  
SUP  
Thermal  
Pad  
NC  
NC  
LIN  
TXD  
GND  
TXD  
GND  
Not to scale  
Not to scale  
6-1. D Package, 8-Pin (SOIC), Top View  
6-2. DRB Package, 8-Pin (VSON), Top View  
6-1. Pin Functions  
PIN  
Type  
DESCRIPTION  
Name  
RXD  
No.  
1
DO  
DI  
RXD output (open-drain) interface reporting state of LIN bus voltage  
EN  
2
Enable input - High puts the device in normal operation mode and low puts the device in sleep mode  
NC  
3
Not connected  
DI  
TXD  
GND  
LIN  
4
TXD input interface to control state of LIN output - Internally pulled to ground  
5
GND  
HV I/O  
Ground  
6
LIN bus single-wire transmitter and receiver  
VSUP  
NC  
7
HV Supply Device supply voltage (connected to battery in series with external reverse blocking diode)  
8
Not connected  
No electrical connection. Can be connected to the PCB to improve thermal coupling (DRB package  
only)  
Thermal Pad  
-
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
parameters valid across -40TA 125(unless otherwise noted)(1)  
Symbol  
Parameter  
MIN  
0.3  
60  
0.3  
40  
55  
MAX  
60  
UNIT  
V
VSUP  
VLIN  
Supply voltage range (ISO/DIS 17987 Param 10)  
LIN bus input voltage (ISO/DIS 17987 Param 82)  
Logic pin voltage (RXD, TXD, EN)  
Ambient temperature range  
60  
V
VLOGIC  
TA  
6
V
125  
150  
°C  
°C  
TJ  
Junction temperature range  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) TXD, RXD, EN Pins, per AEC  
Q100-002(1)  
±4000  
Human body model (HBM) LIN and VSUP Pin, per AEC  
Q100-002(2)  
V(ESD)  
Electrostatic discharge  
±8000  
±1500  
V
Charged device model (CDM),  
All terminals  
per AEC Q100-011  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) LIN bus is stressed with respect to GND.  
7.3 ESD Ratings - IEC  
ESD and Surge Protection Ratings  
ISO 10605 per IEC 62228-3 Contact  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
±8000  
V
V
discharge  
contact discharge  
air-gap discharge  
Pulse 1  
±8000  
±25000  
100  
75  
Powered ESD Performance, per  
SAEJ2962-1(1)  
V(ESD)  
V
V
V
V
Pulse 2  
ISO 7637-2 and IEC 62215-3 transients according to  
IBEE LIN EMC test specifications(2) (LIN and VSUP  
)
Pulse 3a  
150  
100  
Pulse 3b  
(1) SAEJ2962-1 Testing performed at 3rd party EMC test facility, test report available upon request.  
(2) ISO 7637 is a system level transient test. Different system level configurations may lead to diffrent results.  
7.4 Thermal Information  
D (SOIC)  
8-PINS  
115.5  
58.7  
DRB (VSON)  
THERMAL METRIC(1)  
UNIT  
8-PINS  
48.5  
55.5  
22.2  
1.2  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
58.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
14.1  
ΨJT  
58.2  
22.2  
4.8  
ΨJB  
RΘJC(bot)  
-
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Recommended Operating Conditions  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER - DEFINITION  
MIN  
4
NOM  
MAX  
48  
UNIT  
V
VSUP  
Supply voltage  
VLIN  
LIN Bus input voltage  
0
48  
V
VLOGIC  
TSD  
Logic Pin Voltage (RXD, TXD, EN)  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
0
5.25  
V
165  
°C  
°C  
TSD(HYS)  
15  
7.6 Electrical Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX UNIT  
Power Supply  
Device is operational beyond the LIN  
defined nominal supply voltage  
range.See 8-1 and 8-2  
Operational supply voltage (ISO/DIS  
17987 Param 10, 53)  
VSUP  
48  
48  
V
V
Normal and Standby Modes: ramp VSUP  
while LIN signal is a 10 kHz square  
wave with 50 % duty cycle and 36V  
swing. See 8-1 and 8-2  
4
Nominal supply voltage (ISO/DIS 17987  
Param 10, 53)  
VSUP  
Sleep Mode  
4
48  
V
V
Min is falling edge and Max is rising  
edge  
UVSUP  
UVHYS  
Under voltage VSUP threshold  
2.9  
3.85  
Delta hysteresis voltage for VSUP under  
voltage threshold  
0.2  
V
Normal Mode: EN = high, bus dominant:  
total bus load where RLIN > 500 Ωand  
CLIN < 10 nF (See 8-7)  
5
mA  
ISUP  
Supply current  
Standby Mode: EN = low, bus dominant:  
total bus load where RLIN > 500 Ωand  
CLIN < 10 nF (See 8-7)  
1
2.1  
mA  
Normal Mode: EN = high, bus recessive  
400  
20  
700  
35  
µA  
µA  
(LIN = VSUP  
Standby Mode: EN = low, bus recessive  
(LIN = VSUP  
)
)
ISUP  
Supply current  
Sleep Mode: 4.0 V < VSUP 27 V, LIN  
= VSUP, EN = 0 V, TXD and RXD  
floating  
9
15  
30  
µA  
µA  
Sleep Mode: 27 V < VSUP 48 V, LIN =  
VSUP, EN = 0 V, TXD and RXD floating  
TSD  
Thermal shutdown  
165  
TSD(HYS)  
Thermal shutdown hysteresis  
15  
0
RXD OUTPUT PIN (OPEN DRAIN)  
VOL  
Output low voltage  
0.6  
5
V
RPU = 2.4 kΩ  
IOL  
Low level output current, open drain  
Leakage current, high-level  
LIN = 0 V, RXD = 0.4 V  
LIN = VSUP, RXD = 5 V  
1.5  
mA  
µA  
IILG  
5  
TXD INPUT PIN  
VIL  
Low level input voltage  
0.8  
5.5  
5
V
V
0.3  
2
VIH  
High level input voltage  
IILG  
RTXD  
