TLV1562_14 [TI]

2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN;
TLV1562_14
型号: TLV1562_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN

输入元件
文件: 总40页 (文件大小:578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
2 MSPS Max Throughput at 10 Bit (Single  
Channel), ±1 LSB DNL, ±1 LSB INL MAX  
Built-In Internal/System Mid-Scale Error  
Calibration  
3 MSPS Max Throughput at 8 Bit (Single  
Channel), ±1 LSB DNL, ±1 LSB INL MAX  
Built-In Mux With 2 Differential or 4  
Single-Ended Input Channels  
7 MSPS Max Throughput at 4 Bit (Single  
Channel), ±0.4 LSB DNL, ±0.4 LSB INL MAX  
Low Input Capacitance (10 pF Max Fixed,  
1 pF Max Switching)  
No Missing Code for External Clock Up to  
15 MHz at 5.5 V, 12 MHz at 2.7 V  
DSP/µ P-Compatible Parallel Interface  
applications  
ENOB 9.4 Bit, SINAD 57.8 dB, SFDR  
–70.8 dB, THD –68.8 dB, at fi = 800 kHz,  
10 Bit  
Portable Digital Radios  
Personal Communication Assistants  
Cellular  
Wide Input Bandwidth for Undersampling  
(75 MHz at 1 dB, >120 MHz at –3 dB) at  
Pager  
R = 1 kΩ  
s
Scanner  
Software Programmable Power Down,  
(1 µA), Auto Powerdown (120 µA)  
Digitizers  
Process Controls  
Motor Control  
Remote Sensing  
Automotive  
Single Wide Range Supply 2.7 VDC to  
5.5 VDC  
Low Supply Current 11 mA at 5.5 V, 10 MHz;  
7 mA at 2.7 V, 8 MHz Operating  
Simultaneous Sample and Hold:  
Dual Sample and Hold Matched Channels  
Multi Chip Simultaneous Sample and Hold  
Capable  
Servo Controls  
Cameras  
Programmable Conversion Modes:  
Interrupt-Driven for Shorter Latency  
Continuous Modes Optimized for MIPS  
Sensitive DSP Solutions  
DW OR PW PACKAGE  
(TOP VIEW)  
CSTART  
(LSB) D0  
D1  
RD  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AP/CH1  
AM/CH2  
BP/CH3  
BM/CH4  
2
3
D2  
4
D3  
5
D4  
AV  
6
DD  
BDV  
VREFP  
VREFM  
AGND  
WR  
7
DD  
BDGND  
D5  
8
9
D6  
10  
11  
D7  
DGND  
D8 12  
(MSB) D9 13  
INT 14  
17 DV  
DD  
16 CLKIN  
15 CS/OE  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
functional block diagram  
AV  
DD  
DV  
BDV  
DD  
DD  
AP/CH1  
AM/CH2  
S/H  
S/H  
D (0–9)  
CS/OE  
M
U
X
4/8/10-Bit  
Recyclic  
ADC  
Serial/Parallel Conv  
and FIFO  
3-State  
Buffer  
Amplifier  
BP/CH3  
BM/CH4  
Control  
Register  
VREFP  
VREFM  
VREFMID  
REF  
CLKIN  
SysClk  
(15 MHz Max)  
OSC  
(7.5 MHz Min)  
INT  
CSTART  
WR  
Interface  
Timing  
and  
Control  
RD  
AGND  
DGND  
BDGND  
description  
The TLV1562 is a 10-bit CMOS low-power, high-speed programmable resolution analog-to-digital converter  
based on a low-power recyclic architecture. The unique architecture delivers a throughput up to 2 MSPS (million  
samples per second) at 10-bit resolution. The programmable resolution allows a higher conversion throughput  
as a tradeoff of lower resolution. A high speed 3-state parallel port directly interfaces to a digital signal processor  
(DSP) or microprocessor (µP) system data bus. D0 through D9 are the digital output terminals with D0 being  
the least significant bit (LSB). The TLV1562 is designed to operate for a wide range of supply voltages  
(2.7 V to 5.5 V) with very low power consumption (11 mA maximum at 5.5 V, 10 MHz CLKIN). The power saving  
feature is further enhanced with a software power-down feature (1 µA maximum) and auto power-down (1 µA  
maximum) feature.  
Many programmable features make this device a flexible general-purpose data converter. The device can be  
configured as either four single-ended inputs to maximize the capacity or two differential inputs to improve noise  
immunity. The internal system clock (SYSCLK) may come from either an internally generated OSC or an  
external clock source (CLKIN). Four different modes of conversion are available for different applications. The  
interrupt driven modes are mostly suitable for asynchronous applications, while the continuous modes take  
advantage of the high speed nature of a pipelined architecture. A pair of built-in sample-and-hold amplifiers  
allow simultaneous sampling of two input channels. This makes the TLV1562 perfect for communication  
applications. Conversion is started by the RD signal, which can also be used for reading data, to maximize the  
throughput. Conversion can be started either by the RD or CSTART signal when the device is operating in the  
interrupt-driven modes. The dedicated conversion start pin, CSTART, provides a mechanism to simultaneously  
sample and convert multiple channels when multiple converters are used in an application.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
description (continued)  
The converter incorporates a pair of differential high-impedance reference inputs that facilitate ratiometric  
conversion, scaling, and isolation of analog circuitry from logic and supply noise. Other features such as low  
input capacitance (10 pF) and very wide input bandwidth (75 MHz) make this device a perfect digital signal  
processing (DSP) companion for mobile communication applications. A switched-capacitor design allows  
low-error conversion over the full operating free-air temperature range.  
The features that make this device truly a DSP friendly converter include: 1) programmable continuous  
conversion modes, 2) programmable 2s complement output code format, and 3) programmable resolution. The  
TLV1562 is offered in both 28-pin TSSOP and SOIC packages. The TLV1562C is characterized for operation  
from 0°C to 70°C. The TLV1562I is characterized for operation over the full industrial temperature range of  
–40°C to 85°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
28-TSSOP  
(25 MIL PITCH)  
(PW)  
28-SOIC  
(50 MIL PITCH)  
(DW)  
T
A
0°C to 70°C  
TLV1562CPW  
TLV1562IPW  
TLV1562CDW  
TLV1562IDW  
–40°C to 85°C  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AGND  
NO.  
20  
I
Analog ground return for the internal circuitry. Unless otherwise noted, all analog voltage measurements are with  
respect to AGND.  
AM/CH2  
AP/CH1  
26  
27  
23  
8
I
I
I
I
Differential channel A input minus or single-ended channel 2  
Differential channel A input plus or single-ended channel 1  
Positive analog supply voltage  
AV  
DD  
BDGND  
Digital ground return for the I/O buffers. Unless otherwise noted, all digital interface voltage measurements are with  
respect to DGND.  
BDV  
DD  
7
24  
25  
16  
15  
I
I
I
I
I
Positive digital supply voltage for I/O buffers  
BM/CH4  
BP/CH3  
CLKIN  
Differential channel B input minus or single-ended channel 4  
Differential channel B input plus or single-ended channel 3  
External clock input. (1 MHz to 15 MHz)  
CS/OE  
Chipselect. A high-to-low transition on this input resets the internal counters and controls and enables the outputdata  
bus D(0–9) and control inputs (RD, WR) within a maximum setup time. A low-to-high transition disables the output  
data bus D(9–0) and WR within a maximum setup time. This signal also serves as an output enable signal when the  
device is programmed into both mono and dual interrupt-driven modes using CSTART as the start of conversion  
signal.  
CSTART  
D(0–4)  
D(5–9)  
DGND  
1
I
Conversion start signal. A falling edge starts the sampling period and a rising edge starts the conversion. This signal  
acts without CS activated. CSTART connects to DV  
via a 10-kpull-up resistor if not used.  
DD  
2–6 I/O The lower bits of the 3-state parallel data bus. Bidirectional. The data bus is 3-stated except when RD or WR is low  
when CS is low.  
9–13 I/O The higher bits of the 3-state parallel data bus. Bidirectional. The data bus is 3-stated except when RD or WR is low  
when CS is low. When the host processor writes to the converter, D(9,8) are used as an index to the internal registers.  
18  
17  
14  
I
I
Digital ground return for the internal digital logic circuitry  
Positive digital supply voltage  
DV  
DD  
INT  
O
Interrupt output. The falling edge of INT signals the end of conversion. This output goes from a high impedance state  
to low logic level on the fifth falling edge of the system clock and remains low until reset by the rising edge of CS or  
RD. INT requires connection of a 10-kpull-up resistor.  
RD  
28  
I
Processor read strobe or synchronous start of conversion/sampling. The falling edge of RD is used to 1) start the  
conversion in interrupt-driven mode (if RD is programmed as the start conversion signal); 2) start both conversion  
and next sampling plus release of the previous conversion data in both continuous modes. The rising edge of RD  
serves as a read strobe and data is 3-stated (approximately 10 ns at 50 pF bus loading) after this edge. Connection  
of a 10-kpull-up resistor is optional.  
VREFM  
VREFP  
21  
22  
I
I
The lower voltage reference value is applied to this terminal.  
The upper reference voltage value is applied to this terminal. The maximum input voltage range is determined by the  
