TLK10031CTR [TI]

单通道 XAUI/10GBASE-KR 收发器 | CTR | 144 | -40 to 85;
TLK10031CTR
型号: TLK10031CTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单通道 XAUI/10GBASE-KR 收发器 | CTR | 144 | -40 to 85

电信 电信集成电路
文件: 总146页 (文件大小:2456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
TLK10031 单通道 XAUI/10GBASE-KR 收发器  
1 器件概述  
1.1 特性  
1
频模式以及 KR 伪随机模式生成和验证、方波生成  
支持数据重定时操作  
两个电源:1V(内核)和 1.5V/1.8V (I/O)  
无需电源排序  
发送去加重功能和接收自适应均衡可允许扩展背板/  
线缆达到高速端和低速端  
单通道多速率收发器  
支持 10GBASE-KRXAUI,和 1GBASE-KX 以太  
网标准  
支持所有数据速率高达 10Gbps 通用公共无线接口  
(CPRI) 和开放基站架构协议 (OBSAI)  
在高速端支持数据速率高达 10.3125Gbps 的多速率  
串行解串器 (SERDES) 运行,在低速端支持的数据  
速率高达 5Gbps  
信号损失 (LOS) 检测  
支持 10G-KR 链路协商、前向纠错、自动协商  
超大数据包支持  
• JTAGIEEE 1149.1 测试接口  
工业标准管理数据输入输出 (MDIO) 控制接口  
• 65nm 高级 CMOS 技术  
工业用环境运行温度(-40°C 85°C)  
功耗:800mW(标称值)  
高速端和低速端上的差分电流模式逻辑 (CML) I/O  
接口  
到背板、无源和有源铜线缆、或者小尺寸可插拔  
(SFP)+ 光模块的接口  
具有多输出时钟选项的可选基准时钟  
支持伪随机二进制序列 (PRBS)、随机测试兼容模板  
(CRPAT)、长连续抖动测试图案 (CJPAT)、高//混  
1.2 应用范围  
10GBASE-KR 兼容背板连接  
私有线缆/背板连接  
10 兆位以太网交换机、路由器、和网络接口卡  
高速点到点传输系统  
1.3 说明  
TLK10031 是一款适用于高速双向点对点数据传输系统的单通道多速率收发器。这个器件支持三个主模式。  
它可被用作一个 XAUI 10GBASE-KR 的收发器、一个通用 8b/10b 多速率 4:12:11:1 串行器/解串行  
器,或者被用在 1G-KX 模式中。  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
TLK10031  
倒装芯片球状引脚栅格阵列 (FCBGA) (144)  
13.00mm x 13.00mm  
(1) 更多信息,请参见12机械封装和可订购信息。  
简化电路原理图  
XAUI  
-
10GBASE KR  
TLK10031  
XGXS  
MDC MDIO  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEL3  
 
 
 