Low level input leakage current  
Internal pull-down resistor value  
TXD = low  
0
µA  
kΩ  
5  
125  
350  
800  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN2027-Q1  
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
MAX UNIT  
7.6 Electrical Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
LIN PIN  
LIN recessive, TXD = high, IO = 0 mA,  
VSUP = 7 V to 48 V(1)  
0.85  
3
VSUP  
V
VOH  
HIGH level output voltage  
LIN recessive, TXD = high, IO = 0 mA,  
VSUP = 4 V VSUP < 7 V(1)  
LIN dominant, TXD = low, VSUP = 7 V to  
48 V(1)  
0.2 VSUP  
VOL  
LOW level output voltage  
LIN dominant, TXD = low, VSUP = 4 V ≤  
1.2  
58  
V
V
VSUP < 7 V(1)  
VSUP where impact of recessive LIN  
VSUP_NON_OP bus < 5% (ISO/DIS 17987 Param 11,  
54/56)  
TXD & RXD open LIN = 4 V to 58 V  
0.3  
TXD = 0 V, VLIN = 36 V, RMEAS = 440 Ω,  
VSUP = 36 V, VBUSdom < 4.518 V See 图  
8-6  
Limiting current (ISO/DIS 17987 Param  
12)  
IBUS_LIM  
40  
90  
200  
mA  
LIN = 0 V, VSUP = 24 V Driver off/  
recessive 8-7  
Receiver leakage current, dominant  
IBUS_PAS_dom  
mA  
µA  
1  
(ISO/DIS 17987 Param 13, 58)  
Receiver leakage current, recessive  
IBUS_PAS_rec1  
LIN > VSUP, 4 V VSUP 45 V Driver  
off; 8-8  
20  
5
(ISO/DIS 17987 Param 14, 59)  
Receiver leakage current, recessive  
IBUS_PAS_rec2  
µA  
LIN = VSUP, Driver off; 8-8  
5  
1  
(ISO/DIS 17987 Param 14, 59)  
Leakage current, loss of ground  
IBUS_NO_GND  
GND = VSUP, VSUP = 27 V, LIN = 0 V; 图  
8-9  
1
mA  
mA  
µA  
(ISO/DIS 17987 Param 15, 60)  
Leakage current, loss of ground  
IBUS_NO_GND  
GND = VSUP, VSUP 36 V, LIN = 0  
V; 8-9  
1.5  
5
1.5  
(ISO/DIS 17987 Param 15, 60)  
Leakage current, loss of supply  
IBUS_NO_BAT  
LIN = 48 V, VSUP = GND; 8-10  
(ISO/DIS 17987 Param 16, 61)  
LIN dominant (including LIN dominant  
for wake up) See 8-4, 8-3  
Low level input voltage (ISO/DIS 17987  
Param 17, 62)  
VBUSdom  
0.4 VSUP  
VSUP  
High level input voltage (ISO/DIS 17987  
Param 18, 63)  
VBUSrec  
0.6  
LIN recessive See 8-4, 8-3  
Receiver center threshold (ISO/DIS  
VBUS_CNT  
VBUS_CNT = (VIL + VIH)/2 See 8-4, 图  
8-3  
0.475  
0.5  
0.525 VSUP  
0.175 VSUP  
17987 Param 19, 64)  
Hysteresis voltage (ISO/DIS 17987  
VHYS  
VHYS = (VIL - VIH) See 8-4, 8-3  
Param 20, 65)  
VSERIAL_DIODE Serial diode LIN term pull-up path  
By design and characterization  
Normal and standby modes  
Sleep mode, VSUP = 27 V, LIN = GND  
VSUP = 14 V  
0.4  
20  
0.7  
45  
1
V
RPU-LIN  
IRSLEEP  
CLINPIN  
EN INPUT PIN  
VIL  
Internal pull-up resistor to VSUP  
Pull-up current source to VSUP  
Capacitance of the LIN pin  
60  
kΩ  
µA  
pF  
2  
20  
25  
Low level input voltage  
High level input voltage  
Hysteresis voltage  
0.8  
5.5  
500  
5
V
V
0.3  
VIH  
2
VIT  
By design and characterization  
EN = low  
50  
0
mV  
µA  
IILG  
Low level input current  
Internal pull-down resistor  
5  
REN  
125  
205  
800  
kΩ  
(1) LIN driver bus load conditions (CLIN, RLIN): No external load  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.7 Switching Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MAX) = 0.744 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 4 V to 7.4 V, tBIT  
= 50 µs (20 kbps), D1 = tBUS_rec(min)/(2 x  
tBIT) (See 8-11, 8-12)  
Duty Cycle 1 (ISO/DIS 17987 Param  
27)(1)  
D112V  
0.396  
THREC(MAX) = 0.625 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 7.4 V to 9.4 V,  
tBIT = 50 µs (20 kbps), D1 =  
tBUS_rec(min)/(2 x tBIT) (See 8-11, 图  
8-12)  
D112V  
Duty Cycle 1  
0.368  
0.396  
THREC(MAX) = 0.744 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 9.4 V to 18 V,  
tBIT = 50 µs (20 kbps), D1 =  
tBUS_rec(min)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 1 (ISO/DIS 17987 Param  
27)  
D112V  
D212V  
D212V  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 4 V to 7.4 V, tBIT  
= 50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2  
x tBIT) (See 8-11, 8-12)  
Duty Cycle 2 (ISO/DIS 17987 Param  
28)  
0.581  
0.67  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 7.4 V to 9.4 V,  
tBIT = 50 µs (20 kbps), D2 =  
tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 2  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 9.4 V to 18 V,  
tBIT = 50 µs (20 kbps), D2 =  
tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 2 (ISO/DIS 17987 Param  
28)  
D212V  
0.581  
THREC(MAX) = 0.778 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2  
x tBIT) (See 8-11, 8-12)  
Duty Cycle 3 (ISO/DIS 17987 Param  
29)  
D312V  
0.417  
0.417  
THREC(MAX) = 0.645 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
D312V  
Duty Cycle 3  
96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2 x  
tBIT) (See 8-11, 8-12)  
THREC(MIN) = 0.389 x VSUP, THDOM(MIN)  
= 0.251 x VSUP, VSUP = 4.6 V to 7.4 V,  
