TLV1570IDWG4 [TI]

8-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20, GREEN, SOIC-20;
TLV1570IDWG4
型号: TLV1570IDWG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20, GREEN, SOIC-20

光电二极管 转换器
文件: 总32页 (文件大小:641K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
features  
applications  
Fast Throughput Rate: 1.25 MSPS at 5 V,  
625 KSPS at 3 V  
Mass Storage and Hard Disk Drive  
Automotive  
Wide Analog Channel Input: 0 V to AV  
Eight Analog Input Channels  
Channel Auto-Scan  
DD  
Digital Servos  
Process Control  
General-Purpose DSP  
Image Sensor Processing  
Differential Nonlinearity Error: < ±1 LSB  
Integral Nonlinearity Error: < ±1 LSB  
Signal-to-Noise and Distortion Ratio: 57 dB  
Single 2.7-V to 5.5-V Supply Operation  
DW OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CH4  
CH3  
CH2  
CH1  
CH0  
AIN  
MO  
CH5  
CH6  
CH7  
Very Low Power: 40 mW at 5.5 V,  
8 mW at 2.7 V  
Autopower-Down: 300 µA Max  
Software Power Down: 10 µA Max  
DV  
AV  
DD  
DD  
Glueless Serial Interface to TMS320 DSPs  
and (Q)SPI Compatible Microcontrollers  
DGND  
AGND  
REF  
CS  
FS  
SCLK  
SDIN  
Programmable Internal Reference Voltage:  
3.8-V Reference for 5-V Operation,  
2.3-V Reference for 3-V Operation  
SDOUT  
description  
The TLV1570 is a 10-bit data acquisition system that combines an 8-channel input multiplexer (MUX), a  
high-speed 10-bit ADC, an on-chip reference, and a high-speed serial interface. The device contains an on-chip  
control register allowing control of channel selection, conversion start, reference voltage levels, and power  
down via the serial port. The MUX is independently accessible, which allows the user to insert a signal  
conditioning circuit such as an antialiasing filter or an amplifier, if required, between the MUX and the ADC.  
Therefore one signal conditioning circuit can be used for all eight channels.  
The TLV1570 operates from a single 2.7-V to 5.5-V power supply. The device accepts an analog input range  
from 0 V to AV  
and digitizes the input at a maximum 1.25 MSPS throughput rate. Power dissipation is only  
DD  
8 mW with a 2.7-V supply or 40 mW with a 5.5-V supply. The device features an autopower-down mode that  
automatically powers down to 300 µA, 10 ns after a conversion is performed. With software power down  
enabled, the device is further powered down to only 10 µA.  
The TLV1570 communicates with digital microprocessors via a simple 4- or 5-wire serial port that interfaces  
directly to Texas Instruments TMS320 DSPs, and SPI and QSPI compatible microcontrollers without using  
additional glue logic.  
A very high throughput rate, a simple serial interface, and low power consumption make the TLV1570 an ideal  
choice for high-speed digital signal processing requiring multiple analog inputs.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
SMALL OUTLINE  
(DW)  
SMALL OUTLINE  
(PW)  
0°C to 70°C  
TLV1570CDW  
TLV1570IDW  
TLV1570CPW  
TLV1570IPW  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
functional block diagram  
AV  
DD  
MO  
AIN  
DV  
DD  
REFERENCE  
REF  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
REF+  
MUX  
10-BIT  
SAR ADC  
REF–  
AGND  
SCLK  
SDIN  
CS  
SDOUT  
FS  
I/O REGISTERS  
AND CONTROL LOGIC  
AGND  
DGND  
Terminal Functions  
TERMINAL  
NAME  
AGND  
AIN  
AV  
I/O  
DESCRIPTION  
NO.  
14  
20  
15  
Analog ground  
I
ADC analog input  
Analog supply voltage, 2.7 V to 5.5 V  
Analog input channels 0 – 7  
DD  
CH0 – CH7  
5,4,3,2,1,  
18,17,16  
I
I
CS  
12  
Chip select. A low level signal on CS enables the TLV1570. A high level signal on CS disables the device  
and disconnects power to the TLV1570.  
DGND  
7
6
8
Digital ground  
DV  
FS  
Digital supply voltage, 2.7 V to 5.5 V  
DD  
I
Frame sync. The falling edge of the frame sync pulse from a DSP indicates the start of a serial data frame  
shifted out of the TLV1570. FS is pulled high when interfaced to a microcontroller.  
MO  
19  
13  
O
I
On-chip MUX analog output  
REF  
Reference voltage input. The voltage applied to REF defines the input span of the TLV1570. In external  
reference mode, a 0.1 µF decoupling capacitor must be placed between the reference and AGND. This is  
not required for internal reference mode.  
SCLK  
SDIN  
9
I
I
Serial clock input. SCLK synchronizes the serial data transfer and is also used for internal data conversion.  
Serial data input used to configure the internal control register.  
10  
11  
SDOUT  
O
Serial data output. A/D conversion results are output at SDOUT.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
detailed description  
analog-to-digital converter  
The TLV1570 ADC uses the SAR architecture described in this section. The CMOS threshold detector in the  
successive-approximation conversion system determines the value of each bit by examining the charge on a  
seriesofbinary-weightedcapacitors(seeFigure1). Inthefirstphaseoftheconversionprocess, theanaloginput  
is sampled by closing the S switch and all S switches simultaneously. This action charges all of the capacitors  
C
T