difference between the voltage applied to this terminal and the VREFM terminal.  
WR  
19  
I
Processor write strobe. Active low. Connection of a 10-kpull-up resistor is optional.  
detailed description  
The TLV1562 analog-to-digital converter is based on an advanced low power recyclic architecture. Two bits of  
the conversion result are presented per system clock cycle. A total of 5 system clock (SYSCLK) cycles is  
required to complete the conversion. The serial conversion results are converted to a parallel word for output.  
The device supports both interrupt-driven (typically found in a SAR type ADC) and continuous (natural for a  
pipeline type ADC) modes of conversion. An innovative conversion scheme makes this device perfect for power  
sensitive applications with uncompromised speed.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
control register  
The TLV1562 is software configurable. The first two bits, MSBs (D9,8), are used to address the register set. The  
rest of the 8 bits are used as data. There are two control registers, CR0 and CR1, for user configuration. All of  
these register bits are written to the control register during a write cycle. A description of the control registers  
and the input/output data formats are shown in Figure 1.  
Input Data Format  
Pin D9  
Index1  
Pin D8  
Index0  
Pin D7  
Pin D6  
Pin D5  
Pin D4  
Pin D3  
Pin D2  
Pin D1  
Pin D0  
Offset Calibration Set OMS(1,0)  
0,0 = Operate with calibration  
0,1 = Measure system offset  
1,0 = Measure internal offset  
1,1 = Operate without calibration  
Conversion  
Clock Select  
0 = Internal  
1 = External  
Input Type:  
0 = Single end  
1 = Differential  
Conversion Mode Select MS(1,0)  
0,0 = Mono interrupt  
Channel Select CS(1,0)  
0,0 = Ch1 or pair A  
0,1 = Ch2 or pair A  
1,0 = Ch3 or pair B  
1,1 = Ch4 or pair B  
0
0
CR0  
0,1 = Dual interrupt  
1,0 = Mono continuous  
1,1 = Dual continuous  
System Offset Calibration: Short the system input to the system AGND  
Internal Offset Calibration: Short the two inputs to the S/HA to AGND  
0
Interrupt-Mode  
Conversion  
Started  
Resolution Select BS(1,0)  
0,0 = 10-Bit  
0
Output Format Interrupt-Mode SW Power Down  
0 = 2’s  
Auto  
0 = Normal  
1 = S/W Power  
Down  
CR1  
0
1
0,1 = 4-Bit  
Complement  
1 = Binary  
Power Down  
0 = Disabled  
1 = Enabled  
0 = By RD  
1.0 = 8-Bit  
1.1 = 12-Bit Test  
1 = By CSTART  
Reference delta should be greater than 2 V when swing is reduced.  
Output Data Format  
Pin D9  
Pin D8  
Pin D7  
Pin D6  
Pin D5  
Pin D4  
Pin D3  
Pin D2  
Pin D1  
Pin D0  
Register Index  
Configuration Register Content  
Configuration Result  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
CR1  
D(5,4)  
= 0,0  
OD9  
OD8  
OD2  
OD7  
OD1  
OD6  
OD0  
OD5  
OD4  
OD3  
OD2  
OD1  
OD0  
10-Bit Conversion Result  
CR1  
D(5,4)  
= 0,1  
OD3  
OD7  
Z
Z
Z
Z
Z
Z
4-Bit Conversion Result  
CR1  
D(5,4)  
= 1,0  
OD6  
OD5  
OD4  
OD3  
OD2  
OD1  
OD0  
Z
Z
8-Bit Conversion Result  
NOTE: Z indicates bits write zero read zero back.  
Figure 1. Input/Output Data Formats  
NOTE:  
Channel select bits CR0.(1,0), CS(1,0) are ignored when the device is in the dual (interrupt or  
continuous) modes using differential inputs, since both differential input pairs are automatically  
selected. CR0.0 (i.e., CS0 bit) is used to determine if channels 1 and 3 or channels 2 and 4 are  
selected if single-ended input mode is used.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
detailed description (continued)  
Table 1. Select Input Channels  
CR0.(3,2)  
(CONVERSION MODE  
SELECT)  
CR0.4  
(INPUT TYPE)  
CR0.(1,0)  
(CHANNEL SELECT)  
CHANNEL(S)  
SELECTED  
NOTE  
0 (Single-ended)  
0 (Single-ended)  
0 (Single-ended)  
0 (Single-ended)  
1 (Differential)  
00 or 10  
00 or 10  
00 or 10  
00 or 10  
00 or 10  
00 or 10  
01 or 11  
01 or 11  
01 or 11  
01 or 11  
01 or 11  
0,0  
0,1  
1,0  
1,1  
0,X  
1,X  
X,0  
X,1  
X,0  
X,1  
X,X  
CH1  
CH2  
CH3  
CH4  
Single channel  
Single channel  
Single channel  
Single channel  
Single channel  
Single channel  
Dual channels  
Dual channels  
Dual channels  
Dual channels  
Dual channels  
Differential pair A  
1 (Differential)  
Differential pair B  
0 (Single-ended)  
0 (Single-ended)  
0 (Single-ended)  
0 (Single-ended)  
1 (Differential)  
Both CH1 and CH3  
Both CH2 and CH4  
Both CH1 and CH3  
Both CH2 and CH4  
Both differential pairs A and B  
configure the device  
The device can be configured by writing to control registers CR0 and CR1. A read register is carried out by  
auto-sequence when the device is put into the software power-down state. CR0 is read first and then CR1 at  
the next two RD rising edges after the device is in the software power-down state. The falling edge of RD has  
no meaning and does not trigger a conversion in the software power-down state.  
V
IH  
IL  
CS  
V
t
w(CSH)  
t
d(WRH-CSH)  
V
IH  
CSTART  
WR  
t
d(CSL-WRL)  
t
s(DATAIN)  
V
V
IH  
IL  
t
t
h(DATAIN)  
w(WRL)  
V
V
IH  
DATA  
Configure Data  
IL  
Figure 2. Configuration Cycle Timing  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
detailed description (continued)  
The following examples show how to program configuration registers CR0 and CR1 for different settings.  
Example 1:  
INDEX  
REGISTER  
COMMENT  
D9  
0
D8  
0
D7  
1
D6  
1
D5  
0
D4  
1
D3  
0
D2  
0
D1  
0
D0  
0
CR0  
CR1  
Mono interrupt mode, use RD, write 0D0h to ADC  
0
1
0
0
0
0
0
0
0
0
Use 2s complementary output, use RD, write 104h to ADC  
Example 2:  
CR0  
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
Mono interrupt mode, use CSTART, write 0D0h to ADC  
Use 2s complementary output, write 144h to ADC  
CR1  
Example 3:  
CR0  
0
0
0
1
1
0
1
1
0
0
1
0
0
0
1
0
0
0
0
0
Dual interrupt mode, use CSTART only, write 0D4h to ADC  
Use 2s complementary output, write 144h to ADC  
CR1  
Example 4:  
CR0  
0
0
0
1
1
0
1
0
0
0
1
0
1
0
0
0
0
0
0
0
Mono continuous mode, use RD only, write 0D8h to ADC  
Use 2s complementary output, write 104h to ADC  
CR1  
Example 5:  
CRO  
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
0
0
Dual continuous mode, use RD only, write 0DCh to ADC  
Binary output, write 104h to ADC  
CR1  
analog input  
input types  
The four analog inputs can be configured as two pairs of differential inputs or four single-ended inputs by setting  
the control register 0 bit 4 input type selection (dual or single channel).  
differential input (CR0.4=1)  
Up to two channels are available when the TLV1562 is programmed for differential input. The output data format  
is bipolar when the device is operated in differential input mode.  
single-ended input (CR0.4=0)  
Up to four channels are available when the TLV1562 is programmed for single-ended input. The output data  
format is unipolar when the device is operated in single-ended input mode.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
detailed description (continued)  
input signal range  
The analog input signal range for a specific supply voltage AV  
ranges from (AV  
– 1.9 V) to 0.8 V.  
DD  
DD  
V
SWING  
3 V  
0.8 V  
AV  
DD  
(V)  
2.7  
4.9  
5.5  
Linearity not Guaranteed  
Limited by Noise  
Figure 3. Analog Input Range vs AV  
DD  
VREFCM + 0.5 × V  
VREFCM – 0.5 × V  
AV  
0.8 V  
–1 V  
SWING  
SWING  
DD  
Where:  
VREFCM = (VREFP + VREFM)/2 is the common mode reference voltage.  
V
V
= dynamic range of the input signal,  
= VINP – VINM,  
SWING  
SWING  
And the common mode input voltage is:  
VINCM = (VINP + VINM)/2,  
MAX V  
= MIN [(AV  
– 1.9 V), 3 V]  
SWING  
DD  
For single-ended input, the analog input range is between VREFP and VREFM. So the range of  
single-ended VIN is:  
3 V  
1 V  
0.8 V  
if AV  
if AV  
if AV  
= 3 V  
= 3 V  
= 2.7 V  
DD  
DD  
DD  
For differential input, the input common mode voltage VINCM can be between AV  
3 V (VINP–VINM) 0.8 V.  
and AGND as long as  
DD  
This means VINCM 0.4 V.  
So the range of differential analog input voltage, (VINP–VINM) is:  
3 V  
1 V  
0.8 V  
if AV  
if AV  
if AV  
= 3 V  
= 3 V  
= 2.7 V  
DD  
DD  
DD  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
detailed description (continued)  
equivalent input impedance  
R
on()  
1 k  
FB  
R
R
R
s
on  
on  
0 V  
V
in  
Buffer  
= 0.5 pF  
0.5 k  
C
= 10 pF  
C
pad  
sample  
V
CC  
(V)  
2.7  
5.5  
Figure 5. Input Mux On Resistance vs  
Analog Supply Voltage  
Figure 4. Equivalent Input Circuit  
Req = Vin/Ieq = (Q/Cin)/(Q/T) = T/Cin = 1/(fs × Csample) = 1/(2 MHz × 0.5 pF) = 1 MΩ  
Where f is the sampling frequency, and f is the conversion frequency  
s
c
f = f /5  
when the device is in one channel/continuous conversion mode,  
when the device is in one channel/continuous conversion mode,  
s
c
f = f /10  
s
c
f = Conversion trigger strobe frequency when the device is in interrupt mode (RD or CSTART)  