tBIT = 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 4 (ISO/DIS 17987 Param  
30)  
D412V  
D412V  
D412V  
D124V  
0.59  
0.6  
THREC(MIN) = 0.389 x VSUP, THDOM(MIN)  
= 0.251 x VSUP, VSUP = 7.4 V to 9.4 V,  
tBIT = 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 4  
THREC(MIN) = 0.389 x VSUP, THDOM(MIN)  
= 0.251 x VSUP, VSUP = 7.4 V to 18 V,  
tBIT = 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 4 (ISO/DIS 17987 Param  
30)  
0.59  
THREC(MAX) = 0.710 x VSUP, THDOM(MAX)  
= 0.544 x VSUP, VSUP = 15 V to 36 V,  
tBIT = 50 µs (20 kbps), D1 =  
tBUS_rec(min)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 1 (ISO/DIS 17987 Param  
72)(1)  
0.33  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.7 Switching Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MIN) = 0.446 x VSUP, THDOM(MIN)  
= 0.302 x VSUP, VSUP = 15.6 V to 36 V,  
tBIT = 50 µs (20 kbps), D2 =  
tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 2 (ISO/DIS 17987 Param  
73)  
D224V  
0.642  
THREC(MAX) = 0.744 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 7 V to 36 V, tBIT  
= 96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2  
x tBIT) (See 8-11, 8-12)  
Duty Cycle 3 (ISO/DIS 17987 Param  
74)  
D324V  
0.386  
0.386  
THREC(MAX) = 0.645 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
D324V  
Duty Cycle  
96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2 x  
tBIT) (See 8-11, 8-12)  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 4.6 V to 36 V,  
tBIT = 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
Duty Cycle 4 (ISO/DIS 17987 Param  
75)  
D424V  
0.591  
(1) Duty cycles: LIN driver bus load conditions (CLIN, RLIN): Load1 = 1 nF, 1 kΩ; Load2 = 10 nF, 500 Ω, Load3 = 6.8 nF, 660 Ω. Duty  
cycles 3 and 4 are defined for 10.4-kbps operation. The TLIN2027 also meets these lower data rate requirements, while it is capable of  
the higher speed 20-kbps operation as specified by duty cycles 1 and 2. SAEJ2602 derives propagation delay equations from the LIN  
2.0 duty cycle definitions, for details see the SAEJ2602 specification  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.8 Timing Requirements  
SYMBOL  
DESCRIPTION  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Receiver rising and falling propagation  
delay time (ISO/DIS 17987 Param 31,  
76)  
RRXD = 2.4 kΩ, CRXD = 20 pF (See 图  
8-13 and 8-14 )  
trx_pdr, trx_pdf  
6
µs  
Rising edge with respect to falling edge,  
Symmetry of receiver propagation delay (trx_sym = trx_pdf trx_pdr), RRXD = 2.4  
trx_sym  
tLINBUS  
tCLEAR  
2
150  
50  
µs  
µs  
µs  
2  
25  
8
time  
kΩ, CRXD = 20 pF (See 8-13 and 图  
8-14 )  
LIN wakeup time (Minimum dominant  
time on LIN bus for wakeup)  
65  
25  
See 8-17, 9-2, and 9-3  
See 9-3  
Time to clear false wakeup prevention  
logic if LIN bus had a bus stuck  
dominant fault (recessive time on LIN  
bus to clear bus stuck dominant fault)  
Time to change from standby mode to  
normal mode or normal mode to sleep  
mode through EN pin (See 8-15  
and 9-4)  
tMODE_CHANGE Mode change delay time  
2
15  
µs  
Time for normal mode to initialize and  
data on RXD pin to be valid (See 图  
8-15)  
tNOMINT  
Normal mode initialization time  
Power up time  
35  
µs  
Upon power up time it takes for valid  
data on RXD  
tPWR  
1.5  
ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.9 Typical Characteristics  
70  
60  
50  
40  
30  
20  
10  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40èC  
25èC  
125èC  
-40èC  
25èC  
125èC  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
D002  
D001  
7-2. VOL vs VSUP and Temperature  
7-1. VOH vs VSUP and Temperature  
4
3.5  
3
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
2
1.5  
1
-40èC  
27èC  
125èC  
-40èC  
27èC  
125èC  
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
D003  
D004  
7-3. Dominant ISUP vs VSUP and Temperature  
7-4. Recessive ISUP vs VSUP and Temperature  
0.014  
0.012  
0.01  
1.8  
1.6  
1.4  
1.2  
1
0.008  
0.006  
0.004  
0.002  
0
0.8  
0.6  
0.4  
0.2  
0
-40èC  
27èC  
125èC  
-40èC  
27èC  
125èC  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
D006  
D005  
7-6. Standby Recessive ISUP vs VSUP and Temperature  
7-5. Standby Dominant ISUP vs VSUP and Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
0.008  
0.006  
0.004  
0.002  
0
-40èC  
27èC  
125èC  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
D007  
7-7. Sleep Current vs VSUP and Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN2027-Q1  
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
1
8
7
NC  
RXD  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
2
VSUP  
VPS  
EN  
NC  
3
4
6
Pulse Generator  
tR/tF Square Wave: < 20 ns  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
TXD  
5
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Test System: Operating Voltage Range with RX and TX Access: Parameters 9, 10  