to the input voltage.  
S
C
Threshold  
Detector  
To Output  
Latches  
512  
Node 512  
256  
128  
8
4
2
1
1
REF+  
REF+  
REF+  
REF+  
REF+  
REF+  
REF+  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
S
S
S
S
S
S
S
S
T
T
T
T
T
T
T
T
V
I
NOTE: REF– is tied to AGND  
Figure 1. Simplified Model of the Successive-Approximation System  
In the next phase of the conversion process, all S and S switches are opened and the threshold detector  
T
C
begins identifying bits by identifying the charge (voltage) on each capacitor relative to the reference (REF–)  
voltage (REF– is tied to AGND). In the switching sequence, ten capacitors are examined separately until all ten  
bits are identified and then the charge-convert sequence is repeated. In the first step of the conversion phase,  
the threshold detector looks at the first capacitor (weight = 512). Node 512 of this capacitor is switched to the  
REF+ voltage, and the equivalent nodes of all the other capacitors on the ladder are switched to REF–. If the  
voltageatthesummingnodeisgreaterthanthetrippointofthethresholddetector(approximatelyone-halfV ),  
CC  
a bit 0 is placed in the output register and the 512-weight capacitor is switched to REF–. If the voltage at the  
summing node is less than the trip point of the threshold detector, a bit 1 is placed in the register and the  
512-weight capacitor remains connected to REF+ through the remainder of the successive-approximation  
process. The process is repeated for the 256-weight capacitor, the 128-weight capacitor, and so forth down the  
line until all bits are counted.  
With each step of the successive-approximation process, the initial charge is redistributed among the  
capacitors. The conversion process relies on charge redistribution to count and weigh the bits from MSB to LSB.  
In the case of the TLV1570, REF– is tied to ground and REF+ is connected to the REF input.  
The TLV1570 can be programmed to use the on-chip internal reference (DI6=1). The user can select between  
two values of internal reference, 2.3 V or 3.8 V, using the control bit DI5.  
During internal reference mode, the reference voltage is not output on the REF pin. Therefore it cannot be  
decoupled to analog ground (AGND), which acts as the negative reference for the ADC, using an external  
capacitor. Hence this mode requires the ground noise to be very low. The REF pin can be left open in this mode.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
sampling frequency, f  
s
The TLV1570 requires 16 SCLKs for each sampling and conversion, therefore the equivalent maximum  
sampling frequency achievable with a given SCLK frequency is:  
f
= (1/16)f  
SCLK  
s(MAX)  
power down  
The TLV1570 offers two different power-down options. With autopower-down mode enabled, (DI4=0) the ADC  
proceeds to power down if FS is not detected on the 17th falling SCLK edge of a cycle (a cycle starts with FS  
being detected on a falling edge of SCLK) in DSP mode and after 16 SCLKs in µC mode. The TLV1570 will  
recover from auto power down when FS goes high in DSP mode or when the next SCLK comes in µC mode.  
In the case of software power down, the ADC goes to the software power-down state one cycle after CR.DI15  
is set to 1. Unlike autopower down which recovers in 1 SCLK, software power down takes 16 SCLKs to recover.  
SOFTWARE  
DESCRIPTION  
AUTOPOWER DOWN  
POWERDOWN  
CS = DV  
DD  
Maximum power down dissipation current  
Comparator  
300 µA  
10 µA  
Power down  
Power down  
Active  
Powerdown  
Powerdown  
Powerdown  
Not saved  
1 µs  
Clock buffer  
Reference  
Register  
Not saved  
1 SCLK  
Minimum power down time  
Minimum resume time  
1 SCLK  
800 ns  
DSP mode  
No FS present one SCLK after previous conversion completed  
CR.DI15 set to 1  
CR.DI15 set to 1  
CR.DI15 set to 1  
CR.DI15 set to 1  
Power down  
Microprocessor mode (FS = 1) SCLK stopped after previous conversion completed  
DSP mode FS present  
Microprocessor mode (FS = 1) SCLK present  
Only in DSP mode is input buffer of clock in power-down mode.  
Power up  
Thesoftwarepowerdownenable/disablebitisnotacteduntilthestartofthenextcycle(seesectionconfiguringtheTLV1570formoreinformation.  
configuring the TLV1570  
The TLV1570 is to be configured by writing the control bits to SDIN. The configuration will not take affect until  
the next cycle. A new configuration is needed for each conversion. Once the channel input and other options  
are selected, the conversion takes place in the next cycle. Conversion results are shifted out as conversion  
progresses ( see Figure 2).  
One Cycle  
Second Cycle  
17  
32  
SCLK  
t
t
t
t
conv  
s
conv  
s
Configure Data 1  
Configure Data 2  
SDIN  
SDOUT  
Result 0  
Result 1  
Figure 2. TLV1570 Configuration Cycle Timing  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
configuration register (CR) definition  
BIT  
DESCRIPTION  
5 V  
3 V  
Software power down:  
X
X
DI15  
DI14  
0:  
1:  
Normal  
Power down enabled  
X
X
Reads out values of the internal register, 1 – read. Only DI15 – DI1 are read out.  
X
X
X
X