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 1  
1.3 说明 ................................................... 1  
修订历史记录............................................... 2  
说明 ......................................................... 3  
Terminal Configuration and Functions.............. 4  
4.1 Pin Attributes ......................................... 4  
Specifications ............................................ 8  
5.1 Absolute Maximum Ratings .......................... 8  
5.2 ESD Ratings.......................................... 8  
5.3 Recommended Operating Conditions ................ 8  
5.4 Thermal Information .................................. 9  
5.12 Typical Characteristics .............................. 15  
Parametric Measurement Information ............. 16  
Detailed Description ................................... 18  
7.1 Overview ............................................ 18  
7.2 Functional Block Diagrams.......................... 18  
7.3 Feature Description ................................. 20  
7.4 Device Functional Modes ........................... 26  
7.5 Register Maps....................................... 55  
Applications and Implementation ................. 134  
8.1 Application Information ............................ 134  
8.2 Typical Application ................................. 134  
Power Supply Recommendations................. 136  
6
7
2
3
4
5
8
9
10 Layout................................................... 137  
10.1 Layout Guidelines.................................. 137  
10.2 Layout Example.................................... 141  
11 器件和文档支持......................................... 142  
11.1 接收文档更新通.................................. 142  
11.2 社区资源 ........................................... 142  
11.3 商标 ................................................ 142  
11.4 静电放电警告....................................... 142  
11.5 术语.............................................. 142  
12 机械、封装和可订购信.............................. 142  
12.1 封装信息 ........................................... 142  
5.5  
5.6  
5.7  
5.8  
5.9  
Electrical Characteristics: High Speed Side Serial  
Transmitter ......................................... 10  
Electrical Characteristics: High Speed Side Serial  
Receiver ............................................. 11  
Electrical Characteristics: Low Speed Side Serial  
Transmitter .......................................... 12  
Electrical Characteristics: Low Speed Side Serial  
Receiver ............................................. 13  
Electrical Characteristics: LVCMOS (VDDO): ...... 13  
5.10 Electrical Characteristics: Clocks ................... 13  
5.11 Timing Requirements ............................... 14  
2 修订历史记录  
Changes from Revision B (August 2015) to Revision C  
Page  
Changed the Description of bits 12, 8, and 1 in Table 7-13 ................................................................... 57  
Changes from Revision A (August 2015) to Revision B  
Page  
Changed the PD Nominal value From: 1.6 W To: 800 mW in the Recommended Operating Conditions table .......... 8  
Changed the PD Worst case supply voltage value From: 2.3 W To 1.15 W in the Recommended Operating  
Conditions table....................................................................................................................... 8  
Changes from Original (July 2015) to Revision A  
Page  
Changed the TLK10031 Pinout image to include the column numbers ....................................................... 4  
Changed Pin B1 From: 1NINA To: INA1N; Changed Pin E1 From: INA1P To: INA3N in the TLK10031 Pinout image  
4
Added Pin numbers: H3, L6, and M1 To Pin VSS in the Pin Description - Power Pins table .............................. 7  
2
修订历史记录  
版权 © 2015–2017, Texas Instruments Incorporated  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
3 说明  
运行在 10GBASE-KR 模式时,TLK10031 将对出现在其低速 (LS) 端数据输入上的 8B/10B 已编码 XAUI 数  
据流进行串行化。经串行化的 8B/10B 已编码数据以 64B/66B 编码格式出现在高速 (HS) 端输出上。同  
样,TLK10031 对出现在其高速端数据输入上的 64B/66B 已编码数据流进行解串化操作。反序列化的  
64B/66B 数据在低速侧输出端以 XAUI 8B/10B 格式呈现。此模式下支持链路训练以及针对扩展长度 应用的  
前向纠错 (FEC)。  
运行在通用 SERDES 模式时,TLK10031 将对出现在其低速 (LS) 端数据输入上的 8B/10B 已编码数据流进  
2:1 4:1 串行化。经串化的 8B/10B 已编码数据出现在高速 (HS) 端输出上。同样,TLK10031 对出现  
在其高速端数据输入上的 8B/10B 已编码数据流进行 1:2 1:4 解串化操作。经解串化的 8B/10B 编码数据  
出现在低速端输出上。根据串化/解串化比率,低速端数据传输速率范围介于 0.5Gbps 5Gbps 之间,而高  
速端数据传输速率介于 1Gbps 10Gbps 之间。还支持 1:1 重定时模式,但是速率限制在 1Gbps 至  
5Gbps。  
TLK10031 还支持具有 PCS (CTC) 功能的 1G-KX (1.25Gbps) 模式。通过软件服务开通或者自动协商可启  
用这个模式。如果使用了软件服务开通,那么支持的数据传输速率可高达 3.125Gbps。  
TLK10031 采用了 内置的交叉点开关,此开关可实现冗余输出和简便的数据重路由。每个输出端口(高速或  
低速)能够被配置成输出来自任一器件输入端口的数据。此切换可通过一个硬件引脚或软件控制来启动,并  
可被配置成立即切换,或配置成在当前数据包的末尾后出现。这可在不破坏数据包的情况下实现数据源之间  
的切换。  
低速端和高速端数据输入和输出是具有集成端接电阻器的差分电流模式逻辑 (CML) 类型。  
TLK10031 提供了灵活的计时机制以支持不同操作。这些机制包括对使用一个从高速端恢复的外部抖动清除  
时钟进行计时的支持。此器件还能够在 10GBASE-KR 1GBASE-KX 模式下执行时钟容限补偿 (CTC),从  
而实现异步计时。  
TLK10031 提供了低速端和高速端回路模式以用于自检和系统诊断用途。  
TLK10031 具有内置模式生成器和验证器,这有助于进行系统测试。此器件支持不同 PRBS,高//混合频  
率,CRPAT /短,CJPAT,和 KR 伪随机测试模式的生成和验证以及方波生成。低速端和高速端上支持的  
模式类型取决于所选择的操作模式。  
TLK10031 在高速端和低速端都具有一个集成信号损失 (LOS) 检测功能。当输入差分电压摆幅低于 LOS 有  
效阈值时,LOS 被置为有效。  
TLK10031 的低速端非常适合与现场可编程栅极阵列 (FPGA)、特定用途集成电路 (ASIC)、媒体访问控制器  
(MAC) 或能够处理较低速率串行数据流的网络处理器对接。高速端非常适合通过光纤、电缆、或者背板接口  
与远程系统对接。该器件支持 SFP SFP+ 光纤模块以及 10GBASE-KR 兼容背板系统。  
Copyright © 2015–2017, Texas Instruments Incorporated  
说明  
3
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
4 Terminal Configuration and Functions  
A 13-mm x 13-mm, 144-pin PBGA package with a ball pitch of 1 mm is used.  
TLK10031 Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
INA1P  
VSS  
INA0N  
INA0P  
VSS  
OUTA0P  
OUTA0N  
PDTRXA_N  
RSV0  
RSV1  
VSS  
HSRXAN  
INA2P  
INA2N  
VSS  
INIA1N  
VSS  
VSS  
OUTA2P  
AMUX1  
VSS  
OUTA1P  
OUTA2N  
VSS  
OUTA1N  
VSS  
VSS  
VDDO0  
VPP  
TMS  
TDI  
PRBSEN  
CLKOUTAP  
LS_OK_OUT_A  
LOSA  
LS_OK_IN_A  
CLKOUTAN  
VSS  
VSS  
HSRXAP  
VSS  
VDDRA_LS  
VSS  
AMUX0  
VSS  
INA3P  
INA3N  
TDO  
TCK  
HSTXAP  
VDDA_LS  
VSS  
OUTA3N  
TRST_N  
VDDD  
DVDD  
VDDD  
PRTAD0  
VDDRA_HS  
VDDA_HS  
VSS  
HSTXAN  
VSS  
F
OUTA3P  
VSS  
VDDT_LS  
VDDT_LS  
VSS  
VSS  
VSS  
VDDD  
DVDD  
VDDD  
DVDD  
VSS  
VSS  
VDDT_HS  
PRTAD1  
RSV3  
VSS  
VDDA_LS  
VSS  
VSS  
VSS  
G
H
DVDD  
VDDD  
MDC  
VDDA_HS  
MODE_SEL  
RSV2  
RSV4  
VDDA_LS  
VSS  
RESE_TN  
DVDD  
VSS  
VSS  
VSS  
J
K
VSS  
VSS  
VSS  
VSS  
VDDA_LS  
VSS  
GPI1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
PRTAD3  
VSS  
MDIO  
VDDO1  
VSS  
PRBS_PASS  
REFCLK1P  
PRTAD2  
ST  
GPI0  
VDDRA_HS  
VSS  
VSS  
RSV6  
RSV7  
VSS  
VDDRA_LS  
VSS  
REFCLK1N  
TESTEN  
RSV5  
GPI2  
L
VSS  
VSS  
VSS  
M
VSS  
VSS  
VSS  
VSS  
PRTAD4  
REFCLK0P  
REFCLK0N  
4.1 Pin Attributes  
Table 4-1. Pin Description - Signal Pins  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
High Speed Transmit Output. HSTXAP and HSTXAN comprise the high speed side  
transmit direction differential serial output signal. During device reset (RESET_N asserted  
low) these pins are driven differential zero. These CML outputs must be AC coupled.  
HSTXAP  
HSTXAN  
D12  
E12  
Output  
CML VDDA_HS  
High Speed Receive Input. HSRXAP and HSRXAN comprise the high speed side  
receive direction differential serial input signal. These CML input signals must be AC  
coupled.  
HSRXAP  
HSRXAN  
B12  
A12  
Input  
CML VDDA_HS  
D1/E1  
B2/C2  
A1/B1  
A4/A3  
Input  
CML VDDA_LS  
Low Speed Inputs. INAP and INAN comprise the low speed side transmit direction  
differential input signals. These signals must be AC coupled.  
INA[3:0]P/N  
F3/E3  
C4/C5  
B5/B6  
A6/A7  
Low Speed Outputs. OUTAP and OUTAN comprise the low speed side receive direction  
differential output signals. During device reset (RESET_N asserted low) these pins are  
driven differential zero. These signals must be AC coupled.  
Output  
CML VDDA_LS  
OUTA[3:0]P/N  
Receive Loss Of Signal (LOS) Indicator.  
LOS = 0: Signal detected.  
LOS = 1: Loss of signal.  
Loss of signal detection is based on the input signal level. When HSRXAP/N has a  
differential input signal swing of 75 mVpp, LOSA is asserted (if enabled). If the input  
signal is greater than 150 mVpp, LOSA is deasserted. Outside of these ranges, the LOS  
indication is undefined.  
Output LVCMOS  
1.5V/1.8V  
VDDO0  
40Ω Driver  
LOSA  
E9  
Other functions can be observed on LOSA real-time, configured via MDIO  
During device reset (RESET_N asserted low) this pin is driven low. During pin based  
power down (PDTRXA_N asserted low), this pin is floating. During register based power  
down, this pin is floating.  
It is highly recommended that LOSA be brought to an easily accessible point on the  
application board (header) in the event that debug is required.  
Receive Lane Alignment Status Indicator.  
Input LVCMOS  
1.5V/1.8V  
Lane alignment status signal received from a Lane Alignment Slave on the link partner  
device. Valid in 10G General Purpose Serdes Mode.  
LS_OK_IN_A = 0: Link partner receive lanes not aligned.  
LS_OK_IN_A = 1: Link partner receive lanes aligned  
LS_OK_IN_A  
B10  
D9  
VDDO0  
Transmit Lane Alignment Status Indicator.  
Lane alignment status signal sent to a Lane Alignment Master on the link partner device.  
Valid in 10G General Purpose Serdes Mode.  
LS_OK_OUT_A = 0: Link partner transmit lanes not aligned.  
LS_OK_OUT_A = 1: Link partner transmit lanes aligned.  
Output LVCMOS  
1.5V/1.8V  
VDDO  
40Ω Driver  
LS_OK_OUT_A  
4
Terminal Configuration and Functions  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Table 4-1. Pin Description - Signal Pins (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
PDTRXA_N  
NO.  
Transceiver Power Down.  
Input LVCMOS  
1.5V/1.8V VDDO0  
When this pin is held low (asserted), the channel is placed in power down mode. When  
deasserted, the channel operates normally. After deassertion, a software data path reset  
should be issued through the MDIO interface.  
A8  
RESERVED PINS  
RSV[7:0]  
L12, K12,  
K8, H12,  
H9, G12,  
A10, A9  
Reserved.  
It should be left unconnected in the device application.  
REFERENCE CLOCKS, OUTPUT CLOCKS, AND CONTROL AND MONITORING SIGNALS  
Reference Clock Input Zero. This differential input is a clock signal used as a reference  
Input  
LVDS/ LVPECL  
DVDD  
M10  
M11  
to channel A. The reference clock selection is done through MDIO. This input signal must  
be AC coupled. If unused, REFCLK0P/N should be pulled down to GND through a shared  
100 Ω resistor.  
REFCLK0P/N  
REFCLK1P/N  
Reference Clock Input One. This differential input is a clock signal used as a reference  
to channel A. The reference clock selection is done through MDIO. This input signal must  
be AC coupled. If unused, REFCLK1P/N should be pulled down to GND through a shared  
100 Ω resistor.  
Input  
LVDS/ LVPECL  
DVDD  
K9  
K10  
Channel Output Clock. By default, this outputs is enabled, and outputs the high speed  
side recovered byte clock (high speed line rate divided by 16 or 20). Optionally, they can  
be configured to output the VCO clock divided by 2. (Note: for full rates, VCO/2 pre-  
divided clocks will be equivalent to the line rate divided by 8; for sub-rates, VCO/2 pre-  
divided clocks will be equivalent to the line rate divided by 4).  
Output  
CML  
DVDD  
C9  
C10  
CLKOUTAP/N  
These CML outputs must be AC coupled.  
During device reset (RESET_N asserted low), pin-based power down (PDTRXA_N  
asserted low), or register-based power down, these pins are floating.  
Enable PRBS: When this pin is asserted high, the internal PRBS generator and verifier  
circuits are enabled on both transmit and receive data paths on high speed and low speed  
sides.  
Input  
LVCMOS 1.5V/1.8V  
VDDO0  
PRBSEN  
B9  
The PRBS 27-1 pattern is selected by default, and can be changed through MDIO.  
Receive PRBS Error Free (Pass) Indicator.  
When PRBS test is enabled (PRBSEN=1):  
PRBS_PASS = 1 indicates that PRBS pattern reception is error free.  
PRBS_PASS = 0 indicates that a PRBS error is detected. The high speed or low speed  
side, and lane (for low speed side) that this signal refers to is chosen through MDIO.  
Output  
LVCMOS 1.5V/1.8V  
VDDO1  
PRBS_PASS  
J9  
During device reset (RESET_N asserted low) this pin is driven high.  
During pin based power down (PDTRXA_N asserted low), this pin is floating.  
During register based power down, this pin is floating.  
40Ω Driver  
It is highly recommended that PRBS_PASS be brought to easily accessible point on the  
application board (header), in the event that debug is required.  
MDIO Select. Used to select Clause 22 (=1) or Clause 45 (=0) operation. Note that  
selecting clause 22 will impact mode availability. See MODE_SEL.  
Input  
ST  
M9  
LVCMOS 1.5V/1.8V  
VDDO[1:0]  
A hard or soft reset must be applied after a change of state occurs on this input signal.  
Input LVCMOS  
1.5V/1.8V VDDO[1:0]  
Device Operating Mode Select.  
Used together with ST pin to select device operating mode. See Table 7-2 for details.  
MODE_SEL  
H10  
MDIO Port Address. Used to select the MDIO port address.  
PRTAD[4:1] selects the MDIO port address. The TLK10031 has one MDIO port  
addresses. Selecting a unique PRTAD[4:1] per TLK10031 device allows 16 TLK10031  
devices per MDIO bus.  
M8  
J6  
L9  
G9  
E10  
Input LVCMOS  
1.5V/1.8V VDDO[1:0]  
PRTAD[4:0]  
The TLK10031 responds if the 4 MSB’s of the port address field on MDIO protocol  
(PA[4:1]) matches PRTAD[4:1], and PA[0] = 0.  
PRTAD0 is not needed for port addressing, but can be used as a general purpose input  
pin to control the switching function or the stopwatch latency measurement. If these  
functions are not needed, PRTAD0 should be grounded on the application board.  
Input LVCMOS  
1.5V/1.8V VDDO01  
Low True Device Reset. RESET_N must be held asserted (low logic level) for at least 10  
µs after device power stabilization.  
RESET_N  
MDC  
H5  
J8  
Input LVCMOS  
with Hysteresis  
1.5V/1.8V VDDO1  
MDIO Clock Input. Clock input for the MDIO interface.  
Note that an external pullup is generally not required on MDC except if driven by an open-  
drain/open-collector clock source.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 4-1. Pin Description - Signal Pins (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
MDIO Data I/O. MDIO interface data input/output signal for the MDIO interface. This  
signal must be externally pulled up to VDDO using a 2-kΩ resistor.  
During device reset (RESET_N asserted low) this pin is floating. During software initiated  
power down the management interface remains active for control register writes and  
reads. Certain status bits will not be deterministic as their generating clock source may be  
disabled as a result of asserting either power down input signal. During pin based power  
down (PDTRXA_N asserted low), this pin is floating. During register based power down,  
this pin is driven normally.  
Input/ Output  
LVCMOS 1.5V/1.8V  
VDDO1 25Ω Driver  
MDIO  
J7  
JTAG Input Data. TDI is used to serially shift test data and test instructions into the  
device during the operation of the test port. In system applications where JTAG is not  
implemented, this input signal may be left floating.  
During pin based power down (PDTRXA_N asserted low), this pin is not pulled up. During  
register based power down, this pin is pulled up normally.  
Input LVCMOS  
1.5V/1.8V VDDO0  
(Internal Pullup)  
TDI  
C8  
D6  
JTAG Output Data. TDO is used to serially shift test data and test instructions out of the  
device during operation of the test port. When the JTAG port is not in use, TDO is in a  
high impedance state.  
During device reset (RESET_N asserted low) this pin is floating. During pin based power  
down (PDTRXA_N asserted low), this pin is not pulled up. During register based power  
down, this pin is pulled up normally.  
Output LVCMOS  
1.5V/1.8V VDDO0  
50Ω Driver  
TDO  
JTAG Mode Select. TMS is used to control the state of the internal test-port controller. In  
system applications where JTAG is not implemented, this input signal can be left  
unconnected.  
During pin based power down (PDTRXA_N asserted low), this pin is not pulled up. During  
register based power down, this pin is pulled up normally.  
Input LVCMOS  
1.5V/1.8V VDDO0  
(Internal Pullup)  
TMS  
TCK  
B8  
D8  
Input LVCMOS  
with Hysteresis  
1.5V/1.8V VDDO0  
JTAG Clock. TCK is used to clock state information and test data into and out of the  
device during boundary scan operation. In system applications where JTAG is not  
implemented, this input signal should be grounded.  
JTAG Test Reset. TRST_N is used to reset the JTAG logic into system operational  
mode. This input can be left unconnected in the application and is pulled down internally,  
disabling the JTAG circuitry. If JTAG is implemented on the application board, this signal  
should be deasserted (high) during JTAG system testing, and otherwise asserted (low)  
during normal operation mode.  
Input LVCMOS  
1.5V/1.8V VDDO0  
(Internal Pulldown)  
TRST_N  
TESTEN  
E5  
During pin based power down (PDTRXA_N asserted low), this pin is not pulled up. During  
register based power down, this pin is pulled up normally.  
Test Enable. This signal is used during the device manufacturing process. It should be  
grounded through a resistor in the device application board. The application board should  
allow the flexibility of easily reworking this signal to a high level if device debug is  
necessary (by including an uninstalled resistor to VDDO).  
Input LVCMOS  
1.5V/1.8V VDDO1  
L10  
L8, J4,  
J10  
Input LVCMOS  
1.5V/1.8V VDDO1  
General Purpose Input. his signal is used during the device manufacturing process. It  
should be grounded through a resistor on the device application board.  
GPI0  
SERDES Analog Testability I/O. This signal is used during the device manufacturing  
process. It should be left unconnected in the device application.  
AMUX0  
AMUX1  
C11  
D4  
Analog I/O  
Analog I/O  
SERDES Analog Testability I/O. This signal is used during the device manufacturing  
process. It should be left unconnected in the device application.  
6
Terminal Configuration and Functions  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Table 4-2. Pin Description - Power Pins  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
SERDES Analog Power.  
D2, F2, G2, J2, G10,  
F11  
Input  
Power  
VDDA_LS and VDDA_HS provide supply voltage for the analog circuits on the low-speed  
and high-speed sides respectively. 1.0V nominal. Can be tied together on the application  
board.  
VDDA_LS/HS  
SERDES Analog Power.  
Input  
Power  
VDDT_LS and VDDT_HS provide termination and supply voltage for the analog circuits on  
the low-speed and high-speed sides respectively. 1.0V nominal. Can be tied together on  
the application board.  
VDDT_LS/HS  
F4, G4, F9  
Input  
Power  
SERDES Digital Power.  
VDDD provides supply voltage for the digital circuits internal to the SERDES. 1 V nominal.  
VDDD  
DVDD  
E6, F6, H6, E8, H8  
G6, E7, F7, H7, G8  
Input  
Power  
Digital Core Power.  
DVDD provides supply voltage to the digital core. 1 V nominal.  
SERDES Analog Regulator Power.  
VDDRA_LS and VDDRA_HS provide supply voltage for the internal PLL regulator for low  
speed and high speed sides respectively. 1.5 V or 1.8 V nominal.  
C3, K3, J11  
E11  
Input  
Power  
VDDRA_LS/HS  
VDDO[1:0]  
VPP  
LVCMOS I/O Power.  
K7  
C7  
Input  
Power  
VDDO0 and VDDO1 provide supply voltage for the LVCMOS inputs and outputs. 1.5 V or  
1.8 V nominal. Can be tied together on the application board.  
Factory Program Voltage.  
Used during device manufacturing. The application must connect this power supply directly  
to DVDD.  
Input  
Power  
D7  
A2, A5, A11,  
B3, B4, B7, B11,  
C1, C6, C12,  
D3, D5, D10, D11,  
E2, E4,  
F1, F5, F8, F10, F12,  
G1, G3, G5, G7, G11,  
H1, H2, H4, H3, H11,  
J1, J3, J5, J12,  
Ground.  
VSS  
Ground  
Common analog and digital ground.  
K1, K2, K4, K5, K6, K11,  
L1, L2, L3, L4, L5, L6,  
L7, L11,  
M1, M2, M3, M4, M5,  
M6, M7, M12  
Copyright © 2015–2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
1.4  
2.2  
DVDD, VDD_LS/HS, VDDT_LS/HS, VPP, VDDD  
V
V
Supply voltage  
VDDR_LS/HS, VDDO[1:0]  
Input Voltage, VI  
LVCMOS, CML, Analog  
Supply + 0.3  
V
Operating Junction Temperature  
105  
85  
°C  
°C  
°C  
Characterized free-air operating temperature range  
Storage temperature, Tstg  
–40  
-65  
150  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to ground (VSS).  
5.2 ESD Ratings  
VALUE  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
±1000  
V
V(ESD)  
Electrostatic discharge  
Charged Device Model (CDM),  
per JESD22-C101(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Digital / analog supply  
voltages  
VDDD, VDD_LS/HS, DVDD,  
0.95  
1.00  
1.05  
V
V
VDDT_LS/HS, VPP  
VDDR_LS/HS  
1.5V Nominal  
1.425  
1.71  
1.5  
1.8  
1.5  
1.8  
1.575  
1.89  
1.575  
1.89  
650  
650  
700  
600  
70  
SERDES PLL regulator  
voltage  
1.8V Nominal  
1.5V Nominal  
1.8V Nominal  
10.3 Gbps  
1.425  
1.71  
LVCMOS I/O supply voltage  
VDDO[1:0]  
V
VDDD  
VDDA_LS/HS  
DVDD + VPP  
VDDT_LS/HS  
VDDRA_LS  
VDDRA_HS  
VDDO[1:0]  
IDD  
Supply current  
mA  
70  
10  
Nominal  
800  
mW  
W
Worst case supply voltage,  
temperature, and process.  
10GBASE-KR, channel active,  
default swing and Clkout settings  
PD  
Power dissipation  
Shutdown current  
1.15  
VDDD  
300  
85  
250  
65  
7
VDDA  
DVDD + VPP  
VDDT  
ISD  
PDTRXA_N Asserted  
12kHz to 20MHz  
mA  
ps  
VDDRA_HS/LS  
VDDO  
5
JR  
REFCLK0P/N, REFCLK1P/N Random Jitter  
1
8
Specifications  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
5.4 Thermal Information  
NAME  
RθJA  
ωJT  
DESCRIPTION  
VALUE  
25.5  
UNIT  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
°C/W  
1.8  
ωJB  
13.7  
Custom Typical Application Board(1)  
RθJA  
ωJT  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
24.5  
0.9  
11  
°C/W  
ωJB  
(1) Custom Typical Application Board Characteristics:  
10x15 inches  
12 layer  
8 power/ground layers – 95% copper (1oz)  
4 signal layers – 20% copper (1oz)  
SPACER  
ΨJB = (TJ – TB)/(Total Device Power Dissipation)  
ΨJB = (TJ TJ = Device Junction Temperature  
ΨJB = (TJ TB = Temperature of PCB 1 mm from device edge.  
SPACER  
ΨJT = (TJ – TC)/(Total Device Power Dissipation)  
ΨJB = (TJ TJ = Device Junction Temperature  
ΨJB = (TJ TC = Hottest temperature on the case of the package.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
5.5 Electrical Characteristics: High Speed Side Serial Transmitter  
PARAMETER  
TEST CONDITIONS  
SWING = 0000  
MIN  
50  
NOM  
130  
MAX  
UNIT  
220  
320  
SWING = 0001  
SWING = 0010  
SWING = 0011  
SWING = 0100  
SWING = 0101  
SWING = 0110  
SWING = 0111  
SWING = 1000  
SWING = 1001  
SWING = 1010  
SWING = 1011  
SWING = 1100  
SWING = 1101  
SWING = 1110  
SWING = 1111  
Transmitter disabled  
110  
180  
250  
320  
390  
460  
530  
590  
660  
740  
820  
890  
970  
1060  
1090  
220  
300  
430  
390  
540  
480  
650  
570  
770  
660  
880  
750  
1000  
1100  
1220  
1320  
1430  
1520  
1610  
1680  
1740  
30  
TX Output differential peak-to-peak  
voltage swing, transmitter enabled  
VOD(p-p)  
830  
mVpp  
930  
1020  
1110  
1180  
1270  
1340  
1400  
See register bits TWPOST1,  
TWPOST2, and TWPRE for de-  
emphasis settings.  
TX Output pre/post cursor  
emphasis voltage  
–17.5/  
–37.5%  
+17.5/  
+37.5%  
Vpre/post  
See Figure 6-2  
100-Ω differential termination. DC-  
coupled.  
VDDT - 0.25 *  
VOD(p-p)  
VCMT  
tskew  
Tr, Tf  
TX Output common mode voltage  
Intra-pair output skew  
mV  
UI  
Serial Rate = 9.8304 Gbps  
0.045  
Differential output signal rise, fall  
time (20% to 80%),  
24  
ps  
Differential Load = 100Ω  
Serial output total jitter (CPRI  
LV/LV-II/LV-III, OBSAI and  
10GBASE-KR Rates)  
Serial Rate 3.072Gbps  
Serial Rate > 3.072Gbps  
Serial Rate 3.072Gbps  
Serial Rate > 3.072Gbps  
0.35  
0.28  
0.17  
0.15  
JT1  
UIpp  
UIpp  
UIpp  
Serial output deterministic jitter  
(CPRI LV/LV-II/LV-III, OBSAI and  
10GBASE-KR Rates)  
JD1  
Serial output random jitter (CPRI  
LV/LV-II/LV-III, OBSAI and  
10GBASE-KR Rates)  
JR1  
Serial Rate > 3.072Gbps  
Serial Rate = 1.2288Gbps  
0.15  
Serial output total jitter (CPRI  
E.12.HV)  
JT2  
JD2  
0.279  
UIpp  
Serial output deterministic jitter  
(CPRI E.12.HV)  
0.14  
9
50 MHz < f < 2.5 GHz  
2.5 GHz < f < 7.5 GHz  
50 MHz < f < 2.5 GHz  
2.5 GHz < f < 7.5 GHz  
10GBASE-KR mode  
1GBASE-KX mode  
dB  
dB  
dB  
dB  
SDD22  
SCC22  
Differential output return loss  
(1)  
See  
6
Common-mode output return loss  
(2)  
See  
see Figure 7-6  
see Figure 7-9  
see Figure 7-13  
T(LATENCY) Transmit path latency  
General Purpose mode  
(1) Differential input return loss, SDD22 = 9 – 12 log10(f / 2500MHz)) dB  
(2) Common-mode output return loss, SDD22 = 6 – 12 log10(f / 2500MHz)) dB  
10  
Specifications  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
5.6 Electrical Characteristics: High Speed Side Serial Receiver  
PARAMETER  
TEST CONDITIONS  
Full Rate, AC Coupled  
MIN NOM  
MAX UNIT  
50  
50  
600  
mV  
800  
VID  
RX Input differential voltage, |RXP – RXN|  
Half/Quarter/Eighth Rate, AC Coupled  
Full Rate, AC Coupled  
100  
100  
1200  
mVpp  
1600  
RX Input differential peak-to-peak voltage  
swing, 2×|RXP – RXN|  
VID(pp)  
CI  
Half/Quarter/Eighth Rate, AC Coupled  
RX Input capacitance  
2
0.115  
0.130  
0.035  
5.2  
pF  
Applied sinusoidal jitter  
Applied random jitter  
10GBASE-KR Jitter tolerance, test channel  
with mTC =1 (see Figure 5-1 for attenuation  
curve), PRBS31 test pattern at 10.3125  
Gbps  
JTOL  
UIpp  
Applied duty cycle distortion  
Broadband noise amplitude (RMS)  
50 MHz < f < 2.5 GHz  
9
(1)  
SDD11  
tskew  
Differential input return loss  
Intra-pair input skew  
dB  
UI  
2.5 GHz < f < 7.5 GHz  
See  
0.23  
10GBASE-KR mode  
1GBASE-KX mode  
General Purpose mode  
see Figure 7-6  
see Figure 7-9  
see Figure 7-13  
t(LATENCY) Receive path latency  
(1) Differential input return loss, SDD11 = 9 – 12 log10(f / 2.5GHz)) dB  
Copyright © 2015–2017, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
5.7 Electrical Characteristics: Low Speed Side Serial Transmitter  
PARAMETER  
TEST CONDITIONS  
SWING = 000  
MIN  
110  
280  
420  
560  
690  
760  
800  
830  
NOM  
190  
MAX UNIT  
280  
490  
700  
SWING = 001  
SWING = 010  
SWING = 011  
SWING = 100  
SWING = 101  
SWING = 110  
SWING = 111  
DE = 0000  
DE = 0001  
DE = 0010  
DE = 0011  
DE = 0100  
DE = 0101  
DE = 0110  
DE = 0111  
DE = 1000  
DE = 1001  
DE = 1010  
DE = 1011  
DE = 1100  
DE = 1101  
DE = 1110  
DE = 1111  
380  
560  
710  
870  
mVpp  
1020  
Transmitter output differential peak-to-peak  
voltage swing  
VOD(pp)  
850  
950  
1150  
1230  
1270  
1010  
1050  
0
0.42  
0.87  
1.34  
1.83  
2.36  
2.92  
3.52  
4.16  
4.86  
5.61  
6.44  
7.35  
8.38  
9.54  
10.87  
Transmitter output de-emphasis voltage  
swing reduction  
DE  
dB  
100-Ω differential termination. DC-  
coupled.  
VDDT - 0.5 *  
VOD(p-p)  
VCMT  
tskew  
tR, tF  
Transmitter output common mode voltage  
Intra-pair output skew  
mV  
0.045  
UI  
ps  
Differential output signal rise, fall time (20%  
to 80%) Differential Load = 100Ω  
30  
JT  
Serial output total jitter  
0.35  
0.17  
50  
UI  
UI  
ps  
JD  
Serial output deterministic jitter  
Lane-to-lane output skew  
tskew  
12  
Specifications  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
5.8 Electrical Characteristics: Low Speed Side Serial Receiver  
PARAMETER  
TEST CONDITIONS  
Full Rate, AC Coupled  
MIN NOM  
MAX UNIT  
50  
50  
600  
mV  
800  
VID  
Receiver input differential voltage, |INP – INN|  
Half/Quarter Rate, AC Coupled  
Full Rate, AC Coupled  
100  
100  
1200  
Receiver input differential peak-to-peak voltage swing  
2×|INP – INN|  
VID(pp)  
CI  
mVdfpp  
1600  
Half/Quarter Rate, AC Coupled  
Receiver input capacitance  
2
0.66  
0.65  
0.50  
0.35  
0.23  
30  
pF  
Zero crossing, Half/Quarter Rate  
Zero crossing, Full Rate  
Jitter tolerance, total jitter at serial input (DJ + RJ)  
JTOL  
UIp-p  
(BER 10-15  
)
Zero crossing, Half/Quarter Rate  
Zero crossing, Full Rate  
JDR  
Serial input deterministic jitter (BER 10-15  
)
UIp-p  
tskew  
Intra-pair input skew  
UI  
UI  
tlane-skew  
Lane-to-lane input skew  
5.9 Electrical Characteristics: LVCMOS (VDDO):  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
VDDO –  
MAX UNIT  
IOH = 2 mA, Driver Enabled (1.8V)  
VDDO  
V
0.45  
VOH  
High-level output voltage  
0.75 ×  
VDDO  
IOH = 2 mA, Driver Enabled (1.5V)  
IOL = –2 mA, Driver Enabled (1.8V)  
IOL = –2 mA, Driver Enabled (1.5V)  
VDDO  
0
0.45  
VOL  
Low-level output voltage  
V
V
0.25 ×  
VDDO  
0
0.65 ×  
VDDO  
VDDO +  
0.3  
VIH  
High-level input voltage  
Low-level input voltage  
0.35 ×  
VDDO  
VIL  
–0.3  
V
IIH, IIL  
Receiver only  
Driver only  
Low/High Input Current  
Driver Disabled  
±170  
±25  
µA  
IOZ  
µA  
pF  
Driver disabled With Pull Up/Down  
Enabled  
Driver/Receiver With Pullup/Pulldown  
Input capacitance  
±195  
3
CIN  
5.10 Electrical Characteristics: Clocks  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Reference Clock (REFCLK0P/N, REFCLK1P/N)  
F
Frequency  
122.88  
–100  
–200  
45%  
425 MHz  
Relative to Nominal HS Serial Data Rate  
Relative to Incoming HS Serial Data Rate  
High Time  
100  
ppm  
200  
FHSoffset Accuracy  
DC  
VID  
Duty cycle  
50%  
100  
55%  
Differential input voltage  
Input capacitance  
Differential input impedance  
Rise/fall time  
250  
2000 mVpp  
CIN  
RIN  
tRISE  
1
pF  
Ω
10% to 90%  
Peak to peak  
50  
350  
ps  
Differential Output Clock (CLKOUTA/N)  
F
Output frequency  
0
500 MHz  
VOD  
Differential output voltage  
1000  
2000 mVdfpp  
10% to 90%, 2pF lumped capacitive load, AC-  
Coupled  
tRISE  
Output rise time  
350  
ps  
RTERM  
Output termination  
CLKOUTAP/N × P/N to DVDD  
50  
Ω
Copyright © 2015–2017, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
5.11 Timing Requirements  
over recommended operating conditions (unless otherwise noted)  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
MDIO  
tperiod  
tsetup  
thold  
MDC period  
100  
10  
10  
0
ns  
ns  
ns  
MDIO setup to MDC  
MDIO hold to MDC  
MDIO valid from MDC ↑  
See Figure 6-3  
tvalid  
40  
10  
ns  
JTAG  
tperiod  
tsetup  
thold  
TCK period  
66.67  
ns  
ns  
ns  
ns  
TDI/TMS/TRST_N setup to TCK  
TDI/TMS/TRST_N hold from TCK  
TDO delay from TCK Falling  
3
5
0
See Figure 6-4  
tvalid  
14  
Specifications  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
5.12 Typical Characteristics  
40  
35  
30  
25  
20  
15  
10  
5
0
1000  
2000  
3000  
4000  
5000  
6000  
Frequency (MHz)  
G001  
Time 20 ps/div  
Figure 5-1. 10GBASE-KR Fitted Channel Attenuation Limit  
Figure 5-2. Eye Diagram of the TLK10031 at 10.3125 Gbps Under  
Nominal Conditions  
Copyright © 2015–2017, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6 Parametric Measurement Information  
0.5 * VDE  
VOD(pp)  
*
0.5 *  
VCMT  
VOD(pp)  
0.25 * VDE * VOD(pp)  
0.25 * VOD(pp)  
tr , tf  
bit  
time  
Figure 6-1. Transmit Output Waveform Parameter Definitions  
+V 0/0  
+Vpst  
+Vpre  
+Vss  
0
-Vss  
-Vpre  
-Vpst  
-V0/0  
UI  
h-1 = TWPRE (0%  
h1 = TWPOST1 (0%  
h0 = 1 - |h1| - |h-1  
V0 /0 = Output Amplitude with TWPRE = 0%, TWPOST = 0%.  
Vss = Steady State Output Voltage = V0/0 * | h1 + h0 + h- 1  
Vpre = PreCursor Output Voltage = V0 /0 * | -h1 h0 + h-1  
Vpst = PostCursor Output Voltage = V0/0 * | -h1 + h0 + h- 1  
-17 .5% for typical application) setting  
-37.5% for typical application) setting  
|
|
|
|
Figure 6-2. Pre/Post Cursor Swing Definitions  
MDC  
tPERIOD  
tSETUP  
tHOLD  
MDIO  
Figure 6-3. MDIO Read/Write Timing  
16  
Parametric Measurement Information  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
TCK  
tPERIOD  
tSETUP  
tHOLD  
TDI/TMS/  
TRST_N  
tVALID  
TDO  
Figure 6-4. JTAG Timing  
Copyright © 2015–2017, Texas Instruments Incorporated  
Parametric Measurement Information  
17  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
Various interfaces of the TLK10031 device are shown in Figure 7-1. A simplified block diagram of both the  
transmit and receive data path is shown in Figure 7-2. This low-power transceiver consists of two  
serializer/deserializer (SERDES) blocks, one on the low speed side and the other on the high speed side.  
The core logic block that lies between the two SERDES blocks carries out all the logic functions including  
channel synchronization, lane alignment, 8B/10B and 64B/66B encoding/decoding, as well as test pattern  
generation and verification.  
The TLK10031 provides a management data input/output (MDIO Clause 22/45) interface as well as a  
JTAG interface for device configuration, control, and monitoring. Detailed description of the TLK10031 pin  
functions is provided in Section 4.  
7.2 Functional Block Diagrams  
Lb!0tꢃb  
Iigꢀ  
{peed  
huꢁpuꢁs  
[oꢂ  
{peed  
Lnpuꢁs  
Lb!1tꢃb  
Lb!2tꢃb  
Lb!3tꢃb  
I{Çó!tꢃb  
5!Ç! t!ÇI  
Iigꢀ  
{peed  
Lnpuꢁs  
hÜÇ!0tꢃb  
hÜÇ!1tꢃb  
hÜÇ!2tꢃb  
hÜÇ!3tꢃb  
I{wó!tꢃb  
[oꢂ  
{peed  
huꢁpuꢁs  
w9C/[Y0tꢃb  
w9C/[Y1tꢃb  
w9C/[Y_{9[  
/[h/Y{  
/[YhÜÇ!tꢃb  
[h{!  
twÇ!5ꢄ4:0]  
[{_hY_Lb_!  
a5/  
[{_hY_hÜÇ_!  
a5Lh  
WÇ!D  
a5Lh  
{Ç  
/hbÇwh[,  
{Ç!ÇÜ{, Ç9{Ç  
t5Çwó!_b  
w9{9Ç_b  
ah59_{9[  
Ç5h  
Ç9{Ç9b  
tw.{9b  
Ça{  
Çw{Ç_b  
tw.{_t!{{  
Ç/Y  
Ç5L  
DtL0  
Figure 7-1. TLK10031 Interfaces  
18  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
CHA_LN0_IP  
CHA_LN0_IN  
LS SERDES  
LS SERDES  
CHA_LN1_IP  
CHA_LN1_IN  
CHA_OP  
HS  
SERDES  
CHA_ON  
CHA_LN2_IP  
CHA_LN2_IN  
LS SERDES  
LS SERDES  
CHA_LN3_IP  
CHA_LN3_IN  
CHA_LN0_OP  
CHA_LN0_ON  
LS SERDES  
LS SERDES  
LS SERDES  
LS SERDES  
CHA_LN1_OP  
CHA_LN1_ON  
CHA_IP  
HS  
SERDES  
CHA_IN  
CHA_LN2_OP  
CHA_LN2_ON  
CHA_LN3_OP  
CHA_LN3_ON  
Figure 7-2. A Simplified Block Diagram of the TLK10031 Data Paths  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
19  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 10GBASE-KR Transmit Data Path Overview  
In 10GBASE-KR Mode, the TLK10031 takes in XAUI data on the four low speed input lanes. The serial  
data in each lane is deserialized into 10-bit parallel data, then byte aligned (channel synchronized) based  
on comma detection. The four XAUI lanes are then aligned with one another, and the aligned data is input  
to four 8B/10B decoders. The decoded data is then input to the transmit clock tolerance compensation  
(CTC) block which compensates for any frequency offsets between the incoming XAUI data and the local  
reference clock. The CTC block then delivers the data to a 64B/66B encoder and a scrambler. The  
resulting scrambled 10GBASE-KR data is then input to a transmit gearbox which in turn delivers it to the  
high speed side SERDES for serialization and output through the HSTXAP/N*P/N pins.  
7.3.2 10GBASE-KR Receive Data Path Overview  
In the receive direction, the TLK10031 takes in 64B/66B-encoded serial 10GBASE-KR data on the  
HSTXAP/N*P/N pins. This data is deserialized by a high speed SERDES, then input to a receive gearbox.  
After the gearbox, the data is aligned to 66-bit frames, descrambled, 64B/66B decoded, and then input to  
the receive CTC block. After CTC, the data is encoded by four 8B/10B encoders, and the resulting four  
10-bit parallel words are serialized by the low speed SERDES blocks. The four serial XAUI output lanes  
are transmitted out the OUTAP/N*P/N pins.  
7.3.3 Channel Synchronization Block  
When parallel data is clocked into a parallel-to-serial converter, the byte boundary that was associated  
with the parallel data is lost in the serialization of the data. When the serial data is received and converted  
to parallel format again, a method is needed to be able to recognize the byte boundary again. Generally,  
this is accomplished through the use of a synchronization pattern. This is a unique pattern of 1’s and 0’s  
that either cannot occur as part of valid data or is a pattern that repeats at defined intervals. 8B/10B  
encoding contains a character called the comma (b’0011111’ or b’1100000’) which is used by the comma  
detect circuit to align the received serial data back to its original byte boundary. The TLK10031 channel  
synchronization block detects the comma pattern found in the K28.5 character, generating a  
synchronization signal aligning the data to their 10-bit boundaries for decoding. It is important to note that  
the comma can be either a (b’0011111’) or the inverse (b’1100000’) depending on the running disparity.  
The TLK10031 decoder will detect both patterns.  
The TLK10031 performs channel synchronization per lane as shown in the flowchart of Figure 7-3.  
20  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
weset | [h{([oss of {ignal)  
[oss hf {ync  
ꢀo /omma  
(9nable !lignment)  
{ync {tatus ꢀot hk  
/omma  
/omma 5etect 1  
(5isable !lignment)  
ꢁ/omma & ꢁLnvalid 5ecode  
Lnvalid 5ecode  
Lnvalid 5ecode  
Lnvalid 5ecode  
/omma  
/omma 5etect 2  
/omma  
ꢁ/omma & ꢁLnvalid 5ecode  
/omma 5etect 3  
/omma  
ꢁ/omma & ꢁLnvalid 5ecode  
ꢀote:  
Lf I{_/I_{òꢀ/_Iò{Ç9w9{L{ꢂ1:0] is equal to 2'b00), macꢃine  
operates as draꢄnꢅ  
!
Lf I{_/I_{òꢀ/_Iò{Ç9w9{L{ꢂ1:0] is equal to 2'b01ꢆ2'b10ꢆ2'b11,  
tꢃen a transition from all {ync !cquired states occurs immediately  
upon detection of 1, 2, or 3 adjacent invalid code ꢄords or  
disparity errors respectivelyꢅ  
{ync !cquired 1  
({ync {tatus hk)  
Lnvalid  
5ecode  
.
{ync !cquired 2  
(good cgs = 0)  
{ync !cquired 2!  
good cgs++  
ꢁLnvalid 5ecode &  
good_cgs ꢁ=3  
ꢁLnvalid  
5ecode  
ꢁinvalid 5ecode &  
Lnvalid  
5ecode  
/
!
good_cgs=3  
Lnvalid 5ecode  
{ync !cquired 3  
(good cgs = 0)  
{ync !cquired 3!  
good cgs++  
ꢁLnvalid  
5ecode  
ꢁLnvalid 5ecode &  
good_cgs ꢁ=3  
ꢁinvalid 5ecode &  
good_cgs=3  
Lnvalid  
5ecode  
.
Lnvalid 5ecode  
{ync !cquired 4  
(good cgs = 0)  
{ync !cquired 4!  
good cgs++  
ꢁLnvalid  
5ecode  
ꢁLnvalid 5ecode &  
good_cgs ꢁ=3  
Lnvalid  
5ecode  
ꢁinvalid 5ecode &  
good_cgs=3  
/
Lnvalid 5ecode  
Figure 7-3. Channel Synchronization Flowchart  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
21  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.3.4 8B/10B Encoder  
Embedded-clock serial interfaces require a method of encoding to ensure sufficient transition density for  
the receiving CDR to acquire and maintain lock. The encoding scheme also maintains the signal DC  
balance by keeping the number of ones and zeros balanced which allows for AC coupled data  
transmission. The TLK10031 uses the 8B/10B encoding algorithm that is used by the 10 Gbps and 1 Gbps  
Ethernet and Fibre Channel standards. This provides good transition density for clock recovery and  
improves error checking.  
The 8B/10B encoder converts each 8-bit wide data to a 10-bit wide encoded data character to improve its  
transition density. This transmission code includes /D/ characters, used for transmitting data, and /K/  
characters, used for transmitting protocol information. Each /K/ or /D/ character code word can also have  
both a positive and a negative disparity version. The disparity of a code word is selected by the encoder to  
balance the running disparity of the serialized data stream.  
7.3.5 8B/10B Decoder  
Once the Channel Synchronization block has identified the byte boundaries from the received serial data  
stream, the 8B/10B decoder converts 10-bit 8B/10B-encoded characters into their respective 8-bit formats.  
When a code word error or running disparity error is detected in the decoded data, the error is reported in  
the status register (1E.000F) and the LOS pin is asserted (depending on the LOS overlay selection).  
7.3.6 64B/66B Encoder/Scrambler  
To facilitate the transmission of data received from the media access control (MAC) layer, the TLK10031  
encodes data received from the MAC using the 64B/66B encoding algorithm defined in the IEEE802.3-  
2008 standard. The TLK10031 takes two consecutive transfers from the XAUI interface and encodes them  
into a 66-bit code word. The information from the two XAUI transfers includes 64 bits of data and 8 bits of  
control information after 8B/10B decoding.  
If the 64B/66B encoder detects an invalid packet format from the XAUI interface, it replaces erroneous  
information with appropriately-encoded error information. The resulting 66-bit code word is then sent on to  
the transmit gearbox.  
The encoding process implemented in the TLK10031 includes two steps:  
1. an encoding step, which converts the 72 bits of data (8 data bytes plus 8 control-code indicators)  
received from the transmit CTC FIFO into a 66-bit code word  
2. a scrambling step, which scrambles 64 bits of encoded data using the scrambler polynomial x58+x39+1.  
The 66 bits created by the encoder consists of 64 bits of data and a 2-bit synchronization field  
consisting of either 01 or 10. Only the 64 bits of data are scrambled, leaving the two synchronization  
bits unmodified. The two synchronization bits allow the receive gearbox to obtain frame alignment and,  
in addition, ensure an edge transition of at least once in 66 bits of data. The encoding process allows a  
limited amount of control information to be sent in-line with the data.  
7.3.7 Forward Error Correction  
Optionally enabled, Forward Error Correction (FEC) follows the IEEE 802.3-2008 standard, and is able to  
correct a burst errors up to 11 bits. In the TX data path, the FEC logic resides between the scrambler and  
gearbox. In the RX datapath, FEC resides between the gearbox and descrambler. Frame alignment is  
handled inside the RX FEC block during FEC operation, and the RX gearbox sync header alignment is  
bypassed. Because latency is increased in both the TX and RX data paths with FEC enabled, it is  
disabled by default and must be enabled through MDIO programming. Note that FEC by nature will add  
latency due to frame storage.  
22  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.3.8 64B/66B Decoder/Descrambler  
The data received from the serial 10GBASE-KR is 64B/66B-encoded data. The TLK10031 decodes the  
data received using the 64B/66B decoding algorithm defined in the IEEE 802.3-2008 standard. The  
TLK10031 creates consecutive 72-bit data words from the encoded 66-bit code words for transfer over the  
XAUI interface to the MAC. The information for the two XAUI transfers includes 64 bits of data and 8 bits  
of control information before 8B/10B encoding.  
Not all 64B/66B block payloads are valid. Invalid block payloads are handled by the 64B/66B decoder  
block and appropriate error handling is provided, as defined in the IEEE 802.3-2008 standard. The  
decoding algorithm includes two steps: a descrambling step which descrambles 64 bits of the 66-bit code  
word with the scrambling polynomial x58+x39+1, and a decoding step which converts the 66 bits of data  
received into 64 bits of data and 8 bits of control information. These words are sent to the receive CTC  
FIFO.  
7.3.9 Transmit Gearbox  
The function of the transmit gearbox is to convert the 66-bit encoded, scrambled data stream into a 16-bit-  
wide data stream to be sent out to the serializer and ultimately to the physical medium attachment (PMA)  
device. The gearbox is needed because while the effective bit rate of the 66-bit data stream is equal to the  
effective bit rate of the 16-bit data, the clock rates of the two buses are of different frequencies.  
7.3.10 Receive Gearbox  
While the transmit gearbox only performs the task of converting 66-bit data to be transported on to the 16-  
bit serializer, the receive gearbox has more to do than just the reverse of this function. The receive  
gearbox must also determine where within the incoming data stream the boundaries of the 66-bit code  
words are.  
The receive gearbox has the responsibility of initially synchronizing the header field of the code words and  
continuously monitoring the ongoing synchronization. After obtaining synchronization to the incoming data  
stream, the gearbox assembles 66-bit code words and presents these to the 64B/66B decoder.  
Note that in FEC mode, the Receive Gearbox blindly converts 16-bit data to 66-bit data and depends on  
the RX FEC logic to frame align the data.  
7.3.11 XAUI Lane Alignment / Code Gen (XAUI PCS)  
The XAUI interface standard is defined to allow for 21 UI of skew between lanes. This block is  
implemented to handle up to 30 UI (XAUI UI) of skew between lanes using /A/ characters. The state  
machine follows the standard 802.3-2008 defined state machine.  
7.3.12 Inter-Packet Gap (IPG) Characters  
The XAUI interface transports information that consists of packets and inter-packet gap (IPG) characters.  
The IEEE 802.3-2008 standard defines that the IPG, when transferred over the XAUI interface, consists of  
alignment characters (/A/), control characters (/K/) and replacement characters (/R/).  
TLK10031 converts all AKR characters to IDLE characters, performs insertions or deletions on the IDLE  
characters, and transmits only encoded IDLE characters out to the 10GBASE-KR interface. The receive  
channel expects encoded IDLE characters to enter the 10GBASE-KR interface, and performs insertions  
and deletions on IDLE characters and then converts IDLE characters back to AKR characters. Any AKR  
characters received on the high speed interface are by default converted to IDLE characters for  
reconversion to AKR columns.  
Both the transmit and receive FIFOs rely upon a valid IDLE stream to perform clock tolerance  
compensation (CTC).  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
23  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.3.13 Clock Tolerance Compensation (CTC)  
The XAUI interface is defined to allow for separate clock domains on each side of the link. Though the  
reference clocks for two devices on a XAUI link have the same specified frequencies, there can be slight  
differences that, if not compensated for, will lead to over or under run of the FIFO’s on the receive/transmit  
data path. The TLK10031 provides compensation for these differences in clock frequencies via the  
insertion or the removal of idle (/I/) characters on all lanes, as shown in Figure 7-4 and  
Figure 7-5.  
tackeꢀ  
LtD  
[!b9 0 Y w { D 5 5 5 ... 5 5 5 5 L  
L
L
L
L
L
Y { D  
Y 5 D  
Y 5 D  
Y 5 D  
[!b9 1 Y w 5 D 5 5 5 ... 5 5 5 Ç  
L
L
L
L
L
L
Lnpuꢀ  
Y w 5 D 5 5 5 ... 5 5 5 L  
Y w 5 D 5 5 5 ... 5 5 5 L  
[!b9 2  
[!b9 3  
[!b9 0  
L
L
L
L
L
L
L
L
{ D 5 5 5 ... 5 5 5 5 L  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
{
[!b9 1  
[!b9 2  
[!b9 3  
5 D 5 5 5 ... 5 5 5 Ç  
5 D 5 5 5 ... 5 5 5 L  
5 D 5 5 5 ... 5 5 5 L  
L
L
L
5
5
5
huꢀpuꢀ  
{ = {ꢀarꢀ of tackeꢀ, 5 = 5aꢀa, Ç = 9nd of tackeꢀ, L = Ldle  
!dded /olumn  
Figure 7-4. Clock Tolerance Compensation: Add  
tackeꢀ  
LtD  
[!b9 0 Y w { D 5 5 5 ... 5 5 5 5 L  
L
L
L
L
L
Y { D  
Y 5 D  
Y 5 D  
Y 5 D  
[!b9 1 Y w 5 D 5 5 5 ... 5 5 5 Ç  
L
L
L
L
L
L
Lnpuꢀ  
Y w 5 D 5 5 5 ... 5 5 5 L  
Y w 5 D 5 5 5 ... 5 5 5 L  
[!b9 2  
[!b9 3  
5ropped /olumn  
[!b9 0  
[!b9 1  
[!b9 2  
[!b9 3  
L
L
L
L
L
L
L
L
{ D 5 5 5 ... 5 5 5 5 L  
L
L
L
L
L
L
L
L
{ 5 5  
5 5 5  
5 5 5  
5 5 5  
5 D 5 5 5 ... 5 5 5 Ç  
5 D 5 5 5 ... 5 5 5 L  
5 D 5 5 5 ... 5 5 5 L  
L
L
L
huꢀpuꢀ  
{ = {ꢀarꢀ of tackeꢀ, 5 = 5aꢀa, Ç = 9nd of tackeꢀ, L = Ldle  
Figure 7-5. Clock Tolerance Compensation: Drop  
The TLK10031 allows for provisioning of both the CTC FIFO depth and the low/high watermark thresholds  
that trigger idle insertion/deletion beyond the standard requirements. This allows for optimization between  
maximum clock tolerance and packet length. For more information on the TLK10031 CTC provisioning,  
see Section 7.4.20.  
24  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.3.14 10GBASE-KR Auto-Negotiation  
When TLK10031 is selected to operate in 10GKR/1G-KX mode (MODE_SEL pin held low), Clause 73  
Auto-Negotiation will commence after power up or hardware or software reset. The data path chosen from  
the result of Auto-Negotiation will be the highest speed of 10G-KR or 1G-KX as advertised in the MDIO  
ability fields (set to 10G-KR by default). If 10G-KR is chosen, link training will commence immediately  
following the completion of Auto-Negotiation. Legacy devices that operate in 1G-KX mode and do not  
support Clause 73 Auto Negotiation will be recognized through the Clause 73 parallel detection  
mechanism.  
7.3.15 10GBASE-KR Link Training  
Link training for 10G-KR mode is performed after auto-negotiation, and follows the procedure described in  
IEEE 802.3-2008. The high speed TX SERDES side will update pre-emphasis tap coefficients as  
requested through the Coefficient update field. Received training patterns are monitored for bit errors  
(MDIO configurable), and requests are made to update partner channel TX coefficients until optimal  
settings are achieved.  
The RX link training algorithm consists of sending a series of requests to move the link partner’s  
transmitter tap coefficients to the center point of an error free region. Once link training has completed, the  
10G-KR data path is enabled. If link is lost, the entire process repeats with auto-negotiation, link training,  
and 10G-KR mode.  
TLK10031 also offers a manual mode whereby coefficient update requests are handled through external  
software management.  
7.3.16 10GBASE-KR Line Rate, PLL Settings, and Reference Clock Selection  
The TLK10031 includes internal low-jitter high quality oscillators that are used as frequency multipliers for  
the low speed and high speed SERDES and other internal circuits of the device. Specific MDIO registers  
are available for SERDES rate and PLL multiplier selection to match line rates and reference clock  
(REFCLK0/1) frequencies for various applications.  
The external differential reference clock has a large operating frequency range allowing support for many  
different applications. A low-jitter reference clock should be used, and its frequency accuracy should be  
within ±200 PPM of the incoming serial data rate (±100 PPM of nominal data rate).  
When the TLK10031 device is set to operate in the 10GBASE-KR mode with a low speed side line rate of  
3.125 Gbps and a high speed side line rate of 10.3125 Gbps, the reference clock choices are as shown in  
Table 7-1. In general, using a higher reference clock frequency results in improved jitter performance.  
Table 7-1. Specific Line Rate and Reference Clock Selection for the 10GBASE-KR Mode:  
LOW SPEED SIDE  
HIGH SPEED SIDE  
Line Rate  
(Mbps)  
SERDES PLL  
Multiplier  
Rate  
REFCLKP/N  
(MHz)  
Line Rate  
(Mbps)  
SERDES PLL  
Multiplier  
Rate  
REFCLKP/N  
(MHz)  
3125  
3125  
10  
5
Full  
Full  
156.25  
312.5  
10312.5  
10312.5  
16.5  
8.25  
Full  
Full  
156.25  
312.5  
7.3.17 10GBASE-KR Test Pattern Support  
The TLK10031 has the capability to generate and verify various test patterns for self-test and system  
diagnostic measurements. The following test patterns are supported:  
High Speed (HS) Side: PRBS 27 – 1, PRBS 223 – 1, PRBS 231 – 1, Square Wave with Provisionable  
Length, and KR Pseudo-Random Pattern  
Low Speed (LS) Side: PRBS 27 – 1, PRBS 223 – 1, PRBS 231 – 1, High Frequency, Low Frequency,  
Mixed Frequency, CRPAT, CJPAT.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
25  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
The TLK10031 provides two pins: PRBSEN and PRBS_PASS, for additional control and monitoring of  
PRBS pattern generation and verification. When PRBSEN is asserted high, the internal PRBS generator  
and verifier circuits are enabled on both transmit and receive data paths on high speed and low speed  
sides. PRBS 27-1 is selected by default, and can be changed through MDIO.  
When PRBS test is enabled (PRBSEN=1):  
PRBS_PASS = 1 indicates that PRBS pattern reception is error free.  
PRBS_PASS = 0 indicates that a PRBS error is detected. The side (high speed or low speed), and the  
lane (for low speed side) that this signal refers to is chosen through MDIO.  
7.3.18 10GBASE-KR Latency  
The latency through the TLK10031 in 10GBASE-KR mode is as shown in Figure 7-6. Note that the latency  
ranges shown indicate static rather than dynamic latency variance, i.e., the range of possible latencies  
when the serial link is initially established. During normal operation, the latency through the device is fixed.  
Figure 7-6. 10GBASE-KR Mode Latency Per Block  
7.4 Device Functional Modes  
The TLK10031 is a versatile high-speed transceiver device that is designed to perform various physical  
layer functions in three operating modes: 10GBASE-KR Mode, 1G-KX Mode, and General Purpose (10G)  
SERDES Mode. The three modes are described in three separate sections. The device operating mode is  
determined by the MODE_SEL and ST pin settings, as well as MDIO register 1E.0001 bit 10.  
26  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.4.1 10GBASE-KR Mode  
A simplified block diagram of the transmit and receive data paths in 10GBASE-KR mode is shown in  
Figure 7-7. This section gives a high-level overview of how data moves through these paths, then gives a  
more detailed description of each block’s functionality.  
Lb!0t  
Lb!0b  
Lb!1t  
Lb!1b  
I{Çó!t  
I{Çó!b  
Lb!2t  
Lb!2b  
Lb!3t  
Lb!3b  
hÜÇ!0t  
hÜÇ!0b  
hÜÇ!1t  
hÜÇ!1b  
I{wó!t  
I{wó!b  
hÜÇ!2t  
hÜÇ!2b  
hÜÇ!3t  
hÜÇ!3b  
Figure 7-7. A Simplified KR Data Path Block Diagram  
Table 7-2. TLK10031 Operating Mode Selection  
ST = 0 (Clause 45)  
ST = 1 (Clause 22)  
{MODE_SEL pin, Register  
1E.0001 bit 10}  
1x  
01  
10G  
10G  
10G  
10G  
10G-KR/1G-KX  
(Determined by Auto Neg)  
1G-KX  
(No Auto Neg)  
00  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.4.2 1GBASE-KX Mode  
A simplified block diagram of the 1GBASE-KX data path is shown in Figure 7-8.  
Çesꢀ taꢀꢀern  
Deneraꢀion  
I{Çó!t  
I{Çó!b  
Lb!0t  
Lb!0b  
Çesꢀ taꢀꢀern  
ëerificaꢀion  
Çesꢀ taꢀꢀern  
ëerificaꢀion  
hÜÇ!0t  
hÜÇ!0b  
I{wó!t  
I{wó!b  
Çesꢀ taꢀꢀern  
Deneraꢀion  
Figure 7-8. A Simplified Block Diagram of the 1GKX Data Path  
7.4.2.1 Channel Sync Block  
This block is used to align the deserialized signals to the proper 10-bit word boundaries. The Channel  
Sync block generates a synchronization flag indicating incoming data is synchronized to the correct word  
boundary. This module implements the synchronization state machine found in Figure 36-9 of the IEEE  
802.3-2008 Standard. A synchronization status signal, latched low, is available to indicate synchronization  
errors.  
7.4.2.2 8b/10b Encoder and Decoder Blocks  
As in the 10GBASE-KR operating mode, these blocks are used to convert between 10-bit (encoded) data  
and 8-bit data words. They can be optionally bypassed. A code invalid signal, latched low, is available to  
indicate 8b/10b encode and decode errors.  
7.4.2.3 TX CTC  
The transmit clock tolerance compensation (CTC) block acts as a FIFO with add and delete capabilities,  
adding and deleting 2 cycles each time to support ±200ppm during IFG (no errors) between the read and  
write clocks. This block implements a 12 deep asynchronous FIFO with a usable space 8 deep. It has two  
separate pointer tracking systems. One determines when to delete or insert and another determines when  
to reset. Inserts and deletes are only allowed during non-errored inter-frame gaps and occurs 2 cycles at a  
time. It has an auto reset feature once collision occurs. If a collision occurs, the indication is latched high  
until read by MDIO.  
7.4.2.4 1GBASE-KX Line Rate, PLL Settings, and Reference Clock Selection  
When the TLK10031 is configured to operate in the 1GBASE-KX mode, the available line rates, reference  
clock frequencies, and corresponding PLL multipliers are summarized in Table 7-3.  
28  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Table 7-3. Specific Line Rate and Reference Clock Selection for the 1GBASE-KX Mode  
LOW SPEED SIDE  
HIGH SPEED SIDE  
Line Rate  
(Mbps)  
3125(2)  
3125(2)  
1250  
SERDES PLL  
Multiplier  
Rate  
REFCLKP/N  
(MHz)  
Line Rate  
SERDES PLL  
Multiplier  
Rate  
REFCLKP/N  
(MHz)  
(Mbps(1)  
3125(2)  
3125(2)  
1250  
)
10  
5
Full  
Full  
156.25  
312.5  
125(2)  
156.25  
312.5  
10  
5
Full  
156.25  
312.5  
125(2)  
156.25  
312.5  
Full  
10  
8
Half  
20  
16  
8
Quarter  
Quarter  
Quarter  
1250  
Half  
1250  
1250  
8
Quarter  
1250  
(1) High Speed Side SERDES runs at 2x effective data rate.  
(2) Manual mode only, as auto negotiation does not support 125Mhz REFCLK or line rate of 3125Mbps. To disable automatic setting of PLL  
and rate modes, write 1'b1 to bit 13 of register 0x1E.001D.  
7.4.2.5 1GBASE-KX Mode Latency  
The latency through the TLK10031 in 1G-KX mode is as shown in Figure 7-9. Note that the latency ranges  
shown indicate static rather than dynamic latency variance, i.e., the range of possible latencies when the  
serial link is initially established. During normal operation, the latency through the device is fixed.  
Figure 7-9. 1G-KX Mode Latency  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.4.2.5.1 Test Pattern Generator  
In 1G-KX mode, this block can be used to generate test patterns allowing the 1G-KX channel to be tested  
for compliance while in a system environment or for diagnostic purposes. Test patterns generated are  
high/low/mixed frequency and CRPAT long or short.  
7.4.2.5.2 Test Pattern Verifier  
The 1G-KX test pattern verifier performs the verification and error reporting for the CRPAT Long and Short  
test patterns specified in Annex 36A of the IEEE 802.3-2008 standard. Errors are reported to MDIO  
registers.  
7.4.3 General Purpose (10G) Serdes Mode Functional Description  
A block diagram showing the transmit and receive data paths of the TLK10031 operating in General  
Purpose (10G) SerDes mode is shown in Figure 7-10.  
Lb!0t  
Lb!0b  
Lb!1t  
Lb!1b  
I{Çó!t  
I{Çó!b  
Lb!2t  
Lb!2b  
Lb!3t  
Lb!3b  
hÜÇ!0t  
hÜÇ!0b  
hÜÇ!1t  
hÜÇ!1b  
I{wó!t  
I{wó!b  
hÜÇ!2t  
hÜÇ!2b  
hÜÇ!3t  
hÜÇ!3b  
Figure 7-10. Block Diagram Showing General Purpose SerDes Mode  
7.4.3.1 General Purpose SERDES Transmit Data Path  
The TLK10031 General Purpose SERDES low speed to high speed (transmit) data path with the device  
configured to operate in the normal transceiver (mission) mode is shown in the upper half of Figure 7-10.  
In this mode, 8B/10B encoded serial data (INA*P/N) in 2 or 4 lanes is received by the low speed side  
SERDES and deserialized into 10-bit parallel data for each lane. The data in each individual lane is then  
byte aligned (channel synchronized) and then 8B/10B decoded into 8-bit parallel data for each lane. The  
lane data is then lane aligned by the Lane Alignment Slave. 32 bits of lane aligned parallel data is input to  
a transmit FIFO which delivers it to an 8B/10B encoder, 16 data bits at a time. The resulting 20-bit 8B/10B  
encoded parallel data is sent to the high speed side SERDES for serialization and output through the  
HSTXAP*P/N pins.  
30  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.4.4 General Purpose SERDES Receive Data Path  
With the device configured to operate in the normal transceiver (mission) mode, the high speed to low  
speed (receive) data path is shown in the lower half of Figure 7-10. 8B/10B encoded serial data  
(HSRXAP*P/N) is received by the high speed side SERDES and deserialized into 20-bit parallel data. The  
data is then byte aligned, 8B/10B decoded into 16-bit parallel data, and then delivered to a receive FIFO.  
The receive FIFO in turn delivers 32-bit parallel data to the Lane Alignment Master which splits the data  
into the same number of lanes as configured on the transmit data path. The lane data is then 8B/10B  
encoded and the resulting 10-bit parallel data for each lane is input to the low speed side SERDES for  
serialization and output through the OUTAP*P/N pins.  
7.4.5 Channel Synchronization  
As in the 10GBASE-KR mode, the channel synchronization block is used in the 10G General Purpose  
SERDES mode to align received serial data to a defined byte boundary. The channel synchronization  
block detects the comma pattern found in the K28.5 character, and follows the synchronization flowchart  
shown in Figure 7-3.  
7.4.6 8B/10B Encoder and Decoder  
As in the 10GBASE-KR and 1GBASE-KX modes, the 8B/10B encoder and decoder blocks are used to  
convert between 10-bit (encoded) and 8-bit (unencoded) data words.  
7.4.7 Lane Alignment Scheme for 8b/10b General Purpose Serdes Mode  
Lower rate multi-lane serial signals must be byte aligned and lane aligned such that high speed  
multiplexing (proper reconstruction of higher rate signal) is possible. For that reason, the TLK10031  
implements a special lane alignment scheme on the low speed (LS) side for 8b/10b data that does not  
contain XAUI alignment characters.  
During lane alignment, a proprietary pattern (or a custom comma compliant data stream) is sent by the LS  
transmitter to the LS receiver on each active lane. This pattern allows the LS receiver to both delineate  
byte boundaries within a lower speed lane and align bytes across the lanes (2 or 4) such that the original  
higher rate data ordering is restored.  
Lane alignment completes successfully when the LS receiver asserts a “Link Status OK” signal monitored  
by the LS transmitter on the link partner device such as an FPGA. The TLK10031 sends out the “Link  
Status OK” signals through the LS_OK_OUT_A output pins, and monitors the “Link Status OK” signals  
from the link partner device through the LS_OK_IN_A input pins. If the link partner device does not need  
the TLK10031 Lane Alignment Master (LAM) to send proprietary lane alignment pattern, LS_OK_IN_A can  
be tied high on the application board or set through MDIO register bits.  
The lane alignment scheme is activated under any of the following conditions:  
Device/System power up (after configuration/provisioning)  
Loss of channel synchronization assertion on any enabled LS lane  
Loss of signal assertion on any enabled LS lane  
LS SERDES PLL Lock indication deassertion  
After device configuration change  
After software determined LS 8B/10B decoder error rate threshold exceeded  
After device reset is deasserted  
Any time the LS receiver deasserts “Link Status OK”.  
Presence of reoccurring higher level / protocol framing errors  
All the above conditions are selectable through MDIO register provisioning.  
The block diagram of the lane alignment scheme is shown in Figure 7-11.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Detailed Description  
31  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Link Partner Device  
TLK10031  
LS _OK_OUT_A  
LAS  
Lane Alignment Slave  
LAM  
CH  
SYNC  
à
10B 8B  
à
8B  
8B  
10B  
10B  
CH  
SYNC  
Lane  
Alignment  
Master  
à
10B 8B  
à
à
Lane  
Align  
INA[3:0]P/N  
CH  
SYNC  
à
10B 8B  
8B 10B  
Low  
Speed  
Side  
Low  
Speed  
Side  
CH  
SYNC  
à
10B 8B  
à
8B  
10B  
SERDES  
(4 RX/ 4 TX)  
SERDES  
(4 RX/ 4 TX)  
CH  
SYNC  
ß 10B  
ß
10B 8B  
8B  
LAM  
Lane  
Alignment  
Master  
CH  
SYNC  
ß
8B 10B  
ß
10B 8B  
Lane  
Align  
OUTA[3:0]P/N  
CH  
SYNC  
10B  
ß
ß
10B 8B  
8B  
8B  
CH  
SYNC  
ß 10B  
ß
10B 8B  
LAS  
Lane Alignment Slave  
LS _OK _IN_A  
Figure 7-11. Block Diagram of the Lane Alignment Scheme  
7.4.8 Lane Alignment Components  
Lane Alignment Master (LAM)  
Responsible for generating proprietary LS lane alignment initialization pattern  
Resides in the TLK10031 receive path  
Responsible for bringing up LS receive link for the data sent from the TLK10031 to a link partner  
device  
Monitors the LS_OK_IN_A pins for “Link Status OK” signals sent from the Lane Alignment Slave  
(LAS) of the link partner device  
Resides in the link partner device  
Responsible for bringing up LS transmit link for the data sent from the link partner device to the  
TLK10031  
Monitors the “Link Status OK” signals sent from the LS_OK_OUT_A pins of the Lane Alignment  
Slave (LAS) of the TLK10031  
Lane Alignment Slave (LAS)  
Responsible for monitoring the LS lane alignment initialization pattern  
Performs channel synchronization per lane (2 or 4 lanes) through byte rotation  
Performs lane alignment and realignment of bytes across lanes  
Resides in the TLK10031 transmit path  
Generates the “Link Status OK” signal for the LAM on the link partner device  
Resides in the link partner device  
Generates the “Link Status OK” signal for the LAM on the TLK10031 device.  
Reference code from Texas Instruments is available for the LAM and LAS modules for easy integration  
into FPGAs.  
32  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.4.9 Lane Alignment Operation  
During lane alignment, the LAM sends a repeating pattern of 49 characters (control + data) simultaneously  
across all enabled LS lanes. These simultaneous streams are then encoded by 8B/10B encoders in  
parallel. The proprietary lane alignment pattern consists of the following characters:  
/K28.5/ (CTL=1, Data=0xBC)  
Repeat the following sequence of 12 characters four times:  
/D30.5/ (CTL=0, Data=0xBE)  
/D23.6/ (CTL=0, Data=0xD7)  
/D3.1/ (CTL=0, Data=0x23)  
/D7.2/ (CTL=0, Data=0x47)  
/D11.3/ (CTL=0, Data=0x6B)  
/D15.4/ (CTL=0, Data=0x8F)  
/D19.5/ (CTL=0, Data=0xB3)  
/D20.0/ (CTL=0, Data=0x14)  
/D30.2/ (CTL=0, Data=0x5E)  
/D27.7/ (CTL=0, Data=0xFB)  
/D21.1/ (CTL=0, Data=0x35)  
/D25.2/ (CTL=0, Data=0x59)  
The above 49-character sequence is repeated until LS_OK_IN_A is asserted. Once LS_OK_IN_A is  
asserted, the LAM resumes transmitting traffic received from the high speed side SERDES immediately.  
The TLK10031 performs lane alignment across the lanes similar in fashion to the IEEE 802.3-2008 (XAUI)  
specification. XAUI only operates across 4 lanes while LAS operates with 2 or 4 lanes. The lane alignment  
state machine is shown in Figure 7-12. The TLK10031 uses the comma (K28.5) character for lane to lane  
alignment by default, but can be provisioned to use XAUI's /A/ character as well.  
Lane alignment checking is not performed by the LAS after lane alignment is achieved. After LAM detects  
that the LS_OK_IN_A signal is asserted, normal system traffic is carried instead of the proprietary lane  
alignment pattern.  
Channel synchronization is performed during lane alignment and normal system operation.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Hard or Soft Reset  
Loss of Lane  
Alignment  
(enable deskew)  
Deassert LS_OK  
/C/ &  
CH_SYNC?  
no  
Align Detect 3  
yes  
any  
deskew_err  
!deskew_err  
& /C/  
no  
Align Detect 1  
(disable deskew)  
yes  
any  
deskew_err  
!deskew_err  
& /C/  
Lane Aligned  
(Assert LS_OK)  
no  
yes  
Any Lane  
Realign  
Conditions?  
yes  
no  
Align Detect 2  
any  
deskew_err  
!deskew_err  
& /C/  
no  
/C/ = Character matched In All Enabled Lanes  
deskew_err = Character matched in any lane,  
but not in all lanes at same time  
yes  
CH_SYNC = Channel Sync Asserted All Lanes  
Figure 7-12. Lane Alignment State Machine  
34  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.4.10 Line Rate, SERDES PLL Settings, and Reference Clock Selection for the General  
Purpose SERDES Mode  
When the TLK10031 is set to operate in the General Purpose SERDES mode, the following tables show a  
summary of line rates and reference clock frequencies used for CPRI/OBSAI for 1:1, 2:1 and 4:1 operation  
modes.  
Table 7-4. Specific Line Rate Selection for the 1:1 General Purpose Operation Mode  
LOW SPEED SIDE  
HIGH SPEED SIDE  
SERDES  
Line Rate  
(Mbps)  
SERDES PLL  
REFCLKP/N  
(MHz)  
Line Rate  
(Mbps)  
REFCLKP/N  
(MHz)  
Rate  
PLL  
Rate  
Multiplier  
Multiplier  
4915.2  
3840  
20  
12.5  
10  
Full  
Full  
Full  
Full  
Full  
Full  
Half  
Half  
Half  
122.88  
153.6  
4915.2  
3840  
20  
12.5  
10  
Half  
Half  
122.88  
153.6  
3125  
156.25  
3125  
Half  
156.25  
3125  
5
312.5  
3125  
5
Half  
312.5  
3072  
10  
153.6  
3072  
10  
Half  
153.6  
2457.6  
1920  
8/10  
12.5  
10  
153.6/122.88  
153.6  
2457.6  
1920  
16/20  
12.5  
10  
Quarter  
Quarter  
Quarter  
Eighth  
153.6/122.88  
153.6  
1536  
153.6  
1536  
153.6  
1228.8  
8/10  
153.6/122.88  
1228.8  
16/20  
153.6/122.88  
Table 7-5. Specific Line Rate and Reference Clock Selection for the 2:1 General Purpose Operation Mode  
LOW SPEED SIDE  
HIGH SPEED SIDE  
SERDES  
Line Rate  
(Mbps)  
SERDES PLL  
REFCLKP/N  
(MHz)  
Line Rate  
(Mbps)  
REFCLKP/N  
(MHz)  
Rate  
PLL  
Rate  
Multiplier  
Multiplier  
4915.2  
3840  
20  
12.5  
10  
Full  
Full  
122.88  
153.6  
9830.4  
7680  
20  
12.5  
10  
Full  
Full  
122.88  
153.6  
3072  
Full  
153.6  
6144  
Full  
153.6  
2457.6  
1920  
8/10  
12.5  
10  
Full  
153.6/122.88  
153.6  
4915.2  
3840  
16/20  
12.5  
10  
Half  
153.6/122.88  
153.6  
Half  
Half  
1536  
Half  
153.6  
3072  
Half  
153.6  
1228.8  
768  
8/10  
10  
Half  
153.6/122.88  
153.6  
2457.6  
1536  
16/20  
10  
Quarter  
Quarter  
Eighth  
153.6/122.88  
153.6  
Quarter  
Quarter  
614.4  
8/10  
153.6/122.88  
1228.8  
16/20  
153.6/122.88  
Table 7-6. Specific Line Rate and Reference Clock Selection for the 4:1 General Purpose Operation Mode  
LOW SPEED SIDE  
HIGH SPEED SIDE  
SERDES  
Line Rate  
(Mbps)  
SERDES PLL  
REFCLKP/N  
(MHz)  
Line Rate  
(Mbps)  
REFCLKP/N  
(MHz)  
Rate  
PLL  
Rate  
Multiplier  
Multiplier  
2457.6  
1536  
8/10  
10  
Full  
Half  
153.6/122.88  
153.6  
9830.4  
6144  
16/20  
10  
Full  
Full  
153.6/122.88  
153.6  
1228.8  
768  
8/10  
10  
Half  
153.6/122.88  
153.6  
4915.2  
3072  
16/20  
10  
Half  
153.6/122.88  
153.6  
Quarter  
Quarter  
Half  
614.4  
8/10  
153.6/122.88  
2457.6  
16/20  
Quarter  
153.6/122.88  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
 