s
Csample = Input capacitance = 0.5 pF  
Cparasitic = Parasitic capacitance = 0.5 pF  
Cpad = Input PAD capacitance = 10 pF  
Ron = Mux switch on series resistance = 1 kat 2.7 V  
Rs = Source output resistance = 1 kΩ  
input bandwidth (full power 0 dB input, BW at –1 dB)  
0
–1  
–2  
–3  
–4  
–5  
50  
130 140  
20 30  
40  
70  
Analog Input Frequency – MHz  
BW = 1/[2 × π × (Rtotal y Cac)]  
90 100 110 120  
150  
10  
60  
80  
= 1/[2 × π × ((Ron + Rs) × (Csample + Cparasitic))]  
= 1/[2 × π × (2K × 1 pF)]  
= 79.6 MHz  
(Theoretical Max)  
Figure 6. Typical Analog Input Frequency Input Bandwidth  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
reference voltage inputs  
The TLV1562 has two reference input pins: REFP and REFM. The voltage levels applied to these pins establish  
the upper and lower limits of the analog inputs to produce a full-scale and zero-scale reading respectively. The  
values of VREFP, VREFM, and the analog input should not exceed the positive supply or be less than GND  
consistent with the specified absolute maximum ratings. The digital output is at full scale when the input signal  
is equal to or higher than VREFP and is at zero when the input signal is equal to or lower than VREFM. The  
internal resistance from VREFP to VREFM may be as low as 20 k(±10%).  
R
R
on  
s
V
REFP  
10 kΩ  
VREFCM  
10 kΩ  
C
C
C
= 1 pF  
pad  
= 10 pF  
in  
in  
R
R
s
on  
V
REFM  
C
= 1 pF  
pad  
= 10 pF  
The reference voltages must satisfy the following conditions:  
VREFP AV – 1 V,  
DD  
AGND + 0.9 V < VREFM and  
3 V (VREFP – VREFM) 0.8 V  
Figure 7. Equivalent Circuit for Reference input  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
sampling/conversion  
All of the sampling, conversion, and data output in the device are started by a trigger. This trigger can be the  
RDor CSTART signal depending on the mode of conversion and configuration. The falling edge of the RDsignal  
and the rising edge of the CSTART signal are extremely important since they are used to start the conversion.  
These edges need to stay as close to the falling edges of the external clock, if they are used as SYSCLK. The  
minimum setup time with respect to the rising edge of the external SYSCLK should be 5 ns minimum. When  
the internal SYSCLK is used, this is not an issue, since these two edges start the internal clock automatically;  
therefore, the setup time is always met.  
USING EXTERNAL CLOCK  
S/H Hold Time  
V
V
IH  
EXTERNAL  
SYSCLK  
IL  
t
d(ECLKL-TRGL)  
t
s(TRGL-ECLKH)  
V
IH  
Conversion Starts  
Next Sampling Starts  
RD  
V
IL  
V
IH  
Next Sampling Starts  
Conversion Starts  
CSTART  
V
IL  
Sampling Period  
Figure 8. Conversion Trigger Timing – External Clock  
USING INTERNAL CLOCK  
INTERNAL  
CLOCK STARTS  
V
V
IH  
Conversion Starts  
Next Sampling Starts  
RD  
IL  
t
d(TRGL-ICLKH)  
V
V
IH  
Conversion Starts  
CSTART  
Next Sampling  
Starts  
IL  
S/H Hold Time  
V
V
IH  
INTERNAL  
SYSCLK  
IL  
Figure 9. Conversion Trigger Timing – Internal Clock  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
Table 2. Conversion Trigger Edge  
CONVERSION  
TIME  
(INTERNAL CLK) (EXTERNAL CLK)  
CONVERSION  
TIME  
INTERRUPT  
CANCELED  
BY  
CONVERSION CONVERSION  
MODE TRIGGER  
START OF  
SAMPLING  
START OF  
CONVERSION  
DATA OUT  
§
41 ns from INT low  
Mono  
RD  
WR or  
RD ↓  
6 SYSCLK  
5 SYSCLK  
RD ↑  
Interrupt  
2 SYSCLK from RD ↓  
§
41 ns from RD low  
CSTART  
CSTART ↓  
CSTART ↑  
CSTART ↑  
6 SYSCLK  
5 SYSCLK  
RD ↓  
§
41 ns from RD low  
Dual  
Interrupt  
CSTART  
CSTART ↓  
12 SYSCLK  
10 SYSCLK  
First RD ↓  
§
41 ns from RD low  
Mono  
Continuous  
RD  
RD  
WR or  
RD ↓  
RD ↓  
6 SYSCLK  
5 SYSCLK  
N/A  
N/A  
2 SYSCLK from RD ↓  
§
41 ns from RD low  
Dual  
WR or  
12 SYSCLK  
10 SYSCLK  
Continuous  
7 SYSCLK from RD ↓  
CSTART works with or without CS active.  
The first sampling period starts at the last RD low of the previous cycle or WR high of the configuration cycle. RD low is the falling edge of RD  
and WR high is the rising edge of the WR signal. (Minimum sample/hold amp settling time = one SYSCLK, approximately 100 ns min, at Rs ≤  
1 k).  
§
Output data enable time is dependent on bus loading and supply voltage (BDV ). For BDV  
= 5 V, the enable time is 19 ns at 25 pF, 23 ns  
= 2.7 V, the enable time is 37 ns at 25 pF, 41 ns at 50 pF, and 56 ns at 100 pF.  
DD DD  
at 50 pF, and 25 ns at 100 pF. For BDV  
DD  
The TLV1562 provides four types of conversion modes. The two interrupt-driven conversion modes are  
asynchronous and are simple one-shot conversions. The auto-powerdown conversion feature can be enabled  
when interrupt-driven conversion modes are used. The other two continuous conversion modes are  
synchronous with the RD signal (as a clock) from the processor and are more suitable for repetitive signal  
measurement. These different modes of conversion offer a tradeoff between simplicity and speed.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
detailed description (continued)  
Table 3. Maximum Conversion Speed (for 1 LSB INL and DNL at 10 bit)  
MAXIMUM CONVERSION THROUGHPUT  
CONVERSION MODE  
CR0.(3,2)  
EXTERNAL CLOCK INTERNAL CLOCK  
(10 MHz)  
1.5 MSPS  
0.82 MSPS  
1.5 MSPS  
0.82 MSPS  
1.5 MSPS  
1.05 MSPS  
(8 MHz)  
RD  
1.1 MSPS  
0.68 MSPS  
1.1 MSPS  
0.68 MSPS  
0.91 MSPS  
0.83 MSPS  
RD with auto power down  
Mono interrupt-driven conversion mode  
00  
01  
CSTART  
CSTART with auto power down  
CSTART  
Dual interrupt-driven conversion mode  
CSTART with auto power down  
§
§
Mono continuous conversion mode  
Dual continuous conversion mode  
RD  
RD  
10  
11  
2 MSPS  
2 MSPS  
1.33 MSPS  
1.33 MSPS  
Speed is calculated for 5-V with a 2-V reference  
(5.5 V to 3 V, I-temperature and C-temperature: 2 MSPS at 10 bit, 3 MSPS at 8 bit, 7 MSPS at 4 bit;  
3 V to 2.7 V, C-temperature: 2 MSPS at 10 bit, 2.5 MSPS at 8 bit, 7 MSPS at 4 bit;  
3 V to 2.7 V, I-temperature: 1.6 MSPS at 10 bit, 2.5 MSPS at 8 bit, 7 MSPS at 4 bit).  
Higher throughput is possible when the linearity requirement is relaxed.  
Dual interrupt mode is available to 8-bit or 10-bit resolution and single-ended input type.  
Throughput from single selected channel.  
§
Combined throughputs from a pair of selected channels.  
Conversion Start  
RD-Strobe  
Conversion Results  
Mono Interrupt Mode: 0 RD-Delay  
Dual Interrupt Mode: 0~1 RD-Delay  
Mono Continuous Mode : 1 RD-Delay  
Dual Continuous Mode : 2~3 RD-Delay  
Figure 10. Digital Delays for Different Conversion Modes  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
mono interrupt-driven mode (CR0.(3,2) = 0,0)  
The mono interrupt-driven conversion mode provides a one-shot conversion. Sampling, conversion, and data  
output are all performed in a single cycle. The analog signal is sampled 2 SYSCLKs after the falling edge of RD  
(or the rising edge of WR if this is the first sample after configuration) and then converted on the falling edge  
of RD. Once the data is ready, INT falls and the data is output to the bus. The rising edge of RD cancels INT  
and initiates a read of the data. The data bus is 3-stated when RD goes high. It is not necessary to configure  
the converter for each cycle or toggle CS between cycles.  
V
V
IH  
IL  
CS  
CSTART  
Sample 1  
Conv 1  
Sample 2  
Conv 2  
t
t
conv1  
conv1  
t
t
s1  
s1  
V
V
IH  
IL  
t
WR  
RD  
d(RDL-SAMPLE)  
V
V
IH  
IL  
t
dis(DATAOUT)  
V
V
IH  
IL  
Hi–Z  
Data 1  
DATA  
t
d(RDL-CONV)  
t
en(DATAOUT)  
t
d(RDH-INTZ)  
(With Pullup)  
t
d(CONV-INTL)  
V
IH  
INT  
V
t
IL  
1(APDR)  
t
1(APDR)  
t
(APD)  
Power Down  
(If Autopower Down is Set)  
Power Down  
(If Autopower Down is Set)  
Figure 11. Mono Interrupt-Driven Mode Using RD  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
Conversion can also be started with CSTART. This is useful when an application requires multiple TLV1562s  
for simultaneous samplings and conversions. The falling edge of CSTART starts the sampling and the rising  
edge of CSTART starts the conversion. Once the data is ready INT falls. INT is terminated by the following falling  
edge of RD which also outputs the data to the bus. On the rising edge of RD, the data is read and the data bus  
is 3-stated.  
V
V
IH  
IL  
CS  
t
d1(WRH–CSTARTL)  
t
d(RDH-CSTARTL)  
t
t
d(CSL-RDL)  
w(CSTARTL)  
V
IH  
CSTART  
WR  
V
V
IL  
IH  
V
IL  
Sample 1  
Conv 1  
t
Sample 2  
t
t
s1  
t
w(RDL)  
s1  
conv1  
V
V
IH  
IL  
RD  
t
d(INTL-CSL)  
t
dis(DATAOUT)  
t
d(CSTART-SAMPLE)  
DATA  
t
en(DATAOUT)  
Data 1  
V
V
IH  
IL  
t
d1(CSTARTH–CONV)  
t
t
d(CSTARTL-SAMPLE)  
t
d(CONV-INTL)  
d(RDH-INTZ)  
(With Pullup)  
V
V
IH  
IL  
INT  
t
1(APDR)  
t
t
(APD)  
1(APDR)  
Power Down  
(If Autopower Down is Set)  
Power Down  