These two bits select the self-test voltage to be applied to the ADC input during next clock cycle:  
00: Allow AIN to come in normally  
01: Apply AGND to AIN  
10: Apply VREF/2 to AIN  
11: N/A  
DI13, DI12  
Choose speed application  
X
X
X
X
X
X
DI11  
DI10  
0:  
1:  
High speed (higher power consumption)  
Low speed (lower power consumption)  
This bit enables channel auto-scan function.  
0:  
1:  
Autoscan disabled  
Autoscan enabled  
DI9 – DI7 These three bits select which of the eight DI9, DI8 These two bits select the channel swept  
channels is to be used (if DI10 = 0).  
sequence used by auto scan mode (if DI10 = 1)  
Analog inputs CH0, CH1, CH2, .., CH7  
sequentially selected  
000: Channel 0 selected as input  
00:  
Analog inputs CH1, CH3, CH5, CH7  
001: Channel 1 selected as input  
010: Channel 2 selected as input  
011: Channel 3 selected as input  
01:  
sequentially selected  
Analog inputs CH0, CH2, CH4, CH6  
sequentially selected  
10:  
DI9, DI8, DI7  
Analog inputs CH7, CH6, CH5, .., CH0  
sequentially selected  
11:  
100: Channel 4 selected as input  
101: Channel 5 selected as input  
110: Channel 6 selected as input  
111: Channel 7 selected as input  
Selects Internal or external reference voltage:  
DI7 Auto-scan reset  
0:  
1:  
No reset  
Reset autoscan sequence  
X
X
DI6  
DI5  
0:  
1:  
External  
Internal  
Selects internal reference voltage value to be applied to the ADC during next conversion cycle.  
0:  
1:  
2.3 V  
3.8 V  
X
X
X
X
Enables/disables autopower-down function:  
DI4  
DI3  
1:  
0:  
Enable  
Disable  
Performance optimizer – linearity  
0: AV  
1: AV  
= 5.5 V to 3.6 V  
= 3.5 V to 2.7 V  
X
X
DD  
DD  
DI2  
DI1  
DI0  
Always write 0 (reserved bit)  
Always write 0 (reserved bit)  
Always write 0 (reserved bit)  
X
X
X
X
X
X
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
initialization-software sequence  
This sequence shows the default settings, unless otherwise specified. The ADC requires that the user write to  
it every cycle. There is a cycle delay before control bits are implemented.  
Example 1. Normal Sample Mode With Internal Reference  
WRITE TO CHANNEL OUTPUT FROM  
CYCLE  
COMMENT  
SDIN  
0040h  
01C0h  
0040h  
8040h  
0040h  
SAMPLED  
SDOUT  
1st  
2nd  
3rd  
4th  
5th  
N/A  
N/A  
3
Invalid  
No analog input channel sampled  
No analog input channel sampled  
Invalid  
From Channel 3  
From Channel 0  
Invalid  
0
Software power down enabled  
N/A  
Software power-down mode, no analog input channel sampled  
Recovery time, no analog input channel sampled (16 SCLKs if AV  
= 5 V and  
DD  
Wait 800 ns  
f
= 20 MHz)  
CLK  
6th  
7th  
0140h  
0040h  
N/A  
2
Invalid  
Recovery time, no analog input channel sampled  
From Channel 2  
Example 2. Auto Scan Mode  
WRITE TO CHANNEL OUTPUT FROM  
CYCLE  
COMMENT  
SDIN  
0480h  
0480h  
0400h  
0400h  
0400h  
0400h  
0400h  
0400h  
0400h  
0400h  
0400h  
SAMPLED  
SDOUT  
1st  
2nd  
3rd  
4th  
N/A  
N/A  
0
Invalid  
Autoscan reset enabled, no analog input channel sampled  
No analog input channel sampled  
Invalid  
From Channel 0  
From Channel 1  
From Channel 2  
From Channel 3  
From Channel 4  
From Channel 5  
From Channel 6  
From Channel 7  
From Channel 0  
1
5th  
2
6th  
3
7th  
4
8th  
5
9th  
6
10th  
11th  
7
0
NOTE: If software power down is enabled during auto-scan mode, the next channel in the sequence is skipped.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
initialization-software sequence (continued)  
Example 3. Auto-Scan Mode  
This example shows a change in sequence in the middle of the current sequence. The following shows that after  
the initial autoscan reset, a reset is not necessary again when switching channel sequences.  
CYCLE WRITE TO CHANNEL OUTPUT FROM  
COMMENT  
SDIN  
0480h  
0480h  
0400h  
0700h  
0700h  
0700h  
0700h  
0700h  
0700h  
0700h  
0700h  
0700h  
SAMPLED  
SDOUT  
1st  
2nd  
3rd  
4th  
N/A  
N/A  
0
N/A  
N/A  
No analog input channel sampled  
Autoscan reset enabled, no analog input channel sampled  
Start of sequence 0  
From Channel 0  
From Channel 1  
From Channel 7  
From Channel 6  
From Channel 5  
From Channel 4  
From Channel 3  
From Channel 2  
From Channel 1  
From Channel 0  
1
Enable channel sequence 3 (no auto-scan reset required)  
Start of sequence 3  
5th  
7
6th  
6
7th  
5
8th  
4
9th  
3
10th  
11th  
12th  
2
1
0
Example 4. Auto-Scan Mode  
This example shows a switch in sequence in the course of a sequence. The following shows that a particular  
sequence does not have to be continued if remaining channels do not need to be sampled (i.e., only channel  
1 through channel 5 sampled, not channels 6, 7, 8)  
CYCLE WRITE TO CHANNEL OUTPUT FROM  
COMMENT  
SDIN  
0480h  
0480h  
0400h  
0400h  
0400h  
0400h  
0400h  
0480h  
0400h  
0400h  
0400h  
SAMPLED  
SDOUT  
1st  
2nd  
3rd  
4th  
N/A  
N/A  
0
N/A  
N/A  
No analog input channel sampled  
Autoscan reset enabled, no analog input channel sampled  
From Channel 0  
From Channel 1  
From Channel 2  
From Channel 3  
From Channel 4  
From Channel 5  
From Channel 0  
From Channel 1  