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 7-4, Table 7-5, and Table 7-6 indicate two possible reference clock frequencies for CPRI/OBSAI  
applications: 153.6MHz and 122.88MHz, which can be used based on the application preference. The  
SERDES PLL Multiplier (MPY) has been given for each reference clock frequency respectively. The low  
speed side and the high speed side SERDES use the same reference clock frequency.  
For other line rates not shown in Table 7-4, Table 7-5, or Table 7-6, valid reference clock frequencies can  
be selected with the help of the information provided in Table 7-7 and Table 7-8 for the low speed and  
high speed side SERDES. The reference clock frequency has to be the same for the two SERDES and  
must be within the specified valid ranges for different PLL multipliers.  
Table 7-7. Line Rate and Reference Clock Frequency Ranges for the Low Speed Side SERDES (General  
Purpose Mode)  
Reference Clock (MHz)  
Full Rate (Gbps)  
Half Rate (Gbps)  
Min Max  
Quarter Rate (Gbps)  
SERDES PLL  
Multiplier (MPY)  
Min  
250  
Max  
425  
Min  
Max  
3.4  
4.25  
5
Min  
0.5  
Max  
0.85  
1.0625  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
4
5
2
2
1
1
1.7  
2.125  
2.5  
200  
425  
0.5  
6
166.667  
125  
416.667  
312.5  
250  
2
1
0.5  
8
2
5
1
2.5  
0.5  
10  
12  
12.5  
15  
20  
122.88  
122.88  
122.88  
122.88  
122.88  
2.4576  
2.94912  
3.072  
3.6864  
4.9152  
5
1.2288  
1.47456  
1.536  
1.8432  
2.4576  
2.5  
0.6144  
0.73728  
0.768  
0.9216  
1.2288  
208.333  
200  
5
2.5  
5
2.5  
166.667  
125  
5
2.5  
5
2.5  
RateScale: Full Rate = 0.5, Half Rate = 1, Quarter Rate = 2  
Table 7-8. Line Rate and Reference Clock Frequency Ranges for the High Speed Side SERDES (General  
Purpose Mode)  
Reference Clock (MHz)  
Full Rate (Gbps)  
Half Rate (Gbps)  
Quarter Rate (Gbps)  
Eighth Rate (Gbps)  
SERDES PLL  
Multiplier (MPY)  
Min  
375  
Max  
425  
Min  
Max  
6.8  
8.5  
10  
Min  
Max  
3.4  
4.25  
5
Min  
1.5  
Max  
1.7  
Min  
Max  
4
5
6
3
300  
425  
6
3
3
1.5  
2.125  
2.5  
1.0  
1.0  
1.0625  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
6
250  
416.667  
312.5  
250  
6
6
1.5  
8
187.5  
150  
10  
3
5
1.5  
2.5  
1.0  
10  
12  
12.5  
15  
16  
20  
6
10  
3
5
1.5  
2.5  
1.0  
125  
208.333  
200  
6
10  
3
5
1.5  
2.5  
1.0  
153.6  
122.88  
122.88  
122.88  
7.68  
7.3728  
7.86432  
9.8304  
10  
3.84  
3.6864  
3.932  
4.9152  
5
1.92  
1.8432  
1.966  
2.4576  
2.5  
1.0  
166.667  
156.25  
125  
10  
5
2.5  
1.0  
10  
5
2.5  
1.0  
10  
5
2.5  
1.2288  
RateScale: Full Rate = 0.25, Half Rate = 0.5, Quarter Rate = 1, Eighth Rate = 2  
For example, in the 2:1 operation mode, if the low speed side line rate is 1.987Gbps, the high-speed side  
line rate will be 3.974Gbps. The following steps can be taken to make a reference clock frequency  
selection:  
1. Determine the appropriate SERDES rate modes that support the required line rates. Table 7-7 shows  
that the 1.987Gbps line rate on the low speed side is only supported in the half rate mode (RateScale  
= 1). Table 7-8 shows that the 3.974Gbps line rate on the high speed side is only supported in the half  
rate mode (RateScale = 1).  
2. For each SERDES side, and for all available PLL multipliers (MPY), compute the corresponding  
reference clock frequencies using the formula:  
Reference Clock Frequency = (LineRate x RateScale)/MPY  
The computed reference clock frequencies are shown in Table 7-9 along with the valid minimum and  
maximum frequency values.  
36  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
3. Mark all the common frequencies that appear on both SERDES sides. Note and discard all those that  
fall outside the allowed range. In this example, the common frequencies are highlighted in Table 7-9.  
The highest and lowest computed reference clock frequencies must be discarded because they  
exceed the recommended range.  
4. Select any of the remaining marked common reference clock frequencies. Higher reference clock  
frequencies are generally preferred. In this example, any of the following reference clock frequencies  
can be selected: 397.4MHz, 331.167MHz, 248.375MHz, 198.7MHz, 165.583MHz, 158.96MHz, and  
132.467MHz  
Table 7-9. Reference Clock Frequency Selection Example  
LOW SPEED SIDE SERDES  
HIGH SPEED SIDE SERDES  
REFERENCE CLOCK FREQUENCY (MHz)  
REFERENCE CLOCK FREQUENCY (MHz)  
SERDES PLL  
MULTIPLIER  
SERDES PLL  
MULTIPLIER  
COMPUTED  
496.750  
397.400  
331.167  
248.375  
198.700  
165.583  
158.960  
132.467  
99.350  
MIN  
250  
MAX  
425  
COMPUTED  
496.750  
397.400  
331.167  
248.375  
198.700  
165.583  
158.960  
132.467  
99.350  
MIN  
375  
MAX  
425  
4
5
4
5
200  
425  
300  
425  
6
166.667  
125  
416.667  
312.5  
250  
6
250  
416.667  
312.5  
250  
8
8
187.5  
150  
10  
12  
12.5  
15  
20  
122.88  
122.88  
122.88  
122.88  
122.88  
10  
12  
12.5  
15  
20  
208.333  
200  
125  
208.333  
200  
153.6  
122.88  
122.88  
166.667  
125  
166.667  
125  
7.4.11 General Purpose SERDES Mode Test Pattern Support  
The TLK10031 has the capability to generate and verify various test patterns for self-test and system  
diagnostic measurements. Most of the same test pattern support is available for 10G General Purpose  
Mode as for 10G-KR. (See Register 1E.000B for details).  
7.4.12 General Purpose SERDES Mode Latency  
The latency through the TLK10031 in General Purpose SERDES mode is as shown in Figure 7-13. Note  
that the latency ranges shown indicate static rather than dynamic latency variance, i.e., the range of  
possible latencies when the serial link is initially established. During normal operation, the latency through  
the device is fixed.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Figure 7-13. General Purpose SERDES Mode Latency  
7.4.12.1 Clocking Architecture (All Modes)  
A simplified clocking architecture for the TLK10031 is captured in Figure 7-14. The device has an option of  
operating with a differential reference clock provided either on pins REFCLK0P/N or REFCLK1P/N. The  
choice is made either through MDIO or through REFCLK_SEL pins. The low speed side SERDES, high  
speed side SERDES and the associated part of the digital core can operate from the same or different  
reference clock.  
38  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
MDIO REG  
MDIO REG  
LS  
HS  
REFCLK0P/N  
REFCLK1P/N  
Figure 7-14. Reference Clock Architecture  
The TLK10031 has one output port - CLKOUTAP/N. This output port can be configured to output the byte  
clock from either the low speed or high speed serdes. The output clock can also be chosen to be  
synchronous with the transmit clock rate. Various divider values can be chosen using the MDIO interface.  
The maximum CLKOUT frequency is 500 MHz.  
7.4.12.2 Integrated Smart Switch  
The TLK10031 allows for adjustable routing of data within the device. Each output port may be configured  
to output data corresponding to any input port.  
Figure 7-15 illustrates the different possible data path routings.  
5ata {witcꢀ  
[ow {peed  
5eserialization and  
Çó [ogic  
({yncꢀronization,  
5ecoding, etc.)  
Iigꢀ {peed Çó  
00  
[ogic (9ncoding,  
{crambling, etc.)  
and {erialization  
[{  
Lꢂ  
I{ hutput  
{election  
I{Çó  
I{ꢁó  
01  
Iigꢀ {peed  
5eserialization and  
ꢁó [ogic  
(5ecoding,  
5escrambling, etc.)  
[ow {peed ꢁó  
[ogic (9ncoding,  
etc.) and  
[{  
hÜÇ  
00  
01  
[{ hutput  
{election  
{erialization  
Figure 7-15. Signal Routings for Integrated Smart Switch  
7.4.13 Intelligent Switching Modes  
The TLK10031 supports various switching modes that allow for the user to choose when changes in data  
routing take effect. There are three options:  
1. Wait for the end of the current packet, insert IDLEs, then switch to the new input source at the start of  
its next packet. This option allows the current packet to complete so that data is not lost.  
2. Drop current packet and insert a programmable character (such as Local Fault), then switch to the new  
input source at the start of its next packet. This can provide a more immediate switch-over at the  
expense of the current packet’s data.  
3. Immediately switch lanes without packet monitoring.  
For more information on selecting different intelligent switching modes, see MDIO register bits 0x1E.0017  
through 0x1E.001B.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.4.14 Serial Loopback Modes  
The TLK10031 supports internal loopback of the serial output signals for self-test and system diagnostic  
purposes. Loopback mode can be enabled independently for each SERDES via MDIO register bits. When  
loopback mode is enabled for a particular SERDES, the serial output data will be internally routed to the  
SERDES’s serial input port. The output data will remain available for monitoring on the output pins.  
7.4.15 Latency Measurement Function (General Purpose SerDes Mode)  
The TLK10031 includes a latency measurement function to support CPRI and OBSAI type applications.  
There are two start and two stop locations for the latency counter as shown in Figure 7-16. The start and  
stop locations are selectable through MDIO register bits. The elapsed time from a comma detected at an  
assigned counter start location to a comma detected at an assigned counter stop location is measured  
and reported through the MDIO interface. The following three control characters (containing commas) are  
monitored:  
1. K28.1 (control = 1, data = 0x3C)  
2. K28.5 (control = 1, data = 0xBC)  
3. K28.7 (control = 1, data = 0xFC).  
The first comma found at the assigned counter start location will start up the latency counter. The first  
comma detected at the assigned counter stop location will stop the latency counter. The 20-bit latency  
counter result of this measurement is readable through the MDIO interface. The accuracy of the  
measurement is a function of the serial bit rate. The register will return a value of 0xFFFFF if the duration  
between transmit and receive comma detection exceeds the depth of the counter. Only one measurement  
value is stored internally until the 20-bit results counter is read. The counter will return zero in cases  
where a transmit comma was never detected (indicating the results counter never began counting). In  
addition, the stopwatch counter can be configured to be started or stopped manually based on the state of  
the PRTAD0 pin (see MDIO register map for details).  
10  
10  
10  
10  
10  
10  
32  
16  
16  
INA0P/N  
LS PRBS  
Verifier  
TX FIFO  
Pattern  
HS PRBS  
Generator  
HSTXAP/N  
16  
20  
INA1P/N  
INA2P/N  
INA3P/N  
10  
10  
Gene ato  
r
r
Stop  
Counter  
Start  
Counter  
High  
Speed  
Side  
Transmit Data Path Covered  
Low  
Speed  
Side  
Latency  
Counter  
SERDES  
Receive Data Path Covered  
SERDES  
Stop  
Counter  
Start  
Counter  
10  
10  
10  
HS PRBS  
Verifier  
16  
20  
32  
OUTA0P/N  
HSRXAP/N  
RX FIFO  
10  
10  
10  
OUTA1P/N  
OUTA2P/N  
OUTA3P/N  
1
0
LS PRBS  
Generator  
10  
Pattern  
Ve  
rifier  
Figure 7-16. Location of TX and RX Comma Character Detection  
40  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
In high speed side SERDES full rate mode, the latency measurement function runs off of an internal clock  
which is equal to the frequency of the transmit serial bit rate divided by 8. In half rate mode, the latency  
measurement function runs off of an internal clock which is equal to the serial bit rate divided by 4. In  
quarter rate mode, the latency measurement function runs off of an internal clock which is equal to the  
serial bit rate divided by 2. In eighth rate mode, the latency measurement function runs off of a clock  
which is equal to the serial bit rate.  
The latency measurement does not include the low speed side transmit SERDES contribution as well as  
part of the channel synchronization block. The latency introduced by those two is up to (18 + 10) x N high  
speed side unit intervals (UIs), where N = 2, 4 is the multiplex factor. The latency measurement also  
doesn’t account for the low speed side receive SERDES contribution which is estimated to be up to 20 x N  
high speed side UIs.  
The latency measurement accuracy in all cases is equal to plus or minus one latency measurement clock  
period. The measurement clock can be divided down if a longer duration measurement is required, in  
which case the accuracy of the measurement is accordingly reduced. The high speed latency  
measurement clock is divided by either 1, 2, 4, or 8 via register settings. The high speed latency  
measurement clock may only be used when operating at one of the serial rates specified in the  
CPRI/OBSAI specifications. It is also possible to run the latency measurement function off of the  
recovered byte clock (giving a latency measurement clock frequency equal to the serial bit rate divided by  
20).  
The accuracy for the standard based CPRI/OBSAI application rates is shown in Table 7-10, and assumes  
the latency measurement clock is not divided down per user selection (division is required to measure a  
duration greater than 682 µs). For each division of 2 in the measurement clock, the accuracy is also  
reduced by a factor of two.  
Table 7-10. CPRI/OBSAI Latency Measurement Function Accuracy (Undivided  
Measurement Clock)  
LATENCY CLOCK  
FREQUENCY  
(GHz)  
LINE RATE  
(Gbps)  
ACCURACY  
(± ns)  
RATE  
1.2288  
1.536  
2.4576  
3.072  
3.84  
Eighth  
Quarter  
Quarter  
Half  
1.2288  
0.768  
1.2288  
0.768  
0.96  
0.8138  
1.302  
0.8138  
1.302  
Half  
1.0417  
0.8138  
1.302  
4.9152  
6.144  
7.68  
Half  
1.2288  
0.768  
0.96  
Full  
Full  
1.0417  
0.8138  
9.8304  
Full  
1.2288  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.4.16 Power Down Mode  
The TLK10031 can be put in power down either through device input pins or through MDIO control  
register 1E.0001.  
PDTRXA_N: Active low, power down  
7.4.16.1 High Speed CML Output  
The high speed data output driver is implemented using Current Mode Logic (CML) with integrated pull up  
resistors. The transmit outputs must be AC coupled.  
HSTXAP  
HSRXAP  
50 ohm transmission line  
50  
V
TERM  
50  
GND  
50 ohm transmission line  
HSTXAN  
HSRXAN  
TRANSMITTER  
MEDIA  
RECEIVER  
Figure 7-17. Example of High Speed I/O AC Coupled Mode  
Current Mode Logic (CML) drivers often require external components. The disadvantage of the external  
component is a limited edge rate due to package and line parasitic. The CML driver on TLK10031 has on-  
chip 50 Ω termination resistors terminated to VDDT, providing optimum performance for increased speed  
requirements. The transmitter output driver is highly configurable allowing output amplitude and de-  
emphasis to be tuned to the channel's individual requirements. Software programmability allows for very  
flexible output amplitude control. Only AC coupled output mode is supported.  
When transmitting data across long lengths of PCB trace or cable, the high frequency content of the signal  
is attenuated due to dielectric losses and the skin effect of the media. This causes a “smearing” of the  
data eye when viewed on an oscilloscope. The net result is reduced timing margins for the receiver and  
clock recovery circuits. In order to provide equalization for the high frequency loss, 4-tap finite impulse  
response (FIR) transmit de-emphasis is implemented Output swing control is via MDIO.  
42  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.4.16.2 High Speed Receiver  
The high speed receiver is differential CML with internal termination resistors. The receiver requires AC  
coupling. The termination impedances of the receivers are configured as 100 Ω with the center tap weakly  
tied to 0.7×VDDT, and a capacitor is used to create an AC ground (see Figure 7-17).  
TLK10031 serial receivers incorporate adaptive equalizers. This circuit compensates for channel insertion  
loss by amplifying the high frequency components of the signal, reducing inter-symbol interference.  
Equalization can be enabled or disabled per register settings. Both feed-forward equalization (FFE) and  
decision feedback equalization (DFE) are used to minimize the pre-cursor and post-cursor components  
(respectively) of intersymbol interference.  
7.4.16.3 Loss of Signal Output Generation (LOS)  
Loss of input signal detection is based on the voltage level of each serial input signal INA*P/N,  
HSRXAP/N. When LOS indication is enabled and the channel's differential serial receive input level is <  
75 mVpp, the channel's respective LOS indicator (LOSA) are asserted (high true). If the input signal is  
>150 mVpp, the LOS indicator will be deasserted (low false). Outside of these ranges, the LOS indicator is  
undefined. The LOS indicators can also directly be read through the MDIO interface.  
The following additional critical status conditions can be combined with the loss of signal condition  
enabling additional real-time status signal visibility on the LOSA output:  
1. Loss of Channel Synchronization Status – Logically OR’d with LOS condition(s) when enabled. Loss of  
channel synchronization can be optionally logically OR’d (disabled by default) with the internally  
generated LOS condition.  
2. Loss of PLL Lock Status on LS and HS sides – Logically OR’d with LOS condition(s) when enabled.  
The internal PLL loss of lock status bit is optionally OR’d (disabled by default) with the other internally  
generated loss of signal conditions.  
3. Receive 8B/10B Decode Error (Invalid Code Word or Running Disparity Error) – Logically OR’d with  
LOS condition(s) when enabled. The occurrence of an 8B/10B decode error (invalid code word or  
disparity error) is optionally OR’d (disabled by default) with the other internally generated loss of signal  
conditions.  
4. AGCLOCK (Active Gain Control Currently Locked) – Inverted and Logically OR’d with LOS condition(s)  
when enabled. HS RX SERDES adaptive gain control unlocked indication is optionally OR’d (disabled  
by default) with the other internally generated loss of signal conditions.  
5. AZDONE (Auto Zero Calibration Done) - Inverted and Logically OR’d with LOS conditions(s) when  
enabled. HS RX SERDES auto-zero not done indication is optionally OR’d (disabled by default) with  
the other internally generated loss of signal conditions.  
Refer to Figure 7-18, which shows the detailed implementation of the LOSA signal along with the  
associated MDIO control registers for the General Purpose SERDES mode. More details about LOS  
settings including configurations related to the 10GBASE-KR mode can be found in the Programmers  
Reference section.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
[oss of {ignal (I{)  
9b!.[9  
[h{ Lb!0  
9b!.[9  
[h{ Lb!1  
9b!.[9  
[h{ Lb!2  
[oss of {ignal ([{)  
9b!.[9  
[h{ Lb!3  
9b!.[9  
t[[ [ocked (I{)  
9b!.[9  
t[[ [ocked ([{)  
9b!.[9  
8./10. Lnvalid (I{)  
9b!.[9  
8./10. Lnvalid ꢀode Lb!0  
[h{!  
9b!.[9  
8./10. Lnvalid ꢀode Lb!1  
9b!.[9  
8./10. Lnvalid ꢀode ([{)  
8./10. Lnvalid ꢀode Lb!2  
9b!.[9  
8./10. Lnvalid ꢀode Lb!3  
9b!.[9  
[oss of ꢀI {ignal (I{)  
9b!.[9  
[oss of {ync Lb!0  
9b!.[9  
[oss of {ync Lb!1  
9b!.[9  
[oss of ꢀI {ignal ([{)  
[oss of {ync Lb!2  
9b!.[9  
[oss of {ync Lb!3  
9b!.[9  
!Dꢀ[hꢀY (I{)  
9b!.[9  
!ù5hb9 (I{)  
9b!.[9  
Figure 7-18. LOSA – Logic Circuit Implementation  
44  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.4.17 MDIO Management Interface  
The TLK10031 supports the Management Data Input/Output (MDIO) Interface as defined in Clauses 22  
and 45 of the IEEE 802.3-2008 Ethernet specification. The MDIO allows register-based management and  
control of the serial links.  
The MDIO Management Interface consists of a bi-directional data path (MDIO) and a clock reference  
(MDC). The device identification and port address are determined by control pins (see Section 4). Also,  
whether the device responds as a Clause 22 or Clause 45 device is also determined by control pin ST  
(see Section 4).  
In Clause 45 (ST = 0) and Clause 22 (ST = 1), the top 4 control pins PRTAD[4:1] determine the device  
port address. In this mode, TLK10031 responds if the PHY address field on the MDIO protocol (PA[4:1])  
matches PRTAD[4:1] pin value, and the PHY address field PA[0] = 0.  
In Clause 22 (ST = 1) mode, only 32 (5’b00000 to 5’b11111) register addresses can be accessed through  
standard protocol. Due to this limitation, an indirect addressing method (More description in Clause 22  
Indirect Addressing section) is implemented to provide access to all device specific control/status registers  
that cannot be accessed through the standard Clause 22 register address space.  
Write transactions which address an invalid register or device or a read only register will be ignored. Read  
transactions which address an invalid register or device will return a 0.  
7.4.18 MDIO Protocol Timing  
Timing for a Clause 45 address transaction is shown in Figure 7-19. The Clause 45 timing required to  
write to the internal registers is shown in Figure 7-20. The Clause 45 timing required to read from the  
internal registers is shown in Figure 7-21. The Clause 45 timing required to read from the internal registers  
and then increment the active address for the next transaction is shown in Figure 7-22. The Clause 22  
timing required to read from the internal registers is shown in Figure 7-23. The Clause 22 timing required  
to write to the internal registers is shown in Figure 7-24.  
MDC  
0
0
0
0
1
0
A15 A0  
MDIO  
1
PA[4:0]  
DA[4:0]  
> 32 "1's"  
Preamble  
Addr  
Code  
PHY  
Addr  
Dev  
Addr  
Turn  
Around  
Reg  
Addr  
Start  
Idle  
Figure 7-19. CL45 - Management Interface Extended Space Address Timing  
MDC  
0
0
0
1
1
0
D15 D0  
Data  
MDIO  
1
PA[4:0]  
DA[4:0]  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
Dev  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-20. CL45 - Management Interface Extended Space Write Timing  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
MDC  
0
0
1
1
Z
0
D15 D0  
Data  
MDIO  
1
PA[4:0]  
DA[4:0]  
> 32 "1's"  
Preamble  
Read  
Code  
PHY  
Addr  
Dev  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-21. CL45 - Management Interface Extended Space Read Timing  
MDC  
0
0
1
0
Z
0
D15 D0  
Data  
MDIO  
1
PA[4:0]  
DA[4:0]  
> 32 "1's"  
Preamble  
Read Inc  
Code  
PHY  
Addr  
Dev  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-22. CL45 - Management Interface Extended Space Read And Increment Timing  
MDC  
1
MDIO  
1
1
PA[4:0]  
Z
0
0
RA4 RA0  
0
D15 D0  
Data  
> 32 "1's"  
Preamble  
Read  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-23. CL22 - Management Interface Read Timing  
MDC  
1
MDIO  
PA[4:0]  
1
0
1
0
1
RA4 RA0  
0
D15 D0  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-24. CL22 - Management Interface Write Timing  
The IEEE 802.3 Clause 22/45 specification defines many of the registers, and additional registers have  
been implemented for expanded functionality.  
7.4.19 Clause 22 Indirect Addressing  
Due to Clause 22 register space limitations, an indirect addressing method is implemented so that the  
extended register space can be accessed through Clause 22. All the device specific control and status  
registers that cannot be accessed through Clause 22 direct addressing can be accessed through this  
indirect addressing method. To access this register space, an address control register (Reg 30, 5’h1E)  
should be written with the register address followed by a read/write transaction to address content register  
(Reg 31, 5’h1F) to access the contents of the address specified in address control register. Following  
timing diagrams illustrate an example write transaction to Register 16’h9000 using indirect addressing in  
Clause 22.  
46  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
MDC  
1
MDIO  
PA[4:0]  
1
5'h1E  
0
1
0
1
0
16'h9000  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-25. CL22 – Indirect Address Method – Address Write  
MDC  
1
MDIO  
PA[4:0]  
1
5'h1F  
0
1
0
1
0
DATA  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-26. CL22 - Indirect Address Method – Data Write  
Following timing diagrams illustrate an example read transaction to read contents of Register 16’h9000  
using indirect addressing in Clause 22.  
MDC  
1
MDIO  
PA[4:0]  
1
5'h1E  
0
1
0
1
0
16'h9000  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-27. CL22 - Indirect Address Method – Address Write  
MDC  
1
MDIO  
1
1
PA[4:0]  
Z
5'h1F  
0
0
0
D15 D0  
Data  
> 32 "1's"  
Preamble  
Read  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 7-28. CL22 - Indirect Address Method – Data Read  
7.4.20 Provisionable XAUI Clock Tolerance Compensation  
The XAUI interface is defined to allow for separate clock domains on each side of the link. Though the  
reference clocks for two devices on a XAUI/KR link have the same specified frequencies, there are slight  
differences that, if not compensated for, will lead to over or under run of the FIFOs on the receive/transmit  
data paths.  
The XAUI CTC block performs the clock domain transition and rate compensation by utilizing a FIFO that  
is 32 deep and 40-bits wide. The usable FIFO size in the RX and TX directions is dependent upon the  
RX_FIFO_DEPTH and TX_FIFO_DEPTH MDIO fields, respectively. The word format is illustrated in  
Figure 7-29.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
39  
0
data_ln3_in[8:0]  
data_ln2_in[8:0]  
data_ln1_in[8:0]  
data_ln0_in[8:0]  
Figure 7-29. XAUI CTC FIFO Word Format  
The XAUI CTC performs one of the following operations to compensate the clock rate difference:  
1. Delete Idle column from the data stream  
2. Delete Sequence column from the data stream (enabled via MDIO)  
3. Insert Idle column to the data stream.  
The following rules apply for insertion/removal:  
Idle insertion/deletion occurs in groups of 4 idle characters (i.e., in columns)  
Idle characters are added following Idle or Sequence ordered_set  
Idle characters are not added while data is being received  
When deleting Idle characters, minimum IPG of 5 characters is maintained. /T/ characters are counted  
towards IPG.  
The first Idle column after /T/ is never deleted  
Sequence ordered_sets are deleted only when two consecutive Sequence columns are received. In  
this case, only one of the two Sequence columns will be deleted.  
7.4.20.1 Insertion:  
When the FIFO fill level is at or below LOW watermark (insertion is triggered), the XAUI CTC needs to  
insert an IDLE column. It does so by skipping a read from the FIFO and inserting IDLE column to the data  
stream. It continues the insertion until the FIFO fill level is above the mid point. This occurs on the read  
side of the FIFO.  
7.4.20.2 Removal:  
When the FIFO fill level is at or above HIGH watermark (deletion is triggered), the XAUI CTC needs to  
remove an IDLE column. It does so by skipping a write to the FIFO and discarding the IDLE column or  
Sequence ordered_set. It continues the deletion until the FIFO fill level is below the mid point. This occurs  
on the write side of the FIFO.  
On the write side of the XAUI CTC FIFO a 40-bit write is performed at every cycle of the 312.5 MHz clock  
except during removal when it discards the IDLE or sequence ordered_set. On the read side of the XAUI  
CTC FIFO a 40-bit read is performed at every cycle of the 312.5 MHz clock except during insertion when it  
generates IDLE columns to the output while not reading the FIFO at all.  
In IEEE 802.3-2008 the XAUI clock rate tolerance is given as 3.125 GHz ± 100 ppm, the XGMII clock rate  
tolerance is given as 156.25 MHz ± 0.02% (which is equivalent to 200ppm), and the Jumbo packet size is  
9600 bytes which is equivalent to 2400 cycles of 312.5 MHz clock. The average inter-frame gap is 12  
bytes (3 columns), which implies that there is one opportunity to insert/delete a column in between every  
packet on average. This gives one column deletion/insertion in every 2400 columns which results in a 400  
ppm tolerance capability. If the IPG increases, then more clock rate variance or larger packet size can be  
supported. Note that the maximum frequency tolerance is limited by the frequency accuracy requirement  
of the reference clock.  
48  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
The number of words in the FIFO (fifo_depth[2:0]) and the HIGH/LOW watermark levels (wmk_sel[1:0])  
are set through MDIO register 01.8001, and determine the allowable difference between the write clock  
and the read clock as well as the maximum packet size that can be processed without FIFO collision. At  
these watermarks the drop and insert start respectively and must happen before it hits overflow/underflow  
condition. Although the FIFO is supposed to never overflow/underflow given the average IPG, if it ever  
happens the overflow/underflow indications signal the error to the MDIO interface and the FIFO is reset.  
Note that the overflow/underflow status indications are latched high and cleared when read.  
Table 7-11 shows XAUI CTC FIFO configuration and capabilities:  
Table 7-11. XAUI CTC FIFO Configurations  
11  
10  
01  
00  
11  
10  
0x  
1x  
0x  
xx  
15  
13  
10  
6
18  
20  
23  
27  
14  
16  
19  
10  
12  
8
28  
28  
28  
28  
20  
20  
20  
13  
13  
9
16  
16  
16  
16  
12  
12  
12  
8
4
4
4
4
4
4
4
3
3
3
1
100KB 200KB 400KB 800KB  
10  
8
5
1
6
4
1
3
1
1
default  
80KB  
50KB  
10KB  
60KB  
40KB  
10KB  
30KB  
10KB  
10KB  
160KB 320KB 640KB  
100KB 200KB 400KB  
1xx  
32  
20KB  
40KB  
80KB  
11  
9
120KB 240KB 480KB  
011  
010  
24  
16  
80KB  
20KB  
60KB  
20KB  
20KB  
160KB 320KB  
40KB 80KB  
120KB 240KB  
6
7
5
8
40KB  
40KB  
80KB  
80KB  
001  
000  
12  
8
5
6
Plain FIFO, No CTC  
7
4
No limit on pkt size (needs 0 ppm to work)  
NOTE  
To support the max packet sizes as shown in Table 7-11, it is assumed that there are  
enough IDLE columns in IPG for deletion. Below is one example:  
Configure the FIFO to be 32-deep (fifo_depth[2:0] = 3’b1xx) and set the LOW/HIGH  
Watermarks to 10/23 (wmk_sel[1:0] = 2’b01). If the write clock is faster than the read  
clock by 200ppm, to support the max packet size of 100KB, a minimum of 5 removable  
columns in IPG is required (either IDLE columns or Sequence ordered_sets). If there are  
only 4 removable columns in IPG, the max packet size supported is dropped to 80KB. If  
there are only 3 removable columns in IPG, the max packet size supported is dropped to  
60KB, and so on. As a rule of thumb, one removable column in IPG corresponds to 10KB  
at 400ppm, 20KB at 200ppm, 40KB at 100ppm, and 80KB at 50ppm  
Figure 7-30 through Figure 7-40 illustrate XAUI CTC FIFO configuration and capabilities. The green region  
(the middle of the FIFO fill level) indicates that the FIFO is operating stability without insertion or deletion.  
The more green bars in the figure, the more clock wander it can tolerate. The more yellow bars in the  
figure, the bigger packet size it can support.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
32 words(fifo_depth=3'b1xx, wmk_sel=2'b00)  
40 bits  
Underflow  
Insert  
Overflow  
Drop  
HIGH Watermark  
LOW Watermark  
Figure 7-30. Organization of the XAUI CTC FIFO (32-Deep, Low Watermark)  
32 words(fifo_depth=3'b1xx, wmk_sel=2'b01)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
HIGH Watermark  
LOW Watermark  
Figure 7-31. Organization of the XAUI CTC FIFO (32-Deep, Mid Watermark)  
50  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
32 words(fifo_depth=3'b1xx, wmk_sel=2'b10)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
HIGH Watermark  
LOW Watermark  
Figure 7-32. Organization of the XAUI CTC FIFO (32-Deep, Mid-High Watermark)  
32 words(fifo_depth=3'b1xx, wmk_sel=2'b11)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
HIGH Watermark  
LOW Watermark  
Figure 7-33. Organization of the XAUI CTC FIFO (32-Deep, High Watermark)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
24words (fifo_depth=3'b011, wmk_sel=2'b0x)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
LOW Watermark  
HIGH Watermark  
Figure 7-34. Organization of the XAUI CTC FIFO (24-Deep, Low Watermark)  
24 words(fifo_depth=3'b011, wmk_sel=2'b10)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
LOW Watermark  
HIGH Watermark  
Figure 7-35. Organization of the XAUI CTC FIFO (24-Deep, Mid Watermark)  
24 words(fifo_depth=3'b011, wmk_sel=2'b11)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
LOW Watermark  
HIGH Watermark  
Figure 7-36. Organization of the XAUI CTC FIFO (24-Deep, High Watermark)  
52  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
16 words(fifo_depth=3'b010  
wmk_sel=2'b0x)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
HIGH Watermark  
LOW Watermark  
Figure 7-37. Organization of the XAUI CTC FIFO (16-Deep, Low Watermark)  
16 words(fifo_depth=3'b010  
wmk_sel=2'b1x)  
40 bits  
Underflow  
Overflow  
Insert  
Drop  
HIGH Watermark  
Figure 7-38. Organization of the XAUI CTC FIFO (16-Deep, High Watermark)  
LOW Watermark  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
12 words(ctc_depth=3'b001)  
40 bits  
Underflow  
Insert  
Overflow  
Drop  
HIGH Watermark  
LOW Watermark  
Figure 7-39. Organization of the XAUI CTC FIFO (12-Deep)  
8 words (ctc_depth=3'b000), no CTC  
40bits  
Underflow  
Overflow  
Figure 7-40. Organization of the XAUI CTC FIFO (8-Deep)  
54  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5 Register Maps  
7.5.1 Register Bit Definitions  
7.5.1.1 RW: Read-Write  
User can write 0 or 1 to this register bit. Reading this register bit returns the same value that has been  
written.  
7.5.1.2 RW/SC: Read-Write Self-Clearing  
User can write 0 or 1 to this register bit. Writing a "1" to this register creates a high pulse. Reading this  
register bit always returns 0.  
7.5.1.3 RO: Read-Only  
This register can only be read. Writing to this register bit has no effect. Reading from this register bit  
returns its current value.  
7.5.1.4 RO/LH: Read-Only Latched High  
This register can only be read. Writing to this register bit has no effect. Reading a "1" from this register bit  
indicates that either the condition is occurring or it has occurred since the last time it was read. Reading a  
"0" from this register bit indicates that the condition is not occurring presently, and it has not occurred  
since the last time the register was read. A latched high register, when read high, should be read again to  
distinguish if a condition occurred previously or is still occurring. If it occurred previously, the second read  
will read low. If it is still occurring, the second read will read high. Reading this register bit automatically  
resets its value to 0.  
7.5.1.5 RO/LL: Read-Only Latched Low  
This register can only be read. Writing to this register bit has no effect. Reading a "0" from this register bit  
indicates that either the condition is occurring or it has occurred since the last time it was read. Reading a  
"1" from this register bit indicates that the condition is not occurring presently, and it has not occurred  
since the last time the register was read. A latched low register, when read low, should be read again to  
distinguish if a condition occurred previously or is still occurring. If it occurred previously, the second read  
will read high. If it is still occurring, the second read will read low. Reading this register bit automatically  
sets its value to 1.  
7.5.1.6 COR: Clear-On-Read  
This register can only be read. Writing to this register bit has no effect. Reading from this register bit  
returns its current value, then resets its value to 0. Counter value freezes at Max.  
Following code letters in Name field of each control/status register bit(s) indicate the mode that they are  
applicable/valid.  
R = Indicates control/status bit(s) valid in 10GKR mode  
X = Indicates control/status bit(s) valid in 1GKX mode  
G = Indicates control/status bit(s) valid in 10G general purpose serdes mode  
7.5.2 Vendor Specific Device Registers  
Below registers can be accessed directly through Clause 22 and Clause 45. In Clause 45 mode, these  
registers can be accessed by setting device address field to 0x1E (DA[4:0] = 5’b11110). In Clause 22  
mode, these registers can be accessed by setting 5 bit register address field to same value as 5 LSB bits  
of Register Address field specified for each register. For example, 16 bit register address 0x001C in  
clause 45 mode can be accessed by setting register address field to 5’h1C in clause 22 mode.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.1 GLOBAL_CONTROL_1 (register: 0x0000) (default: 0x0610) (device address: 0x1E)  
Figure 7-41. GLOBAL_CONTROL_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
GLOBAL_RESET  
(RXG)  
PRTAD0_PIN_EN_SEL[2:0]  
(RXG)  
RESERVED  
RESERVED  
R/W  
7
R/W  
5
R/W  
3
R/W  
1
6
4
2
PRTAD0_  
PIN_EN  
(RXG)  
PRBS_PASS_OVERLAY[4:0]  
(RXG)  
RESERVED  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-12. GLOBAL_CONTROL_1 Field Description  
Bit  
Field  
Type  
Reset  
Description  
15  
GLOBAL_RESET  
(RXG)  
R/W  
(1)Global reset.  
0 = Normal operation (Default 1’b0)  
1 = Resets TX and RX data path including MDIO registers. Equivalent to asserting  
RESET_N.  
14:12 PRTAD0_PIN_EN_SEL[2:0]  
(RXG)  
R/W  
PRTAD0 pin selection control. Valid only when 1E.0000 bit 5 is 1. PRTAD0 is used for the  
assignment specified below  
000 = Stopwatch (Default 3’b000)  
001 = Reserved  
010 = Tx data switch  
011 = Rx data switch  
100 = Reserved  
101 = Reserved  
11x = Reserved  
11  
Reserved  
(RXG)  
Reserved  
For TI use only. Always reads 0.  
10:7  
6
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
For TI use only (Default 5’b1100)  
For TI use only. Always reads 0.  
5
PRTAD0_PIN_EN  
(RXG)  
PRTAD0 pin enable control.  
0 = Input pin (PRTAD0) is used for the assignment specified in 1E.0000 bits 14:12 (Default  
1’b0)  
1 = Input pin (PRTAD0) is not used for the assignment specified in 1E.0000 bits 14:12  
4:0  
PRBS_PASS_OVERLAY[4:0]  
(RXG)  
R/W  
PRBS_PASS pin status selection. Applicable only when PRBS test pattern verification is  
enabled on HS side or LS side. PRBS_PASS pin reflects PRBS verification status on  
HS/LS side. LS Serdes lanes 1/2/3 are not applicable in 1GKX modes.  
1xx00 = PRBS_PASS reflects HS serdes PRBS verification. If PRBS verification fails on HS  
serdes, PRBS_PASS will be asserted low. (Default 5’b10000)  
00000 = Status from HS Serdes side  
00001 = Reserved  
000x1 = Reserved  
00100 = Status from LS Serdes side Lane 0  
00101 = Status from LS Serdes side Lane 1  
00110 = Status from LS Serdes side Lane 2  
00111 = Status from LS Serdes side Lane 3  
01000 = Reserved  
01001 = Reserved  
0101x = Reserved  
01100 = Reserved  
01101 = Reserved  
01110 = Reserved  
01111 = Reserved  
(1) After reset bit is set to one, it automatically sets itself back to zero on the next MDC clock cycle.  
56  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.2 CHANNEL_CONTROL_1 (register: 0x0001) (default: 0x0B00) (device address: 0x1E)(1)  
(1) This global register is channel independent.  
Figure 7-42. CHANNEL_CONTROL_1 Register  
15  
14  
13  
12  
11  
10  
9
8
LT_TRAINING_ 10G_RX_MOD 10G_TX_MOD  
SW_DEV_MOD 10G_RX_DEM 10G_TX_MUX_  
POWERDOWN  
(RXG)  
SW_PCS_SEL  
(RX)  
CONTROL  
(XG)  
E_SEL  
(G)  
E_SEL  
(G)  
E_SEL  
(RXG)  
UX_SEL  
(G)  
SEL  
(G)  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
REFCLK_SW_ LS_REFCLK_S  
RESERVED  
SEL  
EL  
(RXG)  
(RXG)  
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-13. CHANNEL_CONTROL_1 Field Description  
Bit  
Field  
Type  
Reset Description  
15  
POWERDOWN  
(RXG)  
R/W  
Setting this bit high powers down entire data path with exception that MDIO interface stays  
active.  
0 = Normal operation (Default 1’b0)  
1 = Power Down mode is enabled.  
14  
13  
12  
11  
LT_TRAINING_CONTROL  
(XG)  
R/W  
R/W  
R/W  
R/W  
Link training control. Valid in 10G and 1GKX modes only.  
0 = Link training disabled(Default 1’b0)  
1 = Link training enable control dependent on LT_TRAINING_ENABLE (1E.0036 bit 1).  
10G_RX_MODE_SEL  
(G)  
RX mode selection. Valid in 10G only.  
0 = RX mode dependent upon RX_DEMUX_SEL(Default 1’b0)  
1 = Enables 1 to 1 mode on receive channel.  
10G_TX_MODE_SEL  
(G)  
TX mode selection Valid in 10G only.  
0 = TX mode dependent upon TX_MUX_SEL (Default 1’b0)  
1 = Enables 1 to 1 mode on transmit channel.  
SW_PCS_SEL  
(RX)  
Applicable in Clause 45 mode only. Valid only when MODE_SEL pin is 0, AN_ENABLE  
(07.0000 bit 12) is 0 and SW_DEV_MODE_SEL (1E.0001 bit 10) is 0.  
0 = Set device to 10G-KR mode(Default 1’b1)  
1 = Set device to 1G-KX mode  
10  
9
SW_DEV_MODE_SEL  
(RXG)  
R/W  
R/W  
R/W  
Valid only when MODE_SEL pin is 0  
0 = Device set to 10G mode  
1 = In clause 45 mode, device mode is set using Auto negotiation. In clause 22 mode, device  
set to 1G-KX mode(Default 1’b0)  
10G_RX_DEMUX_SEL  
(G)  
RX De-Mux selection control for lane de-serialization on receive channel. Valid in 10G and  
when 10G_RX_MODE_SEL (1E.0001 bit 13) is LOW  
0 = 1 to 2  
1 = 1 to 4 (Default 1’b1)  
8
10G_TX_MUX_SEL  
(G)  
TX Mux selection control for lane serialization on transmit channel. Valid in 10G and when  
10G_TX_MODE_SEL (1E.0001 bit 12) is LOW  
0 = 2 to 1  
1 = 4 to 1 (Default 1’b1)  
7:2  
1
RESERVED  
R/O  
R/W  
For TI use only  
REFCLK_SW_SEL  
(RXG)  
HS Reference clock selection.  
0 = Selects REFCLK_0_P/N as clock reference to HS side serdes macro(Default 1’b0)  
1 = Selects REFCLK_1_P/N as clock reference to HS side serdes macro  
0
LS_REFCLK_SEL  
(RXG)  
R/W  
LS Reference clock selection.  
0 = LS side serdes macro reference clock is same as HS side serdes reference clock (E.g. If  
REFCLK_0_P/N is selected as HS side serdes macro reference clock, REFCLK_0_P/N is  
selected as LS side serdes macro reference clock and vice versa) (Default 1’b0)  
1 = Alternate reference clock is selected as clock reference to LS side serdes macro (E.g. If  
REFCLK_0_P/N is selected as HS side serdes macro reference clock, REFCLK_1_P/N is  
selected as LS side serdes macro reference clock and vice versa)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
57  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.3 HS_SERDES_CONTROL_1 (register: 0x0002 ) (default: 0x831D) (device address: 0x1E)  
Figure 7-43. HS_SERDES_CONTROL_1 Register  
15  
14  
13  
12  
11  
10  
9
8
HS_LOOP_BANDWIDTH[1:0]  
(RXG)  
RESERVED  
R/W  
R/W  
7
6
5
4
3
2
1
0
HS_VRANGE  
(RXG  
HS_ENPLL  
(RXG)  
HS_PLL_MULT[3:0]  
(RXG)  
RESERVED  
R/W  
RESERVED  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-14. HS_SERDES_CONTROL_1 Field Description  
Bit  
15:10  
9:8  
Field  
Type  
Reset Description  
For TI use only (Default 6’b100000)  
HS_LOOP_BANDWIDTH[1:0]  
(RXG)  
R/W  
HS Serdes PLL Loop Bandwidth settings  
00 = Medium Bandwidth  
01 = Low Bandwidth  
10 = High Bandwidth  
11 = Ultra High Bandwidth. (Default 2'b11)  
7
6
RESERVED  
R/W  
R/W  
For TI use only (Default 1’b0)  
HS_VRANGE  
(RXG)  
HS Serdes PLL VCO range selection.  
0 = VCO runs at higher end of frequency range (Default 1’b0)  
1 = VCO runs at lower end of frequency range  
This bit needs to be set HIGH if VCO frequency (REFCLK *HS_PLL_MULT) is below 2.5  
GHz.  
5
4
RESERVED  
R/W  
R/W  
For TI use only (Default 1’b0)  
HS_ENPLL  
(RXG)  
HS Serdes PLL enable control. HS Serdes PLL is automatically disabled when  
PD_TRXx_N is asserted LOW or when register bit 1E.0001 bit 15 is set HIGH.  
0 = Disables PLL in HS serdes  
1 = Enables PLL in HS serdes (Default 1’b1)  
3:0  
HS_PLL_MULT[3:0]  
(RXG)  
R/W  
HS Serdes PLL multiplier setting (Default 4’b1101).  
Refer : Table 7-15 HS PLL multiplier control  
Table 7-15. HS PLL Multiplier Control  
HS_PLL_MULT[3:0]  
HS_PLL_MULT[3:0]  
PLL Multiplier factor  
Value  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
PLL Multiplier factor  
Value  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Reserved  
Reserved  
4x  
12x  
12.5x  
15x  
5x  
16x  
6x  
16.5x  
20x  
8x  
8.25x  
10x  
25x  
Reserved  
58  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.4 HS_SERDES_CONTROL_2 (register: 0x0003) (default: 0xA848) (device address: 0x1E)  
Figure 7-44. HS_SERDES_CONTROL_2 Register  
15  
14  
13  
12  
11  
10  
9
8
HS_SWING[3:0]  
HS_ENTX  
(RXG)  
HS_EQHLD  
(RXG)  
HS_RATE_TX [1:0]  
(RXG)  
(RXG)  
R/W  
R/W  
3
R/W  
2
R/W  
7
6
5
4
1
0
HS_AGCCTRL[1:0]  
(RXG  
HS_AZCAL[1:0]  
HS_ENRX  
(RXG)  
HS_RATE_RX [2:0]  
(RXG)  
(RXG)  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-16. HS_SERDES_CONTROL_2 Field Description  
Bit  
Field  
Type  
Reset Description  
15:12  
HS_SWING[3:0]  
(RXG)  
R/W  
Transmitter Output swing control for HS Serdes. (Default 4’b1010)  
Refer Table 7-17.  
11  
HS_ENTX  
(RXG)  
R/W  
HS Serdes transmitter enable control. HS Serdes transmitter is automatically disabled  
when PD_TRXx_N is asserted LOW or when register bit 1E.0001 bit 15 is set HIGH.  
0 = Disables HS serdes transmitter  
1 = Enables HS serdes transmitter (Default 1’b1)  
10  
HS_EQHLD  
(RXG)  
R/W  
R/W  
HSRX Equalizer hold control.  
0 = Normal operation (Default 1’b0)  
1 = Holds equalizer and long tail correction in its current state  
9:8  
HS_RATE_TX [1:0]  
(RXG)  
HS Serdes TX rate settings.  
00 = Full rate (Default 2’b00)  
01 = Half rate  
10 = Quarter rate  
11 = Eighth rate  
7:6  
HS_AGCCTRL[1:0]  
(RXG)  
R/W  
Adaptive gain control loop.  
00 = Attenuator will not change after lock has been achieved, even if AGC becomes  
unlocked  
01 = Attenuator will not change when in lock state, but could change when AGC becomes  
unlocked (Default 2’b01)  
10 = Force the attenuator off  
11 = Force the attenuator on  
5:4  
3
HS_AZCAL[1:0]  
(RXG)  
R/W  
R/W  
R/W  
Auto zero calibration.  
00 = Auto zero calibration initiated when receiver is enabled (Default 2’b00)  
01 = Auto zero calibration disabled  
10 = Forced with automatic update.  
11 = Forced without automatic update  
HS_ENRX  
(RXG)  
HS Serdes receiver enable control.  
HS Serdes receiver is automatically disabled when PD_TRXx_N is asserted LOW or when  
register bit 1E.0001 bit 15 is set HIGH.  
0 = Disables HS serdes receiver  
1 = Enables HS serdes receiver (Default 1’b1)  
2:0  
HS_RATE_RX [2:0]  
(RXG)  
HS Serdes RX rate settings. This setting is automatically controlled and value set through  
these register bits is ignored unless REFCLK_FREQ_SEL_1 or related OVERRIDE bit is  
set.  
000 = Full rate (Default 3’b000)  
001 = Half rate  
110 = Quarter rate  
111 = Eighth rate  
001 = Reserved  
01x = Reserved  
100 = Reserved  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 7-17. HSTX AC Mode Output Swing Control  
HS_SWING[3:0]  
AC MODE  
TYPICAL AMPLITUDE (mVdfpp)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
130  
220  
300  
390  
480  
570  
660  
750  
830  
930  
1020  
1110  
1180  
1270  
1340  
1400  
7.5.2.5 HS_SERDES_CONTROL_3 (register: 0x0004) (default: 0x1500) (device address: 0x1E)  
Figure 7-45. HS_SERDES_CONTROL_3 Register  
15  
14  
13  
12  
11  
10  
9
8
HS_ENTRACK  
(RXG)  
HS_EQPRE[2:0]  
(RXG)  
HS_CDRFMULT[1:0]  
(RXG)  
HS_CDRTHR[1:0]  
(RXG)  
R/W  
7
R/W  
5
R/W  
R/W  
6
4
3
2
1
0
HS_PEAK_DIS HS_H1CDRMO  
HS_TWCRF[4:0]  
(RXG)  
RESERVED  
R/W  
ABLE  
DE  
(RXG)  
(RXG)  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-18. HS_SERDES_CONTROL_3 Field Description  
Bit  
Field  
Type  
Reset Description  
15  
HS_ENTRACK  
(RXG)  
R/W  
HSRX ADC Track mode.  
0 = Normal operation (Default 1’b0)  
1 = Forces ADC into track mode  
14:12 HS_EQPRE[2:0]  
(RXG)  
R/W  
Serdes Rx precursor equalizer selection  
000 = 1/9 cursor amplitude  
001 = 3/9 cursor amplitude (Default 3’b001)  
010 = 5/9 cursor amplitude  
011 = 7/9 cursor amplitude  
100 = 9/9 cursor amplitude  
101 = 11/9 cursor amplitude  
110 = 13/9 cursor amplitude  
111 = Disable  
11:10 HS_CDRFMULT[1:0]  
(RXG)  
R/W  
R/W  
Clock data recovery algorithm frequency multiplication selection (Default 2'b01)  
00 =First order. Frequency offset tracking disabled  
01 = Second order. 1x mode  
10 = Second order. 2x mode  
11 = Reserved  
9:8  
HS_CDRTHR[1:0]  
(RXG)  
Clock data recovery algorithm threshold selection (Default 2'b01)  
00 = Four vote threshold  
01 = Eight vote threshold  
10 = Sixteen vote threshold  
11 = Thirty two vote threshold  
60  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Table 7-18. HS_SERDES_CONTROL_3 Field Description (continued)  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset Description  
For TI use only (Default 1’b0)  
RESERVED  
6
HS_PEAK_DISABLE  
(RXG)  
HS Serdes PEAK_DISABLE control  
0 = Normal operation (Default 1’b0)  
1 = Disables high frequency peaking. Suitable for <6 Gbps operation  