Delta t = + 5 µs  
Trigger Point  
(tBIT = 50 µs)  
RX  
2 x tBIT = 100 µs (20 kBaud)  
8-2. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
8-3. LIN Bus Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
1
2
3
4
8
7
NC  
RXD  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
VSUP  
VPS  
EN  
NC  
6
Pulse Generator  
tR/tF Square Wave: < 20 ns  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
TXD  
5
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-4. LIN Receiver Test with RX access Param 17, 18, 19, 20  
1
8
7
NC  
RXD  
EN  
Power Supply 1  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
2
VSUP  
VPS1  
D
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
6
5
3
4
NC  
LIN  
VPS2  
TXD  
RBUS  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-5. VSUP_NON_OP Param 11  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
1
2
8
7
NC  
RXD  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
VSUP  
VPS  
EN  
NC  
RMEAS  
3
4
6
LIN  
Pulse Generator  
tR/tF Square Wave: < 20 ns  
:
5
:
tR/tF Triangle Wave: < 40ns  
TXD  
GND  
Frequency: 20 ppm  
T = 10 ms  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-6. Test Circuit for IBUS_LIM at Dominant State (Driver on) Param 12  
1
RXD  
8
7
NC  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
2
3
VSUP  
VPS  
EN  
NC  
RMEAS = 499  
6
LIN  
5
4
TXD  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-7. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V, Param 13  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1
2
8
7
NC  
RXD  
EN  
VPS1  
VSUP  
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VPS2  
1 k  
6
3
4
NC  
LIN  
VPS2 2 V/s ramp  
[8 V 36 V]  
5
TXD  
GND  
V Drop across resistor  
< 20 mV  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-8. Test Circuit for IBUS_PAS_rec Param 14  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1
2
8
7
NC  
RXD  
EN  
5 V  
VPS1  
VSUP  
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VPS2  
1 k  
6
5
3
4
NC  
LIN  
VPS2 2 V/s ramp  
[0 V 36 V]  
TXD  
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-9. Test Circuit for IBUS_NO_GND Loss of GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
8
7
1
NC  
RXD  
5 V  
2
VSUP  
EN  
Power Supply 2  
Resolution: 10mV/ 1mA  
10 k  
6
3
Accuracy: 0.2%  
VPS  
NC  
LIN  
VPS 2 V/s ramp  
[0 V 36 V]  
5
4
TXD  
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-10. Test Circuit for IBUS_NO_BAT Loss of Battery  
1
2
8
7
RXD  
NC  
5 V  
Power Supply 1  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VSUP  
EN  
NC  
VPS1  
RMEAS  
6
3
4
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
LIN  
Pulse Generator  
tR/tF Square Wave: < 20 ns  
5
:
VPS2  
TXD  
GND  
:
tR/tF Triangle Wave: < 40ns  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-11. Test Circuit Slope Control and Duty Cycle Param 27, 28, 29, 30  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
tBIT  
tBIT  
RECESSIVE  
D = 0.5  
TXD (Input)  
DOMINANT  
D124: 0.710 * VSUP  
D324: 0.744 * VSUP  
D112: 0.744 * VSUP  
D312: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D112: 0.581 * VSUP  
D312: 0.616 * VSUP  
D124: 0.554 * VSUP  
D324: 0.581 * VSUP  
LIN Bus  
Signal  
D212: 0.422 * VSUP  
D412: 0.389 * VSUP  
D224: 0.446 * VSUP  
D424: 0.442 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D212: 0.284 * VSUP  
D412: 0.251 * VSUP  
D224: 0.302 * VSUP  
D424: 0.284 * VSUP  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
D = tBUS_REC(MIN)/(2 x tBIT  
)
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
D = tBUS_REC(MAX)/(2 x tBIT  
)
8-12. Definition of Bus Timing Parameters  
VCC  
2.4 k  
1
2
8
RXD  
EN  
NC  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
20 pF  
7
VSUP  
VPS  
6
3
4
Pulse Generator  
tR/tF Square Wave: < 20 ns  
NC  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
5
TXD  
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-13. Propagation Delay Test Circuit; Param 31, 32  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
THREC(MAX)  
Thresholds  
RX Node 1  
THDOM(MAX)  
LIN Bus  
Signal  
VSUP  
THREC(MIN)  
Thresholds  
RX Node 2  
THDOM(MIN)  
RXD: Node 1  
D1 (20 kbps)  
trx_pdr(1)  
trx_pdf(1)  
D3 (10.4 kbps)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
Copyright © 2017, Texas Instruments Incorporated  
8-14. Propagation Delay  
Wake Event  
tMODE_CHANGE  
EN  
tMODE_CHANGE  
tNOMINT  
Normal  
Transi on  
Sleep  
Standby  
Transi on  
Normal  
MODE  
Mirrors  
Bus  
Indeterminate  
Ignore  
Wake Request  
RXD = Low  
RXD  
Mirrors Bus  
Floa ng  
Indeterminate Ignore  
8-15. Mode Transitions  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
EN  
Weak Internal Pull-down  
TXD  
Weak Internal Pull-down  
VSUP  
LIN  
RXD  