From Channel 2  
1
5th  
2
6th  
3
7th  
4
8th  
5
Autoscan reset enabled  
9th  
0
Sequence is reset to channel 0  
10th  
11th  
1
2
The TLV1570 is a 800-ns 10-bit 8-analog input channel analog-to-digital converter with a throughput of up to  
1.25 MSPS at 5 V and up to 625 KSPS at 3 V respectively. To run at its fastest conversion rate, it must be clocked  
at 20 MHz at 5-V or 10 MHz at 3-V. The TLV1570 can be easily interfaced to microcontrollers, ASICs, DSPs,  
or shift registers. The TLV1570 serial interface is designed to be fully compatible with serial peripheral interface  
(SPI) and TMS320 DSP serial ports. No additional hardware is required to interface between the TLV1570 and  
a microcontroller (µCs) with a SPI serial port or a TMS320 DSP. However, the speed is limited by the SCLK rate  
of the µC or the DSP.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
initialization-software sequence (continued)  
The TLV1570 interfaces to a DSP over five lines: CS, SCLK, SDOUT, SDIN, and FS, and interfaces to a µC over  
fourlines:CS, SCLK, SDOUT, andSDIN. TheFSinputshouldbepulledhighinµCmode. Thedeviceisin3-state  
and power-down mode when CS is high. After CS falls, the TLV1570 checks the FS input at the CS falling edge  
to determine the operation mode. If FS is low, DSP mode is set, otherwise µC mode is set.  
TLV1570  
TMS320  
TLV1570  
µC  
CS  
CS  
XF  
I/O Terminal  
SCLK  
SCLK  
FS  
CLKX  
CLKR  
FSX  
FSR  
DX  
SCLK  
FS  
DV  
DD  
SDIN  
SDIN  
DX  
DR  
DR  
SDOUT  
SDOUT  
Figure 3. DSP to TLV1570 Interface  
Figure 4. µC to TLV1570 Interface  
grounding and decoupling considerations  
General practices should apply to the PCB design to limit high frequency transients and noise that are fed back  
into the supply and reference lines (see Figure 5). This requires that the supply and reference pins be sufficiently  
bypassed. In most cases 0.1 µF ceramic chip capacitors are adequate to keep the impedance low over a wide  
frequency range. Since their effectiveness depends largely on the proximity to the individual supply pin. They  
should be placed as close to the supply pins as possible.  
To reduce high frequency and noise coupling, it is highly recommended that digital and analog ground be  
shorted immediately outside the package. This can be accomplished by running a low impedance line between  
DGND and AGND, under the package.  
TLV1570  
DV  
AV  
DD  
DD  
100 nF  
100 nF  
100 nF  
DGND  
AGND  
REF  
Figure 5. Placement of Decoupling Capacitors  
power supply ground layout  
Printed-circuit boards that use separate analog and digital ground planes offer the best system performance.  
Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected  
together at the low-impedance power-supply source. The best ground connection may be achieved by  
connecting the ADC AGND terminal to the system analog ground plane making sure that analog ground  
currents are well managed.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
simplified analog input analysis  
Using the equivalent circuit in Figure 6, the time required to charge the analog input capacitance from 0 to V  
S
within 1/2 LSB, t (1/2 LSB), can be derived as follows:  
ch  
The capacitance charging voltage is given by:  
–t  
R C  
t
ch  
1–e  
i
V
V
C(t)  
S
Where:  
(1)  
R = R + R  
i
t
s
R = R  
+ R  
i(MUX)  
i
i(ADC)  
t
= Charge time  
ch  
The input impedance R is 718 at 5 V, and is higher (~1.25 k) at 2.7 V. The final voltage to 1/2 LSB is given  
i
by:  
(2)  
V (1/2 LSB) = V – (V /2048)  
C
S
S
Equating equation 1 to equation 2 and solving for cycle time t gives:  
c
–t  
R C  
t
ch  
1–e  
i
V
V
2048  
V
S
S
S
(3)  
and time to change to 1/2 LSB (minimum sampling time) is:  
(1/2 LSB) = R × C × ln(2048)  
t
ch  
t
i
Where:  
ln(2048) = 7.625  
Therefore, with the values given, the time for the analog input signal to settle is:  
(1/2LSB)=(R + 718 )× 15 pF × ln(2048)  
(4)  
(5)  
(6)  
t
ch  
s
This time must be less than the converter sample time shown in the timing diagrams. Which is 6x SCLK.  
(1/2 LSB) 6x 1/f  
t
ch  
(SCLK)  
Therefore the maximum SCLK frequency is:  
Max(f ) = 6/t (1/2 LSB) = 6/(ln(2048) × R × C )  
(SCLK)  
ch  
t
i
Driving Source  
TLC1570  
V
V
= Input Voltage at AIN  
= External Driving Source Voltage  
= Source Resistance  
I
S
s
MO  
R
i(MUX)  
AIN  
R
R
R
C
V
R
R
s
i(ADC)  
V
I
= Input Resistance of ADC  
= Input Resistance (MUX on resistance)  
= Input Capacitance  
i(ADC)  
i(MUX)  
V
S
V
C
i
C
= Capacitance Charging Voltage  
i
C
15 pF  
Driving source requirements:  
Noise and distortion for the source must be equivalent to the resolution of the converter.  
R must be real at the input frequency.  
s
Figure 6. Equivalent Input Circuit Including the Driving Source  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
definitions of specifications and terminology  
integral nonlinearity (INL)  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale.  
The point used as zero occurs 1/2 LSB before the first code transition. The full scale point is defined as level  