5
HS_H1CDRMODE  
(RXG)  
R/W  
R/W  
HS_Serdes H1CDRMODE control  
0 = Normal operation (Default 1’b0)  
1 = Enables CDR mode suitable for short channel operation.  
4:0  
HS_TWCRF[4:0]  
(RXG)  
Cursor Reduction Factor (Default 5’b00000). Refer to Table 7-19  
Table 7-19. HSTX Cursor Reduction Factor Weights  
HS_TWCRF[4:0]  
Value  
HS_TWCRF[4:0]  
Value  
Cursor reduction (%)  
Cursor reduction (%)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
0
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
17  
20  
22  
25  
27  
30  
32  
35  
37  
40  
42  
45  
47  
50  
52  
55  
2.5  
5.0  
7.5  
10.0  
12  
15  
Reserved  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.6 HS_SERDES_CONTROL_4 (register: 0x0005) (default: 0x2000) (device address: 0x1E)  
Figure 7-46. HS_SERDES_CONTROL_4 Register  
15  
14  
13  
12  
11  
10  
9
8
0
HS_RX_  
INVPAIR  
(RXG)  
HS_TX_  
INVPAIR  
(RXG)  
HS_TWPOST1[4:0]  
(RXG)  
RESERVED  
R/W  
7
R/W  
6
R/W  
5
R/W  
2
4
3
1
HS_TWPRE[3:0]  
HS_TWPOST2[3:0]  
(RXG)  
(RXG)  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-20. HS_SERDES_CONTROL_4 Field Description  
Bit  
Field  
Type  
Reset Description  
15  
HS_RX_INVPAIR  
(RXG)  
R/W  
Receiver polarity.  
0 = Normal polarity. HSRXxP considered positive data. HSRXxN considered negative data  
(Default 1’b0)  
1 = Inverted polarity. HSRXxP considered negative data. HSRXxN considered positive  
data  
14  
HS_TX_INVPAIR  
(RXG)  
R/W  
Transmitter polarity.  
0 = Normal polarity. HSTXxP considered positive data and HSTXxN considered negative  
data (Default 1’b0)  
1 = Inverted polarity. HSTXxP considered negative data and HSTXxN considered positive  
data  
13  
RESERVED  
R/W  
R/W  
For TI use only (Default 1’b1)  
12:8  
HS_TWPOST1[4:0]  
(RXG)  
Adjacent post cursor1 Tap weight. Selects TAP settings for TX waveform.  
(Default 5’b00000 ) Refer Table 7-21.  
7:4  
3:0  
HS_TWPRE[3:0]  
(RXG)  
R/W  
R/W  
Precursor Tap weight. Selects TAP settings for TX waveform.  
(Default 4’b0000) Refer Table 7-23.  
HS_TWPOST2[3:0]  
(RXG)  
Adjacent post cursor2 Tap weight. Selects TAP settings for TX waveform. (Default  
4’b0000) Refer Table 7-22.  
62  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Table 7-21. HSTX Post-Cursor1 Transmit Tap Weights  
HS_TWPOST1[4:0]  
Tap weight (%)  
HS_TWPOST1[4:0]  
Tap weight (%)  
Value  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
Value  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
0
0
+2.5  
–2.5  
+5.0  
–5.0  
+7.5  
–7.5  
+10.0  
+12.5  
+15.0  
+17.5  
+20.0  
+22.5  
+25.0  
+27.5  
+30.0  
+32.5  
+35.0  
+37.5  
–10.0  
–12.5  
–15.0  
–17.5  
–20.0  
–22.5  
–25.0  
–27.5  
–30.0  
–32.5  
–35.0  
-37.5  
Table 7-22. HSTX Post-Cursor2 Transmit Tap Weights  
HS_TWPOST2[3:0]  
Tap weight (%)  
HS_TWPOST2[3:0]  
Value  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Value  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Tap weight (%)  
0
0
+2.5  
–2.5  
+5.0  
–5.0  
+7.5  
–7.5  
+10.0  
+12.5  
+15.0  
+17.5  
–10.0  
–12.5  
–15.0  
–17.5  
Table 7-23. HSTX Pre-Cursor Transmit Tap Weights  
HS_TWPRE[3:0]  
Tap weight (%)  
HS_TWPRE[3:0]  
Tap weight (%)  
Value  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Value  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
0
+2.5  
–2.5  
+5.0  
–5.0  
+7.5  
–7.5  
+10.0  
+12.5  
+15.0  
+17.5  
–10.0  
–12.5  
–15.0  
–17.5  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.7 LS_SERDES_CONTROL_1 (register: 0x0006) (default: 0xF115) (device address: 0x1E)  
Figure 7-47. LS_SERDES_CONTROL_1 Register  
15  
14  
13  
12  
11  
10  
9
8
LS_LN_CFG_EN[3:0]  
(RXG)  
LS_LOOP_BANDWIDTH[1:0]  
(RXG)  
RESERVED  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
LS_ENPLL  
(RXG)  
LS_MPY[3:0]  
(RXG)  
RESERVED  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-24. LS_SERDES_CONTROL_1 Field Description  
Bit  
Field  
Type Reset Description  
15:12 LS_LN_CFG_EN[3:0]  
(RXG)  
R/W  
Configuration control for LS Serdes Lane settings (Default 4’b1111)  
[3] corresponds to LN3, [2] corresponds to LN2  
[1] corresponds to LN1, [0] corresponds to LN0  
0 = Writes to LS_SERDES_CONTROL_2 and LS_SERDES_CONTROL_3 and  
LS_CH_CONTROL_1 control registers do not affect respective LS Serdes lane  
1 = Writes to LS_SERDES_CONTROL_2 and LS_SERDES_CONTROL_3 and  
LS_CH_CONTROL_1 control registers affect respective LS Serdes lane  
For example, if subsequent writes to LS_SERDES_CONTROL_2 and  
LS_SERDES_CONTROL_3 and LS_CH_CONTROL_1 registers need to affect the settings in  
Lanes 0 and 1, LS_LN_CFG_EN[3:0] should be set to 4’b0011  
Read values in LS_SERDES_CONTROL_2 and LS_SERDES_CONTROL_3 and  
LS_CH_CONTROL_1 reflect the settings value for Lane selected through  
LS_LN_CFG_EN[3:0].  
To read Lane 0 settings, LS_LN_CFG_EN[3:0] should be set to 4’b0001  
To read Lane 1 settings, LS_LN_CFG_EN[3:0] should be set to 4’b0010  
To read Lane 2 settings, LS_LN_CFG_EN[3:0] should be set to 4’b0100  
To read Lane 3 settings, LS_LN_CFG_EN[3:0] should be set to 4’b1000  
Read values of LS_SERDES_CONTROL_2 and LS_SERDES_CONTROL_3 and  
LS_CH_CONTROL_1 registers are not valid for any other LS_LN_CFG_EN[3:0] combination  
11:10 RESERVED  
R/W  
R/W  
For TI use only (Default 2’b00)  
9:8  
LS_LOOP_BANDWIDTH[1:0]  
LS Serdes PLL Loop Bandwidth settings  
00 = Reserved  
(RXG)  
01 = Applicable when external JC_PLL is NOT used (Default 2’b01)  
10 = Applicable when external JC_PLL is used  
11 = Reserved  
7:5  
4
RESERVED  
R/W  
R/W  
For TI use only (Default 3’b000)  
LS_ENPLL  
(RXG)  
LS Serdes PLL enable control. LS Serdes PLL is automatically disabled when PD_TRXx_N  
is asserted LOW or when register bit 1E.0001 bit 15 is set HIGH.  
0 = Disables PLL in LS serdes  
1 = Enables PLL in LS serdes (Default 1’b1)  
3:0  
LS_MPY[3:0]  
(RXG)  
R/W  
LS Serdes PLL multiplier setting (Default 4’b0101).  
Refer 10GKR supported rates for valid PLL Multiplier values.  
Refer to Table 7-25.  
Table 7-25. LS PLL Multiplier Control  
LS_MPY[3:0]  
LS_MPY[3:0]  
Value  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
PLL Multiplier factor  
Value  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
PLL Multiplier factor  
4x  
5x  
15x  
20x  
6x  
25x  
Reserved  
8x  
Reserved  
Reserved  
50x  
10x  
12x  
65x  
12.5x  
Reserved  
64  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.8 LS_SERDES_CONTROL_2 (register: 0x0007) (default: 0xDC04) (device address: 0x1E)  
Figure 7-48. LS_SERDES_CONTROL_2 Register  
15  
14  
13  
12  
11  
10  
9
8
LS_SWING[2:0]  
(RXG)  
LS_LOS  
(RXG)  
LS_TX_ENRX  
(RXG)  
LS_TX_RATE [1:0]  
(RXG)  
RESERVED  
R/W  
7
R/W  
5
R/W  
3
R/W  
2
R/W  
6
4
1
0
LS_DE[3:0]  
(RXG)  
LS_RX_ENTX  
(RXG)  
LS_RX_RATE [1:0]  
(RXG)  
RESERVED  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-26. LS_SERDES_CONTROL_2 Field Description  
Bit  
Field  
Type  
R/W  
R/W  
Reset Description  
15  
RESERVED  
For TI use only.  
14:12 LS_SWING[2:0]  
(RXG)  
Output swing control on LS Serdes side. (Default 3’b101)  
Refer to Table 7-27.  
11  
LS_LOS  
(RXG)  
R/W  
R/W  
LS Serdes LOS detector control  
0 = Disable Loss of signal detection on LS serdes lane inputs  
1 = Enable Loss of signal detection on LS serdes lane inputs (Default 1’b1)  
10  
LS_TX_ENRX  
(RXG)  
LS Serdes enable control on the transmit channel. LS Serdes per lane on transmitter channel  
is automatically disabled when PD_TRXx_N is asserted LOW or when register bit 1E.0001 bit  
15 is set HIGH. Lanes 3 and 2 are automatically disabled when in 2ln 10G mode on transmit  
channel. Lanes 3, 2 and 1 are automatically disabled when in 1ln 10G mode or 1G-KX mode  
on transmit channel.  
0 = Disables LS serdes lane  
1 = Enables LS serdes lane (Default 1’b1)  
9:8  
7:4  
LS_TX_RATE [1:0]  
(RXG)  
R/W  
R/W  
LS Serdes lane rate settings on transmit channel.  
00 = Full rate (Default 2’b00)  
01 = Half rate  
10 = Quarter rate  
11 = Reserved  
LS_DE[3:0]  
(RXG)  
LS Serdes De-emphasis settings. (Default 4’b0000)  
Refer to Table 7-28.  
3
2
RESERVED  
R/W  
R/W  
For TI use only.  
LS_RX_ENTX  
(RXG)  
LS Serdes lane enable control on receive channel. LS Serdes per lane on receiver channel is  
automatically disabled when PD_TRXx_N is asserted LOW or when register bit 1E.0001 bit  
15 is set HIGH. Lanes 3 and 2 are automatically disabled when in 2ln 10G mode on receive  
channel. Lanes 3, 2 and 1 are automatically disabled when in 1ln 10G or 1G-KX mode on  
receive channel.  
0 = Disables LS serdes lane  
1 = Enables LS serdes lane (Default 1’b1)  
1:0  
LS_RX_RATE [1:0]  
(RXG)  
R/W  
LS Serdes lane rate settings on receive channel.  
00 = Full rate (Default 2’b00)  
01 = Half rate  
10 = Quarter rate  
11 = Reserved  
Table 7-27. LSRX Output AC Mode Output Swing Control  
LS_SWING[2:0]  
AC MODE  
TYPICAL AMPLITUDE (mVdfpp)  
000  
001  
010  
011  
100  
101  
110  
111  
190  
380  
560  
710  
850  
950  
1010  
1050  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 7-28. LSRX Output De-emphasis  
LS_DE[3:0]  
Amplitude reduction  
LS_DE[3:0]  
Value  
Value  
Amplitude reduction  
(%)  
0
dB  
(%)  
dB  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
38.08  
42.85  
47.61  
52.38  
57.14  
61.9  
–4.16  
–4.86  
–5.61  
–6.44  
–7.35  
–8.38  
–9.54  
–10.87  
4.76  
9.52  
14.28  
19.04  
23.8  
28.56  
33.32  
–0.42  
–0.87  
–1.34  
–1.83  
–2.36  
–2.92  
–3.52  
66.66  
71.42  
7.5.2.9 LS_SERDES_CONTROL_3 (register: 0x0008) (default: 0x000D) (device address: 0x1E)  
Figure 7-49. LS_SERDES_CONTROL_3 Register  
15  
14  
13  
12  
11  
10  
9
8
0
LS_RX_  
INVPAIR  
(RXG)  
LS_TX_  
INVPAIR  
(RXG)  
LS_EQ[3:0]  
(RXG)  
RESERVED  
R/W  
R/W  
7
R/W  
6
R/W  
5
4
3
2
1
RESERVED  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-29. LS_SERDES_CONTROL_3 Field Description  
Bit  
Field  
Type  
Reset Description  
15  
LS_RX_INVPAIR  
(RXG)  
R/W  
LS Serdes lane outputs polarity on the receive channel. (y = Lane 0 or 1 or 2 or 3)  
0 = Normal polarity. OUTAyP considered positive data. OUTxyN considered negative data  
(Default 1’b0)  
1 = Inverted polarity. OUTAyP considered negative data. OUTxyN considered positive data  
14  
LS_TX_INVPAIR  
(RXG)  
R/W  
LS Serdes lane inputs polarity on the transmit channel. (y = Lane 0 or 1 or 2 or 3)  
0 = Normal polarity. INAyP considered positive data and INAyN considered negative data (Default  
1’b0)  
1 = Inverted polarity. INAyP considered negative data and INAyP considered positive data  
13:12 RESERVED  
R/W  
R/W  
For TI use only (Default 2’b00)  
11:8  
LS_EQ[3:0]  
(RXG)  
LS Serdes Equalization control (Default 4’b0000). Table 7-30  
7:0  
RESERVED  
R/W  
For TI use only (Default 8'b00001101)  
Table 7-30. LS_EQ Serdes Equalization  
LS_EQ[3:0]  
LS_EQ[3:0]  
Low Freq Gain  
Adaptive  
Value  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Low Freq Gain  
Zero Freq  
Value  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Zero Freq  
365 MHz  
275 MHz  
195 MHz  
140 MHz  
105 MHz  
75 MHz  
Maximum  
Adaptive  
Reserved  
55 MHz  
50 MHz  
66  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.10 HS_OVERLAY_CONTROL (register: 0x0009) (default: 0x0380) (device address: 0x1E)  
Figure 7-50. HS_OVERLAY_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
0
LS_OK_OUT_GATE[1:0]  
(G)  
LS_OK_IN_GATE[1:0]  
(G)  
RESERVED  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
HS_INVALID_ HS_AGCLOCK  
HS_LOS_  
MASK  
(G)  
HS_CH_SYNC  
_OVERLAY  
(RXG)  
HS_AZDONE_ HS_PLL_LOCK  
HS_LOS_  
OVERLAY  
(RXG)  
CODE_  
OVERLAY  
(RXG)  
_
RESERVED  
R/W  
OVERLAY  
(RXG)  
_OVERLAY  
(RXG)  
OVERLAY  
(RXG)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-31. HS_OVERLAY_CONTROL Field Description  
Bit  
Field  
Type  
Reset Description  
LS_OK_OUT_A gating control  
15:14 LS_OK_OUT_GATE[1:0]  
(G)  
R/W  
X0  
01  
11  
Gating disabled (Default 2’b00)  
Gating enabled. LS_OK_OUT_A gated to LOW  
Gating enabled. LS_OK_OUT_A gated to HIGH  
LS_OK_IN_A gating control  
13:12 LS_OK_IN_GATE[1:0]  
(G)  
R/W  
X0  
01  
11  
Gating disabled (Default 2’b00)  
Gating enabled.LS_OK_IN_A gated to LOW  
Gating enabled.LS_OK_IN_A gated to HIGH  
For TI use only. (Default 4’b0011)  
11:8  
7
RESERVED  
R/W  
R/W  
HS_LOS_MASK  
(G)  
0
1
HS Serdes LOS status is used to generate HS channel synchronization status. If HS  
Serdes indicates LOS, channel synchronization indicates synchronization is not  
achieved  
HS Serdes LOS status is not used to generate HS channel synchronization status  
(Default 1’b1)  
6
5
RESERVED  
R/W  
R/W  
For TI use only. Always reads 0.  
HS_CH_SYNC_OVERLAY  
(RXG)  
0
1
0
1
0
1
0
LOSA pin does not reflect receive channel loss of block lock (Default 1’b0)  
Allows channel loss of block lock to be reflected on LOSA pin  
LOSA pin does not reflect receive channel invalid code word error (Default 1’b0)  
Allows invalid code word error to be reflected on LOSA pin  
0 = LOSA pin does not reflect HS Serdes AGC unlock status (Default 1’b0)  
Allows HS Serdes AGC unlock status to be reflected on LOSApin  
4
3
2
HS_INVALID_CODE_OVERLAY  
(RXG)  
R/W  
R/W  
R/W  
HS_AGCLOCK_OVERLAY  
(RXG)  
HS_AZDONE_OVERLAY  
(RXG)  
LOSA pin does not reflect HS Serdes auto zero calibration not done status (Default  
1’b0)  
1
0
1
0
1
Allows auto zero calibration not done status to be reflected on LOSA pin  
LOSA pin does not reflect loss of HS Serdes PLL lock status (Default 1’b0)  
Allows HS Serdes loss of PLL lock status to be reflected onLOSApin  
LOSA pin does not reflect HS Serdes Loss of signal condition (Default 1’b0)  
Allows HS Serdes Loss of signal condition to be reflected on LOSA pin  
1
0
HS_PLL_LOCK_OVERLAY  
(RXG)  
R/W  
R/W  
R/W  
HS_LOS_OVERLAY  
(RXG)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.11 LS_OVERLAY_CONTROL (register: 0x000A) (default: 0x4000)  
(device address: 0x1E)  
Figure 7-51. LS_OVERLAY_CONTROL Register  
15  
7
14  
13  
12  
11  
10  
9
8
0
LS_PLL_LOCK  
_OVERLAY  
(RXG)  
LS_CH_SYNC_OVERLAY_LN[3:0]  
(RXG)  
RESERVED  
R/W  
6
R/W  
4
R/W  
5
3
2
1
LS_INVALID_CODE_OVERLAY_LN[3:0]  
(RXG)  
LS_LOS_OVERLAY_LN[3:0]  
(RXG)  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-32. LS_OVERLAY_CONTROL Field Description  
Bit  
Field  
Type Reset Description  
15:13 RESERVED  
R/W  
R/W  
For TI use only (Default 3’b010)  
12  
LS_PLL_LOCK_OVERLAY  
0
1
LOSA pin does not reflect loss of LS SERDES PLL lock status  
(Default 1’b0)  
(RXG)  
Allows LS SERDES loss of PLL lock status to be reflected on LOSA  
pin  
11:8  
LS_CH_SYNC_OVERLAY_LN[3:0]  
(RXG)  
R/W  
R/W  
[3] Corresponds to Lane 3, [2] Corresponds to Lane 2  
[1] Corresponds to Lane 1, [0] Corresponds to Lane 0  
0
1
0
0
1
LOSA pin does not reflect LS Serdes lane loss of synchronization  
condition (Default 1’b0)  
Allows LS Serdes lane loss of synchronization condition to be  
reflected on LOSA pin  
7:4  
3:0  
LS_INVALID_CODE_OVERLAY_LN[3:0]  
(RXG)  
[3] Corresponds to Lane 3, [2] Corresponds to Lane 2  
[1] Corresponds to Lane 1, [0] Corresponds to Lane 0  
LOSA pin does not reflect LS Serdes lane invalid code condition  
(Default 1’b0)  
Allows LS Serdes lane invalid code condition to be reflected on LOSA  
pin  
LS_LOS_OVERLAY_LN[3:0]  
(RXG)  
R/W  
R/W  
[3] Corresponds to Lane 3, [2] Corresponds to Lane 2  
[1] Corresponds to Lane 1, [0] Corresponds to Lane 0  
0
1
LOSA pin does not reflect LS Serdes lane Loss of signal condition  
(Default 1’b0)  
Allows LS Serdes lane Loss of signal condition to be reflected on  
LOSA pin  
68  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.12 LOOPBACK_TP_CONTROL (register: 0x000B) (default: 0x0D10) (device address: 0x1E)  
Figure 7-52. LOOPBACK_TP_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
0
LS_TEST_PAT  
T
HS_TP_GEN_  
EN  
HS_TP_  
VERIFY_EN  
(RXG)  
HS_TEST_PATT  
_SEL[2:0]  
RESERVED  
R/W  
_SEL[2]  
(RXG)  
(RXG)  
(RXG)  
R/W  
5
R/W  
4
R/W  
3
R/W  
1
7
6
2
LS_TP_VERIF  
DEEP_  
REMOTE_LPB  
K
SHALLOW_  
LOCAL_  
LPBK  
LS_TP_GEN  
_EN  
Y
_EN  
(RXG)  
LS_TEST_PATT_SEL[1:0]  
(RXG)  
RESERVED  
(RXG)  
(RXG)  
(RXG)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-33. LOOPBACK_TP_CONTROL Field Description  
Bit  
Field  
Type  
R/W  
R/W  
Reset Description  
For TI use only. (Default 2'b00)  
15:14 RESERVED  
13  
12  
HS_TP_GEN_EN  
(RXG)  
0
1
0
1
0
Normal operation (Default 1’b0)  
Activates test pattern generation selected by bits 1E.000B bits 10:8  
Normal operation (Default 1’b0)  
HS_TP_VERIFY_EN  
(RXG)  
R/W  
Activates test pattern verification selected by bits 1E.000B bits 10:8  
See selection in 1E.000B bits 5:4  
11  
LS_TEST_PATT_SEL[2]  
(RXG)  
R/W  
R/W  
10:8  
HS_TEST_PATT_SEL[2:0]  
(RXG)  
Test Pattern Selection. Refer to TLK100031 Bringup Procedure (a separate document)  
for more information.  
H/L/M/CRPAT valid in 1GKX/10G modes  
000  
001  
010  
011  
100  
High Frequency Test Pattern  
Low Frequency Test Pattern  
Mixed Frequency Test Pattern  
CRPAT Long  
CRPAT Short  
PRBS pattern valid in 1GKX/10G/10GKR modes  
27 - 1 PRBS pattern (Default 3’b101)  
223 - 1 PRBS pattern  
101  
110  
111  
231 - 1 PRBS pattern  
Errors can be checked by reading HS_ERROR_COUNT register. For KR standard  
pattern generation and verification, please refer to Register 03.002A  
7
6
LS_TP_GEN_EN  
(RXG)  
R/W  
R/W  
R/W  
0 = Normal operation (Default 1’b0)  
1 = Activates test pattern generation selected by bits {1E.000B bit 11, 1E.000B bits 5:4}  
on the LS side  
LS_TP_VERIFY_EN  
(RXG)  
0 = Normal operation (Default 1’b0)  
1 = Activates test pattern verification selected by bits {1E.000B bit 11, 1E.000B bits 5:4}  
on the LS side  
5:4  
LS_TEST_PATT_SEL[1:0]  
(RXG)  
LS Test Pattern Selection LS_TEST_PATT_SEL[2:0]. LS_TEST_PATT_SEL[2] is  
1E.000B bit 11  
000  
001  
010  
011  
100  
101  
110  
111  
High Frequency Test Pattern  
Low Frequency Test Pattern  
Mixed Frequency Test Pattern  
CRPAT Long (In 1GKX mode only)  
CRPAT Short (In 1GKX mode only)  
27 - 1 PRBS pattern (Default 3’b101)  
223 - 1 PRBS pattern  
231 - 1 PRBS pattern  
For XAUI standard test pattern generation and verification in KR mode, please refer  
register 01.8002 and 01.8003  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 7-33. LOOPBACK_TP_CONTROL Field Description (continued)  
Bit  
Field  
Type  
Reset Description  
3
DEEP_REMOTE_LPBK  
(RXG)  
R/W  
0
1
0 = Normal functional mode (Default 1’b0)  
Enable deep remote loopback mode  
For TI use only (Default 1’b0)  
2:1  
0
RESERVED  
R/W  
R/W  
SHALLOW_LOCAL_LPBK  
(RXG)  
0
1
Normal functional mode (Default 1’b0)  
Enable shallow local loopback mode  
7.5.2.13 LS_CONFIG_CONTROL (register: 0x000C) (default: 0x0330) (device address: 0x1E)  
Figure 7-53. LS_CONFIG_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
LS_STATUS_CFG[1:0]  
(RG)  
RESERVED  
R/W  
RESERVED  
R/W  
RESERVED  
R/W  
R/W  
7
6
5
4
3
2
1
0
LS_LOS_MAS LS_PLL_LOCK  
FORCE_LM_R  
EALIGN  
(G)  
RESERVED  
R/W  
K
(G)  
_MASK  
(G)  
RESERVED  
R/W  
RESERVED  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-34. LS_CONFIG_CONTROL Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15:14 RESERVED  
For TI use only. (Default 2'b00)  
13:12 LS_STATUS_CFG[1:0]  
(RG)  
0
Selects selected lane status to be reflected in LS_STATUS_1 register 1E.0015 bit 14  
00  
01  
10  
11  
Lane 0 (Default 2’b00)  
Lane 1  
Lane 2  
Lane 3  
11:10 RESERVED  
R/W  
R/W  
R/W  
R/W  
For TI use only. Always reads 0.  
9:8  
7:6  
5
RESERVED  
RESERVED  
For TI use only. (Default 2’b11)  
For TI use only.  
LS_LOS_MASK  
(G)  
0
1
0
1
LS Serdes LOS status of enabled lanes is used to generate link status  
LS Serdes LOS status of enabled lanes is not used to generate link status (Default 1’b1)  
LS Serdes PLL Lock status is used to generate link status  
LS Serdes PLL Lock status is not used to generate link status (Default 1’b1)  
For TI use only. Always reads 0.  
4
LS_PLL_LOCK_MASK  
(G)  
R/W  
3
2
RESERVED  
R/W  
R/W  
FORCE_LM_REALIGN  
(G)  
0
1
Normal operation (Default 1’b0)  
Force lane realignment in Link status monitor  
For TI use only  
1:0  
RESERVED  
R/W  
70  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.14 LS_CONFIG_CONTROL (register: 0x000C) (default: 0x0330) (device address: 0x1E)  
Figure 7-54. LS_CONFIG_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
0
LS_STATUS_CFG[1:0]  
(RG)  
RESERVED  
R/W  
RESERVED  
R/W  
RESERVED  
R/W  
R/W  
7
6
5
4
3
2
1
LS_LOS_MAS LS_PLL_LOCK  
FORCE_LM_R  
EALIGN  
(G)  
RESERVED  
R/W  
K
(G)  
_MASK  
(G)  
RESERVED  
R/W  
RESERVED  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-35. LS_CONFIG_CONTROL Field Description  
Bit  
Field  
Type  
R/W  
R/W  
Reset Description  
For TI use only. (Default 2'b00)  
15:14  
13:12  
RESERVED  
LS_STATUS_CFG[1:0]  
(RG)  
Selects selected lane status to be reflected in LS_STATUS_1 register 1E.0015 bit 14  
00  
01  
10  
11  
Lane 0 (Default 2’b00)  
Lane 1  
Lane 2  
Lane 3  
11:10  
9:8  
7:6  
5
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
For TI use only. Always reads 0.  
For TI use only. (Default 2’b11)  
For TI use only.  
LS_LOS_MASK  
(G)  
0
1
0
1
LS Serdes LOS status of enabled lanes is used to generate link status  
LS Serdes LOS status of enabled lanes is not used to generate link status (Default 1’b1)  
LS Serdes PLL Lock status is used to generate link status  
LS Serdes PLL Lock status is not used to generate link status (Default 1’b1)  
For TI use only. Always reads 0.  
4
LS_PLL_LOCK_MASK  
(G)  
R/W  
3
2
RESERVED  
R/W  
R/W  
FORCE_LM_REALIGN  
(G)  
0
1
Normal operation (Default 1’b0)  
Force lane realignment in Link status monitor  
For TI use only  
1:0  
RESERVED  
R/W  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
71  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.15 CLK_CONTROL (register: 0x000D) (default: 0x2F80) (device address: 0x1E)  
Figure 7-55. CLK_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
CLKOUT_POW  
ERDOWN  
(RXG)  
CLKOUT_ EN  
(RXG)  
RESERVED  
R/W  
RESERVED  
R/W  
R/W  
5
R/W  
4
7
6
3
2
CLKOUT_DIV[3:0]  
RCLKOUT_SEL[3:0]  
(RXG)  
(RXG)  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-36. CLK_CONTROL Field Description  
Bit  
15:14  
13  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
For TI use only. Always reads 0.  
Output clock enable.  
CLKOUT_ EN  
(RXG)  
0
1
0
1
Holds CLKOUTx_P/N output to a fixed value.  
Allows CLKOUTx_P/N output to toggle normally. (Default 1’b1)  
Normal operation (Default 1’b0)  
Enable CLKOUTx_P/N Power Down.  
For TI use only. (Default 4'b1111)  
12  
CLKOUT_POWERDOWN  
(RXG)  
R/W  
11:8  
7:4  
RESERVED  
R/W  
R/W  
CLKOUT_DIV[3:0]  
(RXG)  
CLKOUT Output clock divide setting. This value is used to divide selected clock (Selected  
using CLKOUT_SEL) before giving it out onto respective channel CLKOUTA_P/N.  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000 = Divide by 1  
Reserved  
Reserved  
Reserved  
Divide by 2  
Reserved  
Reserved  
Reserved  
Divide by 4 (Default 4'b1000)  
Divide by 8  
Divide by 16  
Reserved  
Divide by 5  
Divide by 10  
Divide by 20  
Divide by 25  
3:0  
CLKOUT_SEL[3:0]  
(RXG)  
R/W  
CLKOUT Output clock select. Selects Recovered clock sent out on CLKOUTx_P/N pins  
(Default 4'b0000)  
00x0  
00x1  
010x  
0110  
0111  
10x0  
10x1  
110x  
1110  
1111  
Selects HS recovered byte clock as output clock  
Selects HS transmit byte clock as output clock  
Selects HSRX VCO divide by 4 clock as output clock  
Selects LS recovered byte clock as output clock  
Selects LS transmit byte clock as output clock  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
72  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.16 RESET_CONTROL (register: 0x000E) (default: 0x0000) (device address: 0x1E)  
Figure 7-56. RESET_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W  
7
6
5
4
3
2
1
0
DATAPATH_  
RESET  
TXFIFO_  
RESET  
(G)  
RXFIFO_  
RESET  
(G)  
RESERVED  
R/W  
RESERVED  
(RXG)  
R/W  
R/W  
R/W  
R/W  
SC(1)  
SC(1)  
SC(1)  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) After reset bit is set to one, it automatically sets itself back to zero on the next MDC clock cycle.  
Table 7-37. RESET_CONTROL Field Description  
Bit  
15:8  
7:4  
3
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
RESERVED  
For TI use only. Always reads 0.  
For TI use only. (Default 4'b0000)  
DATAPATH_RESET  
(RXG)  
R/W  
SC  
Channel datapath reset control. Required once the desired functional mode is configured.  
0
1
Normal operation. (Default 1’b0)  
Resets channel logic excluding MDIO registers. (Resets both Tx and Rx datapath)  
2
1
0
TXFIFO_RESET  
(G)  
R/W  
SC  
Transmit FIFO reset control. Applicable in 10G mode only. Not required in 10GKR mode as  
10GKR FIFO is self centering.  
0
1
Normal operation. (Default 1’b0)  
Resets transmit datapath FIFO.  
RXFIFO_RESET  
(G)  
R/W  
SC  
Receive FIFO reset control. Applicable in 10G mode only. Not required in 10GKR mode as  
10GKR FIFO is self centering.  
0
1
Normal operation. (Default 1’b0)  
Resets receive datapath FIFO.  
For TI use only. (Default 1'b0)  
RESERVED  
R/W  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
73  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.17 CHANNEL_STATUS_1 (register: 0x000F) (default: 0x0000) (device address: 0x1E)  
Figure 7-57. CHANNEL_STATUS_1 Register  
15  
14  
13  
12  
11  
10  
9
8
HS_TP_STATU LS_ALIGN_ST  
HS_AGC_LOC HS_CHANNEL  
HS_DECODE_I  
NVALID  
HS_LOS  
(RXG)  
HS_AZ_DONE  
(RXG)  
S
ATUS  
(RXG)  
KED  
_SYNC  
(RXG)  
RESERVED  
(XG)  
(RXG)  
(RXG)  
R
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0
TX_FIFO_UND TX_FIFO_OVE RX_FIFO_UND RX_FIFO_OVE  
RX_LS_OK  
(G)  
TX_LS_OK  
(G)  
LS_PLL_LOCK HS_PLL_LOCK  
ERFLOW  
(RG)  
RFLOW  
(RXG)  
ERFLOW  
(RG)  
RFLOW  
(RXG)  
(RXG)  
(RXG)  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-38. CHANNEL_STATUS_1 Field Description  
Bit  
Field  
Type  
Reset Description  
15  
HS_TP_STATUS  
(XG)  
R
Test Pattern status for High/Low/Mixed/CRPAT test patterns. Valid in 10G/1GKX modes.  
Alignment has not been determined  
0
1
Alignment has achieved and correct pattern has been received. Any bit errors are reflected in  
HS_ERROR_COUNTER register (0x10)  
14  
LS_ALIGN_STATUS  
(RXG)  
R
Lane alignment status  
0
1
Lane alignment is achieved on the LS side  
Lane alignment is not achieved on the LS side  
13  
12  
11  
10  
HS_LOS  
(RXG)  
R
R
R
R
Loss of Signal Indicator.  
When high, indicates that a loss of signal condition is detected on HS serial receive inputs  
HS_AZ_DONE  
(RXG)  
Auto zero complete indicator.  
When high, indicates auto zero calibration is complete  
HS_AGC_LOCKED  
(RXG)  
Adaptive gain control loop lock indicator.  
When high, indicates AGC loop is in locked state  
HS_CHANNEL_SYNC  
(RXG)  
Channel synchronization status indicator.  
When high, indicates channel synchronization has achieved  
9
8
RESERVED  
R
R
For TI use only.  
HS_DECODE_INVALID  
(RXG)  
Valid when decoder is enabled and during CRPAT test pattern verification. When high, indicates  
decoder received an invalid code word, or a 8b/10b disparity error. In functional mode, number of  
DECODE_INVALID errors are reflected in HS_ERROR_COUNTER register (0x10)  
7
6
5
4
3
2
1
0
TX_FIFO_UNDERFLOW  
(RG)  
R
R
R
R
R
R
R
R
Not applicable in 1GKX mode. When high, indicates underflow has occurred in the transmit  
datapath (CTC) FIFO.  
TX_FIFO_OVERFLOW  
(RXG)  
When high, in 10GKR and 10G modes indicates overflow has occurred in the transmit datapath  
(CTC) FIFO.  
RX_FIFO_UNDERFLOW  
(RG)  
Not applicable in 1GKX mode. When high, indicates underflow has occurred in the receive  
datapath (CTC) FIFO.  
RX_FIFO_OVERFLOW  
(RXG)  
In 10GKR and 10G modes, high indicates overflow has occurred in the receive datapath (CTC)  
FIFO. In 1G-KX mode, high indicates a FIFO error.  
RX_LS_OK  
(G)  
Receive link status indicator from system side. Applicable in 10G mode only When high, indicates  
receive link status is achieved on the system side .  
TX_LS_OK  
(G)  
Link status indicator from Lane alignment/Link training slave inside TLK10031. When high,  
indicates 10G Link align achieved sync and alignment .  
LS_PLL_LOCK  
(RXG)  
LS Serdes PLL lock indicator  
When high, indicates LS Serdes PLL achieved lock to the selected incoming REFCLK0/1_P/N  
HS_PLL_LOCK  
(RXG)  
HS Serdes PLL lock indicator  
When high, indicates HS Serdes PLL achieved lock to the selected incoming REFCLK0/1_P/N  
74  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.18 HS_ERROR_COUNTER (register: 0x0010) (default: 0x0FFFD) (device address: 0x1E)  
Figure 7-58. HS_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HS_ERR_COUNT[15:0]  
(RXG)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-39. HS_ERROR_COUNTER Field Description  
Bit  
Field  
Type  
Reset  
Description  
15:0 HS_ERR_COUNT[15:0]  
(RXG)  
COR  
0
In functional mode, this counter reflects number of invalid code words (includes disparity errors)  
received by decoder. In 10GKR mode, reading this register also clears value in 03.0021 bits 7:0.  
In 10GKR mode, default value for this register is 16’h0000.  
In HS test pattern verification mode , this counter reflects error count for the test pattern selected  
through 1E.000B bits 10:8  
When PRBS_EN pin is set, this counter reflects error count for selected PRBS pattern.  
Counter value cleared to 16’h0000 when read.  
7.5.2.19 LS_LN0_ERROR_COUNTER (register: 0x0011) (default: 0xFFFD) (device address: 0x1E)  
Figure 7-59. LS_LN0_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LS_LN0_ERR_COUNT[15:0]  
(RXG)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-40. LS_LN0_ERROR_COUNTER Field Description  
Bit  
Field  
Type Reset Description  
15:0 LS_LN0_ERR_COUNT[15:0]  
(RXG)  
COR  
0
Lane 0 Error counter  
In 10GKR/1GKX functional modes, this counter reflects number of invalid code words (includes  
disparity errors) received by decoder  
In 10G functional mode, this counter reflects number of invalid code words (includes disparity  
errors) received by decoder in lane alignment slave.  
In LS test pattern verification mode , this counter reflects error count for the test pattern selected  
through 1E.000B bits 5:4  
Counter value cleared to 16’h0000 when read.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
75  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.20 LS_LN1_ERROR_COUNTER (register: 0x0012 ) (default: 0xFFFD) (device address: 0x1E)  
Figure 7-60. LS_LN1_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LS_LN1_ERR_COUNT[15:0]  
(RG)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-41. LS_LN1_ERROR_COUNTER Field Descriptions  
Bit  
Field  
Type Reset Description  
15:0  
LS_LN1_ERR_COUNT[15:0]  
(RG)  
COR  
Lane 1 Error counter  
In 10GKR/1GKX functional modes, this counter reflects number of invalid code words (includes  
disparity errors) received by decoder  
In 10G functional mode, this counter reflects number of invalid code words (includes disparity  
errors) received by decoder in lane alignment slave.  
In LS test pattern verification mode , this counter reflects error count for the test pattern selected  
through 1E.000B bits 5:4  
Counter value cleared to 16’h0000 when read.  
7.5.2.21 LS_LN2_ERROR_COUNTER (register: 0x0013) (default: 0xFFFD) (device address: 0x1E)  
Figure 7-61. LS_LN2_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LS_LN2_ERR_COUNT[15:0]  
(RG)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-42. LS_LN2_ERROR_COUNTER Field Descriptions  
Bit  
Field  
Type  
Reset Description  
15:0 LS_LN2_ERR_COUNT[15:0]  
(RG)  
COR  
0
Lane 2 Error counter  
In 10GKR/1GKX functional modes, this counter reflects number of invalid code words  
(includes disparity errors) received by decoder  
In 10G functional mode, this counter reflects number of invalid code words (includes disparity  
errors) received by decoder in lane alignment slave.  
In LS test pattern verification mode , this counter reflects error count for the test pattern  
selected through 1E.000B bits 5:4  
Counter value cleared to 16’h0000 when read.  
7.5.2.22 LS_LN3_ERROR_COUNTER (register: 0x0014) (default: 0xFFFD) (device address: 0x1E)  
Figure 7-62. LS_LN3_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LS_LN3_ERR_COUNT[15:0]  
(RG)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-43. LS_LN3_ERROR_COUNTER Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0 LS_LN3_ERR_COUNT[15:0]  
(RG)  
COR  
0
Lane 3 Error counter  
In 10GKR/1GKX functional modes, this counter reflects number of invalid code words  
(includes disparity errors) received by decoder  
In 10G functional mode, this counter reflects number of invalid code words (includes disparity  
errors) received by decoder in lane alignment slave.  
In LS test pattern verification mode , this counter reflects error count for the test pattern  
selected through 1E.000B bits 5:4  
Counter value cleared to 16’h0000 when read.  
76  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.23 LS_STATUS_1 (register: 0x0015) (default: 0x0000) (device address: 0x1E)  
Figure 7-63. LS_STATUS_1 Register  
15  
14  
13  
RESERVED  
12  
11  
10  
9
8
LS_INVALID_DECO  
LS_LOS  
(RXG)  
LS_LN_ALIGN_FIF LS_CH_SYNC_  
DE  
(RXG)  
O_ERR  
(RG)  
STATUS  
(RXG)  
RO  
RO/LH  
3
RO/LH  
2
RO/LH  
1
RO/LL  
0
7
6
5
4
RESERVED  
RO  
LS_CHSYNC_ROT[3:0] (RXG)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-44. LS_STATUS_1 Field Descriptions  
Bit  
15:12  
11  
Field  
Type  
RO  
Reset Description  
For TI use only.  
LS Invalid decode error for selected lane. Lane can be selected through  
RESERVED  
LS_INVALID_DECODE  
(RXG)  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
0
0
0
0
LS_STATUS_CFG[1:0] (Register 1E.000C). Error count for each lane can also be monitored  
through respective LS_LNx_ERR_COUNT registers  
10  
9
LS_LOS  
(RXG)  
Loss of Signal Indicator.  
When high, indicates that a loss of signal condition is detected on LS serial receive inputs for  
selected lane. Lane can be selected through LS_STATUS_CFG[1:0] (Register 1E.000C)  
LS_LN_ALIGN_FIFO_ERR  
(RG  
LS Lane alignment FIFO error status  
1 = Lane alignment FIFO on LS side has error  
0 = Lane alignment FIFO on LS side has no error  
8
LS_CH_SYNC_STATUS  
(RXG)  
LS Channel sync status for selected lane. Lane can be selected through  
LS_STATUS_CFG[1:0] (Register 1E.000C)  
7:4  
3:0  
RESERVED  
RO  
For TI use only.  
LS_CHSYNC_ROT[3:0]  
(RXG)  
RO/LH  
0
Channel synchronization pointer on LS side. Required for latency measurement function.  
See Latency Measurement function section for more details.  
7.5.2.24 HS_STATUS_1 (register: 0x0016) (default: 0x0000) (device address: 0x1E)  
Figure 7-64. HS_STATUS_1 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
RO  
7
6
5
4
3
2
RESERVED  
HS_KR_CH_SYNC_ROT[6:4]  
(RXG)  
HS_KR_CH_SYNC_ROT[3:0]  
(RXG)  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-45. HS_STATUS_1 Field Descriptions  
Bit  
Field  
Type  
RO  
Reset Description  
15:7 RESERVED  
For TI use only.  
6:4  
3:0  
HS_KR_CH_SYNC_ROT[6:4]  
(RXG)  
RO  
Channel synchronization pointer on HS side in 10GKR mode. Required for latency  
measurement function. See Latency Measurement function section for more details.  
In 10GKR mode, [6:4] reflects 3 MSB’s of 7 bit HS sync rotation. In 1GKX and 10G modes,  
indicates channel synchronization state on HS side.  
HS_KR_CH_SYNC_ROT[3:0]  
(RXG)  
RO  
Channel synchronization pointer on HS side. Required for latency measurement function.  
See Latency Measurement function section for more details.  
In 10GKR mode, reflects 4 LSB’s of 7 bit HS sync rotation.  
In 10G and 1GKX modes, reflects 4 bit HS sync rotation.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
77  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.25 DST_CONTROL_1 (register = 0x0017) (default = 0x2000) (device address: 0x1E)  
Figure 7-65. DST_CONTROL_1 Registers  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
DST_PIN_SW_  
EN  
DST_PIN_SW_SRC_1[1:0]  
(RXG)  
DST_PIN_SW_SRC_0[1:0]  
(RXG)  
(RXG)  
RW  
6
RW  
4
RW  
RW  
7
5
3
2
1
0
DST_OFF_SEL DST_ON_SEL DST_STUFF_S  
RESERVED  
(RX)  
(RX)  
EL  
(RX)  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-46. DST_CONTROL_1 Field Descriptions  
Bit  
15:13  
12  
Field  
Type  
RW  
Reset Description  
For TI use only (Default 3'b001)  
RESERVED  
DST_PIN_SW_EN  
(RXG)  
RW  
1 = Enable pin switch feature using top level pin. Ignore MDIO software switch. Requires  
setting PRTAD0_PIN_EN to high and setting PRTAD0_PIN_EN_SEL to control applicable  
channel Tx data switch.  
0 = Disable pin switch feature. Only MDIO software switch is used (Default 1’b0)  
11:10  
9:8  
7
DST_PIN_SW_SRC_1[1:0]  
(RXG)  
RW  
RW  
RW  
Applicable when top level pin (PRTAD0) is assigned to control transmit data switch source  
input and if PRTAD0 is HIGH.  
00 = Select LS input(Default 2’b00)  
01 = Select HS input  
10 = Reserved  
11 = Reserved  
DST_PIN_SW_SRC_0[1:0]  
(RXG)  
Applicable when top level pin (PRTAD0) is assigned to control transmit data switch source  
input and if PRTAD0 is LOW.  
00 = Select LS input(Default 2’b00)  
01 = Select HS input  
10 = Reserved  
11 = Reserved  
DST_OFF_SEL  
(RX)  
Applicable only in KR & KX modes. Selects data pattern to trigger OFF condition (Default  
1’b0)  
KR Mode:  
1 = Local Fault (0x0100009c)  
0 = IDLE (0x07 on all lanes)  
KX Mode:  
1 = Match DST_OFF_CHAR specified in 1E.802AB  
0 = IDLE (Either /I1/ or /I2/)  
6
5
DST_ON_SEL  
(RX)  
RW  
Applicable only in KR & KX modes. Selects data pattern to trigger ON condition (Default  
1’b0)  
KR Mode:  
1 = Local Fault (0x0100009c)  
0 = IDLE (0x07 on all lanes)  
KX Mode:  
1 = Match DST_ON_CHAR specified in 1E.802A  
0 = IDLE (Either /I1/ or /I2/)  
DST_STUFF_SEL  
(RX)  
Applicable only in KR & KX modes. Selects data pattern to stuff the output during data  
switching (Default 1’b0)  
KR Mode:  
1 = Local Fault (0x0100009c)  
0 = IDLE (0x07 on all lanes)  
KX Mode:  
1 = /V/ Error propagation (K30.7)  
0 = /I2/ (/K28.5/D16.2/)  
RW  
RW  
4:0  
RESERVED  
For TI use only (Default 5’b00000)  
78  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.26 DST_CONTROL_2 (register = 0x0018 ) (default = 0x0C20) (device address: 0x1E)  
Figure 7-66. DST_CONTROL_2 Register  
15  
14  
13  
12  
11  
10  
9
8
0
DST_DATA_SRC_SEL[1:0]  
(RXG)  
DST_DATA_SW_MODE[1:0]  
(RXG)  
RESERVED  
RW  
RW  
RW  
7
6
5
4
3
2
1
DST_MASK_CYCLES[7:0] (RXG)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-47. DST_CONTROL_2 Field Descriptions  
Bit  
Field  
Type  
RW  
Reset  
Description  
15:14 DST_DATA_SRC_SEL[1:0]  
(RXG)  
Data selection for transmit data switch source input. Applicable when DST_PIN_SW_EN is  
LOW.  
00 = Select LS input(Default 2’b00)  
01 = Select HS input  
10 = Reserved  
11 = Reserved  
13:12 DST_DATA_SW_MODE[1:0]  
(RXG)  
RW  
Selects condition to trigger data switch for the selected ON/OFF condition. (Default 2’b00)  
OFF condition:  
00 = Wait for OFF trigger  
01 = Any data  
10 = Any data  
11 = Wait for OFF trigger  
ON condition:  
00 = Wait for ON trigger  
01 = Wait for ON trigger  
10 = Any data  
11 = Any data  
11:8  
7:0  
RESERVED  
RW  
RW  
For TI use only (Default 4’b1100)  
DST_MASK_CYCLES[7:0]  
(RXG)  
Duration of clock cycles that the data-switch output data is masked with the data pattern  
selected through DST_STUFF_SEL. (Default 8’b0010_0000)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
79  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.27 DSR_CONTROL_1 (register = 0x0019) (default = 0x2500) (device address: 0x1E)  
Figure 7-67. DSR_CONTROL_1 Registers  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
DSR_PIN_SW_  
EN  
DSR_PIN_SW_SRC_1[1:0]  
(RXG)  
DSR_PIN_SW_SRC_0[1:0]  
(RXG)  
(RXG)  
RW  
6
RW  
4
RW  
RW  
7
5
3
2
1
0
DSR_OFF_  
SEL  
DSR_ON_SEL DSR_STUFF  
RESERVED  
(RX)  
_SEL  
(RX)  
(RX)  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-48. DSR_CONTROL_1 Field Descriptions  
Bit  
15:13  
12  
Field  
Type Reset  
Description  
RESERVED  
RW  
RW  
For TI use only (Default 3'b001)  
DSR_PIN_SW_EN  
(RXG)  
1 = Enable pin switch feature using top level pin. Ignore MDIO software switch. Requires  
setting PRTAD0_PIN_EN to high and setting PRTAD0_PIN_EN_SEL to control Rx data  
switch.  
0 = Disable pin switch feature. Only MDIO software switch is used (Default 1’b0)  
11:10  
9:8  
7
DSR_PIN_SW_SRC_1[1:0]  
(RXG)  
RW  
RW  
RW  
Applicable when top level pin (PRTAD0) is assigned to control receive data switch source  
input and if PRTAD0 is HIGH.  
00 = Select LS input  
01 = Select HS input(Default 2’b01)  
10 = Reserved  
11 = Reserved  
DSR_PIN_SW_SRC_0[1:0]  
(RXG)  
Applicable when top level pin (PRTAD0) is assigned to control receive data switch source  
input and if PRTAD0 is LOW.  
00 = Select LS input  
01 = Select HS input(Default 2’b01)  
10 = Reserved  
11 = Reserved  
DSR_OFF_SEL  
(RX)  
Applicable only in KR & KX modes. Selects data pattern to trigger OFF condition (Default  
1’b0)  
KR Mode:  
1 = Local Fault (0x0100009c)  
0 = IDLE (0x07 on all lanes)  
KX Mode:  
1 = Match DSR_OFF_CHAR specified in 1E.802E  
0 = IDLE (Either /I1/ or /I2/)  
6
5
DSR_ON_SEL  
(RX)  
RW  
RW  
RW  
Applicable only in KR & KX modes. Selects data pattern to trigger ON condition (Default  
1’b0)  
KR Mode:  
1 = Local Fault (0x0100009c)  
0 = IDLE (0x07 on all lanes)  
KX Mode:  
1 = Match DSR_ON_CHAR specified in 1E.802D  
0 = IDLE (Either /I1/ or /I2/)  
DSR_STUFF_SEL  
(RX)  
Applicable only in KR & KX modes. Selects data pattern to stuff the output during data  
switching (Default 1’b0)  
KR Mode:  
1 = Local Fault (0x0100009c)  
0 = IDLE (0x07 on all lanes)  
KX Mode:  
1 = /V/ Error propagation (K30.7)  
0 = /I2/ (/K28.5/D16.2/)  
4:0  
RESERVED  
For TI use only (Default 5’b00000)  
80  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.28 DSR_CONTROL_2 (register = 0x001A) (default = 0x4C20) (device address: 0x1E)  
Figure 7-68. DSR_CONTROL_2 Register  
15  
14  
13  
12  
11  
10  
9
8
0
DSR_DATA_SRC_SEL[1:0]  
(RXG)  
SR_DATA_SW_MODE[1:0]  
(RXG)  
RESERVED  
RW  
RW  
RW  
7
6
5
4
3
2
1
DSR_MASK_CYCLES[7:0] (RXG)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-49. DSR_CONTROL_2 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15:14 DSR_DATA_SRC_SEL[1:0]  
(RXG)  
RW  
Data selection for receive data switch source input. Applicable when DST_PIN_SW_EN is  
LOW.  
00 = Select LS input  
01 = Select HS input(Default 2’b01)  
10 = Reserved  
11 = Reserved  
13:12 DSR_DATA_SW_MODE[1:0]  
(RXG)  
RW  
Selects condition to trigger data switch for the selected ON/OFF condition. (Default 2’b00)  
OFF condition:  
00 = Wait for OFF trigger  
01 = Any data  
10 = Any data  
11 = Wait for OFF trigger  
ON condition:  
00 = Wait for ON trigger  
01 = Wait for ON trigger  
10 = Any data  
11 = Any data  
11:8  
RESERVED  
RW  
For TI use only (Default 4’b1100)  
7.5.2.29 DATA_SWITCH_STATUS (register = 0x001B) (default = 0x1020) (device address: 0x1E)  
Figure 7-69. DATA_SWITCH_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
DST_EN[3:0]  
(RXG)  
DST_SW_PEN DST_SW_DON  
DST_ON  
(RXG)  
DST_OFF  
(RXG)  
DING  
E
(RXG)  
(RXG)  
RO  
RO  
3
RO  
2
RO  
1
RO  
0
7
6
5
4
DSR_EN[3:0]  
(RXG)  
DSR_SW_PEN DSR_SW_DON  
DSR_ON  
(RXG)  
DSR_OFF  
(RXG)  
DING  
E
(RXG)  
(RXG)  
RO  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-50. DATA_SWITCH_STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12 DST_EN[3:0]  
(RXG)  
RO  
Source input data selection status on transmit side.  
0001 = LS data  
0010 = HS data  
0100 = Reserved  
1000 = Reserved  
11  
10  
9
DST_SW_PENDING  
(RXG)  
RO  
RO  
RO  
When HIGH, indicates data switching event is pending to be completed in the transmit side  
based on selected data source input  
DST_SW_DONE  
(RXG)  
When HIGH, indicates data switching event has occurred in the transmit side based on selected  
data source input  
DST_ON  
(RXG)  
ON condition indicator from transmit data switch. When HIGH, indicates an ON condition has  
occurred in transmit data switch  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
81  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 7-50. DATA_SWITCH_STATUS Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
8
DST_OFF  
(RXG)  
RO  
OFF condition indicator from transmit data switch. When HIGH, indicates an OFF condition has  
occurred in transmit data switch.  
7:4  
DSR_EN[3:0]  
(RXG)  
RO  
Source input data selection status on receive side.  
0001 = LS data  
0010 = HS data  
0100 = Reserved  
1000 = Reserved  
3
2
1
0
DSR_SW_PENDING  
(RXG)  
RO  
RO  
RO  
RO  
When HIGH, indicates data switching event is pending to be completed in the receive side  
based on selected data source input  
DSR_SW_DONE  
(RXG)  
When HIGH, indicates data switching event has occurred in the receive side based on selected  
data source input  
DSR_ON  
(RXG)  
ON condition indicator from receive data switch. When HIGH, indicates an ON condition has  
occurred in receive data switch.  
DSR_OFF  
(RXG)  
OFF condition indicator from receive data switch. When HIGH, indicates an OFF condition has  
occurred in receive data switch.  
7.5.2.30 LS_CH_CONTROL_1 (register =0x001C) (default =0x0000) (device address: 0x1E)  
Figure 7-70. LS_CH_CONTROL_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RW  
7
6
5
4
3
2
1
RESERVED  
RESERVED  
RESERVED  
RW  
LS_CH_SYNC_HYS_SEL[1:0]  
(RG)  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-51. LS_CH_CONTROL_1 Field Descriptions  
Bit  
15:7  
6
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
For TI use only. Always reads 0.  
For TI use only. (Default 1'b0)  
For TI use only. (Default 4'b0000)  
5:2  
1:0  
LS_CH_SYNC_HYS_SEL[1:0]  
(RG)  
LS Channel synchronization hysteresis selection for selected lane. Lane can be selected in  
LS_SERDES_CONTROL_1.  
00 = The channel synchronization, when in the synchronization state, performs the Ethernet  
standard specified hysteresis to return to the LOS state (Default 2’b00)  
01 = A single 8b/10b invalid decode error or disparity error causes the channel  
synchronization state machine to immediately transition from sync to LOS  
10 = Two adjacent 8b/10b invalid decode errors or disparity errors cause the channel  
synchronization state machine to immediately transition from sync to LOS  
11 = Three adjacent 8b/10b invalid decode errors or disparity errors cause the channel  
synchronization state machine to immediately transition from sync to LOS  
82  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.31 HS_CH_CONTROL_1 (register = 0x001D) (default = 0x0000) (device address: 0x1E)  
Figure 7-71. HS_CH_CONTROL_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RW  
REFCLK_FREQ_S REFCLK_FRE RX_CTC_BYP TX_CTC_BYPA  
RESERVED  
RW  
EL_1  
(RX)  
Q_SEL_0  
(RXG)  
ASS  
(RX)  
SS  
(RX)  
RW  
5
RW  
4
RW  
3
RW  
2
7
6
1
RESERVED  
HS_ENC_BYP HS_DEC_BYP HS_CH_SYNC_HYSTERESIS[1:  
ASS  
ASS  
0]  
(RXG)  
(RXG)  
(RXG)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
RW  
RW  
RW  
Table 7-52. HS_CH_CONTROL_1 Field Descriptions  
Bit  
15:14 RESERVED  
13 REFCLK_FREQ_SEL_1  
Field  
Type  
Reset  
Description  
RW  
For TI use only (Default 2’b00)  
Input REFCLK frequency selection MSB. When set, HS_PLL_MULT, LS_MPY and  
HS/LS TX/RX RATE settings can be set through related control bits specified in  
registers 1E.0002, 1E.0003, 1E.0006  
(RX)  
0 = HS_PLL_MULT, LS_MPY and HS/LS TX/RX RATE are set automatically  
RW  
based  
on  
input  
REFCLK  
frequency  
as  
specified  
in  
REFCLK_FREQ_SEL_0(1E.001D bit 12) (Default 1’b0)  
1 = Set this value if HS_PLL_MULT, LS_MPY and HS/LS TX/RX RATE  
values are NOT to be set automatically.  
12  
REFCLK_FREQ_SEL_0  
(RXG)  
Input REFCLK frequency selection LSB. Applicable when  
REFCLK_FREQ_SEL_1(1E.001D bit 13) is set to 0.  
0 = Set this value if REFCLK frequency is 156.25 MHz (Default 1’b0)  
1 = Set this value if REFCLK frequency is 312.5 MHz  
RW  
RW  
11  
10  
RX_CTC_BYPASS  
(RX)  
0 = Normal operation. (Default 1’b0)  
1 = Disables RX CTC operation.  
TX_CTC_BYPASS  
(RX)  
0 = Normal operation. (Default 1’b0)  
1 = Disables TX CTC operation.  
RW  
RW  
RW  
9:4  
3
RESERVED  
For TI use only (Default 4’b0000)  
HS_ENC_BYPASS  
(RXG)  
0 = Normal operation. (Default 1’b0)  
1 = Disables 8B/10B encoder on HS side.  
2
HS_DEC_BYPASS  
(RXG)  
0 = Normal operation. (Default 1’b0)  
1 = Disables 8B/10B decoder on HS side.  
RW  
1:0  
HS_CH_SYNC_HYSTERESIS[1:0]  
(RXG)  
Channel synchronization hysteresis control on the HS receive channel.  
00  
= The channel synchronization, when in the synchronization state,  
performs the Ethernet standard specified hysteresis to return to the  
unsynchronized state (Default 2’b00)  