Figure 12. Mono Interrupt-Driven Mode Using CSTART  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
dual interrupt-driven mode (CR0.(3,2) = 0,1)  
The dual interrupt-driven conversion mode provides a similar one-shot conversion, sampling, and conversion  
but also samples both selected channels simultaneously. Conversion can only be started with the CSTART  
signal. The falling edge of CSTART starts the sampling of both of the input channels selected, and the rising  
edge of CSTART starts the conversion. Since it takes two consecutive conversions internally, the conversion  
time required is doubled (10 SYSCLK cycles). Once the data are ready, INT falls. INT is terminated by the first  
falling edge of RD, which also outputs the first data to the bus. On the rising edge of RD, data is read and the  
data bus is 3-stated. The second RD falling edge outputs the second data to the bus and then reads it on the  
rising edge and 3-states the bus. It is not necessary to configure the converter for each cycle or toggle CS  
between cycles.  
NOTE:Dual interrupt mode is available to 10-bit or 8-bit resolution and single-ended input  
type.  
t
t
d2(WRH–CSTARTL)  
d(INT-CSL)  
t
w(CSH)  
V
IH  
CS  
V
IL  
t
w(CSTARTL)  
V
IH  
CSTART  
WR  
V
V
IL  
IH  
V
IL  
Sample 1  
Conv 1  
Sample 2  
t
s4  
t
t
t
conv2  
d2(RDH–CSTARTL)  
s4  
t
w(RDL)  
V
IH  
IL  
RD  
V
t
dis(DATAOUT)  
(With Pullup)  
t
t
dis(DATAOUT)  
EN(DATAOUT)  
V
IH  
Data 1A  
Data 1B  
DATA  
V
IL  
t
d2(CSTART–CONV)  
t
en(DATAOUT)  
t
d(RDL-INTZ)  
V
IH  
INT  
V
IL  
t
2(APDR)  
t
t
2(APDR)  
(APD)  
Powerdown  
(If Autopowerdown Is Set)  
Powerdown  
Figure 13. Dual Interrupt Conversion Mode  
(Conversion can only be started with CSTART for the dual interrupt mode)  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
mono continuous mode (CR0.(3,2) = 1,0)  
The mono continuous mode of conversion is synchronous with the RD signal. Its cycle time is approximately  
5 SYSCLK cycles when an external SYSCLK is used (6 SYSCLK cycles when an internal SYSCLK is used).  
In the mono continuous mode, the TLV1562 is always sampling the input regardless of the state of other control  
signals when it is not in the hold state (the first half SYSCLK cycle after each falling edge of RD). This simplifies  
control of the ADC. There is no need to generate any special signal to start the sampling.  
V
V
IH  
IL  
CS  
V
V
IH  
IL  
WR  
t
t
c(RD)  
d(CSL-RDL)  
t
w(RDL)  
V
V
IH  
IL  
RD  
t
t  
conv1
t
conv1  
conv1  
CONV 1  
t
d(RDL-SAMPLE)  
CONV 2  
CONV 3  
t
s5  
Sample 1  
t
t
s2  
s2  
Sample 3  
Sample 4  
t
s2  
Sample 2  
t
t
dis(DATAOUT)  
dis(DATAOUT)  
V
IH  
IL  
Hi-Z  
Config  
Data 1  
Data 2  
DATA  
V
t
t
en(DATAOUT)  
en(DATAOUT)  
Figure 14. Mono Continuous Mode  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
dual continuous mode (CR0.(3,2) = 1,1)  
When the TLV1562 operates in the dual continuous mode, it samples and then holds two preselected channels  
(differential or single ended) simultaneously as RDclocks. Thesesamplesarethenconvertedinsequence. This  
is designed to optimize the DSP MIPS for communication applications. Its cycle time is approximately 10  
SYSCLK cycles when an external SYSCLK is used (12 SYSCLK cycles when an internal SYSCLK is used).  
When operating in the dual continuous mode, the TLV1562 is always sampling the input regardless of the state  
of the other control signals when it is not in the hold state. This simplifies control of the ADC. There is no need  
to generate any special signal to start the sampling. The TLV1562 goes into hold mode on the odd number  
(starting from the rising edge of WR) falling edge of RD for one SYSCLK clock cycle.  
A two-depth FIFO is used (only in the dual continuous mode) to ensure the output correlation. Thus on every  
alternate RD edge, the result of the previous two conversions is read out. This allows a slower RD clock  
frequency (slower than 1/5 of the SYSCLK frequency). Each dual continuous mode cycle (while CS remains  
active low) must have an even number of RD cycles to ensure the FIFO operates properly.  
V
IH  
IL  
CS  
V
WR  
t
c(RD)  
t
t
d(RDL-SAMPLE)  
RD  
t
t
t
t
s5  
conv2  
CONV 1  
conv2  
CONV 2  
conv2  
CONV 3  
t
t
s3  
Sample 2  
s3  
s3  
Sample 4  
Sample 1  
GFG  
Sample 3  
t
dis(DATAOUT)  
D 1B  
DATA  
D 1A  
D 2A  
D 2B  
t
en(DATAOUT)  
Figure 15. Dual Continuous Mode  
system clock source  
The TLV1562 uses multiple clocks for different internal tasks. SYSCLK is used for most conversion subtasks.  
The source of SYSCLK is programmable via control register 0, bit 5 (CR0.5). The source of SYSCLK is changed  
at the rising edge of WR of the cycle when CR0.5 is programmed.  
internal oscillator (CR0.5 = 0, SYSCLK = internal OSC)  
The TLV1562 has a built-in 8-MHz oscillator. When the internal OSC is selected as the source of SYSCLK, the  
internal clock starts with a delay (one half of the OSC clock period max) after the falling edge of the conversion  
trigger (RD or CSTART).  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
external clock input (CR0.5 = 1, SYSCLK = External Clk)  
The TLV1562 is designed to operate with an external clock input (CMOS/TTL) with a frequency from 100 kHz  
to 14 MHz. When an external clock is used as the source of SYSCLK, the setup time from the falling edge of  
RD to the rising edge of SYSCLK, t  
external clock mode is selected.  
is 5 ns minimum. The internal OSC is shut down when the  
s(TRGL-ECLKH)  
host processor interface  
parallel processor interface  
The TLV1562 provides a generic high-speed parallel interface that is compatible with high-performance DSPs  
and general-purpose microprocessors. These include D(0,9), RD, WR, and INT. RD transitions from high to low  
to signal the end of acquisition. The parallel I/O has its own power supply to minimize digital noise.  
output data format  
The output data format is unipolar binary (1023 to 0) when the device is operated in the single-ended input mode  
and is bipolar (511 to –512) when the device is operated in differential input mode. The output code format can  
be either binary or 2s compliment. The output data format is controlled by CR1.2.  
power down  
The device offers two different power-down modes: Auto power-down mode for interrupt-driven conversions  
and software power-down mode for all conversion modes. All configuration information is kept intact when the  
device is in software or auto power-down mode.  
auto-power down for interrupt-driven conversion modes  
When auto-power down is enabled, the device turns off the analog section (the converter except for the  
reference network) at the falling edge of INT and resumes after the falling edge of CS (if RD is the conversion  
trigger) or CSTART (if CSTART is the conversion trigger). The reference current and I/O are kept alive to ensure  
a fast recovery. Average power consumption can be reduced by accessing the converter less often. Special  
requirements for using this feature are:  
It is necessary to toggle CS between cycles so the converter knows when to resume.  
There is an additional delay to a conversion after the device is accessed due to the auto-power-down  
control. Therefore, the time between RD (or CSTART) triggers is longer (longer RD or CSTART high time).  
software power down (CR.10 = 1, software power down enabled)  
In addition to the auto-power-down feature, the device has a software powerdown feature to further reduce  
power consumption when the device is idle. Writing a 1 to control register bit CR1.0 puts the TLV1562 into  
software power-down mode in 200 ns after CS is up. The device consumes less than 1 µA when in the  
power-down mode. Writing a 0 to control register bit CR1.0 wakes up the device. Conversion can start 1 µs after  
the device is resumed. CS must be high when the device is in power-down mode. Software power-down  
operation is slower than auto-power down but is more flexible and consumes almost no power.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
Table 4. TLV1562 Powerdown Features  
FUNCTION BLOCK/POWERDOWN MODE  
DIGITAL CONTROL VOLTAGE LEVEL  
SOFTWARE POWERDOWN  
AUTO POWERDOWN  
CMOS  
Inactive  
Inactive  
Active  
TTL  
Inactive  
Inactive  
active  
CMOS  
Inactive  
Active  
TTL  
Converter analog section  
Inactive  
Active  
Reference current (amps)  
Digital I/O buffers  
Active  
Active  
Estimated supply current, I  
Power-down time  
1 µA  
80 µA  
120 µA  
200 ns  
700 ns  
1 MSPS  
200 µA  
200 ns  
700 ns  
1 MSPS  
CC  
200 ns  
200 ns  
Resume time  
1 µs  
1 µs  
1.2/0.7 MSPS  
Maximum throughput  
1.2/0.7 MSPS  
Dual interrupt, 10-bit, 5-V AV , 10-MHz external clock, and 2 V (REFP–REFM).  
DD  
This assumes the TLV1562 is software powered down between every cycle. In reality this is not the case since auto-power down makes much  