1/2 LSB beyond the last code transition. The deviation is measured from the center of each particular code to  
the true straight line between these two points.  
differential nonlinearity (DNL)  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value.  
A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
zero offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
gain error  
The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition  
should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the deviation of the actual  
difference between first and last code transitions and the ideal difference between first and last code transitions.  
signal-to-noise ratio + distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in  
decibels.  
effective number of bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
N = (SINAD – 1.76)/6.02  
It is possible to get a measure of performance expressed as N, the effective number of bits. Thus, effective  
number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its  
measured SINAD.  
total harmonic distortion (THD)  
Total harmonic distortion is the ratio of the rms sum of the first six harmonic components to the rms value of the  
measured input signal and is expressed as a percentage or in decibels.  
spurious free dynamic range (SFDR)  
Spurious free dynamic range is the difference in dB between the rms amplitude of the input signal and the peak  
spurious signal.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, AGND to AV , DGND to DV  
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to AV +0.3 V  
Reference input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV +0.3 V  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DV +0.3 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
DD  
DD  
DD  
DD  
DD  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150°C  
J
Operating free-air temperature range, T : TLV1570C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV1570I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
power supplies  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
V
Analog supply voltage, AV  
(see Note 1)  
(see Note 1)  
DD  
Digital supply voltage, DV  
2.7  
5.5  
V
DD  
NOTE 1: Abs (AV  
– DV ) < 0.5 V  
DD  
DD  
analog inputs  
MIN  
TYP  
MAX  
UNIT  
Analog input voltage, AIN  
AGND  
V
REF  
V
DV  
DV  
= 3.3 V to 2.7 V  
= 5.5 V to 4.5 V  
55% AV  
AV  
DD  
DD  
DD  
DD  
DD  
Reference input voltage, REF  
V
60% AV  
AV  
DD  
digital inputs  
MIN  
TYP  
MAX  
UNIT  
V
High-level input voltage, V  
IH  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
= 5.5 V to 4.5 V  
= 3.6 V to 2.7 V  
= 5.5 V to 4.5 V  
= 3.6 V to 2.7 V  
= 5.5 V to 4.5 V  
2.1  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Low-level input voltage, V  
0.8  
20  
10  
V
IL  
Input SCLK frequency  
MHz  
ns  
1
23  
46  
23  
SCLK pulse duration, clock high, t  
w(SCLKH)  
SCLK pulse duration, clock low, t  
ns  
w(SCLKL)  
DV  
= 3.6 V to 2.7 V  
46  
DD  
electrical characteristics,over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted)  
digital specifications (SDOUT at 25 pF)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Logic inputs  
I
I
High-level input current  
Low-level input current  
Input capacitance  
DV  
DV  
= 5 V,  
= 5 V,  
V = 5 V  
1
–1  
15  
µA  
µA  
pF  
IH  
DD  
DD  
I
V = 0 V  
I
IL  
C
Control inputs  
5
I
Logic outputs  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
V
V
High-level output voltage  
I
I
= 50 µA – 0.5 mA  
= 50 µA – 0.5 mA  
DV –0.4  
DD  
V
OH  
OH  
Low-level output voltage  
0.4  
1
V
OL  
OL  
I
I
High-impedance-state output current  
Low-impedance-state output current  
Output capacitance  
µA  
µA  
pF  
OZH  
–1  
OZL  
C
5
O
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
electrical characteristics, over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted) (continued)  
dc specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
10  
Bits  
Accuracy  
Integral nonlinearity, INL  
Differential nonlinearity, DNL  
Offset error  
Best fit  
±0.6  
±1  
±1  
LSB  
LSB  
±0.65  
E
E
±0.1 ±0.15 %FSR  
O
Gain error  
±0.1  
±0.2 %FSR  
G
Analog input  
C
Input capacitance  
15  
20  
±1  
pF  
µA  
i
I
Input leakage current  
V
= 0 V to AV  
lkg  
AIN DD  
DV  
DV  
DV  
DV  
= 3 V,  
= 5 V,  
= 3 V,  
= 5 V,  
AV  
AV  
AV  
AV  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
265  
235  
158  
140  
780  
450  
465  
268  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
R
R
Input MUX ON resistance  
Input MUX ON resistance  
i(MUX)  
i(ADC)  
Voltage reference  
REF Internal reference voltage  
Internal reference mode, V  
Internal reference mode, V  
= 3 V  
= 5 V  
2.08  
3.48  
2.26  
3.82  
100  
2.48  
4.15  
V
V
DD  
DD  
Temperature coefficient  
Input resistance  
ppm/°C  
kΩ  
r
External reference mode  
External reference mode  
3
i
C
Input capacitance  
300  
pF  
i(VR)  
Power supply  
AV  
AV  
AV  
AV  
= 2.7 V, DV  
= 5.5 V, DV  
= 2.7 V, DV  
= 5.5 V, DV  
= 2.7 V,  
= 5.5 V,  
= 2.7 V  
= 5.5 V  
f
f
= 10 MHz  
= 20 MHz  
3
7.2  
8
5
8.5  
13  
mA  