01 = A single 8b/10b invalid decode error or disparity error causes the  
channel synchronization state machine to immediately transition from sync to  
unsync  
RW  
10 = Two adjacent 8b/10b invalid decode errors or disparity errors cause the  
channel synchronization state machine to immediately transition from sync to  
unsync  
11 = Three adjacent 8b/10b invalid decode errors or disparity errors cause  
the channel synchronization state machine to immediately transition from  
sync to unsync  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
83  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.32 EXT_ADDRESS_CONTROL (register = 0x001E) (default = 0x0000) (device address: 0x1E)  
Figure 7-72. EXT_ADDRESS_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EXT_ADDR_CONTROL[15:0]  
(XG)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-53. EXT_ADDRESS_CONTROL Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15:0  
EXT_ADDR_CONTROL[15:0]  
(XG)  
RW  
Applicable in Clause 22 mode only. This register should be written with the extended  
register address to be written/read. Contents of address written in this register can be  
accessed from Reg 1E.0x001F (Default 16’h0000)  
7.5.2.33 EXT_ADDRESS_DATA (register = 0x001F) (default = 0x0000) (device address: 0x1E)  
Figure 7-73. EXT_ADDRESS_DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EXT_ADDR_DATA[15:0]  
(XG)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-54. EXT_ADDRESS_DATA Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15:0  
EXT_ADDR_DATA[15:0]  
(XG)  
RW  
Applicable in Clause 22 mode only. This register contains the data associated with the  
register address written in Register 1E.0x001E  
The registers below can be accessed directly through Clause 45 or indirectly through Clause 22.  
Contains mode specific control/status registers.  
7.5.2.34 VS_10G_LN_ALIGN_ACODE_P (register =0x8003) (default = 0x0283)  
(device address: 0x1E)  
Figure 7-74. VS_10G_LN_ALIGN_ACODE_P Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
RW  
LN_ALIGN_ACODE_P[9:0] (G)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-55. VS_10G_LN_ALIGN_ACODE_P Field Descriptions  
Bit  
15:10 RESERVED  
9:0 LN_ALIGN_ACODE_P[9:0]  
Field  
Type Reset  
Description  
RW  
RW  
For TI use only. Always reads 0.  
10 bit Alignment character to be matched (Default 10’h283)  
(G)  
84  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.35 VS_10G_LN_ALIGN_ACODE_N (register =0x8004 ) (default = 0x017C)  
(device address: 0x1E)  
Figure 7-75. VS_10G_LN_ALIGN_ACODE_N Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
LN_ALIGN_ACODE_N[9:0]  
(G)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-56. VS_10G_LN_ALIGN_ACODE_N Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type  
RW  
Reset  
Description  
RESERVED  
For TI use only. Always reads 0.  
10 bit Alignment character to be matched (Default 10’h17C)  
LN_ALIGN_ACODE_N[9:0]  
(G)  
RW  
7.5.2.36 MC_AUTO_CONTROL (register = 0x8021) (default = 0x000F) (device address: 0x1E)  
Figure 7-76. MC_AUTO_CONTROL Register  
15  
14  
13  
12  
11  
RESERVED  
RW  
10  
9
8
0
7
6
5
4
3
2
1
RESERVED HS_PLL_LOCK_C HS_LOS_CH SYNC_STATU CLKOUT_EN_A  
RESERVED  
HECK_ DISABLE  
(RXG)  
ECK_  
DISABLE  
(RXG)  
S_CHECK  
_DISABLE  
(RXG)  
UTO _DISABLE  
(RXG)  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-57. MC_AUTO_CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:7 RESERVED  
RW  
For TI use only. Always reads 0.  
6
5
4
HS_PLL_LOCK_CHECK_DISABLE  
(RXG)  
1 = Disable auto HS PLL lock status check.  
0 = Enable auto HS PLL lock status check (Default 1’b0)  
RW  
RW  
HS_LOS_CHECK_DISABLE  
(RXG)  
1 = Disable auto HS LOS status check  
0 = Enable auto HS LOS sync status check (Default 1’b0)  
SYNC_STATUS_CHECK_DISABLE  
(RXG)  
This bit needs to be set to 1 for PRBS testing.  
1 = Disable auto sync status check.  
RW  
0 = Enable auto sync status check (Default 1'b0)  
3
CLKOUT_EN_AUTO_DISABLE  
(RXG)  
This bit controls the signal which flat lines CLKOUT and applicable only when CLKOUT  
is selected to have HS Recovered byte clock  
1 = CLKOUT clock flat lined if HS LOS is detected (Default 1’b1)  
0 = CLKOUT clock not flat lined if HS LOS is detected  
RW  
RW  
2:0  
RESERVED  
For TI use only (Default 3’b111)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
85  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.37 DST_ON_CHAR_CONTROL (register = 0x802A) (default = 0x02FD)  
(device address: 0x1E)  
Figure 7-77. DST_ON_CHAR_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
DST_ON_CHAR[9:0]  
(XG)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-58. DST_ON_CHAR_CONTROL Field Descriptions  
Bit  
15:10 RESERVED  
9:0 DST_ON_CHAR[9:0]  
Field  
Type Reset  
Description  
RW  
RW  
For TI use only. Always reads 0.  
Applicable only in 1GKX and 10G modes. 10 bit data pattern to trigger ON condition if matched  
on transmit side (Default 10’h2FD)  
(XG)  
7.5.2.38 DST_OFF_CHAR_CONTROL (register = 0x802B ) (default = 0x02FD)  
(device address: 0x1E)  
Figure 7-78. DST_OFF_CHAR_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
RW  
DST_OFF_CHAR[9:0] (XG)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-59. DST_OFF_CHAR_CONTROL Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type Reset  
Description  
RESERVED  
RW  
RW  
For TI use only. Always reads 0.  
DST_OFF_CHAR[9:0]  
(XG)  
Applicable only in 1GKX and 10G modes. 10 bit data pattern to trigger OFF condition if  
matched on transmit side (Default 10’h2FD)  
7.5.2.39 DST_STUFF_CHAR_CONTROL (register = 0x802C) (default = 0x0207)  
(device address: 0x1E)  
Figure 7-79. DST_STUFF_CHAR_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
DST_STUFF_CHAR[9:0]  
(G)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-60. DST_STUFF_CHAR_CONTROL Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type Reset  
Description  
RESERVED  
RW  
RW  
For TI use only. Always reads 0.  
DST_STUFF_CHAR[9:0]  
(G)  
Applicable only in 10G mode. 10 bit data pattern to stuff the output of data switch on transmit  
side (Default 10’h207)  
86  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.2.40 DSR_ON_CHAR_CONTROL (register = 0x802D) (default = 0x02FD)  
(device address: 0x1E)  
Figure 7-80. DSR_ON_CHAR_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
RESERVED  
DSR_ON_CHAR[9:0]  
(XG)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-61. DSR_ON_CHAR_CONTROL Field Descriptions  
Bit  
15:10 RESERVED  
9:0 DSR_ON_CHAR[9:0]  
Field  
Type Reset  
Description  
RW  
RW  
For TI use only. Always reads 0.  
Applicable only in 1GKX and 10G modes. 10 bit data pattern to trigger ON condition if  
matched on receive side (Default 10’h2FD)  
(XG)  
7.5.2.41 DSR_OFF_CHAR_CONTROL (register = 0X802E) (default = 0x02FD)  
(device address: 0x1E)  
Figure 7-81. DSR_OFF_CHAR_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED  
DSR_OFF_CHAR[9:0]  
(XG)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-62. DSR_OFF_CHAR_CONTROL Field Descriptions  
Bit  
15:10 RESERVED  
9:0 DSR_OFF_CHAR[9:0]  
Field  
Type Reset  
Description  
RW  
RW  
For TI use only. Always reads 0.  
Applicable only in 1GKX and 10G modes. 10 bit data pattern to trigger OFF condition if  
matched on receive side (Default 10’h2FD)  
(XG)  
7.5.2.42 DSR_STUFF_CHAR_CONTROL (register = 0x802F) (default = 0x0207)  
(device address: 0x1E)  
Figure 7-82. DSR_STUFF_CHAR_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
RESERVED  
DSR_STUFF_CHAR[9:0]  
(G)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-63. DSR_STUFF_CHAR_CONTROL Field Descriptions  
Bit  
15:10 RESERVED  
9:0 DSR_STUFF_CHAR[9:0]  
Field  
Type  
RW  
Reset  
Description  
For TI use only. Always reads 0.  
RW  
Applicable only in 10G mode. 10 bit data pattern to stuff the output of data switch on receive  
side (Default 10’h207)  
(G)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
87  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.43 LATENCY_MEASURE_CONTROL (register = 0x8040) (default = 0x0000)  
(device address: 0x1E)  
Figure 7-83. LATENCY_MEASURE_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
RW  
7
6
5
4
3
2
LATENCY_MEAS_STOP_SEL[1: LATENCY_MEAS_CLK_DIV[1:0 ] LATENCY_MEAS_START_SEL[ LATENCY_ME LATENCY_ME  
0]  
(RXG)  
(RXG)  
1:0]  
(RXG)  
AS_EN  
(RXG)  
AS_CLK_SEL  
(RXG)  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-64. LATENCY_MEASURE_CONTROL Field Descriptions  
Bit  
Field  
Type  
RW  
Reset  
Description  
15:8 RESERVED  
For TI use only. Always reads 0.  
7:6  
5:4  
LATENCY_MEAS_STOP_SEL[1: 0]  
(RXG)  
RW  
Latency measurement stop point selection  
00 = Selects LS RX as stop point (Default 2 ’b00)  
01 = Selects HS TX as stop point  
1x = Selects external pin (PRTAD0) as stop point  
LATENCY_MEAS_CLK_DIV[1:0 ]  
(RXG)  
RW  
Latency measurement clock divide control. Valid only when bit 1E.8040 bit 2 is 0.  
Divides clock to needed resolution. Higher the divide value, lesser the latency  
measurement resolution. Divider value should be chosen such that the divided clock  
doesn’t result in clock slower than the high speed byte clock.  
00 = Divide by 1 (Default 2’b00) (Most Accurate Measurement)  
01 = Divide by 2  
10 = Divide by 4  
11 = Divide by 8 (Longest Measurement Capability)  
3:2  
LATENCY_MEAS_START_SEL[ 1:0]  
(RXG)  
RW  
Latency measurement start point selection  
00 = Selects LS TX as start point (Default 2’b00)  
01 = Selects HS RX as start point  
1x = Selects external pin (PRTAD0) as start point  
1
0
LATENCY_MEAS_EN  
(RXG)  
RW  
RW  
Latency measurement enable  
0 = Disable Latency measurement (Default ’b0)  
1 = Enable Latency measurement  
LATENCY_MEAS_CLK_SEL  
(RXG)  
Latency measurement clock selection.  
0 = Selects VCO clock as per Latency measurement table. Bits 1E.8040 bits 5:4 can  
be used to divide this clock to achieve needed resolution. (Default 1’b0)  
1 = Selects recovered byte clock  
7.5.2.44 LATENCY_COUNTER_2 (register = 0x8041) (default =0x0000)  
(device address: 0x1E)  
Figure 7-84. LATENCY_COUNTER_2 Register  
15  
7
14  
13  
12  
11  
10  
9
8
0
LATENCY_MEAS_START_COMMA[3:0]  
(RXG)  
LATENCY_MEAS_STOP_COMMA[3:0]  
(RXG)  
RO/LH  
RO/LH  
6
5
4
3
2
1
RESERVED  
LATENCY_  
MEAS_READY  
(RXG)  
LATENCY_MEAS_COUNT[19:16]  
(RXG)  
RO/LH  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
88  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Table 7-65. LATENCY_COUNTER_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12 LATENCY_MEAS_START_COMMA[3:0]  
(RXG)  
RO/LH  
Latency measurement start comma location status. “1” indicates start comma  
location found. If LS TX is selected as start point (1E.8040 bit 7 = 0), [3:0]  
indicates status for lane3, lane2, lane1, lane0. If HS RX is selected as start point  
(1E.8040 bit 7 = 1), [0] indicates status for data[9:0], [1] indicates status for  
data[19:10]. [3:2] is unused.  
Reading this register will clear Latency stopwatch status specified in  
LATENCY_COUNTER_1 & LATENCY_COUNTER_2 registers. Below  
sequence of reads needs to be performed for accurate and repeat  
stopwatch measurements. See Latency measurement procedure more  
information.  
READ 0x8041  
READ 0x8042  
11:8 LATENCY_MEAS_STOP_COMMA[3:0]  
(RXG)  
RO/LH  
Latency measurement stop comma location status. “1” indicates stop comma  
location found. If LS RX is selected as stop point (1E.8040 bit 6 = 0), [3:0]  
indicates status for lane3, lane2, lane1, lane0. If HS TX is selected as stop point  
(1E.8040 bit 6 = 1), [0] indicates status for data[9:0], [1] indicates status for  
data[19:10]. [3:2] is unused.  
7:5  
4
RESERVED  
RO/LH  
RO/LH  
LATENCY_ MEAS_READY  
(RXG)  
Latency measurement ready indicator  
0 = Indicates latency measurement not complete.  
1 = Indicates latency measurement is complete and value in latency  
measurement counter (LATENCY_MEAS_COUNT[19:0]) is ready to be read.  
3:0  
LATENCY_MEAS_COUNT[19:16]  
(RXG)  
RO/LH  
Bits[19:16] of 20 bit wide latency measurement counter. Latency measurement  
counter value represents the latency in number of clock cycles. Each clock cycle  
is half of the period of the measurement clock as determined by register  
1E.8040 bits 5:4 and 1E.8040 bit 0. This counter will return 20’h00000 if it’s read  
before rx comma is received. If latency is more than 20’hFFFFF clock cycles  
then this counter returns 20’hFFFFF.  
7.5.2.45 LATENCY_COUNTER_1 (register = 0x8042) (default = 0x0000) (device address: 0x1E)  
Figure 7-85. LATENCY_COUNTER_1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LATENCY_MEAS_COUNT[15:0]  
(RXG)  
COR(1)  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) Latency measurement counter value resets to 20’h00000 when this register is read. Start and Stop Comma (1E.8041 bits 15:12 &  
1E.8041 bits 11:8) and count valid (1E.8041 bit 4) bits are also cleared when this register is read  
Table 7-66. LATENCY_COUNTER_1 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15:0 LATENCY_MEAS_COUNT[15:0]  
(RXG)  
COR  
Bits[15:0] of 20 bit wide latency measurement counter. Below sequence of reads needs to  
be performed for accurate and repeat stopwatch measurements.  
READ 0x8041  
READ 0x8042  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
89  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.2.46 TRIGGER_LOAD_CONTROL (register =0x8100) (default = 0x0000)  
(device address: 0x1E)  
Figure 7-86. TRIGGER_LOAD_CONTROL Register  
15  
7
14  
6
13  
RESERVED  
RW  
12  
4
11  
3
10  
9
8
0
RESERVED  
RW  
5
2
1
RESERVED  
DEFAULT_  
TX_LOAD_  
TRIGGER  
(RXG)  
RESERVED  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-67. TRIGGER_LOAD_CONTROL Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15:11 RESERVED  
RW  
RW  
RW  
For TI use only. Always reads 0.  
For TI use only. (Default 8'b00000000)  
10:3  
2
RESERVED  
DEFAULT_TX_LOAD_TRIGGER  
(RXG)  
Valid only when DEFAULT_TX_TRIGGER_EN is HIGH  
1 = Trigger loading default HS TX setting values  
0 = Normal operation (Default 1'b0)  
This bit needs to be written HIGH and then LOW to load the HS Tx default values.  
Applicable when link training is enabled.  
1:0  
RESERVED  
RW  
For TI use only. (Default 2'b00)  
7.5.2.47 TRIGGER_EN_CONTROL (register = 0x8101) (default = 0x0000) (device address: 0x1E)  
Figure 7-87. TRIGGER_EN_CONTROL Register  
15  
14  
13  
RESERVED  
RW  
12  
11  
10  
9
8
0
RESERVED  
RW  
7
6
5
4
3
2
1
RESERVED  
DEFAULT_  
TX_LOAD_  
TRIGGER_EN  
(RXG)  
RESERVED  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-68. TRIGGER_EN_CONTROL Field Descriptions  
Bit  
15:11  
10:3  
2
Field  
Type  
RW  
RW  
RW  
Reset  
Description  
RESERVED  
RESERVED  
For TI use only. Always reads 0.  
For TI use only. (Default 8'b00000000)  
DEFAULT_TX_TRIGGER_EN  
(RXG)  
1 = Enable loading of Tx default values through DEFAULT_TX_LOAD_TRIGGER  
0 = Normal operation (Default 1'b0)  
1:0  
RESERVED  
RW  
For TI use only. (Default 2'b00)  
90  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3 PMA/PMD Registers  
The registers below can be accessed only in Clause 45 mode and with device address field set to 0x01  
(DA[4:0] = 5’b00001).  
NOTE: Link training registers can also be accessed in Clause 22 mode using indirect address method and  
in Clause 45 mode with device address field set to 0x1E (DA[4:0] = 5’b11110). Link training registers are  
also applicable in 10G and 1GKX modes.  
7.5.3.1 PMA_CONTROL_1 (register = 0x0000) (default = 0x0000) (device address: 0x01)  
Figure 7-88. PMA_CONTROL_1 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESET  
(RX)  
RESERVED  
POWERDOWN  
(RX)  
RESERVED  
RW/SC  
7
RW  
6
RW  
3
RW  
1
5
4
RESERVED  
LOOPBACK  
(RX)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-69. PMA_CONTROL_1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESET  
(RX)  
RW/SC  
1 = Global reset. Resets datapath and MDIO registers. Equivalent to asserting RESET_N.  
0 = Normal operation (Default 1’b0)  
14:12  
11  
RESERVED  
RW  
RW  
For TI use only. Always reads 0.  
POWERDOWN  
(RX)  
1 = Enable power down mode  
0 = Normal operation (Default 1’b0)  
10:1  
0
RESERVED  
RW  
RW  
For TI use only. Always reads 0.  
LOOPBACK  
(RX)  
1 = Enables loopback on HS side. LS data traverses through entire Tx datapath excluding HS  
serdes and will be available at LS output side  
0 = Normal operation (Default 1’b0)  
7.5.3.2 PMA_STATUS_1 (register = 0x0001) (default = 0x0002) (device address: 0x01)  
Figure 7-89. PMA_STATUS_1 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
RO  
7
6
5
4
3
2
1
0
FAULT (RX)  
RESERVED  
RX_LINK  
(RX)  
LOW_  
POWER_  
ABILITY  
(RX)  
RESERVED  
RO  
RO  
RO/LL  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-70. PMA_STATUS_1 Field Descriptions  
Bit  
15:8  
7
Field  
Type  
Reset  
Description  
RESERVED  
For TI use only.  
FAULT  
(RX)  
RO  
1 = Fault condition detected on either Tx or Rx side  
0 = No fault condition detected  
This bit is cleared after Register 01.0008 is read and no fault condition occurs after 01.0008  
is read.  
6:3  
RESERVED  
For TI use only.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
91  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 7-70. PMA_STATUS_1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
RX_LINK  
(RX)  
RO/LL  
1 = Receive link is up  
0 = Receive link is down  
1
LOW_POWER_ABILITY  
(RX)  
RO  
Always reads 1.  
1 = Supports low power mode  
0 = Does not support low power mode  
7.5.3.3 PMA_DEV_IDENTIFIER_1 (register = 0x0002) (default = 0x4000) (device address: 0x01)  
Figure 7-90. PMA_DEV_IDENTIFIER_1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEV_IDENTIFIER[31:16]  
(RX)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-71. PMA_DEV_IDENTIFIER_1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
16 MSB of 32 bit unique device identifier. See Table 7-73 for identifier code details.  
15:0  
DEV_IDENTIFIER[31:16]  
(RX)  
RO  
7.5.3.4 PMA_DEV_IDENTIFIER_2 (register = 0x0003) (default = 0x5100) (device address: 0x01)  
Figure 7-91. PMA_DEV_IDENTIFIER_2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEV_IDENTIFIER[15:0] (RX)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-72. PMA_DEV_IDENTIFIER_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DEV_IDENTIFIER[31:16]  
(RX)  
RO  
16 MSB of 32 bit unique device identifier. See Table 7-73 for identifier code details.  
(1)  
Table 7-73. UNIQUE DEVICE IDENTIFIER  
Register address  
01.0002 bits 15:0  
01.0003 bits 15:10  
01.0003 bits 9:4  
01.0003 bits 3:0  
Value  
Description  
16’b0100_0000_0000_0000  
6’b010100  
OUI[3-18]  
OUI[19-24]  
6’b010000  
6-bit Manufacturer device model number  
4-bit Manufacturer device revision number  
4’b0000  
(1) The identifier code is composed of bits 3-24 of 25-bit organizationally unique identifier (OUI) assigned to Texas Instruments by IEEE.  
The 6-bit Manufacturer device model number is unique to TLK10031. The 4-bit Manufacturer device revision number denotes the  
current revision of TLK10031.  
92  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.5 PMA_SPEED_ABILITY (register = 0x0004) (default = 0x0011) (device address: 0x01)  
Figure 7-92. PMA_SPEED_ABILITY Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RO  
7
6
5
4
3
2
1
RESERVED  
SPEED_1G  
(RX)  
RESERVED  
SPEED_10G  
(RX)  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-74. PMA_SPEED_ABILITY Field Descriptions  
Bit  
15:5  
4
Field  
Type  
Reset  
Description  
RESERVED  
For TI use only.  
SPEED_1G  
(RX)  
RO  
Always reads 1.  
1 = Capable of operating at 1000 Mb/s  
0 = Not capable of operating at 1000 Mb/s  
3:1  
0
RESERVED  
For TI use only.  
SPEED_10G  
(RX)  
RO  
Always reads 1.  
1 = Capable of operating at 10 Gb/s  
0 = Not capable of operating at 10 Gb/s  
7.5.3.6 PMA_DEV_PACKAGE_1 (register = 0x0005) (default = 0x000B) (device address: 0x01)  
Figure 7-93. PMA_DEV_PACKAGE_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RO  
7
6
5
4
3
2
1
RESERVED  
PCS_  
RESERVED  
PMA_PMD_PR CL22_PRESEN  
PRESENT  
(RX)  
ESENT  
(RX)  
T
(RX)  
RO  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-75. PMA_DEV_PACKAGE_1 Field Descriptions  
Bit  
15:4  
3
Field  
Type  
RO  
Reset  
Description  
RESERVED  
For TI use only.  
PCS_ PRESENT  
(RX)  
RO  
Always reads 1.  
1 = PCS present in the package  
0 = PCS not present in the package  
2
1
RESERVED  
RO  
RO  
For TI use only.  
PMA_PMD_PRESENT  
(RX)  
Always reads 1.  
1 = PMA/PMD present in the package  
0 = PMA/PMD not present in the package  
0
CL22_PRESENT  
(RX)  
RO  
Always reads 1.  
1 = Clause 22 registers present in the package  
0 = Clause 22 registers not present in the package  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
93  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.7 PMA_DEV_PACKAGE_2 (register = 0x0006) (default = 0x4000) (device address: 0x01)  
Figure 7-94. PMA_DEV_PACKAGE_2 Register  
15  
14  
13  
12  
11  
10  
9
8
0
VS_DEV2_  
PRESENT  
(RX)  
VS_DEV1_  
PRESENT  
(RX)  
RESERVED  
RO  
RO  
7
RO  
6
5
4
3
2
1
RESERVED  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-76. PMA_DEV_PACKAGE_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
VS_DEV2_PRESENT  
(RX)  
RO  
Always reads 0.  
1 = Vendor specific device 2 present in the package  
0 = Vendor specific device 2 not present in the package  
14  
VS_DEV1_PRESENT  
(RX)  
RO  
Always reads 1.  
1 = Vendor specific device 1 present in the package  
0 = Vendor specific device 1 not present in the package  
13:0  
RESERVED  
For TI use only.  
7.5.3.8 PMA_DEV_PACKAGE_2 (register = 0x0006) (default = 0x4000) (device address: 0x01)  
Figure 7-95. PMA_DEV_PACKAGE_2 Register  
15  
14  
13  
12  
11  
10  
9
8
DEV_PRESENT  
TX_FAULT_AB RX_FAULT_AB  
TX_FAULT  
(RX)  
RX_FAULT  
(RX)  
RESERVED  
TX_DISABLE_  
ABILITY  
(RX)  
RO  
ILITY  
(RX)  
ILITY  
(RX)  
(RX)  
RO  
5
RO  
4
RO.LH  
3
RO/LH  
2
RO  
0
7
6
1
RESERVED  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-77. PMA_DEV_PACKAGE_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14 DEV_PRESENT  
(RX)  
RO  
Always reads 2’b10  
0x = No device responding at this address  
10 = Device responding at this address  
11 = No device responding at this address  
13  
12  
TX_FAULT_ABILITY  
(RX)  
RO  
RO  
Always reads 1’b1.  
1 = Able to detect fault condition on Tx path  
0 = Not able to detect fault condition on Tx path  
RX_FAULT_ABILITY  
(RX)  
Always reads 1’b1.  
1 = Able to detect fault condition on Rx path  
0 = Not able to detect fault condition on Rx path  
11  
10  
TX_FAULT  
(RX)  
RO/LH  
RO/LH  
1 = Fault condition detected on transmit path  
0 = No fault condition detected on transmit path  
RX_FAULT  
(RX)  
1 = Fault condition detected on receive path  
0 = No fault condition detected on receive path  
9
8
RESERVED  
For TI use only.  
TX_DISABLE_ABILITY  
(RX)  
RO  
Always reads 1’b0.  
1 = Able to perform transmit disable function  
0 = Not able to perform transmit disable function  
7:0  
RESERVED  
For TI use only.  
94  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.9 PMA_RX_SIGNAL_DET_STATUS (register = 0x000A) (default = 0x0000)  
(device address: 0x01)  
Figure 7-96. PMA_RX_SIGNAL_DET_STATUS Register  
15  
7
14  
6
13  
5
12  
11  
3
10  
2
9
1
8
0
RESERVED  
RO  
4
RESERVED  
RX_SIGNAL_D  
ET  
(RX)  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-78. PMA_RX_SIGNAL_DET_STATUS Field Descriptions  
Bit  
15:1  
0
Field  
Type  
RO  
Reset  
Description  
RESERVED  
For TI use only.  
RX_SIGNAL_DET  
(RX)  
RO  
1 = Signal detected on serial Rx pins  
0 = Signal not detected on serial Rx pins  
7.5.3.10 PMA_EXTENDED_ABILITY (register = 0x000B) (default = 0x0050) (device address: 0x01)  
Figure 7-97. PMA_EXTENDED_ABILITY Registers  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RO  
7
6
5
4
3
2
1
RESERVED  
KX_ABILITY  
(RX)  
RESERVED  
KR_ABILITY  
(RX)  
RESERVED  
RO  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-79. PMA_EXTENDED_ABILITY Field Descriptions  
Bit  
15:7  
6
Field  
Value  
Reset  
Description  
RESERVED  
For TI use only.  
KX_ABILITY  
(RX)  
RO  
Always reads 1’b11 = Able to perform 1000BASE-KX  
0 = Not able to perform 1000BASE-KX  
5
4
RESERVED  
For TI use only.  
KR_ABILITY  
(RX)  
RO  
Always reads 1’b11 = Able to perform 10GBASE-KR  
0 = Not able to perform 10GBASE-KR  
3:0  
RESERVED  
For TI use only.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
95  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.11 LT_TRAIN_CONTROL (register =0x0096) (default = 0x0002) (device address: 0x01)  
Figure 7-98. LT_TRAIN_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RW  
7
6
5
4
3
2
1
RESERVED  
RW  
LT_TRAINING_ LT_RESTART_  
ENABLE  
(RXG)  
TRAINING  
(RXG)  
RW  
RW/SC  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-80. LT_TRAIN_CONTROL Field Descriptions  
Bit  
15:2  
1
Field  
Type  
RW  
Reset  
Description  
RESERVED  
For TI use only. Always reads 0.  
LT_TRAINING_ENABLE  
(RXG)  
RW  
1 = Enable start-up protocol as per 10GBASE-KR standard(Default 1’b1)  
0 = Disable start-up protocol  
This bit should be set to HIGH for autotrain mode to function correctly  
0
LT_RESTART_TRAINING  
(RXG)  
RW/SC  
1 = Reset link/auto train  
0 = Normal operation (Default 1’b0)  
7.5.3.12 LT_TRAIN_STATUS (register = 0x0097) (default = 0x0000) (device address: 0x01)  
Figure 7-99. LT_TRAIN_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RO  
7
6
5
4
3
2
1
RESERVED  
RO  
LT_TRAINING_ LT_START_PR LT_FRAME_LO LT_RX_STATU  
FAIL  
(RXG)  
OTOCOL  
(RXG)  
CK  
(RXG)  
S
(RXG)  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-81. LT_TRAIN_STATUS Field Descriptions  
Bit  
15:4  
3
Field  
Type Reset  
Description  
RESERVED  
For TI use only.  
LT_TRAINING_FAIL  
(RXG)  
RO  
RO  
RO  
RO  
1 = Training failure has been detected  
0 = Training failure has not been detected  
2
1
0
LT_START_PROTOCOL  
(RXG)  
1 = Start up protocol in progress  
0 = Start up protocol complete  
LT_FRAME_LOCK  
(RXG)  
1 = Training frame delineation detected  
0 = Training frame delineation not detected  
LT_RX_STATUS  
(RXG)  
1 = Receiver trained and ready to receive data  
0 = Receiver training in progress  
96  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.13 LT_LINK_PARTNER_CONTROL (register = 0x0098) (default = 0x0000)  
(device address: 0x01)  
Figure 7-100. LT_LINK_PARTNER_CONTROL Register  
15  
7
14  
13  
12  
11  
10  
9
8
RESERVED  
LT_LP_PRESE LT_LP_INITIAL  
RESERVED  
LT_LP_COEFF  
_SWG  
RESERVED  
T
IZE  
(RXG)  
(RXG)  
(RXG)  
RO  
5
RO  
RO  
1
6
4
3
2
0
LT_LP_COEFF  
_PS2  
RESERVED  
LT_LP_COEFF  
_P1  
RESERVED  
LT_LP_COEFF  
RESERVED  
LT_LP_COEFF  
_M1  
RESERVED  
_0  
(RXG)  
(RXG)  
(RXG)  
(RXG)  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-82. LT_LINK_PARTNER_CONTROL Field Descriptions  
Bit  
15:14  
13  
Field  
Type Reset  
Description  
RESERVED  
For TI use only.  
LT_LP_PRESET  
(RXG)  
RO  
RO  
1 = KR preset coefficients  
0 = Normal operation  
12  
LT_LP_INITIALIZE  
(RXG)  
1 = Initialize KR coefficients  
0 = Normal operation  
11:10  
9
RESERVED  
For TI use only.  
LT_LP_COEFF_SWG  
(RXG)  
RO  
Swing update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold  
8
7
RESERVED  
For TI use only.  
LT_LP_COEFF_PS2  
(RXG)  
RO  
RO  
Post2 tap control update  
11 = Reserved01 = Increment  
10 = Decrement  
00 = Hold  
6
5
RESERVED  
For TI use only.  
LT_LP_COEFF_P1  
(RXG)  
Coefficient K(+1) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold  
4
3
RESERVED  
For TI use only.  
LT_LP_COEFF_0  
(RXG)  
RO  
RO  
Coefficient K(0) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold  
2
1
RESERVED  
For TI use only.  
LT_LP_COEFF_M1  
(RXG)  
Coefficient K(-1) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
0
RESERVED  
For TI use only.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
97  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.14 LT_LINK_PARTNER_STATUS (register = 0x0099) (default = 0x0000)  
(device address: 0x01)  
Figure 7-101. LT_LINK_PARTNER_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
LT_LP_RX_RE  
ADY  
RESERVED  
LT_LP_COEFF_SWG_STAT  
(RXG)  
(RXG)  
RO  
7
RO  
4
RO  
6
5
3
2
1
0
LT_LP_COEFF_PS2_STAT  
(RXG)  
LT_LP_COEFF_P1_STAT  
(RXG)  
LT_LP_COEFF_0_STAT  
(RXG)  
LT_LP_COEFF_M1_STAT  
(RXG)  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-83. LT_LINK_PARTNER_STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LT_LP_RX_READY  
(RXG)  
RO  
1 = LP receiver has determined that training is complete and prepared to receive data  
0 = LP receiver is requesting that training continue  
14:10 RESERVED  
LT_LP_COEFF_SWG_STAT  
For TI use only.  
9:8  
7:6  
5:4  
3:2  
1:0  
RO  
RO  
RO  
RO  
RO  
Swing update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
(RXG)  
LT_LP_COEFF_PS2_STAT  
(RXG)  
Post2 tap control update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
LT_LP_COEFF_P1_STAT  
(RXG)  
Coefficient K(+1) update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
LT_LP_COEFF_0_STAT  
(RXG)  
Coefficient K(0) update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
LT_LP_COEFF_M1_STAT  
(RXG)  
Coefficient K(-1) update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
98  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.15 LT_LOCAL_DEVICE_CONTROL (register = 0x009A) (default = 0x0000)  
(device address: 0x01)  
Figure 7-102. LT_LOCAL_DEVICE_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
RO  
LT_LD_PRESE  
LT_  
LD_INITIALIZE  
(RXG)  
RESERVED  
RO  
LT_LD_COEFF_SWG  
(RXG)  
T
(RXG)  
RO  
RO  
1
RO  
0
7
6
5
4
3
2
LT_LD_COEFF_PS2  
(RXG)  
LT_ LD_COEFF_P1  
(RXG)  
LT_ LD_COEFF_0  
(RXG)  
LT_ LD_COEFF_M1  
(RXG  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-84. LT_LOCAL_DEVICE_CONTROL Field Descriptions  
Bit  
15:14  
13  
Field  
Type  
RO  
Reset  
Description  
RESERVED  
For TI use only. Always reads 0.  
LT_LD_PRESET  
(RXG)  
RO  
1 = KR preset coefficients  
0 = Normal operation (Default 1’b0)  
12  
LT_ LD_INITIALIZE  
(RXG)  
RO  
1 = Initialize KR coefficients  
0 = Normal operation (Default 1’b0)  
11:10  
9:8  
RESERVED  
RO  
RO  
For TI use only. Always reads 0.  
LT_LD_COEFF_SWG  
(RXG)  
Swing update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
7:6  
5:4  
3:2  
LT_LD_COEFF_PS2  
(RXG)  
RO  
RO  
RO  
Post2 tap control update  
11 = Reserved01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
LT_ LD_COEFF_P1  
(RXG)  
Coefficient K(+1) update  
11 = Reserved01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
LT_ LD_COEFF_0  
(RXG)  
Coefficient K(0) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
1:0  
LT_ LD_COEFF_M1  
(RXG)  
RO  
Coefficient K(-1) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
99  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.16 LT_LOCAL_DEVICE_STATUS (register = 0x009B) (default = 0x0000)  
(device address: 0x01)  
Figure 7-103. LT_LOCAL_DEVICE_STATUS Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
LT_LD_RX_  
READY  
RESERVED  
(RXG)  
RO  
7
RO  
3
6
5
4
2
RESERVED  
LT_  
LD_COEFF_P1  
_STAT  
LT_ LD_COEFF_0_STAT  
(RXG)  
LT_ LD_COEFF_M1_STAT  
(RXG)  
(RXG)  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-85. LT_LOCAL_DEVICE_STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LT_ LD_RX_READY  
(RXG)  
RO  
1 = LD receiver has determined that training is complete and prepared to receive data  
0 = LD receiver is requesting that training continue  
14:5  
4
RESERVED  
RO  
RO  
For TI use only.  
LT_ LD_COEFF_P1_STAT  
(RXG)  
Coefficient K(+1) update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
3:2  
1:0  
LT_ LD_COEFF_0_STAT  
(RXG)  
RO  
RO  
Coefficient K(0) update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
LT_ LD_COEFF_M1_STAT  
(RXG)  
Coefficient K(-1) update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
100  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.17 KX_STATUS (register = 0x00A1) (default = 0x3000) (device address: 0x01)  
Figure 7-104. KX_STATUS Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
RO  
KX_TX_FAULT KX_RX_FAULT KX_TX_FAULT KX_RX_FAULT  
RESERVED  
RO  
_ABILITY  
(X)  
_ABILITY  
(X)  
(X)  
(X)  
RO  
5
RO  
RO/LH  
3
RO/LH  
2
7
6
4
RESERVED  
KX_RX_SIGNA  
L_DETECT  
(X)  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-86. KX_STATUS Field Descriptions  
Bit  
Field  
Type  
RO  
Reset  
Description  
15:14 RESERVED  
For TI use only.  
13  
12  
KX_TX_FAULT_ABILITY  
(X)  
RO  
Always reads 1.  
1 = Able to detect fault condition on transmit path  
0 = Not able to detect fault condition on transmit path  
KX_RX_FAULT_ABILITY  
(X)  
RO  
Always reads 1.  
1 = Able to detect fault condition on receive path  
0 = Not able to detect fault condition on receive path  
11  
10  
KX_TX_FAULT  
(X)  
RO/LH  
RO/LH  
1 = Fault condition detected on transmit path  
0 = No fault condition detected on transmit path  
KX_RX_FAULT  
(X)  
1 = Fault condition detected on receive path  
0 = No fault condition detected on receive path  
9:1  
0
RESERVED  
RO  
RO  
For TI use only.  
KX_RX_SIGNAL_DETECT  
(X)  
1 = Signal detected  
0 = Signal not detected  
7.5.3.18 KR_FEC_ABILITY (register = 0x00AA) (default = 0x0003) (device address: 0x01)  
Figure 7-105. KR_FEC_ABILITY Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RO  
7
6
5
4
3
2
1
RESERVED  
RO  
KR_FEC_ERR KR_FEC_ABILI  
_ABILITY  
(R)  
TY  
(R)  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-87. KR_FEC_ABILITY Field Descriptions  
Bit  
15:2  
1
Field  
Type  
RO  
Reset  
Description  
RESERVED  
For TI use only.  
KR_FEC_ERR_ABILITY  
(R)  
RO  
Always reads 1.  
1 = Device supports 10GBASE-R FEC error indication to PCS  
0 = Device does not support 10GBASE-R FEC function error indication tx PCS  
0
KR_FEC_ABILITY  
(R)  
RO  
Always reads 1.  
1 = Device supports 10GBASE-R FEC function  
0 = Device does not support 10GBASE-R FEC function  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
101  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.19 KR_FEC_CONTROL (register = 0x00AB) (default = 0x0000) (device address: 0x01)  
Figure 7-106. KR_FEC_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RW  
7
6
5
4
3
2
1
RESERVED  
RW  
KR_FEC_ERR  
_INDEN  
(R)  
KR_FEC_EN  
(R)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-88. KR_FEC_CONTROL Field Descriptions  
Bit  
15:2  
1
Field  
Type  
RW  
Reset  
Description  
RESERVED  
For TI use only. Always reads 0.  
KR_FEC_ERR_IND_EN  
(R)  
RW  
1 = Enable FEC decoder to indicate errors to PCS  
0 = Disable FEC decoder error indication to PCS (Default 1’b0)  
0
KR_FEC_EN  
(R)  
RW  
1 = Enable 10GBASE-R FEC function  
0 = Disable 10GBASE-R FEC function (Default 1’b0)  
7.5.3.20 KR_FEC_C_COUNT_1 (register = 0x00AC) (default = 0x0000) (device address: 0x01)  
Figure 7-107. KR_FEC_C_COUNT_1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_FEC_C_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-89. KR_FEC_C_COUNT_1(1) Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15:0  
KR_FEC_C_COUNT[15:0]  
(R)  
COR  
Lower 16 bits of FEC corrected blocks counter  
(1) To get correct 32 bit counter value of KR_FEC_C_COUNT, Register 01.00AC should be read first followed by Register 01.00AD  
7.5.3.21 KR_FEC_C_COUNT_2 (register = 0x00AD) (default = 0x0000) (device address: 0x01)  
Figure 7-108. KR_FEC_C_COUNT_2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_FEC_C_COUNT[31:16]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-90. KR_FEC_C_COUNT_2 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Upper 16 bits of FEC corrected blocks counter  
15:0 KR_FEC_C_COUNT[31:16]  
(R)  
COR  
102  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.22 KR_FEC_UC_COUNT_1 (register = 0x00AE) (default = 0x0000)  
(device address: 0x01)  
Figure 7-109. KR_FEC_UC_COUNT_1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_FEC_UC_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-91. KR_FEC_UC_COUNT_1(1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
KR_FEC_UC_COUNT[15:0]  
(R)  
COR  
Lower 16 bits of FEC Uncorrected blocks counter  
(1) To get correct 32 bit counter value of KR_FEC_UC_COUNT, Register 01.00AE should be read first followed by Register 01.00AF  
7.5.3.23 KR_FEC_UC_COUNT_2 (register = 0x00AF) (default = 0x0000)  
(device address: 0x01)  
Figure 7-110. KR_FEC_UC_COUNT_2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_FEC_UC_COUNT[31:16]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-92. KR_FEC_UC_COUNT_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
KR_FEC_UC_COUNT[31:16]  
(R)  
COR  
Lower 16 bits of FEC Uncorrected blocks counter  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
103  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.24 KR_VS_FIFO_CONTROL_1 (register = 0x8001) (default = 0xCC4C)  
(device address: 0x01)  
Figure 7-111. KR_VS_FIFO_CONTROL_1 Register  
15  
14  
6
13  
12  
11  
10  
9
8
RESERVED  
RX_FIFO_DEPTH[2:0]  
(R)  
RX_CTC_WMK_SEL[1:0]  
(R)  
RX_Q_CNT_  
RX_CTC_Q_  
DROP_EN  
(R)  
IPG  
(R)  
RW  
7
5
4
3
2
1
0
XMIT_IDLE  
(R)  
TX_FIFO_DEPTH[2:0]  
(R)  
TX_CTC_WMK_SEL[1:0]  
(R)  
TX_Q_CNT_  
TX_CTC_Q_D  
IPG  
(R)  
ROP  
_EN  
(R)  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-93. KR_VS_FIFO_CONTROL_1 Field Descriptions  
Bit  
Name  
Type  
RW  
Reset  
Description  
15  
RESERVED  
For TI use only (Default 1’b1)  
14:12 RX_FIFO_DEPTH[2:0]  
(R)  
RW  
Rx CTC FIFO depth selection  
1xx = 32 deep (Default 3’b100)  
011 = 24 deep  
010 = 16 deep  
001 = 12 deep  
000 = 8 deep (No CTC function)  
11:10 RX_CTC_WMK_SEL[1:0]  
(R)  
RW  
Water mark selection for receive CTC  
Works in conjunction with RX_FIFO_DEPTH_SEL setting (Default 2’b11)  
Depth->  
11  
32  
High  
24  
26  
12/8  
NA  
High  
Mid  
High  
High  
Low  
Low  
10  
Mid-high  
Mid  
01  
Low  
Low  
00  
Low  
9
8
RX_Q_CNT_IPG  
(R)  
RW  
RW  
RW  
RW  
0 = Normal operation. (Default 1’b0)  
1 = Sequence columns are counted as IPG.  
RX_CTC_Q_DROP_EN  
(R)  
0 = Normal operation. (Default 1’b0)  
1 = Enable Q column drop in RX CTC.  
7
XMIT_IDLE  
(R)  
1 = Transmit idle pattern onto LS side  
0 = Normal operation (Default 1’b0)  
6:4  
TX_FIFO_DEPTH[2:0]  
(R)  
Tx CTC FIFO depth selection  
1xx = 32 deep (Default 3’b100)011 = 24 deep  
010 = 16 deep001 = 12 deep  
000 = 8 deep (No CTC function)  
3:2  
TX_CTC_WMK_SEL[1:0]  
(R)  
RW  
Water mark selection for receive CTC  
Works in conjunction with TX_FIFO_DEPTH_SEL setting (Default 2’b11)  
Depth->  
11  
32  
High  
24  
26  
12/8  
NA  
High  
Mid  
High  
High  
Low  
Low  
10  
Mid-high  
Mid  
01  
Low  
Low  
00  
Low  
1
0
TX_Q_CNT_IPG  
(R)  
RW  
RW  
0 = Normal operation. (Default 1’b0)  
1 = Sequence columns are counted as IPG.  
TX_CTC_Q_DROP_EN  
(R)  
0 = Normal operation. (Default 1’b0)  
1 = Enable Q column drop in TX CTC  
104  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.25 KR_VS_TP_GEN_CONTROL (register =0x8002) (default = 0x0000)  
(device address: 0x01)  
Figure 7-112. KR_VS_TP_GEN_CONTROL Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
RW  
5
4
3
2
RESERVED  
RW  
RX_TPG_HLM_TEST_SEL[1:0] RX_TPG_CRP RX_TPG_CJPA RX_TPG_10GF RX_TPG_HLM  
(R)  
AT_TEST_EN  
(R)  
T_TEST_EN  
(R)  
C_TEST_EN  
(R)  
_TEST_EN  
(R)  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-94. KR_VS_TP_GEN_CONTROL Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
15:6 RESERVED  
For TI use only. Always reads 0.  
5:4  
RX_TPG_HLM_TEST_SEL[1:0]  
(R)  
RW  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
00 = High Frequency test pattern(Default 2’b00)  
01 = Low Frequency test pattern  
10 = Mixed Frequency test pattern  
11 = Normal operation  
3
2
1
0
RX_TPG_CRPAT_TEST_EN  
(R)  
RW  
RW  
RW  
RW  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables CRPAT test pattern generation  
RX_TPG_CJPAT_TEST_EN  
(R)  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables CJPAT test pattern generation  
RX_TPG_10GFC_TEST_EN  
(R)  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables 10 GFC CJPAT test pattern generation  
RX_TPG_HLM_TEST_EN  
(R)  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables H/L/M test pattern generation  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
105  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.26 KR_VS_TP_VER_CONTROL (register = 0x8003) (default = 0x0000)  
(device address: 0x01)  
Figure 7-113. KR_VS_TP_VER_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
TX_TPV_HLM_TEST_ TX_TPV_CRPAT_T TX_TPV_CJPAT_T TX_TPV_10GFC_T TX_TPV_HLM_TES  
SEL[1:0]  
(R)  
EST_EN  
(R)  
EST_EN  
(R)  
EST_EN  
(R)  
T_EN  
(R)  
RW  
RW  
RW  
3
RW  
2
RW  
1
RW  
0
7
6
5
4
RESERVED  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-95. KR_VS_TP_VER_CONTROL Field Descriptions  
Bit  
Name  
Type  
RW  
Reset  
Description  
15:14 RESERVED  
For TI use only. Always reads 0.  
13:12 TX_TPV_HLM_TEST_SEL[1:0]  
(R)  
RW  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
00 = High Frequency test pattern(Default 2’b00)  
01 = Low Frequency test pattern  
10 = Mixed Frequency test pattern  
11 = Normal operation  
11  
10  
9
TX_TPV_CRPAT_TEST_EN  
(R)  
RW  
RW  
RW  
RW  
RW  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables CRPAT test pattern verification  
TX_TPV_CJPAT_TEST_EN  
(R)  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables CJPAT test pattern verification  
TX_TPV_10GFC_TEST_EN  
(R)  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables 10 GFC CJPAT test pattern verification  
8
TX_TPV_HLM_TEST_EN  
(R)  
XAUI based test pattern selection on LS side. See Test pattern procedures for more  
information.  
0 = Normal operation. (Default 1’b0)  
1 = Enables HL/M test pattern verification  
7:0  
RESERVED  
For TI use only(Default 8’b00000000)  
7.5.3.27 KR_VS_CTC_ERR_CODE_LN0 (register = 0x8005) (default = 0xCE00)  
(device address: 0x01)  
Figure 7-114. KR_VS_CTC_ERR_CODE_LN0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_CTC_ERR_CODE_LN0  
(R)  
RESERVED  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-96. KR_VS_CTC_ERR_CODE_LN0 Field Descriptions  
Bit  
Name  
Type Reset  
Description  
Applicable in 10G-KR mode only. XGMII code to be transmitted in case of  
error condition. This applies to both TX and RX data paths. The msb is the  
control bit; remaining 8 bits constitute the error code. The default value for  
lane 0 corresponds to 8’h9C with the control bit being 1’b1. The default values  
for lanes 0~3 correspond to ||LF||  
15:7 KR_CTC_ERR_CODE_LN0  
(R)  
RW  
6:0  
RESERVED  
RW  
For TI use only. Always reads 0.  
106  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.28 KR_VS_CTC_ERR_CODE_LN1 (register = 0x8006) (default =0x0000)  
(device address: 0x01)  
Figure 7-115. KR_VS_CTC_ERR_CODE_LN1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_CTC_ERR_CODE_LN1  
(R)  
RESERVED  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-97. KR_VS_CTC_ERR_CODE_LN1 Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
15:7  
KR_CTC_ERR_CODE_LN1  
(R)  
RW  
Applicable in 10G-KR mode only. XGMII code to be transmitted in case of error  
condition. This applies to both TX and RX data paths. The msb is the control bit;  
remaining 8 bits constitute the error code. The default value for lane 1 corresponds to  
8’h00 with the control bit being 1’b0. The default values for lanes 0~3 correspond to  
||LF||  
6:0  
RESERVED  
RW  
For TI use only. Always reads 0.  
7.5.3.29 KR_VS_CTC_ERR_CODE_LN2 (register = 0x8007) (default = 0x0000)  
(device address: 0x01)  
Figure 7-116. KR_VS_CTC_ERR_CODE_LN2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_CTC_ERR_CODE_LN2  
(R)  
RESERVED  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-98. KR_VS_CTC_ERR_CODE_LN2 Field Descriptions  
Bit(s)  
Name  
Type  
Reset  
Description  
15:7  
KR_CTC_ERR_CODE_LN2  
(R)  
RW  
Applicable in 10G-KR mode only. XGMII code to be transmitted in case of error  
condition. This applies to both TX and RX data paths. The msb is the control bit;  
remaining 8 bits constitute the error code. The default value for lane 2 corresponds to  
8’h00 with the control bit being 1’b0. The default values for lanes 0~3 correspond to  
||LF||  
6:0  
RESERVED  
RW  
For TI use only. Always reads 0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
107  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.30 KR_VS_CTC_ERR_CODE_LN3 (register = 0x8008) (default = 0x0080)  
(device address: 0x01)  
Figure 7-117. KR_VS_CTC_ERR_CODE_LN3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_CTC_ERR_CODE_LN3  
(R)  
RESERVED  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-99. KR_VS_CTC_ERR_CODE_LN3 Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
15:7  
KR_CTC_ERR_CODE_LN3  
(R)  
RW  
Applicable in 10G-KR mode only. XGMII code to be transmitted in case of error  
condition. This applies to both TX and RX data paths. The msb is the control bit;  
remaining 8 bits constitute the error code. The default value for lane 3 corresponds to  
8’h01 with the control bit being 1’b0. The default values for lanes 0~3 correspond to  
||LF||  
6:0  
RESERVED  
RW  
For TI use only. Always reads 0.  
7.5.3.31 KR_VS_LN0_EOP_ERROR_COUNTER (register = 0x8010) (default = 0xFFFD) (device address:  
0x01)  
Figure 7-118. KR_VS_LN0_EOP_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_LN0_EOP_ERR_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-100. KR_VS_LN0_EOP_ERROR_COUNTER Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
15:0  
KR_LN0_EOP_ERR_COUNT  
(R)  
COR  
Lane 0 End of packet Error counter.  
End of packet error is detected when Terminate character is in lane 0 and 1 or both of the  
following holds:  
Terminate character is not followed by /K/ characters in lanes 1, 2 & 3  
The column following the terminate column is neither ||K|| nor ||A||.  
Counter value cleared to 16’h0000 when read.  
7.5.3.32 KR_VS_LN1_EOP_ERROR_COUNTER (register = 0x8011) (default = 0xFFFD) (device address:  
0x01)  
Figure 7-119. KR_VS_LN1_EOP_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_LN1_EOP_ERR_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-101. KR_VS_LN1_EOP_ERROR_COUNTER Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
15:0  
KR_LN1_EOP_ERR_COUNT  
(R)  
COR  
Lane 1 End of packet Error counter.  
End of packet error is detected when Terminate character is in lane 1 and one or both of  
the following holds:  
Terminate character is not followed by /K/ characters in lanes 1, 2 & 3  
The column following the terminate column is neither ||K|| nor ||A||.  
Counter value cleared to 16’h0000 when read.  
108  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.33 KR_VS_LN2_EOP_ERROR_COUNTER (register = 0x8012) (default = 0xFFFD) (device address:  
0x01)  
Figure 7-120. KR_VS_LN2_EOP_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_LN2_EOP_ERR_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-102. KR_VS_LN2_EOP_ERROR_COUNTER Field Descriptions  
Bit  
Name  
Type  
Reset  
Description  
15:0  
KR_LN1_EOP_ERR_COUNT  
(R)  
COR  
Lane 2 End of packet Error counter.  
End of packet error is detected when Terminate character is in lane 2 and 1 or both of  
the following holds:  
Terminate character is not followed by /K/ characters in lanes 1, 2 & 3  
The column following the terminate column is neither ||K|| nor ||A||.  
Counter value cleared to 16’h0000 when read.  
7.5.3.34 KR_VS_LN3_EOP_ERROR_COUNTER (register =0x8013 ) (default = 0xFFFD) (device address:  
0x01)  
Figure 7-121. KR_VS_LN3_EOP_ERROR_COUNTER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KR_LN3_EOP_ERR_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-103. KR_VS_LN3_EOP_ERROR_COUNTER Field Descriptions  
Bit(s) Name  
Type  
Reset  
Description  
15:0 KR_LN3_EOP_ERR_COUNT  
COR  
Lane 3 End of packet Error counter.  
(R)  
End of packet error is detected when Terminate character is in lane 3 and the column  
following the terminate column is neither ||K|| nor ||A||. Counter value cleared to  
16’h0000 when read.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
109  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.35 KR_VS_TX_CTC_DROP_COUNT (register = 0x8014) (default = 0xFFFD) (device address: 0x01)  
Figure 7-122. KR_VS_TX_CTC_DROP_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
2
1
1
1
0
0
0
TX_CTC_DROP_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-104. KR_VS_TX_CTC_DROP_COUNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
TX_CTC_DROP_COUNT  
(R)  
COR  
Counter for number of idle drops in the transmit CTC.  
7.5.3.36 KR_VS_TX_CTC_INSERT_COUNT (register = 0x8015) (default = 0xFFFD)  
(device address: 0x01)  
Figure 7-123. KR_VS_TX_CTC_INSERT_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
TX_CTC_INS_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-105. KR_VS_TX_CTC_INSERT_COUNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
TX_CTC_INS_COUNT  
(R)  
COR  