more sense in this case. So the realistic maximum throughput for software power down will be close to the maximum throughput without  
powerdown which is 1.2 MSPS for dual-interrupt mode (and 1.5 MSPS if mono-interrupt mode is used). But this really depends on how long the  
device is powered down.  
mid-scale error calibration  
The device has a ±5% maximum full-scale error, mid-scale error, and zero-scale error due to the gain error in  
the sample and hold amplifier.  
The TLV1562 is capable of calibrating the mid-scale error. There are two calibration modes: system mid-scale  
error calibration and internal mid-scale error calibration as described below.  
NOTE:  
Set register CR0.(7,6) = 1,1 when the device is not in mid-scale error calibration mode.  
These mid-scale error calibrations affect the ADCs transfer characteristics as shown in Figure 16. The absolute  
error at code 512 is zero-out (this is the reference point for mid-scale error calibration). The calibration also  
makes the FS error and ZS error equal.  
internal mid-scale error calibration (CR0.(7,6) = 1,0)  
The internal mid-scale error calibration mode is set by writing to the configuration registers with CR0.(7,6) set  
to 10. The ADC analog inputs are internally shorted to mid-voltage (REFP+REFM)/2 when the mid-scale error  
calibration mode is enabled. One conversion (initiated by the falling edge of RD) is performed to calculate the  
offset. The result of this conversion is stored in the mid-scale error register and is subtracted from all subsequent  
conversions thus removing any offset. Internal calibration removes any offsets internal to the device. Internal  
mid-scale error calibration reduces the mid-scale error to ±2.5% FS single ended inputs (0.3% FS differential  
inputs).  
system mid-scale error calibration (CR0.(7,6) = 0,1)  
System mid-scale error calibration is set by writing to the configuration registers with CR0.(7,6) set to 01. The  
analog input to be calibrated is externally connected to the voltage corresponding to mid-code. For differential  
operation, this is achieved by shorting the two inputs together; for a single-ended input this is achieved by  
connecting the analog input to the system mid-voltage, (SYSTEM_REFP + SYSTEM_REFM)/2. One  
conversion (initiated by RD falling edge) is performed to calculate the offset. The result of this conversion is  
stored in the mid-scale error register and is subtracted from all subsequent conversions thus removing any  
offset. System mid-scale error calibration removes the offset of not only the ADC but any offsets in the entire  
analog circuitry driving the ADC input. System mid-scale error calibration reduces the mid-scale error to ±0.4%  
FS single ended inputs (0.25% FS differential inputs).  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
Full-Scale Error  
(Before Calibrayion)  
Code Output  
Full Scale  
Full-Scale Error  
(After Calibration)  
Ideal Transfer Function  
Transfer Function After  
Mid-Scale Calibration  
Transfer Function Before  
Mid-Scale Calibration  
Mid Scale  
Mid-Scale Error  
(Before Calibration)  
Mid-Scale Error  
(After Calibration)  
Zero Scale  
REFM  
Analog Input  
V-Mid (REFCM)  
Zero-Scale Error  
(Before Calibration)  
REFP  
Zero-Scale Error  
(After Calibration)  
Figure 16. Mid-Scale Error Calibration  
resume normal conversion from mid-scale error calibration modes  
A follow on write operation sets CR0.(7,6) to 00 which resumes the normal conversion mode. Typically  
mid-scale error calibration needs to be performed only once after power up. If however the operation mode is  
changed from single ended to differential, then preferably mid-scale error calibration should be performed  
again.  
The user writes a bit to enable mid-scale error calibration. Inputs to the ADC are internally shorted therefore  
the offset value can be converted to a digital word. The result (a digital word representing the offset) is stored  
in a latch. This offset value is then subtracted from the digital output of all conversions except when in mid-scale  
error calibration mode.  
system design consideration regarding to mid-scale error calibration  
Mid-scale error calibration may limit the dynamic range of the ADC. If the offset is negative and has a magnitude  
x, then the range of the converter codes is x to 1023. If the offset is positive and has a magnitude of x, then the  
range of converter codes is 1 to 1023 –x. Thus the ADCs dynamic range is reduced by x (say x = 20 codes) on  
either side of the range effectively with mid-scale error calibration. However this should not be a limitation for  
most users.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
APPLICATION INFORMATION  
2.7 V  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
Address Decoder  
and Control  
BDV  
DV  
CS  
AV  
DD  
DD  
DD  
TMS320C541  
A15  
CS  
WR  
WR  
SIG 1  
SIG 2  
CH1  
CH3  
A14  
R/W  
IS  
RD  
RD  
SYSCLK/5  
MODE  
TLV1562  
DSPCLK  
DSPINT  
CSTART  
INT  
CSTART  
INT  
REF  
SYSCLK  
CLKIN  
10  
PD(0–9)  
D(0–9)  
DGND AGND BDGND  
Figure 17. Typical Interface to a TMS320 DSP  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
APPLICATION INFORMATION  
WR  
Sig 1  
Sig 2  
CH0  
CH2  
RD  
1562 #1  
CSTART  
RD  
INT 1  
WR  
10  
PD(0–9)  
WR  
RD  
Sig 3  
Sig 4  
CH0  
CH2  
#2  
C541  
CS0  
CSTART  
A
A
0
1
CS1  
CS2  
INT 2  
WR  
RD  
B I/O  
(CSTART)  
#3  
Sig 5  
CH0  
CSTART  
CS  
Set #3 in Single Interrupt Mode  
Set #1 and #2 in Dual Interrupt Mode (New Mode)  
Select (Separate RD Cycle option in Req Z for #1, #2, #3  
INT 3  
Figure 18. Multiple Chips Simultaneous Sampling/Conversion Application  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
APPLICATION INFORMATION  
V
IH  
CS0  
CS2  
CS1  
RD  
V
V
IL  
IH  
V
V
IL  
IH  
V
V
IL  
IH  
V
IL  
t
en(DATAOUT)  
t
dis(DATAOUT)  
V
IH  
Hi-Z  
D Sig1  
D Sig2  
D Sig3  
D Sig4  
D Sig5  
PD(0–9)  
CSTART  
V
V
IL  
IH  
V
IL  
t
s4  
t
conv2  
Pullup  
V
IH  
INT1  
INT2  
V
IL  
Pullup  
V
IH  
V
IL  
Pullup  
V
V
IH  
INT3  
IL  
< = 0.2 µs × 5  
0.1 µs  
If CLK = 10 MHz  
Figure 19. Multiple Chips Simultaneous Sampling/Conversion Application System Timing  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range: AV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V  
DD  
BDV , DV  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V  
DD  
DD  
DD  
AV  
to DV  
or BDV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6.5 V to 6.5 V  
DD  
DD  
Voltage range between AGND and DGND or BDGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 0.5 V  
Digital input voltage range, CLKIN, CS, WR, RD, CSTART (see Note 2) . . . . . . . . . . . –0.3 V to DV  
Digital data input voltage range (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
Digital data output voltage range (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
+0.3 V  
+0.3 V  
+0.3 V  
DD  
DD  
DD  
Analog output voltage range, INT (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.1 V to AV + 0.1 V  
DD  
Reference input voltage range, REFP (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.1 V to AV + 0.1 V  
DD  
Reference input voltage range, REFM (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 0.3 V  
Peak input current (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Peak total input current (all inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30 mA  
Operating free-air temperature range, T : TLV1562C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0°C to 70°C  
A
TLV1562I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Measured with respect to AGND with REF – and GND wired together (unless otherwise noted).  
2. Measured with respect to DGND.  
recommended operating conditions  
PARAMETERS  
(see Note 3)  
MIN NOM  
MAX  
UNIT  
Supply voltage, AV , BDV , DV  
DD DD DD  
2.7  
AGND +1.7  
AGND +0.9  
5.5  
V
V
V
Positive external reference voltage input, VREFP (see Note 4)  
Negative external reference voltage input, VREFM (see Note 4)  
AV  
AV  
– 1  
– 1  
DD  
DD  
MIN of  
Differential reference voltage input, (VREFP–VREFM) (see Note 4)  
0.8  
AV  
DD  
– 1.9  
or 3  
V
Single-ended analog input voltage, (AIN – AGND) (see Note 4)  
Differential analog input voltage, (AINP–AINM)  
VREFM  
0.8  
VREFP  
3
V
V
Common mode analog input voltage, (AINP+AINM)/ 2  
AGND  
0.067  
AV  
V
DD  
1
External SYSCLK 40/60 cycle time, t  
c(EXTSYSCLK)  
µs  
t (EXT  
c
External SYSCLK pulse duraton high, t  
40%  
60%  
60%  
wH(EXTSYSCLK)  
wL(EXTSYSCLK)  
SYSCLK)  
t (EXT  
c
SYSCLK)  
External SYSCLK pulse duration low, t  
40%  
2.1  
High-level digital and control input voltage, V  
IH  
V
V
Low-level digital and control input voltage, V  
IL  
0.8  
70  
85  
TLV1562C  
TLV1562I  
0
Operating free-air temperature, T  
°C  
A
–40  
NOTES: 3. The absolute difference between AV , BDV  