mA  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SCLK  
I
+ I  
Operating supply current  
Power dissipation  
DD REF  
SCLK  
mW  
mW  
P
D
40  
47  
CS = AV  
DD  
3
10  
AVDD = 2.7 V  
AVDD = 5.5 V  
µA  
µA  
CS = AGND  
500  
3
Software  
I + I  
DD REF  
CS = AV  
DD  
CS = AGND  
10  
Supply current in  
power down  
2000  
175  
200  
AVDD = 2.7V  
AVDD = 5.5V  
275  
300  
µA  
µA  
Auto  
I + I  
DD REF  
I
I
= 0.7 mA typ.  
= 1.5 mA typ.  
REF  
REF  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
electrical characteristics, over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted) (continued)  
ac specifications  
PARAMETER  
TEST CONDITIONS  
External reference  
MIN  
58  
TYP  
61  
MAX  
UNIT  
f = 1.25 MSPS,  
s
AV  
DD  
= 5 V  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
53  
56  
f = 100 kHz,  
i
70% of FS  
56  
61  
f = 625 KSPS,  
s
AV  
= 3 V  
53  
55  
DD  
SNR  
Signal-to-noise ratio  
dB  
61  
f = 1.25 MSPS,  
s
AV  
= 5 V  
56  
DD  
f = 50 kHz,  
i
90% of FS  
61  
f = 625 KSPS,  
s
AV  
= 3 V  
55  
DD  
55  
53  
53  
52  
58  
f = 1.25 MSPS,  
s
AV  
= 5 V  
55  
DD  
f = 100 kHz,  
i
70% of FS  
58  
f = 625 KSPS,  
s
AV  
= 3 V  
54  
DD  
SINAD Signal-to-noise ratio + distortion  
dB  
dB  
dB  
dB  
59  
f = 1.25 MSPS,  
s
AV  
= 5 V  
55  
DD  
f = 50 kHz,  
i
90% of FS  
60  
f = 625 KSPS,  
s
AV  
= 3 V  
55  
DD  
–60  
–70  
–60  
–66  
–64  
–72  
–63  
–68  
–63  
–73  
–61  
–68  
–66  
–75  
–65  
–70  
9.3  
8.9  
9.3  
8.8  
9.5  
8.9  
9.5  
8.9  
–55  
–58  
–55  
–58  
f = 1.25 MSPS,  
s
AV  
= 5 V  
DD  
f = 100 kHz,  
i
70% of FS  
f = 625 KSPS,  
s
AV  
= 3 V  
DD  
THD  
Total harmonic distortion  
Spurious-free dynamic range  
Effective number of bits  
f = 1.25 MSPS,  
s
AV  
= 5 V  
DD  
f = 50 kHz  
i
90% of FS  
f = 625 KSPS,  
s
AV  
= 3 V  
DD  
–57  
–59  
–57  
–60  
f = 1.25 MSPS,  
s
AV  
= 5 V  
DD  
f = 100 kHz,  
i
70% of FS  
f = 625 KSPS,  
s
AV  
= 3 V  
DD  
SFDR  
f = 1.25 MSPS,  
s
AV  
= 5 V  
DD  
f = 50 kHz,  
i
90% of FS  
f = 625 KSPS,  
s
AV  
= 3 V  
DD  
8.8  
8.6  
8.6  
8.4  
f = 1.25 MSPS,  
s
AV  
= 5 V  
DD  
f = 100 kHz,  
i
70% of FS  
f = 625 KSPS,  
s
AV  
= 3 V  
DD  
ENOB  
f = 1.25 MSPS,  
s
AV  
= 5 V  
DD  
f = 50 kHz,  
i
90% of FS  
f = 625 KSPS,  
s
AV  
= 3 V  
DD  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
ac specifications (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog Input  
Channel-to-channel crosstalk  
75  
15  
dB  
–1 dB full-scale input sine wave  
12  
15  
MHz  
MHz  
MHz  
MHz  
BW  
BW  
Full-power bandwidth  
Small-signal bandwidth  
–3 dB full-scale input sine wave  
25  
–1 dB  
–3 dB  
20  
35  
AV  
AV  
= 5 V  
= 3 V  
0.0625  
0.0625  
1.25  
DD  
f
s
Sampling rate  
MSPS  
0.625  
DD  
timing requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX  
UNIT  
DV  
DV  
= 5.5 V to 4.5 V  
= 3.6 V to 2.7 V  
ns  
DD  
DD  
t
SCLK cycle time  
c(SCLK)  
100  
100  
t
Pulse duration, chip select  
Sampling period  
ns  
w(1)  
(s)  
SLCK  
cycles  
t
6
SLCK  
cycles  
t
Conversion period  
10  
(conv)  
t
t
t
t
t
t
t
Setup time, FS to SCLK falling edge in DSP mode  
Hold time, FS to SCLK falling edge in DSP mode  
Setup time, FS to CS falling edge in DSP mode  
5
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(1)  
h(1)  
su(2)  
h(2)  
d(1)  
d(2)  
d(3)  
5.5  
9
Hold time, FS to CS falling edge in DSP mode  
Delay time, FS falling edge to next SCLK falling edge in DSP mode  
Delay time, SCLK rising edge after CS falling edge in µC mode  
6
4
Delay time, output after SCLK rising edge in µC mode and DSP  
mode  
10  
20  
t
t
t
Setup time, serial input data to SCLK falling edge  
Hold time, serial input data to SCLK falling edge  
Rise time  
10  
4
ns  
ns  
ns  
su(3)  
h(3)  
r
3
200  
Specifications subject to change without notice.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
PARAMETER MEASUREMENT INFORMATION  
t
c(SCLK)  
1
2
3
SCLK  
CS  
t
w(1)  
t
su(1)  
t
h(1)  
t
d(1)  
FS  
t
t
h(3)  
su(3)  
t
t
h(2)  
su(2)  
DI15  
MSB  
DI14  
DI13  
SDIN  
t
d3  
0
0
SDOUT  
Figure 7. DSP Mode Timing Diagrams  
t
1
2
3
4
d(2)  
SCLK  
CS  
t
w(1)  
FS  
t
t
h(3)  
su(3)  
DI15  
MSB  
DI14  
DI13  
DI12  
SDIN  
t
d(3)  
0
0
0
SDOUT  
Figure 8. µC Mode Timing Diagrams  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
ANALOG MUX INPUT RESISTANCE  
TOTAL SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
FREE-AIR TEMPERATURE  
350  
300  
8
6
4
AV  
DD  
= 5.5 V  
AV  
DD  
= 2.7 V, AIN = 2 V  
250  
200  
AV  
DD  
= 5.5 V, AIN = 3.8 V  
AV  
DD  
= 2.7 V  
150  
100  
2
0
50  
0
–45  
25  
90  
–45  
25  
90  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 9  
Figure 10  
SUPPLY CURRENT  
vs  
GAIN  
vs  
CLOCK FREQUENCY (SCLK)  
INPUT FREQUENCY  
8
7
1
V
= 5.5 V  
DD  
DD  
0
6
–1  
––2  
–3  
V
= 5 V, AIN = 90% of FS,  
5
4
3
DD  
REF = 5 V, T = 25°C  
A
V
= 2.7 V  
2
–4  
–5  
1
0
2.5  
5
6.2 7.5  
10  
12.5 15.4 18  
20  
0
1
10  
100  
f – Clock Frequency – MHz  
f – Input Frequency – MHz  
Figure 11  
Figure 12  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