Counter for number of idle inserts in the transmit CTC.  
7.5.3.37 KR_VS_RX_CTC_DROP_COUNT (register = 0x8016) (default = 0xFFFD)  
(device address: 0x01)  
Figure 7-124. KR_VS_RX_CTC_DROP_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
RX_CTC_DROP_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-106. KR_VS_RX_CTC_DROP_COUNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
RX_CTC_DROP_COUNT  
(R)  
COR  
Counter for number of idle drops in the receive CTC.  
110  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.38 KR_VS_RX_CTC_INSERT_COUNT (register = 0x8017) (default = 0xFFFD)  
(device address: 0x01)  
Figure 7-125. KR_VS_RX_CTC_INSERT_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RX_CTC_INS_COUNT  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-107. KR_VS_RX_CTC_INSERT_COUNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
RX_CTC_INS_COUNT  
(R)  
COR  
Counter for number of idle inserts in the receive CTC.  
7.5.3.39 KR_VS_STATUS_1 (register = 0x8018) (default = 0x0000) (device address: 0x01)  
Figure 7-126. KR_VS_STATUS_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
TX_TPV_TP_  
SYNC  
RESERVED  
(R)  
RO  
7
RO  
3
6
5
4
2
1
RESERVED  
INVALID_S_  
COL_ERR  
(R)  
INVALID_T_  
COL_ERR  
(R)  
INVALID_XGMI INVALID_XGMI INVALID_XGMI INVALID_XGMI  
I_LN3  
(R)  
I_LN2  
(R)  
I_LN1  
(R)  
I_LN0  
(R)  
RO  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-108. KR_VS_STATUS_1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
TX_TPV_TP_SYNC  
(R)  
RO  
0 = Test pattern sync is not achieved on on Tx side  
1 = Test pattern sync is achieved on on Tx side  
14:6  
5
RESERVED  
RO  
For TI use only  
INVALID_S_COL_ERR  
(R)  
RO/LH  
1 = Indicates invalid start (S) column error detected  
4
3
2
1
0
INVALID_T_COL_ERR  
(R)  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
1 = Indicates invalid terminate (T) column error detected  
1 = Indicates invalid XGMII character detected in Lane 3  
1 = Indicates invalid XGMII character detected in Lane 2  
1 = Indicates invalid XGMII character detected in Lane 1  
1 = Indicates invalid XGMII character detected in Lane 0  
INVALID_XGMII_LN3  
(R)  
INVALID_XGMII_LN2  
(R)  
INVALID_XGMII_LN1  
(R)  
INVALID_XGMII_LN0  
(R)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
111  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.40 KR_VS_TX_CRCJ_ERR_COUNT_1 (register = 0x8019) (default = 0xFFFF)  
(device address: 0x01)  
Figure 7-127. KR_VS_TX_CRCJ_ERR_COUNT_1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
TX_TPV_CR_CJ_ERR_COUNT[31:16]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-109. KR_VS_TX_CRCJ_ERR_COUNT_1 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Error Counter for CR/CJ test pattern verification on Tx side. MSBs [31:16]  
15:0  
TX_TPV_CR_CJ_ERR_COUNT[31:16]  
(R)  
COR  
7.5.3.41 KR_VS_TX_CRCJ_ERR_COUNT_2 (register = 0x801A) (default = 0xFFFD)  
(device address: 0x01)  
Figure 7-128. KR_VS_TX_CRCJ_ERR_COUNT_2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
TX_TPV_CR_CJ_ERR_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-110. KR_VS_TX_CRCJ_ERR_COUNT_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Error Counter for CR/CJ test pattern verification on Tx side. MSBs [15:0]  
15:0 TX_TPV_CR_CJ_ERR_COUNT[15:0]  
(R)  
COR  
7.5.3.42 KR_VS_TX_LN0_HLM_ERR_COUNT (register = 0x801B) (default = 0xFFFD)  
(device address: 0x01)  
Figure 7-129. KR_VS_TX_LN0_HLM_ERR_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
TX_TPV_LN0_ERR_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-111. KR_VS_TX_LN0_HLM_ERR_COUNT Field Descriptions  
Bit  
Field  
Value  
Reset  
Description  
Error Counter for H/L/M test pattern verification on Lane 0 of Tx side  
15:0 TX_TPV_LN0_ERR_COUNT[15:0]  
(R)  
COR  
112  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.3.43 KR_VS_TX_LN1_HLM_ERR_COUNT (register = 0x801C) (default = 0xFFFD)  
(device address: 0x01)  
Figure 7-130. KR_VS_TX_LN1_HLM_ERR_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
TX_TPV_LN1_ERR_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-112. KR_VS_TX_LN1_HLM_ERR_COUNT Field Descriptions  
Bit  
Field  
Value  
Reset  
Description  
Error Counter for H/L/M test pattern verification on Lane 1 of Tx side  
15:0 TX_TPV_LN1_ERR_COUNT[15:0]  
(R)  
COR  
7.5.3.44 KR_VS_TX_LN2_HLM_ERR_COUNT (register = 0x801D) (default = 0xFFFD)  
(device address: 0x01)  
Figure 7-131. KR_VS_TX_LN2_HLM_ERR_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
TX_TPV_LN2_ERR_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-113. KR_VS_TX_LN2_HLM_ERR_COUNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Error Counter for H/L/M test pattern verification on Lane 2 of Tx side  
15:0 TX_TPV_LN2_ERR_COUNT[15:0]  
(R)  
COR  
7.5.3.45 KR_VS_TX_LN3_HLM_ERR_COUNT (register = 0x801E) (default = 0xFFFD) (device address:  
0x01)  
Figure 7-132. KR_VS_TX_LN3_HLM_ERR_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
TX_TPV_LN3_ERR_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-114. KR_VS_TX_LN3_HLM_ERR_COUNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Error Counter for H/L/M test pattern verification on Lane 3 of Tx side  
15:0 TX_TPV_LN3_ERR_COUNT[15:0]  
(R)  
COR  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
113  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.3.46 LT_VS_CONTROL_2 (register = 0x9001) (default = 0x0000) (device address: 0x01)  
Figure 7-133. LT_VS_CONTROL_2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
AP_SEARCH_MODE  
RESERVED  
[2:0]  
(RXG)  
RW  
RW/SC  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-115. LT_VS_CONTROL_2 Field Descriptions  
Bit  
Field  
Type  
RW  
Reset  
Description  
15:14 RESERVED  
13:12 RESERVED  
For TI use only (Default 2'b00)  
For TI use only (Default 2'b00)  
RW/SC  
RW  
11:9  
AP_SEARCH_MODE[2:0]  
(RXG)  
000 = Auto search, autotrain disabled (Default 3'b000)  
001 = Full region search, autotrain disabled  
010 = Auto search, autotrain enabled  
011 = Full region search, autotrain enabled  
1xx = Manual search  
8:0  
RESERVED  
RW  
For TI use only (Default 9'b000000000)  
7.5.4 PCS Registers  
The registers below can be accessed only in Clause 45 mode and with device address field set to 0x03  
(DEVADD [4:0] = 5’b00011). Valid only when device is in 10GBASE-KR mode.  
7.5.4.1 PCS_CONTROL (register = 0x0000) (default = 0x0000) (device address: 0x03)  
Figure 7-134. PCS_CONTROL Register XXX  
15  
14  
13  
5
12  
4
11  
10  
2
9
8
0
PCS_RESET  
(R)  
PCS_LOOPBA  
RESERVED  
RW  
PCS_LP_MOD  
RESERVED  
CK  
(R)  
E
(R)  
RW/SC  
7
RW  
6
RW  
3
RW  
1
RESERVED  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-116. PCS_CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PCS_RESET  
(R)  
RW/SC  
1 = Resets datapath and MDIO registers. Equivalent to asserting RESET_N.  
0 = Normal operation (Default 1’b0)  
14  
PCS_LOOPBACK  
(R)  
RW  
1 = Enables PCS loopback  
0 = Normal operation (Default 1’b0)  
Requires Auto Negotiation and Link Training to be disabled.  
13:12 RESERVED  
RW  
RW  
For TI use only. Always reads 0.  
11  
PCS_LP_MODE  
1 = Enable power down mode  
(R)  
0 = Normal operation (Default 1’b0)  
10:0  
RESERVED  
RW  
For TI use only. Always reads 0.  
114  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.4.2 PCS_STATUS_1 (register = 0x0001) (default = 0x0002) (device address: 0x03)  
Figure 7-135. PCS_STATUS_1 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
7
6
5
4
3
2
1
0
PCS_FAULT  
(R)  
RESERVED  
PCS_RX_LINK PCS_LP_ABILI  
RESERVED  
(R)  
TY  
(R)  
RO  
RO/LL  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-117. PCS_STATUS_1 Field Descriptions  
Bit  
15:8  
7
Field  
TYPE  
Reset  
Description  
RESERVED  
For TI use only.  
PCS_FAULT  
(R)  
RO  
1 = Fault condition detected on either PCS TX or PCS RX  
0 = No fault condition detected  
This bit is cleared after Register 03.0008 is read and no fault condition occurs after  
03.0008 is read.  
6:3  
2
RESERVED  
For TI use only.  
PCS_RX_LINK  
(R)  
RO/LL  
RO  
1 = PCS receive link is up  
0 = PCS receive link is down  
1
0
PCS_LP_ABILITY  
(R)  
Always reads 1.  
1 = Supports low power mode  
0 = Does not support low power mode  
RESERVED  
For TI use only.  
7.5.4.3 PCS_STATUS_2 (register = 0x0008) (default = 0x8001) (device address: 0x03)  
Figure 7-136. PCS_STATUS_2 Register  
15  
14  
13  
12  
11  
10  
9
8
0
DEV_PRESENT  
RESERVED  
PCS_TX_FAUL PCS_RX_FAUL  
RESERVED  
(R)  
RO  
T
(R)  
T
(R)  
RO/LH  
3
RO/LH  
2
7
6
5
4
1
RESERVED  
PCS_10GBAS  
ER_CAPABLE  
(R)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-118. PCS_STATUS_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14 DEV_PRESENT  
(R)  
RO  
Always reads 2’b10.  
0x = No device responding at this address  
10 = Device responding at this address  
11 = No device responding at this address  
13:12 RESERVED  
For TI use only.  
11  
PCS_TX_FAULT  
(R)  
RO/LH  
RO/LH  
1 = Fault condition detected on transmit path  
0 = No fault condition detected on transmit path  
10  
PCS_RX_FAULT  
(R)  
1 = Fault condition detected on receive path  
0 = No fault condition detected on receive path  
9:1  
0
RESERVED  
For TI use only.  
PCS_10GBASER_CAPABLE  
(R)  
RO  
Always reads 1.  
1 = PCS is able to support 10GBASE-R PCS type  
0 = PCS not able to support 10GBASE-R PCS type  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
115  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.4.4 KR_PCS_STATUS_1 (register = 0x0020) (default = 0x0004) (device address: 0x03)  
Figure 7-137. KR_PCS_STATUS_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
PCS_RX_LINK  
_STATUS  
(R)  
RESERVED  
RO  
6
RO  
4
7
5
3
2
1
RESERVED  
PCS_PRBS31_ PCS_HI_BER PCS_BLOCK_L  
ABILITY  
(R)  
(R)  
OCK  
(R)  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-119. KR_PCS_STATUS_1 Field Descriptions  
Bit  
Field  
Type  
RO  
Reset  
Description  
15:13 RESERVED  
For TI use only.  
12  
PCS_RX_LINK_STATUS  
(R)  
RO  
1 = 10GBASE-R PCS receive link up  
0 = 10GBASE-R PCS receive link down  
11:3  
2
RESERVED  
RO  
RO  
For TI use only.  
PCS_PRBS31_ABILITY  
(R)  
Always reads 1.  
1 = PCS is able to support PRBS31 pattern testing  
0 = PCS is not able to support PRBS31 testing  
1
0
PCS_HI_BER  
(R)  
RO  
RO  
1 = High BER condition detected  
0 = High BER condition not detected  
PCS_BLOCK_LOCK  
(R)  
1 = PCS locked to receive blocks  
0 = PCS not locked to receive blocks  
7.5.4.5 KR_PCS_STATUS_2 (register = 0x0021) (default = 0x0000) (device address: 0x03)  
Figure 7-138. KR_PCS_STATUS_2 Register  
15  
14  
13  
12  
11  
10  
9
8
0
PCS_BLOCK_ PCS_HI_BER_  
LOCK_LL  
(R)  
PCS_BER_COUNT[5:0]  
(R)  
LH  
(R)  
RO/LL  
7
RO/LH  
6
COR  
5
4
3
2
1
PCS_ERR_BLOCK_COUNT[7:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-120. KR_PCS_STATUS_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PCS_BLOCK_LOCK_LL  
(R)  
RO/LL  
1 = PCS locked to receive blocks  
0 = PCS not locked to receive blocks  
14  
PCS_HI_BER_LH  
(R)  
RO/LL  
COR  
1 = High BER condition detected  
0 = High BER condition not detected  
13:8 PCS_BER_COUNT[5:0]  
(R)  
Value indicating number of times BER state machine enters BER_BAD_SH state  
7:0  
PCS_ERR_BLOCK_COUNT[7:0]  
(R)  
COR  
Value indicating number of times RX decode state machine enters RX_E state. Same  
value is also reflected in 1E.0010 and reading either register clears the counter value.  
116  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.4.6 PCS_TP_SEED_A0 (register = 0x0022) (default = 0x0000) (device address: 0x03)  
Figure 7-139. PCS_TP_SEED_A0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
2
1
1
1
0
0
0
PCS_TP_SEED_A[15:0]  
(R)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-121. PCS_TP_SEED_A0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PCS_TP_SEED_A[15:0]  
(R)  
RW  
Test pattern seed A bits 15-0  
7.5.4.7 PCS_TP_SEED_A1 (register = 0x0023) (default = 0x0000) (device address: 0x03)  
Figure 7-140. PCS_TP_SEED_A1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
PCS_TP_SEED_A[31:16]  
(R)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-122. PCS_TP_SEED_A1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PCS_TP_SEED_A[31:16]  
(R)  
RW  
Test pattern seed A bits 31-16  
7.5.4.8 PCS_TP_SEED_A2 (register = 0x0024) (default = 0x0000) (device address: 0x03)  
Figure 7-141. PCS_TP_SEED_A2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
PCS_TP_SEED_A[47:32]  
(R)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-123. PCS_TP_SEED_A2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PCS_TP_SEED_A[47:32]  
(R)  
RW  
Test pattern seed A bits 47-32  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
117  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.4.9 PCS_TP_SEED_A3 (register = 0x0025) (default = 0x0000) (device address: 0x03)  
Figure 7-142. PCS_TP_SEED_A3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
PCS_TP_SEED_A[57:48]  
(R)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-124. PCS_TP_SEED_A3 Field Descriptions  
Bit  
15:10 RESERVED  
9:0 PCS_TP_SEED_A[57:48]  
Field  
Type  
RW  
Reset  
Description  
For TI use only. Always reads 0.  
Test pattern seed A bits 57-48  
RW  
(R)  
7.5.4.10 PCS_TP_SEED_B0 (register = 0x0026) (default = 0x0000) (device address: 0x03)  
Figure 7-143. PCS_TP_SEED_B0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PCS_TP_SEED_B[15:0]  
(R)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-125. PCS_TP_SEED_B0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PCS_TP_SEED_B[15:0]  
(R)  
RW  
Test pattern seed B bits 15-0  
7.5.4.11 PCS_TP_SEED_B1 (register = 0x0027) (default = 0x0000) (device address: 0x03)  
Figure 7-144. PCS_TP_SEED_B1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PCS_TP_SEED_B[31:16]  
(R)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-126. PCS_TP_SEED_B1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PCS_TP_SEED_B[31:16]  
(R)  
RW  
Test pattern seed B bits 31-16  
118  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.4.12 PCS_TP_SEED_B2 (register = 0x0028) (default = 0x0000) (device address: 0x03)  
Figure 7-145. PCS_TP_SEED_B2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PCS_TP_SEED_B[47:32]  
(R)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-127. PCS_TP_SEED_B2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PCS_TP_SEED_B[47:32]  
(R)  
RW  
Test pattern seed B bits 47-32  
7.5.4.13 PCS_TP_SEED_B3 (register = 0x0029) (default = 0x0000) (device address: 0x03)  
Figure 7-146. PCS_TP_SEED_B3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
PCS_TP_SEED_B[57:48]  
(R)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-128. PCS_TP_SEED_B3 Field Descriptions  
Bit  
15:10 RESERVED  
9:0 PCS_TP_SEED_B[57:48]  
Field  
Type  
RW  
Reset  
Description  
For TI use only. Always reads 0.  
Test pattern seed B bits 57-48  
RW  
(R)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
119  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.4.14 PCS_TP_CONTROL (register = 0x002A) (default = 0x0000) (device address: 0x03)  
Figure 7-147. PCS_TP_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RW  
7
6
5
4
3
2
1
RESERVED  
RW  
PCS_PRBS31_ PCS_PRBS31_ PCS_TX_TP_E PCS_RX_TP_E PCS_TP_SEL PCS_DP_SEL  
RX_TP_EN  
(R)  
TX_TP_EN  
(R)  
N
(R)  
N
(R)  
(R)  
(R)  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-129. PCS_TP_CONTROL Field Descriptions  
Bit  
15:6  
5
Field  
Type Reset  
Description  
RESERVED  
RW  
RW  
For TI use only. Always reads 0.  
PCS_PRBS31_RX_TP_EN  
(R)  
1 = Enable PRBS31 test pattern verification on receive path  
0 = Normal operation (Default 1’b0)  
4
3
2
1
0
PCS_PRBS31_TX_TP_EN  
(R)  
RW  
RW  
RW  
RW  
RW  
1 = Enable PRBS31 test pattern generation on transmit path  
0 = Normal operation (Default 1’b0)  
PCS_TX_TP_EN  
(R)  
1 = Enable transmit test pattern generation  
0 = Normal operation (Default 1’b0)  
PCS_RX_TP_EN  
(R)  
1 = Enable receive test pattern verification  
0 = Normal operation (Default 1’b0)  
PCS_TP_SEL  
(R)  
1 = Square wave test pattern  
0 = Pseudo random test pattern (Default 1’b0)  
PCS_DP_SEL  
(R)  
1 = 0’S data pattern  
0 = LF data pattern (Default 1’b0)  
7.5.4.15 PCS_TP_ERR_COUNT (register = 0x002B) (default = 0x0000) (device address: 0x03)  
Figure 7-148. PCS_TP_ERR_COUNT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PCS_TP_ERR_COUNT[15:0]  
(R)  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-130. PCS_TP_ERR_COUNT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
PCS_TP_ERR_COUNT[15:0]  
(R)  
COR  
Test pattern error counter. This counter reflects number of errors occurred during the  
test pattern mode selected through PCS_TP_CONTROL. In PRBS31 test pattern  
verification mode, counter value indicates the number of received bytes that have 1 or  
more bit errors.  
120  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.4.16 PCS_VS_CONTROL (register = 0x8000) (default = 0x00B0) (device address: 0x03)  
Figure 7-149. PCS_VS_CONTROL Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RW  
7
6
5
4
3
2
1
PCS_SQWAVE_N  
RESERVED  
RW  
PCS_RX_DEC PCS_DESCR_ PCS_SCR_DIS  
(R)  
_CTRL_CHAR  
(R)  
DISABLE  
(R)  
ABLE  
(R)  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-131. PCS_VS_CONTROL Field Descriptions  
Bit  
15:8  
7:4  
Field  
Type  
RW  
Reset  
Description  
RESERVED  
For TI use only. Always reads 0.  
PCS_SQWAVE_N  
(R)  
RW  
Sets number of repeating 0’s followed by repeating 1’s during square wave test  
pattern generation mode (Default 4’1011)  
3
2
RESERVED  
RW  
RW  
For TI use only (Default 1’b0)  
PCS_RX_DEC_CTRL_CHAR  
(R)  
PCS RX Decode control character selection. Determines what control characters are  
passed  
0 = A/K/R control characters are changed to Idles. Reserved characters passed  
through (Default 1’b0)  
1 = A/K/R control characters are passed through as is RW  
1
0
PCS_DESCR_DISABLE  
(R)  
RW  
RW  
De-scrambler control in 10GKR RX PCS  
1 = Disable descrambler  
0 = Enable descrambler (Default 1’b0)  
PCS_SCR_DISABLE  
(R)  
Scrambler control in 10GKR TX PCS  
1 = Disable scrambler  
0 = Enable scrambler (Default 1’b0)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
121  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.4.17 PCS_VS_STATUS (register = 0x8010) (default = 0x00FD) (device address: 0x03)  
Figure 7-150. PCS_VS_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
RO/LF  
UNCORR_ERR CORR_ERR_S  
RESERVED  
PCS_TP_ERR  
(R)  
_STATUS  
(R)  
TATUS  
(R)  
RO/LF  
5
RO/LF  
4
RO/LF  
0
7
6
3
2
1
RESERVED  
COR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-132. PCS_VS_STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14 RESERVED  
RO/LF  
RO/LF  
For TI use only.  
13  
12  
UNCORR_ERR_STATUS  
(R)  
1 = Uncorrectable block error found  
CORR_ERR_STATUS  
(R)  
RO/LF  
1 = Correctable block error found  
For TI use only.  
11:9  
8
RESERVED  
COR  
PCS_TP_ERR  
(R)  
RO/LF  
PCS test pattern verification status PCS_SCR_DISABLE  
1 = Error occurred during pseudo random test pattern verification  
Number of errors can be checked by reading PCS_TP_ERR_COUNT (03.002B)  
register  
7:0  
RESERVED  
COR  
For TI use only.  
122  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.5 Auto-Negotiation Registers  
The registers below can be accessed only in Clause 45 mode and with device address field set to 0x07  
(DA[4:0] = 5’b00111)  
7.5.5.1 AN_CONTROL (register = 0x0000) (default = 0x3000) (device address: 0x07)  
Figure 7-151. AN_CONTROL Register  
15  
14  
6
13  
5
12  
11  
3
10  
2
9
8
AN_RESET  
(RX)  
RESERVED  
RW  
AN_ENABLE  
(RX)  
RESERVED  
RW  
AN_RESTART  
(RX)  
RW/SC(1)  
RESERVED  
RW/SC  
7
RW  
4
RW  
0
1
RESERVED  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) If set, a read of register 07.0000 is required to clear AN_RESTART bit.  
Table 7-133. AN_CONTROL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AN_RESET  
(RX)  
RW/SC  
1 = Resets Auto Negotiation  
0 = Normal operation (Default 1’b0)  
14  
13  
12  
RESERVED  
RESERVED  
RW  
RW  
RW  
For TI use only. Always reads 0.  
For TI use only (Default 1’b1)  
AN_ENABLE  
(RX)  
1 = Enable Auto Negotiation (Default 1’b1)  
0 = Disable Auto Negotiation  
11:10 RESERVED  
RW  
For TI use only. Always reads 0.  
9
AN_RESTART  
(RX)  
RW/SC  
1 = Restart Auto Negotiation  
0 = Normal operation (Default 1’b0)  
If set, a read of this register is required to clear AN_RESTART bit.  
8:0  
RESERVED  
RW  
For TI use only. Always reads 0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
123  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.5.2 AN_STATUS (register = 0x0001) (default = 0x0088) (device address: 0x07)  
Figure 7-152. AN_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
AN_PAR_DET_FAULT  
(RX)  
RESERVED  
RO/LH  
RO  
0
7
6
5
4
3
2
1
AN_EXP_NP_ AN_PAGE_R AN_COMPLE REMOTE_FA AN_ABILITY LINK_STATU  
RESERVED  
AN_LP_ABILI  
STATUS  
(RX)  
CVD  
(RX)  
TE  
(RX)  
ULT  
(RX)  
(RX)  
S
(RX)  
TY  
(RX)  
RO  
RO/LH  
RO  
RO/LH  
RO  
RO/LL  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-134. AN_STATUS Field Descriptions  
Bit  
15:10  
9
Field  
Type  
RO  
Reset  
Description  
RESERVED  
For TI use only.  
AN_PAR_DET_FAULT  
(RX)  
RO/LH  
1 = Fault has been detected via parallel detection function  
0 = Fault has not been detected via parallel detection function  
8
7
RESERVED  
RO  
For TI use only.  
AN_EXP_NP_STATUS  
(RX)  
RO/LH  
1 = Extended next page is used  
0 = Extended next page is not allowed  
6
5
4
3
AN_PAGE_RCVD  
(RX)  
RO  
1 = A page has been received  
0 = A page has not been received  
AN_COMPLETE  
(RX)  
RO/LH  
RO/LH  
RO  
1 = Auto Negotiation process is completed  
0 = Auto Negotiation process not completed  
REMOTE_FAULT  
(RX)  
1 = Remote fault detected by AN  
0 = Remote fault not detected by AN  
AN_ABILITY  
(RX)  
Always reads 1.  
1 = Device is able to perform Auto Negotiation  
0 = Device not able to perform Auto Negotiation  
2
LINK_STATUS  
(RX)  
RO/LH  
1 = Link is up  
0 = Link is down  
1
0
RESERVED  
RO  
RO  
For TI use only.  
AN_LP_ABILITY  
(RX)  
1 = LP is able to perform Auto Negotiation  
0 = LP not able to perform Auto Negotiation  
124  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.5.3 AN_DEV_PACKAGE (register = 0x0005) (default = 0x0080) (device address: 0x07)  
Figure 7-153. AN_DEV_PACKAGE Register XXX  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RO  
7
6
5
4
3
2
1
AN_ PRESENT  
(RX)  
RESERVED  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-135. AN_DEV_PACKAGE Field Descriptions  
Bit  
15:8  
7
Field  
Type  
RO  
Reset  
Description  
RESERVED  
For TI use only.  
AN_PRESENT  
(RX)  
RO  
Always reads 1  
1 = Auto Negotiation present in the package  
0 = Auto Negotiation not present in the package  
6:0  
RESERVED  
RO  
For TI use only.  
7.5.5.4 AN_ADVERTISEMENT_1 (register = 0x0010) (default = 0x1001) (device address: 0x07)  
Figure 7-154. AN_ADVERTISEMENT_1 Register  
15  
14  
13  
12  
11  
10  
9
8
AN_NEXT_PA AN_ACKNOWL AN_REMOTE_  
AN_CAPABILITY[2:0]  
(RX)  
AN_ECHO_NONCE[4:0]  
(RX)  
GE  
EDGE  
(RX)  
FAULT  
(RX)  
(RX)  
RW  
7
RO  
6
RW  
5
RW  
3
RW  
4
2
1
0
AN_ECHO_NONCE[4:0]  
(RX)  
AN_SELECTOR[4:0]  
(RX)  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-136. AN_ADVERTISEMENT_1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AN_NEXT_PAGE  
(RX)  
RW  
NP bit (D15) in base link codeword  
1 = Next page available  
0 = Next page not available (Default 1’b0)  
14  
13  
AN_ACKNOWLEDGE  
(RX)  
RO  
Acknowledge bit (D14) in base link codeword. Always reads 0.  
AN_REMOTE_FAULT  
(RX)  
RW  
RF bit (D13) in base link codeword  
1 = Sets RF bit to 1  
0 = Normal operation (Default 1’b0)  
12:10 AN_CAPABILITY[2:0]  
(RX)  
RW  
RW  
Value to be set in D12:D10 bits of the base link codeword. Consists of abilities like  
PAUSE, ASM_DIR (Default 3’b100)  
9:5  
AN_ECHO_NONCE[4:0]  
(RX)  
Value to be set in D9:D5 bits of the base link codeword. Consists of Echo nonce value.  
Transmitted in base page only until local device and link Partner have exchanged unique  
Nonce values, at which time transmitted Echoed Nonce will change to Link Partner's  
Nonce value. Read value always reflects the value written, not the actual Echoed Nonce.  
(Default 5’b00000)  
4:0  
AN_SELECTOR[4:0]  
(RX)  
RW  
Value to be set in D4:D0 bits of the base link codeword. Consists of selector field value  
(Default 5’b00001)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
125  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.5.5 AN_ADVERTISEMENT_2 (register = 0x0011) (default = 0x0080)  
(device address: 0x07)  
Figure 7-155. AN_ADVERTISEMENT_2 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
AN_ABILITY[10:3]  
(RX)  
RW  
7
6
5
4
3
2
AN_ABILITY[2] AN_ABILITY[1] AN_ABILITY[0]  
AN_TRANS_NONCE_ FIELD[4:0]  
(RX)  
(RX)  
(RX)  
(RX)  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-137. AN_ADVERTISEMENT_2 Field Descriptions  
Bit  
Field  
Value  
Reset  
Description  
15:8  
AN_ABILITY[10:3]  
(RX)  
RW  
Value to be set in D31:D24 bits of the base link codeword. Consists of  
technology ability field bits [10:3] (Default 9’b000000000)  
7
AN_ABILITY[2]  
(RX)  
RW  
Value to be set in D23 bits of the base link codeword. Consists of technology  
ability field bits [2]. When set, indicates device supports 10GBASE-KR (Default  
1’b1)  
6
5
AN_ABILITY[1]  
(RX)  
RW  
RW  
Value to be set in D22 bits of the base link codeword. Consists of technology  
ability field bits [1]. Always set to 0 (Default 1’b0)  
AN_ABILITY[0]  
(RX)  
Value to be set in D21 bits of the base link codeword. Consists of technology  
ability field bit [0]. When set, indicates device supports 1000BASE-KX (Default  
1’b0)  
4:0  
AN_TRANS_NONCE_ FIELD[4:0]  
(RX)  
RW  
Not used. Transmitted Nonce field is generated by hardware random number  
generator. Read value always reflects value written, not the actual Transmitted  
Nonce (Default 5’b00000)  
7.5.5.6 AN_ADVERTISEMENT_3 (register = 0x0012) (default = 0x4000)  
(device address: 0x07)  
Figure 7-156. AN_ADVERTISEMENT_3 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
AN_FEC_REQ AN_FEC_ABILI  
AN_ABILITY[24:11]  
(RX)  
UESTED  
(RX)  
TY  
(RX)  
RW  
7
RW  
6
RW  
5
4
3
2
AN_ABILITY[24:11]  
(RX)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-138. AN_ADVERTISEMENT_3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AN_FEC_REQUESTED  
(RX)  
RW  
Value to be set in D47 bits of the base link codeword. When set, indicates a request to  
enable FEC on the link (Default 1’b0)  
14  
AN_FEC_ABILITY  
(RX)  
RW  
RW  
Value to be set in D46 bits of the base link codeword. When set, indicates 10GBASE-KR  
has FEC ability (Default 1’b1)  
13:0  
AN_ABILITY[24:11]  
(RX)  
Value to be set in D45:D32 bits of the base link codeword. Consists of technology ability  
field bits [24:11] (Default 14’b00000000000000)  
126  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.5.7 AN_LP_ADVERTISEMENT_1 (register = 0x0013) (default = 0x0001)  
(device address: 0x07)  
Figure 7-157. AN_LP_ADVERTISEMENT_1 Register  
15  
14  
13  
12  
11  
10  
9
8
AN_LP_NEXT_ AN_LP_ACKN AN_LP_REMO  
AN_ LP_CAPABILITY  
(RX)  
AN_ LP_ECHO_NONCE  
(RX)  
PAGE  
(RX)  
OWLEDGE  
(RX)  
TE_FAULT  
(RX)  
RO  
7
RO  
6
RO  
5
RO  
3
RO  
4
2
1
0
AN_ LP_ECHO_NONCE  
(RX)  
AN_LP_SELECTOR[4:0]  
(RX)  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-139. AN_LP_ADVERTISEMENT_1(1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AN_LP_NEXT_PAGE  
(RX)  
RO  
NP bit (D15) in link partner base page  
1 = Next page available in link partner  
0 = Next page not available in link partner  
14  
13  
AN_LP_ACKNOWLEDGE  
(RX)  
RO  
RO  
Acknowledge bit (D14) in link partner base page.  
AN_LP_REMOTE_FAULT  
(RX)  
RF bit (D13) in link partner base page  
1 = Remote fault detected in link partner  
0 = Remote fault not detected in link partner  
12:10 AN_ LP_CAPABILITY  
(RX)  
RO  
RO  
RO  
D12:D10 bits of the link partner base page. Consists of abilities like PAUSE, ASM_DIR  
9:5  
AN_ LP_ECHO_NONCE  
(RX)  
D9:D5 bits of the link partner base page. Consists of Echo nonce value  
4:0  
AN_LP_SELECTOR[4:0]  
(RX)  
D4:D0 bits of the link partner base page. Consists of selector field value Always reads  
5’b00001  
(1) To get accurate AN_LP_ADVERTISEMENT read value, Register 07.0013 should be read first before reading 07.0014 and 07.0015  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
127  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.5.8 AN_LP_ADVERTISEMENT_2 (register = 0x0014) (default = 0x0000)  
(device address: 0x07)  
Figure 7-158. AN_LP_ADVERTISEMENT_2 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
AN_ LP_ABILITY[10:3]  
(RX)  
RO  
7
6
5
4
3
2
AN_LP_ABILIT AN_LP_ABILIT AN_LP_ABILIT  
AN_LP_TRANS_NONCE_FIELD  
(RX)  
Y[2]  
Y[1]  
Y[0]  
(RX)  
(RX)  
(RX)  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-140. AN_LP_ADVERTISEMENT_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
AN_ LP_ABILITY[10:3]  
(RX)  
RO  
D31:D24 bits of the link partner base page. Consists of technology ability field bits  
[10:3]  
7
6
AN_LP_ABILITY[2]  
(RX)  
RO  
RO  
RO  
RO  
D23 bits of the link partner base page. Consists of technology ability field bits [2]. When  
high, indicates link partner supports 10GBASE-KR  
AN_LP_ABILITY[1]  
(RX)  
D22 bits of the link partner base page. Consists of technology ability field bits [1].  
5
AN_LP_ABILITY[0]  
(RX)  
D21 bits of the link partner base page. Consists of technology ability field bit [0]. When  
high, indicates link partner supports 1000BASE-KX  
4:0  
AN_LP_TRANS_NONCE_FIELD  
(RX)  
D20:D16 bits of the link partner base page. Consists of transmitted nonce value  
128  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.5.9 AN_LP_ADVERTISEMENT_3 (register = 0x0015) (default = 0x0000)  
(device address: 0x07)  
Figure 7-159. AN_LP_ADVERTISEMENT_3 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
AN_LP_FEC_R AN_LP_FEC_A  
EQUESTED  
(RX)  
AN_LP_ABILITY[24:11]  
(RX)  
BILITY  
(RX)  
RO  
7
RO  
6
RO  
5
4
3
2
AN_LP_ABILITY[24:11]  
(RX)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-141. AN_LP_ADVERTISEMENT_3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AN_LP_FEC_REQUESTED  
(RX)  
RO  
D47 bits of the link partner base page. When high, indicates link partner request to  
enable FEC on the link  
14  
AN_LP_FEC_ABILITY  
(RX)  
RO  
RO  
D46 bits of the link partner base page. When high, indicates link partner has FEC  
ability  
13:0  
AN_LP_ABILITY[24:11]  
(RX)  
D45:D32 bits of the link partner base page. Consists of link partner technology ability  
field bits [24:11]  
7.5.5.10 AN_XNP_TRANSMIT_1 (register = 0x0016) (default = 0x2000) (device address: 0x07)  
Figure 7-160. AN_XNP_TRANSMIT_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
AN_XNP_NEX  
T_PAGE  
(RX)  
RESERVED  
AN_MP  
(RX)  
AN_ACKNOWL AN_TOGGLE  
AN_CODE_FIELD  
(RX)  
EDGE_2  
(RX)  
(RX)  
RW  
7
RO  
6
RW  
5
RW  
4
RW  
3
RW  
1
2
AN_CODE_FIELD  
(RX)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-142. AN_XNP_TRANSMIT_1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AN_XNP_NEXT_PAGE  
(RX)  
RW  
NP bit (D15) in next page code word  
1 = Next page available  
0 = Next page not available (Default 1’b0)  
14  
13  
RESERVED  
RO  
Always reads 0.  
AN_MP  
(RX)  
RW  
Message page bit (D13) in next page code word  
1 = Sets MP bit to 1 indicating next page is a message page (Default 1’b1)  
0 = Sets MP bit to 0 indicating next page is unformatted next page  
12  
11  
AN_ACKNOWLEDGE_2  
(RX)  
RW  
RW  
RW  
Value to be set in D12 bit of the next page code word. When set, indicates device is  
able to act on the information defined in the message (Default 1’b0)  
AN_TOGGLE  
(RX)  
Not used. Toggle value is generated by hardware. Read value always reflects value  
written, not the actual Toggle field (Default 1’b0)  
10:0  
AN_CODE_FIELD  
(RX)  
Value to be set in D10:D0 bits of the next page code word. Consists of  
Message/Unformatted code field value (Default 11’b00000000000)  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
129  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.5.11 AN_XNP_TRANSMIT_2 (register = 0x0017) (default = 0x0000) (device address: 0x07)  
Figure 7-161. AN_XNP_TRANSMIT_2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
AN_MSG_CODE_1  
(RX)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-143. AN_XNP_TRANSMIT_2 Field Descriptions  
Bit  
Field  
Value  
Reset  
Description  
15:0  
AN_MSG_CODE_1  
(RX)  
RW  
Value to be set in D31:D16 bits of the next page code word. Consists of  
Message/Unformatted code field value (Default 16’b0000000000000000)  
7.5.5.12 AN_XNP_TRANSMIT_3 (register = 0x0018) (default = 0x0000) (device address: 0x07)  
Figure 7-162. AN_XNP_TRANSMIT_3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
AN_MSG_CODE_2  
(RX)  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-144. AN_XNP_TRANSMIT_3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0 AN_MSG_CODE_2  
(RX)  
RW  
Value to be set in D47:D32 bits of the next page code word. Consists of  
Message/Unformatted code field value (Default 16’b0000000000000000)  
130  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
7.5.5.13 AN_LP_XNP_ABILITY_1 (register = 0x0019) (default = 0x0000)  
(device address: 0x07)  
Figure 7-163. AN_LP_XNP_ABILITY_1 Register  
15  
14  
13  
12  
11  
10  
9
8
0
AN_LP_XNP_N AN_LP_XNP_A  
EXT_PAGE  
(RX)  
AN_LP_MP  
(RX)  
AN_LP_ACKN AN_LP_TOGG  
OWLEDGE_2  
(RX)  
AN_ LP_CODE_FIELD  
(RX)  
CKNOWLEDG  
LE  
(RX)  
E
(RX)  
RO  
7
RO  
6
RO  
5
RO  
4
RO  
3
RO  
1
2
AN_ LP_CODE_FIELD  
(RX)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-145. AN_LP_XNP_ABILITY_1(1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AN_LP_XNP_NEXT_PAGE  
(RX)  
RO  
NP bit (D15) in next page code word  
1 = Next page available  
0 = Next page not available (Default 1’b0)  
14  
13  
AN_LP_XNP_ACKNOWLEDGE  
(RX)  
RO  
RO  
Value in D14 bit of the next page code word. When set, indicates device is able to act  
on the information defined in the message (Default 1’b0)  
AN_LP_MP  
(RX)  
Message page bit (D13) in next page code word  
1 = Sets MP bit to 1 indicating next page is a message page  
0 = Sets MP bit to 0 indicating next page is unformatted next page (Default 1’b0)  
12  
11  
AN_LP_ACKNOWLEDGE_2  
(RX)  
RO  
RO  
RO  
Value in D12 bit of the next page code word. When set, indicates device is able to act  
on the information defined in the message (Default 1’b0)  
AN_LP_TOGGLE  
(RX)  
Value of D11 bit of the next page code word. Consists of Toggle field value(Default  
1’b0)  
10:0  
AN_ LP_CODE_FIELD  
(RX)  
Value in D10:D0 bits of the next page code word. Consists of Message/Unformatted  
code field value (Default 11’b00000000000)  
(1) To get accurate AN_LP_XNP_ABILITYT read value, Register 07.0019 should be read first before reading 07.001A and 07.001B  
Copyright © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
131  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.5.5.14 AN_LP_XNP_ABILITY_2 (register = 0x001A) (default = 0x0000)  
(device address: 0x07)  
Figure 7-164. AN_LP_XNP_ABILITY_2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
AN_LP_MSG_CODE_2  
(RX)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-146. AN_LP_XNP_ABILITY_2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
AN_LP_MSG_CODE_1  
(RX)  
RO  
Value to be set in D31:D16 bits of the next page code word. Consists of  
Message/Unformatted code field value (Default 16’b0000000000000000)  
7.5.5.15 AN_LP_XNP_ABILITY_3 (register = 0x001B) (default = 0x0000)  
(device address: 0x07)  
Figure 7-165. AN_LP_XNP_ABILITY_3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
AN_LP_MSG_CODE_2  
(RX)  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-147. AN_LP_XNP_ABILITY_3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
AN_LP_MSG_CODE_2  
(RX)  
RO  
Value to be set in D47:D32 bits of the next page code word. Consists of  
Message/Unformatted code field value (Default 16’b0000000000000000)  
7.5.5.16 AN_BP_STATUS (register = 0x0030) (default = 0x0001) (device address: 0x07)  
Figure 7-166. AN_BP_STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
RO  
7
6
5
4
3
2
1
RESERVED  
AN_10G_KR_F  
AN_10G_KR  
(RX)  
RESERVED  
AN_1G_KX  
(RX)  
AN_BP_AN_AB  
ILITY  
EC  
(RX)  
(RX)  
RO  
RO  
RO  
RO  
RO  
RO  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7-148. AN_BP_STATUS Field Descriptions  
Bit  
15:5  
4
Field  
Type  
RO  
Reset  
Description  
RESERVED  
For TI use only.  
AN_10G_KR_FEC  
(RX)  
RO  
1 = PMA/PMD is negotiated to perform 10GBASE-KR FEC  
3
AN_10G_KR  
(RX)  
RO  
1 = PMA/PMD is negotiated to perform 10GBASE-KR  
2
1
RESERVED  
RO  
RO  
For TI use only.  
AN_1G_KX  
(RX)  
1 = PMA/PMD is negotiated to perform 1000BASE-KX  
0
AN_BP_AN_ABILITY  
(RX)  
RO  
Always reads 1.  
1 = Indicates 1000BASE-KX, 10GBASE-KR is implemented  
132  
Detailed Description  
Copyright © 2015–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10031  
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Table 7-149. TI_Reserved Control and Status Registers  
Register Name  
Register  
Address  
Default  
Value  
Access  
Register Name  
Register  
Address  
Default  
Value  
Access  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
1E.8000  
1E.8001  
1E.8002  
1E.8005  
1E.8006  
1E.8007  
1E.8008  
1E.8009  
1E.800A  
1E.800B  
1E.800C  
1E.800D  
1E.800E  
1E.800F  
1E.8011  
1E.8012  
1E.8013  
1E.8014  
1E.8015  
1E.8019  
1E.801A  
1E.801C  
1E.801D  
1E.801E  
1E.801F  
1E.8020  
1E.8022  
1E.8023  
1E.8024  
1E.8025  
1E.8030  
1E.8031  
1E.8032  
1E.8033  
1E.8034  
1E.8035  
1E.8050  
1E.8102  
1E.A000  
1E.A010  
1E.A011  
1E.A012  
1E.A013  
0x04C0  
0x0207  
0x02FE  
0x0000  
0x0000  
0x8000  
0x0000  
0xFC00  
0xBC3C  
0x0000  
0x0000  
0x01FC  
0x0000  
0x00C0  
0x7F00  
0xFFFD  
0xFFFD  
0x0000  
0x0000  
0xFC00  
0xBC3C  
0x0000  
0x01FC  
0x0000  
0x00C0  
0x0200  
0x0000  
0x0000  
0x0000  
0xF000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0xF280  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
COR  
COR  
RO/LH  
RO  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
1E.A014  
1E.A015  
1E.A016  
1E.A017  
1E.A018  
1E.A116  
1E.A117  
1E.A118  
1E.A119  
01.8000  
01.801F  
01.8020  
01.8021  
01.8022  
01.8023  
01.8024  
01.9000  
01.9002  
01.9003  
01.9004  
01.9005  
01.9006  
01.9007  
01.9008  
01.9009  
01.900A  
01.900B  
01.900C  
01.900D  
01.900E  
01.900F  
01.9010  
01.9011  
01.9020  
01.9021  
01.9022  
01.9023  
01.9024  
01.9025  
01.9026  
01.9027  
01.9028  
01.9029  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x4800  
0xFFFD  
0xFFFD  
0xFFFD  
0xFFFD  
0xFFFF  
0xFFFD  
0x0249  
0x1335  
0x5E29  
0x007F  
0x1C00  
0x0000  
0x5120  
0xC018  
0xE667  
0x5E8F  
0xAFAF  
0x0800  
0x461A  
0x1723  
0x7003  
0x0851  
0x1EFF  
0x0000  
0xFFFD  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
RO  
RO  
RO  
RO  
RO  
RW  
RW  
RO  
RO  
RW  
COR  
COR  
COR  
COR  
COR  
COR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
RO  
RO  
RO  
RO  
COR  
RO  
RO  
RW  
RW  
RW  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
版权 © 2015–2017, Texas Instruments Incorporated  
Detailed Description  
133  
提交文档反馈意见  
产品主页链接: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLK10031 device can be used to convert between XAUI (on the low speed port) and 10GBASE-R  
signaling (on the high speed port). The high speed side of the device meets the requirements of the  
10GBASE-KR physical layer standard for 10 Gbps data transmission over a PCB backplane. The device  
can also be used for optical physical layers (like 10GBASE-SR or 10GBASE-LR) by interfacing to optical  
modules requiring SFI or XFI electrical signaling. For optical use cases, KR-specific features like Clause  
73 auto-negotiation and link training should be disabled.  
8.2 Typical Application  
A typical application for TLK10031 is to support 10 Gbps Ethernet data transmission over a backplane,  
e.g., between a network processor or MAC and switch ASIC located on separate cards within a router  
chassis. A block diagram of this application is shown in 8-1.  
[ine /ard  
btÜ  
.ackplane  
{ꢁiꢀch  
10-Yw  
10 Db9  
a!/  
10 Db9  
tIò  
Ç[Y10031  
ó!ÜL Lnꢀerfaces  
8-1. Typical Application Circuit  
134  
Applications and Implementation  
版权 © 2015–2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
8.2.1 Design Requirements  
For this design example, use the parameters shown in 8-1.  
8-1. Design Parameters  
PARAMETER  
10GBASE-KR Interface Requirements  
Signaling rate  
VALUE  
10.3125 Gbps ±100 ppm  
Differential peak-to-peak output voltage (maximum)  
Total jitter (maximum)  
1200 mV  
0.28 UI  
64b/66b  
Yes  
Encoding  
Scrambling?  
Auto-negotation?  
Yes  
Link training  
Yes  
XAUI Interface Requirements  
Signaling rate per lane  
3.125 Gbps ±100 ppm  
1600 mV  
Differential peak-to-peak output voltage (maximum)  
Total jitter (maximum)  
0.35 UI  
8.2.2 Detailed Design Procedure  
The TLK10031 should be powered via a 1-V (nominal) supply on the VDDD, VDDA, DVDD, VDDT, and  
VPP rails and by a 1.5-V or 1.8-V (nominal) supply on the VDDR and VDDO rails. The power supply  
accuracy should be 5% or better, and the user should be careful that resistive losses across the  
application PCB’s power distribution network do not cause the voltage present at the TLK10031 BGA balls  
to be below specification. If a switched-mode power supply is used, care should be taken to ensure low  
supply ripple  
A differential reference clock must be provided to either the REFCLK0P/N or REFCLK1P/N input port. The  
clock signal should be AC-coupled and have a differential amplitude between 250 mV and 2000 mV peak-  
to-peak. For 10GBASE-R applications, the clock frequency should be either 156.25 MHz or 312.5 MHz  
and have an accuracy of 100 ppm. Because jitter on the reference clock can transfer through the  
TLK10031 PLLs and onto the serial outputs, it is best to keep the reference clock’s jitter as low as  
possible (that is, under 1 ps from 10 kHz to 20 MHz) in order to meet the requirements of IEEE 802.3.  
All serial inputs and outputs should be laid out on the PCB following best practices for high speed signal  
integrity. Detailed layout recommendations are given in the 10 section.  
版权 © 2015–2017, Texas Instruments Incorporated  
Applications and Implementation  
135  
提交文档反馈意见  
产品主页链接: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.2.3 Application Curves  
The output eye diagram of the TLK10031 (operated at 10.3125 Gbps under nominal conditions) is shown  
8-2.  
Time 20 ps/div  
8-2. Eye Diagram of the TLK10031  
9 Power Supply Recommendations  
The TLK10031 allows either the core or I/O power supply to be powered up for an indefinite period of time  
while the other supply is not powered up, if all of the following conditions are met:  
1. All maximum ratings and recommending operating conditions are followed  
2. Bus contention while 1.5/1.8V power is applied (>0V) must be limited to 100 hours over the projected  
lifetime of the device.  
3. Junction temperature is less than 105°C during device operation. Note: Voltage stress up to the  
absolute maximum voltage values for up to 100 hours of lifetime operation at a TJ of 105°C or lower  
will minimally impact reliability.  
The TLK10031 LVCMOS I/O are not failsafe (i.e. cannot be driven with the I/O power disabled). TLK10031  
inputs should not be driven high until their associated power supply is active.  
136  
Power Supply Recommendations  
版权 © 2015–2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
10 Layout  
10.1 Layout Guidelines  
10.1.1 TLK10031 High-Speed Data Path  
10.1.1.1 Layout Recommendations for High-Speed Signals  
Both “low-speed” side and “high-speed” side serial signals are referred to as “high-speed” signals for the  
purpose of this document as they support high data rates. For that reason, care must be taken to realize  
them on a printed circuit board with signal integrity. The high-speed data path CML input pins  
INA[3:0]P/INA[3:0]N and HSRXAP/HSRXAN, and the CML output pins OUTA[3:0]P/OUTA[3:0]N and  
HSTXAP/HSTXAN, have to be connected with loosely-coupled 100-Ω differential transmission lines.  
Differential intra-pair skew needs to be minimized to within ±1 mil. Inter-pair (lane-to-lane) skew for the  
low-speed signals can be as high as 30 UI. An example of FR-4 printed circuit board (PCB) realization of  
such differential transmission lines in microstrip format is shown in 10-1.  
10-1. Differential Microstrip PCB Trace Geometry Example  
To avoid impedance discontinuities the high-speed serial signals should be routed on a PCB on either the  
top or bottom PCB layers in microstrip format with no vias. If vias are unavoidable, an absolute minimum  
number of vias need to be used. The vias should be made to stretch through the entire PCB thickness (as  
shown in 10-2) to connect microstrip traces on the top and bottom layers of the PCB so as to leave no  
via stubs that can severely impact the performance. If stripline traces are absolutely necessary, and if via  
back-drilling is not possible, then the routing layers should be chosen so as to have via stubs that are  
shorter than 10 mils.  
All unused internal layer via pads on high-speed signal vias should be removed to further improve  
impedance matching. On the high-speed side, the HSRXAP/HSRXAN signals are more sensitive to  
impedance discontinuities introduced by vias than HSTXAP/HSTXAN signals. For that reason, if only  
some of those signals need to be routed with vias, then the latter should be routed with vias and the  
former with no vias.  
版权 © 2015–2017, Texas Instruments Incorporated  
Layout  
137  
提交文档反馈意见  
产品主页链接: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
10-2. Examples of High-speed PCB Traces With Vias That Have no Via Stubs and no Via Pads on  
Internal Layers  
To further improve on impedance matching, differential vias with neighboring ground vias can be used as  
shown in 10-3. The optimum dimensions of such a differential via structure depend on various  
parameters such as the trace geometry, dielectric material, as well as the PCB layer stack-up. A 3D  
electromagnetic field solver can be used to find the optimum via dimensions.  
10-3. A Differential PCB Via Structure (Top View)  
PCB traces connected to the HSRXAP/HSRXAN pins should have differential insertion loss of less than  
25 dB at 5 GHz.  
138  
Layout  
版权 © 2015–2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
Surface-mount connector pads such as those used with the SFP/SFP+ module connectors are wider and  
hence have characteristic impedance that is lower than the regular high-speed PCB traces. If the pads are  
more than 2 times wider than the PCB traces, the pads’ impedance needs to be increased to minimize  
impedance discontinuities. The easy way of increasing the pads’ impedance is to cut out the reference  
plane immediately under those pads as shown in 10-4 so as to have the pads refer to a reference  
plane on lower layers while maintaining 100 Ω differential characteristic impedance.  
10-4. Surface-mount Connector Pads  
10.1.1.2 AC-coupling  
A 0.1-uF series AC-coupling capacitor should be connected to each of the high-speed data path pins  
INA[3:0]P/INA[3:0]N, HSRXAP/HSRXAN, OUTA[3:0]P/OUTA[3:0]N, and HSTXAP/HSTXAN. If the  
TLK10031 high-speed side data path pins are connected to SFP/SFP+ optical modules with internal AC-  
coupling capacitors, then no external capacitors should be used. Adding additional series capacitors may  
severely impact the performance.  
To avoid impedance discontinuities, it is strongly recommended where possible to make the transmission  
line trace width closely match the AC-coupling capacitor pad size. Smaller capacitor packages such as  
0201 make it easy to meet that condition.  
10.1.2 TLK10031 Clocks: REFCLK, CLKOUT  
10.1.2.1 General Information  
The TLK10031 device requires a low-jitter reference clock to work. The reference clock can be provided  
on the REFCLK0P/N or REFCLK1P/N pins. Both reference clock input pins have internal 100-Ω  
differential terminations, so they do not need any external terminations. Both reference clock inputs must  
be AC-coupled with preferably 0.1-µF capacitors. The two channels (A and B) can have same or different  
reference clocks.  
The TLK10031 serial receiver recovers clock and data from the incoming serial data. The recovered byte  
clock is made available on the CLKOUTAP/N pins. The CLKOUTAP/N CML output pins must be AC-  
coupled with 0.1-µF AC-coupling capacitors.  
版权 © 2015–2017, Texas Instruments Incorporated  
Layout  
139  
提交文档反馈意见  
产品主页链接: TLK10031  
 