Floa ng  
Sleep  
MODE  
Normal  
8-16. Wake-up Through EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN2027-Q1  
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
LIN  
0.6 x VSUP  
0.6 x VSUP  
VSUP  
0.4 x VSUP  
0.4 x VSUP  
t < tLINBUS  
tLINBUS  
TXD  
Weak Internal Pull-down  
EN  
RXD  
Floa ng  
MODE  
Standby  
Sleep  
Normal  
8-17. Wake-up through LIN  
RRXD  
RXD  
NC  
CRXD  
VSUP  
100 nF  
EN  
RLIN  
LIN  
NC  
CLIN  
GND  
TXD  
Copyright © 2017, Texas Instruments Incorporated  
8-18. Test Circuit for AC Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLIN2027-Q1 is a Local Interconnect Network (LIN) physical layer transceiver, compatible with LIN 2.0, LIN  
2.1, LIN 2.2, LIN 2.2A and ISO/DIS 179874 standards, with integrated wake-up and protection features. The  
LIN bus is a single-wire bidirectional bus typically used for low speed in-vehicle networks using data rates from  
2.4 kbps to 20 kbps. The TLIN2027-Q1 LIN receiver works up to 100 kbps supporting in-line programming. The  
LIN protocol data stream on the TXD input is converted by the TLIN2027-Q1 into a LIN bus signal using a  
current-limited wave-shaping driver as outlined by the LIN physical layer specification. The receiver converts the  
data stream to logic-level signals that are sent to the microprocessor through the open-drain RXD pin. The LIN  
bus has two states: dominant state (voltage near ground) and recessive state (voltage near battery). In the  
recessive state, the LIN bus is pulled high by the internal pull-up resistor (45 k) and a series diode. No external  
pull-up components are required for responder mode applications. Commander mode applications require an  
external pull-up resistor (1 k) plus a series diode per the LIN specification. The TLIN2027-Q1 provides many  
protection features such as immunity to ESD and high bus standoff voltage. The device also provides two  
methods to wake up: EN pin and from the LIN bus.  
9.2 Functional Block Diagram  
NC  
RXD  
VSUP/2  
VSUP  
Comp  
45 k  
Filter  
EN  
NC  
Wake-Up  
State & Control  
205 k  
Fault Detection  
& Protection  
LIN  
DR / Slope CTL  
TXD  
350 k  
GND  
9.3 Feature Description  
9.3.1 LIN (Local Interconnect Network) Bus  
This high voltage input/output pin is a single-wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 60 V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
9.3.1.1 LIN Transmitter Characteristics  
The transmitter has thresholds and AC parameters according to the LIN specification. The transmitter is a low-  
side transistor with internal current limitation and thermal shutdown. During a thermal shut-down condition, the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN2027-Q1  
 
 
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure to  
VSUP, so no external pull-up components are required for the LIN responder mode applications. An external pull-  
up resistor and series diode to VSUP must be added when the device is used for a commander mode node  
application.  
9.3.1.2 LIN Receiver Characteristics  
The receivers characteristic thresholds are proportional to the device supply pin in accordance to the LIN  
specification.  
The receiver is capable of receiving higher data rates (> 100 kbps) than supported by LIN or SAEJ2602  
specifications. This allows the TLIN2027-Q1 to be used for high speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder mode applications. An external pull-up resistor (1 k) and a series diode to VSUP  
must be added when the device is used for commander mode applications as per the LIN specification.  
9-1 shows a commander node configuration and how the voltage levels are defined  
Voltage drop across the  
diodes in the pull-up path  
VLIN_Bus  
Simplified Transceiver  
VSUP/2  
RXD  
VSUP  
VSUP  
VBattery  
VLIN_RecesSsUivPe  
V
Receiver  
Filter  
1 k  
LIN  
Bus  
LIN  
45 k  
TXD  
350 k  
GND  
Transmitter  
with slope control  
VLIN_Dominant  
t
Copyright © 2017, Texas Instruments Incorporated  
9-1. Commander Node Configuration with Voltage Levels  
9.3.2 TXD (Transmit Input and Output)  
TXD is the interface to the MCUs LIN protocol controller or SCI and UART that is used to control the state of  
the LIN output. When TXD is low the LIN output is dominant (near ground). When TXD is high the LIN output is  
recessive (near VBattery). See 9-1. The TXD input structure is compatible with microcontrollers with 3.3 V and  
5 V I/O.  
9.3.3 RXD (Receive Output)  
RXD is the interface to the MCUs LIN protocol controller or SCI and UART, which reports the state of the LIN  
bus voltage. LIN recessive (near VBattery) is represented by a high level on the RXD and LIN dominant (near  
ground) is represented by a low level on the RXD pin. The RXD output structure is an open-drain output stage.  