DD  
and DV  
should be less than 0.5 V.  
DD  
DD  
4. Analog input voltages greater than that applied to VREFP convert as all ones (111111111111), while input voltages less than that  
applied to VREFM convert as all zeros (000000000000).  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
electrical characteristics over recommended operating free-air temperature range, differential  
input, AV  
(unless otherwise noted)  
= DV  
=BDV  
= 3 V, VREFP – VREFM = 1 V, external SYSCLK = 10 MHz  
DD  
DD  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BDV  
BDV  
BDV  
BDV  
= 5.5 V,  
= 2.7 V,  
= 5.5 V,  
= 2.7 V,  
I
I
I
I
= –0.2 mA  
= –20 µA  
= 0.8 mA  
= 20 µA  
2.4  
DD  
DD  
DD  
DD  
OH  
OH  
OL  
OL  
V
V
Digital high-level output voltage  
V
OH  
BDV –0.1  
DD  
0.4  
0.1  
1
Digital low-level output voltage  
V
OL  
V
V
= BDV  
DD  
= BDGND,  
,
CS = BDV  
CS = BDV  
0.005  
–0.005  
0.005  
Off-state output current  
(high-impedance state)  
O
DD  
DD  
I
µA  
OZ  
–1  
O
I
I
High-level input current  
Low-level input current  
V = BDV  
I DD  
1
1
µA  
µA  
IH  
V = BDGND  
I
–0.005  
IL  
CS at BDGND,  
SYSCLK = 10 MHz  
AV  
AV  
AV  
= 5.5 V,  
= 2.7 V,  
= 5.5 V,  
DD  
DD  
DD  
8.5  
5
11  
7
Total operating supply current, (from  
mA  
AV , DV , and BDV  
DD DD DD  
)
CS at BDGND,  
SYSCLK = 8 MHz  
CS at BDGND,  
SYSCLK = 10 MHz,  
CMOS control level, Auto powerdown = 1  
85  
200  
0.2  
60  
120  
300  
1
Total auto-powerdown supply current  
µA  
(from AV , DV , and BDV  
)
CS at BDGND,  
SYSCLK = 10 MHz,  
TTL control level, Auto powerdown = 1  
AV  
= 5.5 V,  
DD  
DD DD DD  
I
DD  
CS at BDGND,  
SYSCLK = 10 MHz,  
CMOS control level, S/W powerdown = 1  
AV  
= 5.5 V,  
DD  
Total S/W powerdown supply current  
µA  
(from AV , DV , and BDV  
)
CS at BDGND,  
SYSCLK = 10 MHz,  
AV  
= 5.5 V,  
DD  
DD DD DD  
80  
TTL control level, S/W powerdown = 1  
Selected channel at AV  
0.25  
0.25  
1
DD  
Selected channel at AGND  
VREFP = AV – 1.9 V, AV  
Selected channel leakage current  
µA  
µA  
–1  
Maximum static analog reference  
current into REFP  
= 5.5 V,  
DD  
DD  
VREFM = AGND + 0.9 V, SYSCLK = 10 MHz  
150  
25  
180  
Reference input impedance  
Output capacitance  
V
DD  
= 5.5 V, CS = 0, SCLK = 10 MHz  
17  
30  
5
kΩ  
pF  
Analog inputs fixed  
Analog inputs switching  
Control inputs  
9
0.5  
20  
10  
1
C
R
Input capacitance  
pF  
i
25  
0.5  
1
V
V
= 5.5 V  
= 2.7 V  
DD  
Input MUX ON resistance  
kΩ  
ON  
DD  
All typical values are at V  
= 5 V, T = 25°C.  
A
DD  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
timing requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, CSto WR, t  
4
d(CSL–WRL)  
Delay time, RDto CSTART, t  
Delay time, RDto CSTART, t  
100  
300  
100  
300  
2
d1(RDH – CSTARTL)  
d2(RDH – CSTARTL)  
Delay time, WRto CSTART, t  
Delay time, WRto CSTART, t  
d1(WRH – CSTARTL)  
d2(WRH – CSTARTL)  
Delay time, CSto RD, t  
4
d(CSL–RDL)  
Pulse duration, CS high, t  
50  
5
w(CSH)  
Setup time, data valid to WR, t  
su(DATAIN)  
h(DATAIN)  
Hold time, WRto data invalid, t  
10  
50  
200  
50  
4
Interrupt modes  
Pulse duration, RD low, t  
w(RDL)  
Continuous modes  
Pulse duration, WR low, t  
w(WRL)  
Delay time, WRto CS, t  
d(WRH–CSH)  
d(RDH–CSH)  
Delay time, RDto CS, t  
4
Delay time, external SYSCLKto RD, CSTART, t  
0
2
6
d(ECLKL–TRGL)  
su(TRGL–ECLKH)  
Setup time, RD, CSTART, to external SYSCLK, t  
5
Auto power down = 1  
Auto power down = 0  
800  
100  
10  
Pulse duration, CSTART low, t  
ns  
ns  
w(CSTARTL)  
Delay time, INTto CS, t  
d(INTL–CSL)  
External SYSCLK, 10 bit  
Internal SYSCLK, 10 bit  
External SYSCLK, 8 bit  
Internal SYSCLK, 8 bit  
External SYSCLK, 4 bit  
Internal SYSCLK, 4 bit  
External SYSCLK, 10 bit  
Internal SYSCLK, 10 bit  
External SYSCLK, 8 bit  
Internal SYSCLK, 8 bit  
External SYSCLK, 4 bit  
Internal SYSCLK, 4 bit  
External SYSCLK, 10 bit  
Internal SYSCLK, 10 bit  
External SYSCLK, 8 bit  
Internal SYSCLK, 8 bit  
External SYSCLK, 4 bit  
Internal SYSCLK, 4 bit  
5
4
5.5  
6
4.5  
5
Conversion time, mono continuous/interrupt mode, t  
SYSCLK  
SYSCLK  
SYSCLK  
conv1  
2
2.5  
3
10  
8
11  
12  
9
Conversion time, dual continuous/interrupt mode, t  
conv2  
10  
5
4
6
5
6
4
5
2
3
5.5  
4.5  
2.5  
Cycle time, continuous mode RD, t  
c(RD)  
Mono interrupt mode sampling time or first cycle (mono interrupt or  
continous mode) sampling time, t  
0.2  
0.3  
1000  
1000  
µs  
µs  
s1  
Dual interrupt mode sampling time or first cycle (dual interrupt or continuous  
mode) sampling time, t  
s4  
Mono continuous mode sampling time, t  
3
7
SYSCLK  
SYSCLK  
µs  
s2  
Dual continuous mode sampling time, t  
Continuous mode first sampling time, t  
s3  
0.45  
3
(SAMPE5)  
Data rise time, t  
5
10  
ns  
r(DATAOUT)  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
timing requirements (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
8
UNIT  
ns  
Data fall time, t  
f(DATAOUT)  
4
Control signal rise time, RD, RW, CSTART, CS, and DATA, t  
2
1000  
1000  
ns  
r(I/O)  
Control signal fall time, RD, RW, CSTART, CS, and DATA, t  
2
ns  
f(I/O)  
operating characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
f = 800 kHz at 10 bit 2 MSPS, AV = 5 V, VREFP = 3.5 V  
MIN NOM  
MAX  
UNIT  
I
DD  
±0.6  
±1  
VREFM = 1.5 V, mono continuous  
f = 800 kHz at 10 bit 2.5 MSPS, AV  
I
= 5 V, VREFP=3.5 V,  
= 5 V,  
DD  
–1.5 ±0.85  
±1.5  
±1.5  
VREFM = 1.5 V, mono continuous  
f = 800 kHz at 10 bit 2.8 MSPS, AV  
DD  
I
VREFP = 3.5 V, VREFM = 1.5 V, mono continuous  
f = 800 kHz at 10 bit 2 MSPS, AV  
VREFM = 0.9 V, mono continuous  
= 3 V, VREFP = 1.7 V,  
= 3 V, VREFP = 1.7 V,  
I
DD  
±0.6  
±1  
±1  
±1  
Integral linearity error, center best fit  
(see Note 5)  
LSB  
f = 800 kHz at 8 bit 3 MSPS, AV  
VREFM = 0.9 V, mono continuous  
I
DD  
±0.6  
f = 800 kHz at 8 bit 3.5 MSPS, AV  
I
VREFM = 0.9 V, mono continuous  
= 3 V, VREFP = 1.7 V,  
DD  
±0.65  
±1  
f = 800 kHz at 8 bit 3.75 MSPS, AV  
DD  
= 5 V,  
I
VREFP = 3.5 V, VREFM = 1.5 V, mono continuous  
f = 800 kHz at 4 bit 7 MSPS, AV = 3 V, VREFP = 1.7 V,  
VREFM = 0.9 V, mono continuous  
I
DD  
±0.2  
±0.4  
±1  
f = 800 kHz at 10 bit 2 MSPS, AV  
DD  
= 5 V, VREFP = 3.5 V,  
I
±0.5  
VREFM = 1.5 V, mono continuous  
f = 800 kHz at 10 bit 2.5 MSPS, AV  
VREFP = 3.5 V, VREFM = 1.5 V, mono continuous  
= 5 V,  
I
DD  
–0.85  
±0.5  
±0.9  
±0.6  
±0.5  
±0.5  
±1  
1.5  
1.5  
±1  
f = 800 kHz at 10 bit 2.8 MSPS, AV  
VREFP = 3.5 V, VREFM = 1.5 V, mono continuous  
= 5 V,  
I
DD  
f = 800 kHz at 10 bit 2 MSPS, AV  
VREFM = 0.9 V, mono continuous  
= 3 V, VREFP = 1.7 V,  
= 3 V, VREFP = 1.7 V,  
I
DD  
Differential linearity error  
LSB  
f = 800 kHz at 8 bit 3 MSPS, AV  
VREFM = 0.9 V, mono continuous  
I
DD  
±1  
f = 800 kHz at 8 bit 3.5 MSPS, AV  
I
= 3 V, VREFP = 1.7 V,  
DD  
–0.8  
1
VREFM = 0.9 V, mono continuous  
f = 800 kHz at 8 bit 3.75 MSPS, AV  
DD  
= 5 V,  
I
1
VREFP = 3.5 V, VREFM = 1.5 V, mono continuous  
f = 800 kHz at 4 bit 7 MSPS, AV = 3 V, VREFP = 1.7 V,  
VREFM = 0.9 V, mono continuous  
I
DD  
±0.2  
±0.4  
NOTE 5: Linear error is the maximum deviation from the best straight line through the A/D transfer characteristics.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
operating characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
±5  
UNIT  
Before calibration  
After system calibration, single-ended input  
After system calibration, differential input  
After internal calibration, single-ended input  
After internal calibration, differential input  
Before calibration  
±0.4  
±0.25  
±2.5  
±0.3  
±5  
Mid-scale error (see Note 6)  
%FS  
Offset error (see Note 6)  
%FS  
%FS  
%FS  
Gain error (see Note 6)  
Before calibration  
±5  
Total unadjusted error (see Note 7)  
Before calibration  
±5  
Delay time, RD, CSTARTto external  
2ns  
7.5  
0.5 SYSCLK  
SYSCLK, t  
d(TRGL–ICLKH)  
Delay time, RDto start of conversion  
2
ns  
t
d(RDL–CONV1)  
Internal OSC frequency  
MHz  
ns  
Delay time, RDto INT, t  
1-kpullup resistor, 10 pF, BDV  
DD  
= 5 V, use RD  
10  
4
d(RDH–INTZ)  
At 25 pF, BDV  
At 50 pF, BDV  
= 5 V  
= 5 V  
DD  
DD  
5
At 100 pF, BDV  
= 5 V  
DD  
7
Disable time, RDto data invalid,  
ns  
t
At 25 pF, BDV  
= 2.7 V  
= 2.7 V  
7
dis(DATAOUT)  
DD  
At 50 pF, BDV  
DD  
10  
14  
20  
25  
30  
37  
41  
56  
At 100 pF, BDV  
DD  
= 2.7 V  
At 25 pF, BDV  
= 5 V  
= 5 V  
DD  
DD  
At 50 pF, BDV  
At 100 pF, BDV = 5 V  
DD  
Enable time, INTto data valid,  
ns  
t
At 25 pF, BDV  
= 2.7 V  
= 2.7 V  
en(DATAOUT)  
DD  
At 50 pF, BDV  
DD  
At 100 pF, BDV  
DD  
= 2.7 V  
Auto powerdown = 1  
Auto powerdown = 0  
Auto powerdown = 1  
Auto powerdown = 0  
Auto powerdown = 1  
Auto powerdown = 0  
700  
0
Delay time, mono interrupt mode pow-  
er-up time, t  
1(APDR)  