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
10.1.2.2 External Clock Connections  
An external clock jitter cleaner, such as Texas Instruments CDCE72010 or CDCM7005, may be used  
when needed to provide a low jitter reference clock. An example external clock jitter cleaner connection for  
channel A is shown in 10-5.  
HSRXAP/N  
OUTA[3:0]  
CLKOUTAP/N  
External  
REFCLK0P/N  
Clock Jitter  
Cleaner  
FPGA  
TLK10031  
VCXO  
INA[3:0]  
HSTXAP/N  
10-5. An External Clock Jitter Cleaner Connection Example for Channel A  
10.1.2.3 TLK10031 Control Pins and Interfaces  
The TLK10031 device features a number of control pins and interfaces, some of which are described as  
follows.  
10.1.2.3.1 MDIO Interface  
The TLK10031 supports the Management Data Input/Output (MDIO) Interface as defined in Clause 22 of  
the IEEE 802.3 Ethernet specification. The MDIO allows register-based management and control of the  
serial links.  
The MDIO Management Interface consists of a bi-directional data path (MDIO) and a clock reference  
(MDC). The port address is determined by the PRTAD[4:0] control pins.  
The MDIO pin requires a pullup to VDDO[1:0]. No pullup is needed on the MDC pin if driven with a push-  
pull MDIO master, but a pullup to VDDO[1:0] is needed if driven with an open-drain MDIO master.  
10.1.2.3.2 JTAG Interface  
The JTAG interface is mostly used for device test. The JTAG interface operates through the TDI, TDO,  
TMS, TCK, and TRST_N pins. If not used, all the pins can be left unconnected except TDI and TCK which  
must be grounded.  
10.1.2.3.3 Unused Pins  
As a general guideline, any unused LVCMOS input pin needs to be grounded and any unused LVCMOS  
output pin can be left unconnected. Unused CML differential output pins can be left unconnected. Unused  
CML differential input pins should be tied to ground through a shared 100-Ω resistor.  
140  
Layout  
版权 © 2015–2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TLK10031  
 