This allows the device to be used with 3.3 V and 5 V I/O microcontrollers. If the microcontrollers RXD pin does  
not have an integrated pull-up, an external pull-up resistor to the microcontroller I/O supply voltage is required. In  
standby mode the RXD pin is driven low to indicate a wake-up request from the LIN bus.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
9.3.4 VSUP (Supply Voltage)  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse-blocking diode (图  
9-1). If there is a loss of power at the ECU level, the device has extremely low leakage from the LIN pin, which  
does not load the bus down. This is optimal for LIN systems in which some of the nodes are unpowered (ignition  
supplied) while the rest of the network remains powered (battery supplied).  
9.3.5 GND (Ground)  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage, as well as ensuring the input and output  
voltages are within their appropriate thresholds. If there is a loss of ground at the ECU level, the device has  
extremely low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems in  
which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied).  
9.3.6 EN (Enable Input)  
EN controls the operational modes of the device. When EN is high the device is in normal operating mode  
allowing a transmission path from TXD to LIN and from LIN to RXD. When EN is low the device is put into sleep  
mode and there are no transmission paths available. The device can enter normal mode only after wake-up. EN  
has an internal pull-down resistor to ensure the device remains in low-power mode even if EN floats.  
9.3.7 Protection Features  
The TLIN2027-Q1 has several protection features, described below.  
9.3.8 Bus Stuck Dominant System Fault: False Wake-Up Lockout  
The TLIN2027-Q1 contains logic to detect bus stuck dominant system faults and prevents the device from  
waking up falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus.  
If the bus is dominant, the wake-up logic is locked out until a valid recessive on the bus clearsthe bus stuck  
dominant, preventing excessive current consumption. 9-2 and 9-3 show the behavior of this protection.  
RXD  
EN  
LIN Bus  
tLINBUS  
< tLINBUS  
< tLINBUS  
9-2. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wake-Up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
RXD  
EN  
tLINBUS  
tLINBUS  
tLINBUS  
LIN Bus  
tCLEAR  
< tCLEAR  
9-3. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wake-Up  
9.3.9 Thermal Shutdown  
The LIN transmitter is protected by current limiting circuitry; however, if the junction temperature of the device  
exceeds the thermal shutdown threshold, the device puts the LIN transmitter into the recessive state. Once the  
over-temperature fault condition has been removed and the junction temperature has cooled beyond the  
hysteresis temperature, the transmitter is re-enabled, assuming the device remained in the normal operation  
mode. During this fault, the transceiver remains in normal mode (assuming no change of state request on EN),  
the transmitter is in recessive state, the RXD pin reflects the LIN bus and LIN bus pull-up termination remains  
on.  
9.3.10 Under Voltage on VSUP  
The TLIN2027-Q1 contains a power-on reset circuit to avoid false bus messages during under voltage conditions  
when VSUP is less than UVSUP  
.
9.3.11 Unpowered Device and LIN Bus  
In automotive applications some LIN nodes in a system can be unpowered (ignition supplied) while others in the  
network remain powered by the battery. The TLIN2027-Q1 has extremely low unpowered leakage current from  
the bus so an unpowered node does not affect the network or load it down.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
9.4 Device Functional Modes  
The TLIN2027-Q1 has three functional modes of operation: normal, sleep, and standby. The next sections will  
describe these modes as well as how the device moves between the different modes. 9-4 graphically shows  
the relationship while 9-1 shows the state of pins.  
9-1. Operating Modes  
LIN BUS  
TERMINATION  
MODE  
Sleep  
EN  
Low  
Low  
RXD  
Floating  
Low  
TRANSMITTER  
COMMENT  
Weak current pull-up  
Off  
Off  
Wake-up event detected,  
waiting on MCU to set EN  
Standby  
45 k(typical)  
45 k(typical)  
LIN bus  
data  
Normal  
High  
On  
LIN transmission up to 20 kbps  
Unpowered System  
VSUP < UVSUP  
VSUP < UVSUP  
VSUP > UVSUP  
EN = Low  
VSUP < UVSUP  
VSUP > UVSUP  
EN = High  
VSUP < UVSUP  
Standby Mode  
Driver: Off  
RXD: Low  
Termination: 45 k  
EN = High  
LIN Bus Wake-up  
Normal Mode  
Sleep Mode  
Driver: On  
RXD: LIN Bus Data  
Termination: 45 k  
Driver: O  
RXD: Floa ng  
Termina on: Weak pull-up  
EN = Low  
EN = High  
Copyright © 2017, Texas Instruments Incorporated  
9-4. Operating State Diagram  
9.4.1 Normal Mode  
If the EN pin is high at power up the device will power up in normal mode. If the EN pin is low, it will power up in  
standby mode. The EN pin controls the mode of the device. In normal operational mode the receiver and  
transmitter are active and the LIN transmission up to the LIN specified maximum of 20 kbps is supported. The  
receiver detects the data stream on the LIN bus and outputs it on RXD for the LIN controller. A recessive signal  
on the LIN bus is a logic high and a dominant signal on the LIN bus is a logic low. The driver transmits input data  
from TXD to the LIN bus. Normal mode is entered as EN transitions high while the TLIN2027-Q1 is in sleep or  
standby mode for > tMODE_CHANGE plus tNOMINT  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN2027-Q1  
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
9.4.2 Sleep Mode  
Sleep mode is the power saving mode for the TLIN2027-Q1. Sleep mode is only entered when the EN pin is low  
and from normal mode. Even with extremely low current consumption in this mode, the TLIN2027-Q1 can still  
wake up from LIN bus through a wake-up signal or if EN is set high for tMODE_CHANGE. The LIN bus is filtered  
to prevent false wake-up events. The wake-up events must be active for the respective time periods (tLINBUS).  