ns  
ns  
ns  
1000  
0
Delay time, dual interrupt mode power-  
up time, t  
2(APD)  
200  
0
Delay time, INTto powerdown, t  
(APD)  
Delay time, end of conversion to INT,  
5
10  
10  
ns  
ns  
t
d(CONV-INTL)  
Delay time, RDto INT Hi-Z,  
1-kpullup resistor, 10 pF, BDV  
= 5 V, Use CSTART  
DD  
t
d(RDL-INTZ)  
Delay time, CSTARTto start of con-  
version 1, t  
2
4
2
ns  
d1(CSTARTH-CONV)  
Delay time, CSTARTto start of con-  
version 2, t  
0.2  
1000  
µs  
d2(CSTARTH-CONV)  
Delay time, RDto sample,  
SYSCLK  
t
d(RDL-SAMPLE)  
NOTES: 6. Zero error is the difference between 000000000000 and the converted output for zero input voltage: full-scale error is the difference  
between 111111111111 and the converted output for full-scale input voltage  
7. Total unadjusted error comprises linearity, zero, and full-scale errors  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
operating characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
ac specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
10-Bit Mode  
f = 800 kHz, at 10 bit 2 MSPS, AV  
DD  
= 5 V,  
I
8.97  
8.8  
9.4  
8.91  
VREFP = 3.5 V, VREFM = 1.5 V, Mono continuous  
ENOB  
THD  
Effective number of bits  
Total harmonic distortion  
Signal-to-noise ratio  
Bits  
f = 800 kHz, at 10 bit 1.6 MSPS, AV = 3 V,  
I
DD  
VREFP = 1.7 V, VREFM = 0.9 V, Mono continuous  
f = 800 kHz, at 10 bit 2 MSPS, AV  
VREFP = 3.5 V, VREFM = 1.5 V, Mono continuous  
= 5 V,  
I
DD  
–68.8 –64.5  
–66.8 –64.5  
58.1  
dB  
dB  
dB  
dB  
f = 800 kHz, at 10 bit 1.6 MSPS, AV  
= 3 V,  
I
DD  
VREFP = 1.7 V, VREFM = 0.9 V, Mono continuous  
f = 800 kHz, at 10 bit 2 MSPS, AV  
VREFP = 3.5 V, VREFM = 1.5 V, Mono continuous  
= 5 V,  
I
DD  
56.4  
54.4  
56.2  
54.2  
SNR  
f = 800 kHz, at 10 bit 1.6 MSPS, AV  
= 3 V,  
I
DD  
55.6  
VREFP = 1.7 V, VREFM = 0.9 V, Mono continuous  
f = 800 kHz, at 10 bit 2 MSPS, AV  
VREFP = 3.5 V, VREFM = 1.5 V, Mono continuous  
= 5 V,  
I
DD  
57.8  
SINAD  
SFDR  
Signal-to-noise ratio +distortion  
Spurious free dynamic range  
f = 800 kHz, at 10 bit 1.6 MSPS, AV  
= 3 V,  
I
DD  
55.3  
VREFP = 1.7 V, VREFM = 0.9 V, Mono continuous  
f = 800 kHz, at 10 bit 2 MSPS, AV  
VREFP = 3.5 V, VREFM = 1.5 V, Mono continuous  
= 5 V,  
I
DD  
–70.3 –67.5  
–69.1 –66.5  
f = 800 kHz, at 10 bit 1.6 MSPS, AV  
= 3 V,  
I
DD  
VREFP = 1.7 V, VREFM = 0.9 V, Mono continuous  
8-Bit Mode  
f = 800 kHz, at 8 bit 3 MSPS, AV  
= 3 V,  
VREFP = 1.7 V, VREFM = 0.9 V, Mono continuous  
I
DD  
ENOB  
Effective number of bits  
7.93  
Bits  
THD  
Total harmonic distortion  
Signal-to-noise ratio  
–64  
49.2  
49  
dB  
dB  
dB  
dB  
SNR  
SINAD  
SFDR  
Signal-to-noise ratio +distortion  
Spurious free dynamic range  
–65  
4-Bit Mode  
f = 800 kHz, at 4 bit 7 MSPS, AV  
VREFP = 1.7 V, VREFM = 0.9 V, Mono continuous  
= 3 V,  
I
DD  
ENOB  
Effective number of bits  
3.97  
Bits  
THD  
Total harmonic distortion  
–29  
26  
dB  
dB  
dB  
dB  
SINAD  
SINAD  
SFDR  
Signal-to-noise ratio + distortion  
Signal-to-noise ratio + distortion  
Spurious free dynamic range  
24  
–30.5  
Analog input  
Cross talk rejection  
68  
120  
75  
dB  
Full-power bandwidth, –3 dB  
Full-power bandwidth, –1 dB  
MHz  
MHz  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
10-Bit Resolution,  
VREF = 3.5 V–1.5 V,  
SYSCLK = 10 MHz  
0.5  
0
–0.5  
–1  
0
511  
1023  
Digital Output Code  
Figure 20  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
8-Bit Resolution,  
VREF = 4 V–1 V,  
SYSCLK = 12 MHz  
0.5  
0
–0.5  
–1  
0
127  
255  
Digital Output Code  
Figure 21  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
4-Bit Resolution,  
VREF = 4 V–1 V,  
SYSCLK = 14 MHz  
0.5  
0
–0.5  
–1  
0
7
15  
Digital Output Code  
Figure 22  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
10-Bit Resolution, VREF = 3.5 V–1.5 V,  
SYSCLK = 10 MHz  
0.5  
0
–0.5  
–1  
0
511  
1023  
Digital Output Code  
Figure 23  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
8-Bit Resolution, VREF = 4 V–1 V,  
SYSCLK = 12 MHz  
0.5  
0
–0.5  
–1  
0
127  
255  
Digital Output Code  
Figure 24  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
8-Bit Resolution,  
VREF = 4 V–1 V,  
SYSCLK = 14 MHz  
0.5  
0
–0.5  
–1  
0
7
15  
Digital Output Code  
Figure 25  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
10-Bit Resolution, AV  
= 2.7 V,  
VREF = 1.7 V–0.9 V, SYSCLK = 10 MHz  
DD  
0.5  
0
–0.5  
–1  
0
511  
1023  
Digital Output Code  
Figure 26  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
8-Bit Resolution, AV  
= 3 V,  
VREF = 1.7 V–0.9 V, SYSCLK = 10 MHz  
DD  
0.5  
0
–0.5  
–1  
0
127  
255  
Digital Output Code  
Figure 27  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
8-Bit Resolution, AV  
VREF = 1.7 V–0.9 V, SYSCLK = 14 MHz  
= 2.7 V,  
DD  
0.5  
0
–0.5  
–1  
0
7
15  
Digital Output Code  
Figure 28  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
10-Bit Resolution, AV  
= 2.7 V, VREFP = 1.7 V,  
VREFM = 0.9 V, Internal Clock  
DD  
0.5  
0
–0.5  
–1  
0
511  
1023  
Digital Output Code  
Figure 29  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
8-Bit Resolution, AV  
External Clock  
= 2.7 V, REFP = 1.7 V, REFM = 0.9 V, 12 MHz  
DD  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
127  
255  
Digital Output Code  
Figure 30  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
0.2  
4-Bit Resolution, AV  
External Clock  
= 2.7 V, REFP = 1.7 V, REFM = 0.9 V, 14 MHz  
DD  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
7
15  
Digital Output Code  
Figure 31  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
TYPICAL SUPPLY CURRENT  
TYPICAL POWER DOWN CURRENT  
vs  
vs  
FREQUENCY  
TEMPERATURE  
16  
100  
80  
AV  
DD  
= 5.5 V at 90°C  
14  
12  
10  
8
AV  
DD  
= 5.5 V  
AV  
= 5.5 V at 25°C  
DD  
AV  
= 5.5 V at 40°C  
60  
DD  
AV  
DD  
= 2.7 V  
AV  
DD  
= 3 V at 40°C  
6
40  
4
20  
0
2
0
0
2
4
7
10  
12  
15  
20  
f – Clock Frequency – MHz  
T – Temperature – °C  
Figure 32  
Figure 33  
SPURIOUS FREE DYNAMIC RANGE  
SIGNAL TO NOISE  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
–68.5  
–69  
61  
60  
59  
AV  
DD  
= 5 V, VREF+ = 4 V, VREF = 1 V  
AV  
DD  
= 5 V, VREF+ = 3.5 V, VREF = 1.5 V  
–69.5  
AV  
DD  
= 5 V, VREF+ = 3.5 V, VREF = 1.5 V  
–70  
58  
57  
56  
55  
AV  
DD  
= 5 V, VREF+ = 4 V, VREF = 1.5 V  
–70.5  
AV  
DD  
= 3 V, VREF+ = 2 V, VREF = 1 V  
–71  
–71.5  
–72  
54  
53  
AV  
DD  
= 3 V, VREF+ = 2 V, VREF = 1 V  
–72.5  
50 100 200 300 400 500 600 700 800 900 1000  
Analog Input Frequency – kHz  
Figure 34  
50 100 200 300 400 500 600 700 800 9001000  
Analog Input Frequency – kHz  
Figure 35  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
SIGNAL TO NOISE HARMONIC DISTORTION  
EFFECTIVE NUMBER OF BITS  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
61  
9.8  
AV  
= 5 V, VREF+ = 4 V, VREF = 1 V  
AV  
DD  
= 5 V, VREF+ = 4 V, VREF = 1 V  
DD  
DD  
60  
59  
9.6  
9.4  
9.2  
AV  
= 5 V, VREF+ = 3.5 V, VREF = 1.5 V  
AV  
= 5 V, VREF+ = 3.5 V, VREF = 1.5 V  
DD  
58  
57  
AV  
DD  
= 3 V, VREF+ = 2 V, VREF = 1 V  
9
AV  
= 3 V, VREF+ = 2 V, VREF = 1 V  
56  
55  
DD  
8.8  
8.6  
8.4  
54  
53  
50 100 200 300 400 500 600 700 800 900 1000  
50 100 200 300 400 500 600 700 800 900 1000  
Analog Input Frequency – kHz  
Figure 37  
Analog Input Frequency – kHz  
Figure 36  
TOTAL HARMONIC DISTORTION  
vs  
INPUT FREQUENCY  
–67  
–67.5  
AV  
DD  
= 3 V, VREF+ = 2 V, VREF = 1 V  
–68  
–68.5  
–69  
AV  
DD  
= 5 V, VREF+ = 4 V, VREF = 1 V  
–69.5  
–70  
AV  
DD  
= 5 V, VREF+ = 3.5 V, VREF = 1.5 V  
–70.5  
50 100 200 300 400 500 600 700 800 900 1000  
Analog Input Frequency – kHz  
Figure 38  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1562  
2.7 V TO 5.5 V, HIGH-SPEED LOW-POWER RECONFIGURABLE ANALOG-TO-DIGITAL  
CONVERTER WITH 4-INPUT, DUAL S/H, PARALLEL INTERFACE, AND POWER DOWN  
SLAS162 – SEPTEMBER 1998  
APPLICATION INFORMATION  
1023  
1111111111  
See Notes A and B  
1022  
1021  
1111111110  
1111111101  
V
FS  
V
FT  
= V  
– 1/2 LSB  
FS  
513  
512  
1000000001  
1000000000  
V
ZT  
= V + 1/2 LSB  
ZS  
511  
0111111111  
V
ZS  
2
1
0
0000000010  
0000000001  
0000000000  
0
0.0048 0.0096  
2.4528 2.4576 2.4624  
V – Analog Input Voltage – V  
4.9056  
4.9104 4.9152  
I
NOTES: A. This curve is based on the assumption that V  
ref+  
and V have been adjusted so that the voltage at the transition from digital 0  
ref–  
to 1 (V ) is 0.0024 V and the transition to full scale (V ) is 4.908 V. 1 LSB = 4.8 mV.  
ZT FT  
B. The full-scale value (V ) is the step whose nominal midstep value has the highest absolute value. The zero-scale value (V ) is  
FS  
ZS  
the step whose nominal midstep value equals zero.  
Figure 39. Ideal 12-Bit ADC Conversion Characteristics  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLV1570