V
= 2.7 V, Internal REF = 2.3 V,  
CC  
SCLK = 10 MHz,  
= 25°C  
T
A
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 13  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
V
= 2.7 V, Internal REF = 2.3 V,  
CC  
SCLK = 10 MHz,  
= 25°C  
0.8  
0.6  
0.4  
0.2  
T
A
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 14  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
V
= 2.7 V, External REF = 2.7 V,  
CC  
SCLK = 10 MHz,  
= 25°C  
T
A
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 15  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
V
= 2.7 V, External REF = 2.7 V,  
CC  
SCLK = 10 MHz,  
= 25°C  
0.8  
0.6  
0.4  
T
A
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 16  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
V
= 5.5 V, Internal REF = 3.8 V,  
CC  
SCLK = 20 MHz,  
= 25°C  
T
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 17  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
0.2  
0
V
= 5.5 V, Internal REF = 3.8 V,  
CC  
SCLK = 20 MHz,  
= 25°C  
T
A
–0.2  
–0.4  
–0.6  
–0.8  
0
511  
1023  
Samples  
Figure 18  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
V
= 5.5 V, External REF = 5.5 V,  
CC  
SCLK = 20 MHz,  
= 25°C  
T
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 19  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
V
= 5.5 V, External REF = 5.5 V,  
CC  
SCLK = 20 MHz,  
= 25°C  
0.8  
0.6  
0.4  
T
A
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 20  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
V
= 5.5 V, External REF = 3.3 V,  
CC  
SCLK = 20 MHz,  
= 25°C  
T
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
511  
1023  
Samples  
Figure 21  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
0.2  
0
V
= 5.5 V, External REF = 3.3 V,  
CC  
SCLK = 20 MHz,  
= 25°C  
T
A
–0.2  
–0.4  
–0.6  
–0.8  
0
511  
1023  
Samples  
Figure 22  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
EFFECTIVE NUMBER OF BITS  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
12  
10  
8
12  
10  
8
AV  
DD  
= DV  
= 5 V,  
DD  
External REF = 5 V  
AV  
DD  
= DV  
= 3 V,  
DD  
External REF = 3 V  
6
6
4
4
2
2
0
0
0
100  
200  
300  
400  
500  
600  
0
50  
100  
150  
200  
250  
300  
f – Input Frequency – kHz  
f – Input Frequency – kHz  
Figure 23  
Figure 24  
EFFECTIVE NUMBER OF BITS  
EFFECTIVE NUMBER OF BITS  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
10  
10  
9
8
9
8
7
6
7
6
5
4
3
2
5
4
3
2
AV  
DD  
= DV  
= 3 V,  
AV  
DD  
= DV  
= 5 V,  
DD  
Internal REF = 2.3 V  
DD  
Internal REF = 3.8 V  
1
0
1
0
0
50  
100  
150  
200  
250  
300  
0
100  
200  
300  
400  
500  
600  
f – Input Frequency – kHz  
f – Input Frequency _ kHz  
Figure 25  
Figure 26  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
FAST FOURIER TRANSFORM  
vs  
FREQUENCY  
AIN = 200 kHz,  
SCLK = 20 MHz,  
0
AV  
= DV  
= 3 V,  
DD  
DD  
Internal REF = 2.3 V  
–20  
–40  
–60  
–80  
–100  
–120  
0
100  
200  
300  
400  
500  
600  
Frequency – KHz  
Figure 27  
FAST FOURIER TRANSFORM  
vs  
FREQUENCY  
AIN = 200 kHz,  
SCLK = 20 MHz,  
0
AV  
= DV  
= 5 V,  
DD  
DD  
Internal REF = 3.8 V  
–20  
–40  
–60  
–80  
–100  
–120  
0
100  
200  
300  
400  
500  
600  
Frequency – KHz  
Figure 28  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
FAST FOURIER TRANSFORM  
vs  
FREQUENCY  
AIN = 200 kHz,  
SCLK = 20 MHz,  
0
AV  
= DV  
= External REF = 3 V  
DD  
DD  
–20  
–40  
–60  
–80  
–100  
–120  
0
100  
200  
300  
Frequency – KHz  
400  
500  
600  
Figure 29  
FAST FOURIER TRANSFORM  
vs  
FREQUENCY  
AIN = 200 kHz,  
0
SCLK = 20 MHz,  
AV = DV = External REF = 5 V  
DD  
DD  
–20  
–40  
–60  
–80  
–100  
–120  
0
100  
200  
300  
400  
500  
600  
Frequency – KHz  
Figure 30  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
Figure 31. Typical Timing Diagram for DSP Application  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1570  
2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS  
SERIAL ANALOG-TO-DIGITAL CONVERTER  
SLAS169B – DECEMBER 1997– REVISED OCTOBER 2000  
TYPICAL CHARACTERISTICS  
Figure 32. Typical Timing Diagram for µC Application  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
TLV1570CDW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1570CDWG4  
TLV1570CDWR  
TLV1570CDWRG4  
TLV1570CPW  
SOIC  
SOIC  
DW  
DW  
DW  
PW  
PW  
PW  
PW  
DW  
DW  
PW  
PW  
PW  
PW  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1570CPWG4  
TLV1570CPWR  
TLV1570CPWRG4  
TLV1570IDW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1570IDWG4  
TLV1570IPW  
SOIC  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1570IPWG4  
TLV1570IPWR  
TLV1570IPWRG4  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TLV1570CPWR  
TLV1570IPWR  
TSSOP  
TSSOP  
PW  
PW  
20  
20  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.95  
6.95  
7.1  
7.1  
1.6  
1.6  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV1570CPWR  
TLV1570IPWR  
TSSOP  
TSSOP  
PW  
PW  
20  
20  
2000  
2000  
346.0  
346.0  
346.0  
346.0  
33.0  
33.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

TLV1570IPW

2.7 V TO 5.5 V 8-CHANNEL 10-BIT 1.25-MSPS SERIAL ANALOG-TO-DIGITAL CONVERTER
TI

TLV1570IPWG4

10 位、1.25MSPS ADC,具有 8 通道、DSP/(Q)SPI 接口、可编程内部基准电压、自动或软件断电、超低功耗 | PW | 20 | -40 to 85
TI

TLV1570IPWLE

IC,DATA ACQ SYSTEM,8-CHANNEL,10-BIT,TSSOP,20PIN,PLASTIC
TI

TLV1570IPWR

10 位、1.25MSPS ADC,具有 8 通道、DSP/(Q)SPI 接口、可编程内部基准电压、自动或软件断电、超低功耗 | PW | 20 | -40 to 85
TI

TLV1570IPWRG4

10 位、1.25MSPS ADC,具有 8 通道、DSP/(Q)SPI 接口、可编程内部基准电压、自动或软件断电、超低功耗 | PW | 20 | -40 to 85
TI

TLV1571

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571CDW

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571CDWG4

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571CDWR

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, GREEN, PLASTIC, SOIC-24
TI

TLV1571CPW

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571CPWG4

IC,A/D CONVERTER,SINGLE,10-BIT,CMOS,TSSOP,24PIN
TI

TLV1571CPWR

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, PLASTIC, TSSOP-24
TI