The sleep mode is entered by setting EN low for longer than tMODE_CHANGE  
While the device is in sleep mode, the following conditions exist:  
.
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short circuited to ground). However, the weak current pull-up is active to prevent false wake-up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
EN input and LIN wake-up receiver are active.  
9.4.3 Standby Mode  
This mode is entered whenever a wake-up event occurs through LIN bus while the device is in sleep mode. The  
LIN bus responder mode termination circuit is turned on when standby mode is entered. Standby mode is  
signaled through a low level on RXD. See 10.2.2.2 for more application information.  
When EN is set high for longer than tMODE_CHANGE while the device is in standby mode, the device returns to  
normal mode. The normal transmission paths from TXD to LIN bus and LIN bus to RXD are enabled.  
9.4.4 Wake-Up Events  
There are two ways to wake up from sleep mode:  
Remote wake-up initiated by the falling edge of a recessive (high) to dominant (low) state transition on LIN  
bus where the dominant state is be held for tLINBUS filter time. After this tLINBUS filter time has been met and a  
rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake-up event,  
eliminating false wake-ups from disturbances on the LIN bus or if the bus is shorted to ground.  
Local wake-up through EN being set high for longer than tMODE_CHANGE  
.
9.4.4.1 Wake-Up Request (RXD)  
When the TLIN2027-Q1 encounters a wake-up event from the LIN bus, RXD goes low and the device transitions  
to standby mode until EN is reasserted high and the device enters normal mode. Once the device enters normal  
mode, the RXD pin is releases the wake-up request signal and the RXD pin then reflects the receiver output  
from the LIN bus.  
9.4.4.2 Mode Transitions  
When the TLIN2027-Q1 is transitioning from normal to sleep or standby modes the device needs the time  
tMODE_CHANGE to allow the change to fully propagate from the EN pin through the device into the new state.  
When transitioning from sleep or standby to normal mode the device needs tMODE_CHANGE plus tNOMINT  
.
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TLIN2027-Q1 can be used as both a responder node device and a commander node device in a LIN  
network. The device comes with the ability to support both remote wake-up request and local wake-up request.  
10.2 Typical Application  
The device integrates a 45 kpull-up resistor and series diode for responder node applications. For commander  
applications an external 1 kpull-up resistor with series blocking diode can be used. 10-1 shows the device  
being used in both commander mode and responder mode applications.  
VSUP  
COMMANDER  
NODE  
VREG  
VSUP  
VDD  
VDD  
VSUP  
NC  
8
NC  
3
(D)  
EN  
7
I/O  
2
VDD  
Commander  
Node  
MCU w/o  
pull-up(B)  
Pull-up(C)  
VDD I/O  
1 k  
LIN  
MCU  
TLIN2027-Q1  
6
LIN Controller  
1
4
220 pF  
Or  
RXD  
TXD  
SCI/UART(A)  
GND  
5
VSUP  
RESPONDER  
NODE  
VREG  
VSUP  
VDD  
VDD  
VSUP  
NC  
8
NC  
3
(D)  
EN  
7
I/O  
2
VDD  
MCU w/o  
pull-up(B)  
VDD I/O  
LIN  
MCU  
TLIN2027-Q1  
6
LIN Controller  
Or  
1
4
220 pF  
RXD  
TXD  
SCI/UART(A)  
GND  
5
A. If RXD on MCU on LIN responder node has internal pull-up, no external pull-up resistor is needed.  
B. If RXD on MCU on LIN responder node does not have an internal pull-up, requires external pull-up resistor.  
C. Commander node applications require and external 1 kΩpull-up resistor and serial diode.  
D. Decoupling capacitor values are system dependent but usually have 100 nF, 1 µF and 10 µF.  
10-1. Typical LIN Bus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN2027-Q1  
 
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
10.2.1 Design Requirements  
The RXD output structure is an open-drain output stage. This allows the TLIN2027-Q1 to be used with 3.3- V  
and 5-V I/O processor. If the RXD pin of the processor does not have an integrated pull-up, an external pull-up  
resistor to the processor I/O supply voltage is required. The select external pull-up resistor value should be  
between 1 kΩ to 10 kΩ, depending on supply used (See IOL in electrical characteristics). The VSUP pin of the  
device should be decoupled with a 100-nF capacitor as close to the supply pin of the device as possible.  