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS SERIAL ANALOG-TO-DIGITAL CONVERTER
TI

TLV1570CDW

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS SERIAL ANALOG-TO-DIGITAL CONVERTER
TI

TLV1570CDWG4

10-Bit, 1.25 MSPS ADC 8-Ch., DSP/(Q)SPI IF, Pgmable Int. Ref., Auto or S/W PowerDown, Very Low Power 20-SOIC 0 to 70
TI

TLV1570CDWR

10-Bit, 1.25 MSPS ADC 8-Ch., DSP/(Q)SPI IF, Pgmable Int. Ref., Auto or S/W PowerDown, Very Low Power 20-SOIC 0 to 70
TI

TLV1570CDWRG4

8-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20, GREEN, SOIC-20
TI

TLV1570CPW

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS SERIAL ANALOG-TO-DIGITAL CONVERTER
TI

TLV1570CPWG4

10 位、1.25MSPS ADC,具有 8 通道、DSP/(Q)SPI 接口、可编程内部基准电压、自动或软件断电、超低功耗 | PW | 20 | 0 to 70
TI

TLV1570CPWLE

IC,DATA ACQ SYSTEM,8-CHANNEL,10-BIT,TSSOP,20PIN,PLASTIC
TI

TLV1570CPWR

10 位、1.25MSPS ADC,具有 8 通道、DSP/(Q)SPI 接口、可编程内部基准电压、自动或软件断电、超低功耗 | PW | 20 | 0 to 70
TI

TLV1570CPWRG4

10 位、1.25MSPS ADC,具有 8 通道、DSP/(Q)SPI 接口、可编程内部基准电压、自动或软件断电、超低功耗 | PW | 20 | 0 to 70
TI

TLV1570IDW

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS SERIAL ANALOG-TO-DIGITAL CONVERTER
TI

TLV1570IDWG4

8-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20, GREEN, SOIC-20
TI