TLK10031  
www.ti.com.cn  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
10.2 Layout Example  
10-6. Pinout and Routing  
版权 © 2015–2017, Texas Instruments Incorporated  
Layout  
141  
提交文档反馈意见  
产品主页链接: TLK10031  
TLK10031  
ZHCSDU7C JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接  
收产品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信  
息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
12.1 封装信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据如有变更,  
恕不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
142  
机械、封装和可订购信息  
版权 © 2015–2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TLK10031  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLK10031CTR  
ACTIVE  
FCBGA  
CTR  
144  
119  
RoHS & Green  
SNAGCU  
Level-4-260C-72 HR  
-40 to 85  
TLK10031  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
TLK10031CTR  
CTR  
FCBGA  
144  
119  
7x17  
150  
315 135.9 7620 18.1  
12.7  
12.9  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLK10034

QUAD-CHANNEL XAUI/10GBASE-KR TRANSCEIVER
TI

TLK10034AAJ

暂无描述
TI

TLK10034_15

Quad-Channel XAUI/10GBASE-KR Transceiver
TI

TLK10081

10Gbps 1 至 8 通道多速率冗余链路聚合器
TI

TLK10081CTR

10Gbps 1 至 8 通道多速率冗余链路聚合器 | CTR | 144 | -40 to 85
TI

TLK100PHP

Industrial Temp, Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
TI

TLK100PHPR

Industrial Temp, Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
TI

TLK100_11

Industrial Temp, Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
TI

TLK10232

DUAL-CHANNEL XAUI/10GBASE-KR TRANSCEIVER WITH CROSSPOINT
TI

TLK10232CTR

具有交叉点开关的双通道 XAUI/10GBASE-KR 背板收发器 | CTR | 144 | -40 to 85
TI

TLK10232_14

DUAL-CHANNEL XAUI/10GBASE-KR TRANSCEIVER WITH CROSSPOINT
TI

TLK105

Industrial Temp, Single Port 10/100Mbs Ethernet Physical Layer Transceiver
TI