10.2.2 Detailed Design Procedures  
10.2.2.1 Normal Mode Application Note  
When using the TLIN2027-Q1 in systems which are monitoring the RXD pin for a wake-up request, special care  
should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition period  
between states as the receivers are switched. The application software should not look for an edge on the RXD  
pin indicating a wake-up request until tMODE_CHANGE. This is shown in 8-15  
10.2.2.2 Standby Mode Application Note  
If the TLIN2027-Q1 detects an under voltage on VSUP the RXD pin transitions low and would signal to the  
software that the TLIN2027-Q1 is in standby mode and should be returned to sleep mode for the lowest power  
state.  
10.2.3 Application Curves  
The below figures show the propagation delay from the TXD pin to the LIN pin for both dominant to recessive  
and recessive to dominant stated under lightly loaded conditions.  
10-2. Recessive to Dominant Propagation  
10-3. Dominant to Recessive Propagation  
11 Power Supply Recommendations  
The TLIN2027-Q1 was designed to operate directly off a car battery, or any other DC supply ranging from 4 V to  
45 V. A 100 nF decoupling capacitor should be placed as close to the VSUP pin of the device as possible. It is  
good practice for some applications with noisier supplies to include 1 µF and 10 µF decoupling capacitor, as  
well.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
12 Layout  
In order for your PCB design to be successful, start with design of the protection and filtering circuitry. Because  
ESD transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high frequency layout  
techniques must be applied during PCB design. Placement at the connector also prevents these noisy events  
from propagating further into the PCB and system.  
12.1 Layout Guidelines  
Pin 1 (RXD): The pin is an open-drain output and requires an external pull-up resistor in the range of 1 kto  
10 kto function properly. Note that the minimum value will depend on the VIO supply used. See IOL in  
electrical specifications. If the microprocessor paired with the transceiver does not have an integrated pull-up,  
an external resistor should be placed between RXD and the regulated voltage supply for the microprocessor.  
Pin 2 (EN): EN is an input pin that is used to place the device in a low-power sleep mode. If this feature is not  
used the pin should be pulled high to the regulated voltage supply of the microprocessor through a series  
resistor between 1 kand 10 k. Additionally, a series resistor may be placed on the pin to limit current on  
the digital lines in the case of an over voltage fault.  
Pin 3 (NC): Not Connected.  
Pin 4 (TXD): The TXD pin is used to transmit the input signal from the microcontroller. A series resistor can  
be placed to limit the input current to the device in the case of an over-voltage on this pin. A capacitor to  
ground can be placed close to the input pin of the device to filter noise.  
Pin 5 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 6 (LIN): This pin connects to the LIN bus. For responder mode applications, a 220 pF capacitor to ground  
is implemented. For commander mode applications, an additional series resistor and blocking diode should  
be placed between the LIN pin and the VSUP pin. See 10-1.  
Pin 7 (VSUP): This is the supply pin for the device. A 100 nF decoupling capacitor should be placed as close  
to the device as possible.  
Pin 8 (NC): Not Connected.  
备注  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN2027-Q1  
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
12.2 Layout Example  
VDD  
RXD  
RXD  
EN  
1
2
NC  
8
U1  
VDD  
VSUP  
EN  
7
R2  
VSUP  
C3  
GND  
D1  
LIN  
Only needed for  
the commander node  
3
5
NC  
6
LIN  
GND  
GND  
GND  
TXD  
TXD  
GND 5  
R6  
GND  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
LIN Standards:  
ISO/DIS 17987-1: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and  
use case definition  
ISO/DIS 17987-4: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer  
(EPL) specification 12V/24V  
SAEJ2602-1: LIN Network for Vehicle Applications  
LIN Specifications LIN 2.0, LIN 2.1, LIN 2.2 and LIN 2.2A  
EMC requirements:  
SAEJ2962-1: Communication Transceivers Qualification Requirements - LIN  
ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1:  
Definitions and general considerations  
ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz -  
Part 4: Direct RF power injection method  
IEC 61000-4-2  
IEC 61967-4  
CISPR25  
Conformance Test requirements:  
ISO/DIS 17987-7.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer  
(EPL) conformance test specification  
SAEJ2602-2: LIN Network for Vehicle Applications Conformance Test  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN2027-Q1  
 
 
 
 
 
 
TLIN2027-Q1  
ZHCSLG5C JULY 2020 REVISED MARCH 2022  
www.ti.com.cn  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLIN2027-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN2027DRBRQ1  
TLIN2027DRQ1  
ACTIVE  
ACTIVE  
SON  
DRB  
D
8
8
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TL027  
TL027  
SOIC  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLIN2027DRBRQ1  
TLIN2027DRQ1  
SON  
DRB  
D
8
8
3000  
2500  
330.0  
330.0  
12.4  
12.4  
3.3  
6.4  
3.3  
5.2  
1.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q1  
SOIC  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLIN2027DRBRQ1  
TLIN2027DRQ1  
SON  
DRB  
D
8
8
3000  
2500  
367.0  
366.0  
367.0  
364.0  
35.0  
50.0  
SOIC  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
0.26  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
C
SYMM  
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
(1.65)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
6X (0.65)  
SYMM  
9
(1.95) (2.4)  
(0.95)  
(R0.05) TYP  
4
5
(Ø 0.2) VIA  
TYP  
(0.575)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225036/A 06/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLIN2027DRBRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | DRB | 8 | -40 to 125
TI

TLIN2027DRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | D | 8 | -40 to 125
TI

TLIN2029A-Q1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029A-Q1_V01

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029ADRBRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029ADRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029AMDRBRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2441-Q1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器
TI

TLIN24413DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN24413DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN24415DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN24415DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI