TLV1571CDWR [TI]

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, GREEN, PLASTIC, SOIC-24;
TLV1571CDWR
型号: TLV1571CDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, GREEN, PLASTIC, SOIC-24

光电二极管 转换器
文件: 总33页 (文件大小:621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
features  
TLV1578  
DA PACKAGE  
(TOP VIEW)  
Fast Throughput Rate: 1.25 MSPS at 5 V,  
625 KSPS at 3 V  
CH0  
CH1  
CH2  
CH3  
CS  
WR  
RD  
CLK  
DGND  
CH7  
CH6  
CH5  
CH4  
MO  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
Wide Analog Input: 0 V to AV  
DD  
2
Differential Nonlinearity Error: < ± 1 LSB  
3
4
Integral Nonlinearity Error: < ± 1 LSB  
8-to-1 Analog MUX – TLV1578  
Internal OSC  
5
6
AIN  
AV  
7
DD  
8
AGND  
REFM  
REFP  
CSTART  
D9/A1  
D8/A0  
D7  
9
Single 2.7-V to 5.5-V Supply Operation  
Low Power: 12 mW at 3 V and 35 mW at 5 V  
Auto Power Down of 1 mA Max  
Software Power Down: 10 µA Max  
Hardware Configurable  
10  
11  
12  
13  
14  
15  
16  
DV  
DD  
INT/EOC  
D0  
D1  
D2  
D3  
D4  
D6  
D5  
DSP and Microcontroller Compatible  
Parallel Interface  
TLV1571  
DW OR PW PACKAGE  
(TOP VIEW)  
Binary/Twos Complement Output  
Hardware Controlled Extended Sampling  
CS  
WR  
RD  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
AIN  
Channel Sweep Mode Operation and  
Channel Select  
2
3
AV  
DD  
4
CLK  
DGND  
AGND  
REFM  
REFP  
CSTART  
D9/A1  
D8/A0  
D7  
Hardware or Software Start of Conversion  
applications  
5
6
DV  
DD  
7
INT/EOC  
D0  
8
Mass Storage and HDD  
Automotive  
9
D1  
D2  
D3  
D4  
10  
11  
12  
D6  
D5  
Digital Servos  
Process Control  
General-Purpose DSP  
Image Sensor Processing  
NC – No internal connection  
description  
The TLV1571/1578 is a 10-bit data acquisition system that combines an 8-channel input multiplexer (MUX), a  
high-speed 10-bit ADC, and a parallel interface. The device contains two on-chip control registers allowing  
control of channel selection, software conversion start, and power down via the bidirectional parallel port. The  
control registers can be set to a default mode by applying a dummy RD signal when WR is tied low. This allows  
the TLV1571/1578 to be configured by hardware. The MUX is independently accessible. This allows the user to  
insert a signal conditioning circuit such as an antialiasing filter or an amplifier, if required, between the MUX and  
the ADC. Therefore, one signal conditioning circuit can be used for all eight channels. The TLV1571 is a single  
channel analog input device with all the same functions as the TLV1578.  
The TLV1571/TLV1578 operates from a single 2.7-V to 5.5-V power supply. It accepts an analog input range  
from0VtoAV anddigitizestheinputatamaximum1.25MSPSthroughputrateat5V. Thepowerdissipations  
DD  
are only 12 mW with a 3-V supply or 35 mW with a 5-V supply. The device features an auto power-down mode  
that automatically powers down to 1 mA 50 ns after conversion is performed. In software power-down mode, the  
ADC is further powered down to only 10 µA.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
description (continued)  
Very high throughput rate, simple parallel interface, and low power consumption make the TLV1571/TLV1578  
an ideal choice for high-speed digital signal processing requiring multiple analog inputs.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
32 TSSOP  
(DA)  
24 SOP  
(DW)  
24 TSSOP  
(PW)  
0°C to 70°C  
TLV1578CDA  
TLV1578IDA  
TLV1571CDW  
TLV1571IDW  
TLV1571CPW  
TLV1571IPW  
40°C to 85°C  
functional block diagram – TLV1571/78  
REFP  
REFM  
DV  
DD  
MO AV  
DD  
AIN  
CH0 – CH7  
MUX  
D0 – D7  
Three  
State  
Latch  
10-BIT  
SAR ADC  
TLV1578 Only  
D8/A0  
D9/A1  
Internal  
Clock  
MUX  
CLK  
CS  
RD  
WR  
Input Registers  
and Control Logic  
INT/EOC  
CSTART  
AGND  
DGND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
Terminal Functions  
TERMINAL  
NO.  
TLV1571 TLV1578  
I/O  
DESCRIPTION  
NAME  
AGND  
AIN  
AV  
21  
23  
22  
25  
27  
26  
Analog ground  
I
I
ADC analog input (used as single analog input channel for TLV1571)  
Analog supply voltage, 2.7 V to 5.5 V  
DD  
CH0 – CH7  
14,  
Analog input channels  
29–32  
CLK  
4
1
8
5
I
I
I
External clock input  
CS  
Chip select. A logic low on CS enables the TLV1571/TLV1578.  
CSTART  
18  
22  
Hardware sample and conversion start input. The falling edge of CSTART starts sampling and  
the rising edge of CSTART starts conversion.  
DGND  
5
6
9
Digital ground  
DV  
10  
Digital supply voltage, 2.7 V to 5.5 V  
DD  
D0 – D7  
812,  
1315  
1216,  
17–19  
I/O Bidirectional 3-state data bus  
D8/A0  
16  
17  
7
20  
I/O Bidirectional 3-state data bus. D8/A0 along with D9/A1 is used as address lines to access CR0  
and CR1 for initialization.  
D9/A1  
21  
I/O Bidirectional 3-state data bus. D9/A1 along with D8/A0 is used as address lines to access CR0  
and CR1 for initialization.  
11  
28  
O
O
End-of-conversion/interrupt  
INT/EOC  
MO  
On-chip MUX analog output  
NC  
24  
3
Not connected  
7
I
I
Read data. A falling edge on RD enables a read operation on the data bus when CS is low.  
RD  
REFM  
20  
24  
Lower reference voltage (nominally ground). REFM must be supplied or REFM pin must be  
grounded.  
REFP  
WR  
19  
2
23  
6
I
I
Upper reference voltage (nominally AV ). The maximum input voltage range is determined by  
DD  
the difference between the voltage applied to REFP and REFM.  
Write data. A rising edge on the WR latches in configuration data when CS is low. When using  
software conversion start, a rising edge on WR also initiates an internal sampling start pulse.  
When WR is tied to ground, the ADC in nonprogrammable (hardware configuration mode).  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
detailed description  
Ain  
Charge  
Redistribution  
DAC  
_
+
SAR  
Register  
ADC Code  
REFM  
Control  
Logic  
Figure 1. Analog-to-Digital SAR Converter  
The TLV1571/78 is a successive-approximation ADC utilizing a charge redistribution DAC. Figure 1 shows a  
simplified version of the ADC.  
The sampling capacitor acquires the signal on AIN during the sampling period. When the conversion process  
starts, theSARcontrollogicandchargeredistributionDACareusedtoaddandsubtractfixedamountsofcharge  
from the sampling capacitor to bring the comparator into a balanced condition. When the comparator is  
balanced, the conversion is complete and the ADC output code is generated.  
sampling frequency, f  
s
The TLV1571/TLV1578 requires 16 CLKs for each conversion, (assuming the read cycle takes 1 CLK). The  
equivalent maximum sampling frequency achievable with a given CLK frequency is:  
f
= (1/17) f  
CLK  
s(max)  
The TLV1571 and TLV1578 are software configurable. The first two MSB bits, D(9,8) are used to address which  
register to set. The rest of the eight bits are used as control data bits. There are two control registers, CR0 and  
CR1, that are user configurable. All of the register bits are written to the control register during write cycles. A  
description of the control registers is shown in Figure 2.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
detailed description (continued)  
control registers  
A1  
A0  
D7  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D0  
D0  
Control Register Zero (CR0)  
D7 D6  
STARTSEL PROGEOC CLKSEL  
D1  
A(1:0)=00  
SWPWDN MODESEL  
CHSEL(2–0)  
0:  
0:  
0:  
0:  
0:  
Single  
Input  
D(20)  
Channels Swept  
HARDWARE INT  
START  
(CSTART)  
NORMAL  
Single  
Channel  
1:  
Sweep  
Mode  
Internal  
Clock  
0h  
1h  
0,1  
0
1
1:  
EOC  
1:  
Power  
Down  
0,1,2,3  
1:  
1:  
SOFTWARE  
START  
External  
Clock  
2h  
3h  
4h  
0,1,2,3,4,5,  
0,1,2,3,4,5,6,7  
N/A  
2
3
4
5h  
6h  
7h  
N/A  
N/A  
N/A  
5
6
7
Control Register One (CR1)  
D5  
D4  
D7  
D6  
D3  
D2  
READREG  
D1  
STEST1  
D0  
STEST0  
A(1:0)=01  
RESERVED OSCSPD 0 Reserved 0 Reserved OUTCODE  
0:  
0:  
0:  
0:  
0:  
0:  
IF READREG = 0  
ACTION  
Output =  
CR1.(1–0)  
INT. OSC.  
SLOW  
1:  
INT. OSC.  
FAST  
Reserved Binary  
Enable Self  
Test  
1:  
Enable  
Register  
Read back  
Reserved  
Bit  
Always  
Write 0  
Reserved  
Bit  
Always  
Write 0  
Bit,  
Always  
Write 0  
0h  
1h  
CONVERSION result  
Output =  
SELF TEST 1 result  
Output =  
SELF TEST 2 result  
Output =  
SELF TEST 3 result  
1:  
2s  
Complement  
2h  
3h  
IF READREG = 1  
Output Contents of  
CR0  
0h  
1h  
Output Contents of  
CR1  
2h  
3h  
RESERVED  
RESERVED  
Don’t care for TLV1571  
When in read back mode, the values read from the control register reserved bits are don’t care.  
Figure 2. Input Data Format  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
detailed description (continued)  
hardware configuration option  
The TLV1571/TLV1578 can configure itself. This option is enabled when the WR pin is tied to ground and a  
dummy RD signal is applied. The ADC is now fully configured. Zeros or default values are applied to both control  
registers. TheADCisconfiguredideallyfor3-Voperation, whichmeanstheinternalOSCissetat10MHz, single  
channel input mode, and hardware start of conversion using CSTART.  
ADC conversion modes  
The TLV1571/TLV1578 provides two conversion modes and two start of conversion modes. In single channel  
input mode, a single channel is continuously sampled and converted. In sweep mode (only available for the  
TLV1578), a predetermined set of channels is continuously sampled and converted. Table 1 explains these  
modes in more detail.  
Table 1. Conversion Modes  
START OF  
CONVER-  
SION  
COMMENT–SET BITS  
CR0.D(2–0) FOR INPUT  
MODES  
OPERATION  
Single  
Hardware Repeated conversions from a selected channel  
Start CSTART falling edge to start sampling  
(CSTART) CSTART rising edge to start conversion  
CR0.D3 = 0 CR0.D7 = 0 If in INT mode, one INT pulse generated after each conversion  
CSTART rising edge must  
be applied a minimum of  
5 ns before or after CLK  
rising edge.  
Channel  
Input  
CR1.D7 = 0  
If in EOC mode, EOC will go high to low at start of conversion, and return high  
at end of conversion.  
Software  
Start  
CR0.D7 = 1  
Repeated conversions from a selected channel  
WRrisingedgetostartsamplinginitially.Thereafter, samplingoccursattherising and RD rising edge must be  
edge of RD. a minimum 5 ns before or  
With external clock, WR  
Conversion begins after 6 clocks after sampling has begun. Thereafter, if in INT after CLK rising edge.  
mode, one INT pulse is generated after each conversion  
If in EOC mode, EOC will go high to low at start of conversion and return high at  
end of conversion.  
Channel  
Sweep  
Hardware One conversion per channel from a predetermined sequence of channels  
Start CSTART falling edge to start sampling  
CSTART rising edge must  
be applied a minimum of  
5 ns before or after CLK  
rising edge.  
CR0.D3 = 1 (CSTART) CSTART rising edge to start conversion  
CR1.D7 = 0 CR0.D7 = 0 If in INT mode, one INT pulse generated after each conversion  
If in EOC mode, EOC will go high to low at start of conversion, and return high  
at end of conversion.  
Software  
Start  
One conversion per channel from a sequence of channels  
WR rising edge to start sampling  
With external clock, WR  
and RD rising edge must be  
CR0.D7 = 1 ADC proceeds to sample next channel at rising edge of RD. Conversion begins a minimum 5 ns before or  
after 6 clocks and lasts 10 clocks  
after CLK rising edge.  
If in INT mode, one INT pulse generated after each conversion  
If in EOC mode, EOC will go high to low at start of conversion and return high at  
end of conversion.  
Single channel input mode repeatedly samples and converts from the channel until WR is applied.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
detailed description (continued)  
configure the device  
The device can be configured by writing to control registers CR0 and CR1.  
Table 2. TLV1571/TLV1578 Programming Examples  
INDEX  
REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMMENT  
D9  
D8  
EXAMPLE1  
CR0  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
Single channel  
Single Input  
CR1  
EXAMPLE2  
CR0  
0
0
0
1
0
0
1
0
1
0
0
0
1
1
0
1
1
0
1
0
Sweep mode  
CR1  
2s complement output  
register read back  
Control data written to the TLV1571/78 can be read back from the control registers CR0 and CR1. See Figure 2.  
NOTE:  
Data read out of CR1 reserved bits is don’t care.  
power down  
The TLV1571/TLV1578 offers two power down modes, auto power down and software power down. This device  
will automatically proceed to auto power-down mode if RD is not present one clock after conversion. Software  
power down is controlled directly by the user by pulling CS to DV  
.
DD  
Table 3. Power Down Modes  
SOFTWARE POWER DOWN  
(CS = DV  
PARAMETERS/MODES  
AUTO POWER DOWN  
)
DD  
10 µA  
Maximum power down dissipation current  
Comparator  
1 mA  
Power down  
Power down  
Active  
Power down  
Power down  
Power down  
Saved  
Clock buffer  
Reference  
Control registers  
Saved  
Minimum power down time  
Minimum resume time  
1 CLK  
2 CLK  
1 CLK  
2 CLK  
self-test modes  
The TLV1571/TLV1578 provides three self test modes. These modes can be used to check whether the ADC  
itself is working properly without having to supply an external signal. There are three tests that are controlled  
by writing to CR1(D1,D0) (see Table 4).  
Table 4. Self Tests  
CR1(D1,D0)  
SELF TEST VOLTAGE APPLIED  
Normal, no self test applied  
DIGITAL OUTPUT  
0h  
1h  
2h  
3h  
N/A  
VREFM applied to ADC input internally  
(VREFP–VREFM)/2 applied to ADC input internally  
VIN = VREFP applied to ADC input internally  
000h  
200h  
3FFh  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
detailed description (continued)  
reference voltage input  
The TLV1571/TLV1578 has two reference input pins: REFP and REFM. The voltage levels applied to these pins  
establish the upper and lower limits of the analog inputs to produce a full-scale and zero-scale reading  
respectively. The values of REFP, REFM, and the analog input should not exceed the positive supply or be less  
than GND consistent with the specified absolute maximum ratings. The digital output is at full scale when the  
input signal is equal to or higher than REFP and is at zero when the input signal is equal to or lower than REFM.  
sampling/conversion  
All sampling, conversion, and data output in the device are started by a trigger. This could be the RD, WR, or  
CSTART signal depending on the mode of conversion and configuration. The rising edge of RD, WR, and  
CSTART signal are extremely important, since they are used to start the conversion. These edges need to stay  
close to the rising edge of the external clock (if external clock is used as source of conversion clock). The  
minimumsetupandholdtimewithrespecttotherisingedgeoftheexternalclockshouldbe5nsminimum. When  
the internal clock is used, this is not an issue since these two edges will start the internal clock automatically.  
Therefore, the setup time is always met. Software controlled sampling lasts 6 clock cycles. This is done via the  
CLK input or the internal oscillator if enabled. The input clock frequency can be 1 MHz to 20 MHz, translating  
into a sampling time from 0.6 µs to 0.3 µs. The internal oscillator frequency is 9 MHz minimum (oscillator  
frequency is between 9 MHz to 22 MHz), translating into a sampling time from 0.6 µs to 0.3 µs. Conversion  
begins immediately after sampling and lasts 10 clock cycles. This is again done using the external clock input  
(1 MHz–20 MHz) or the internal oscillator (9 MHz minimum) if enabled. Hardware controlled sampling, via  
CSTART, begins on falling CSTART lasts the length of the active CSTART signal. This allows more control over  
the sampling time, which is useful when sampling sources with large output impedances. On rising CSTART,  
conversion begins. Conversion in hardware controlled mode also lasts 10 clock cycles. This is done using the  
external clock input (1 MHz–20 MHz) or the internal oscillator (9 MHz minimum) as is the case in software  
controlled mode.  
ExtClk  
t
5 ns  
h(WRL_EXTCLKH)  
t
5 ns  
su(WRH_EXTCLKH)  
WR  
RD  
OR  
OR  
t
5 ns  
h(RDL_EXTCLKH)  
t
5 ns  
5 ns  
su(RDH_EXTCLKH)  
t
5 ns  
h(CSTARTL_EXTCLKH)  
t
t
5 ns  
d(EXTCLK_CSTARTL)  
su(CSTARTH_EXTCLKH)  
CSTART  
NOTE: t = setup time, t = hold time  
su  
h
Figure 3. Trigger Timing – Software Start Mode Using External Clock  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
start of conversion mechanism  
There are two ways to convert data: hardware and software. In the hardware conversion mode the ADC begins  
sampling at the falling edge of CSTART and begins conversion at the rising edge of CSTART. Software start  
mode ADC samples for 6 clocks, then conversion occurs for ten clocks. The total sampling and conversion  
process lasts only 16 clocks in this case. If RD is not detected during the next clock cycle, the ADC automatically  
proceeds to a power-down state. Data is valid on the rising edge of INT in both conversion modes.  
hardware CSTART conversion  
external clock  
With CS low and WR low, data is written into the ADC. The sampling begins at the falling edge of CSTART and  
conversion begins at the rising edge of CSTART. At the end of conversion, EOC goes from low to high, telling  
the host that conversion is ready to be read out. The external clock is active and is used as the reference at all  
times. With this mode, it is required that CSTART is not applied at the rising edge of the clock (see Figure 4).  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
start of conversion mechanism (continued)  
6
15  
16  
CLK  
t
su(CSL_WRL)  
t
t
t
su(CSL_RDL)  
h(WRH_CSH)  
su(CSL_RDL)  
CS  
WR  
t
t
h(RDH_CSH)  
d(CSH_CSTARTL)  
t
c
t
t
(sample)  
c
t
(sample)  
(10 I/O CLKs)  
(Channel 0)  
(see Note A)  
(Channel 0)  
(see Note A)  
CSTART  
RD  
t
su(DAV_WRH)  
t
t
d(EOC_RDL)  
t
dis(RDH_DAV)  
h(WRH_DAV)  
Config  
Data  
D[0:9]  
INT  
ADC  
ADC  
t
t
en(RDL_DAV)  
en(RDL_DAV)  
OR  
EOC  
Auto Power Down  
NOTE A: AIN for TLV1571; channels sweep according to register settings.  
Figure 4. Multichannel Input Mode Conversion – Hardware CSTART, External Clock  
internal clock  
In single channel input mode, with CS low and WR low, data is written into the ADC. The sampling begins at the falling edge of CSTART, and  
conversion begins at the rising edge of CSTART. The internal clock turns on at the rising edge of CSTART. The internal clock is disabled after  
each conversion.  
t
su(CSL_WRL)  
t
t
t
h(WRH_CSH)  
su(CSL_RDL)  
su(CSL_RDL)  
CS  
t
d(CSH_CSTARTL)  
WR  
t
(STARTOSC)  
t
(sample)  
(Channel 0)  
(see Note A)  
t
c
t
h(RDH_CSH)  
CSTART  
INTCLK  
RD  
t
c
10  
(Channel 1)  
(see Note A)  
0
1
9
t
(STARTOSC)  
t
su(DAV_WRH)  
t
d(EOC_RDL)  
t
t
h(WRH_DAV)  
dis(RDH_DAV)  
Config  
Data  
D[0:9]  
INT  
ADC  
Data  
ADC  
Data  
t
t
en(RDL_DAV)  
en(RDL_DAV)  
t
c
OR  
EOC  
Auto Power Down  
Auto Power Down  
NOTE A: AIN for TLV1571; channels sweep according to register settings.  
Figure 5. Multichannel Input Mode Conversion – Hardware CSTART, Internal Clock  
software START conversion  
external clock  
With CS low and WR low, data is written into the ADC. Sampling begins at the rising edge of WR. The conversion process begins 6 clocks  
after sampling begins. At the end of conversion, INT goes low telling the host that conversion is ready to be read out. EOC is low during the  
conversion and makes a high-to-low transition at the end of the conversion. The external clock is active and is used as the reference at all  
times. With this mode, WR and RD should not be applied at the rising edge of the clock (see Figure 3).  
0
1
5
6
7
15  
16  
0
4
5
15  
CLK  
t
t
su(CSL_RDL)  
t
su(CSL_WRL)  
t
h(RDH_CSH)  
t
su(CSL_RDL)  
h(WRH_CSH)  
CS  
WR  
RD  
t
(sample)  
t
t
(sample)  
c
(Channel 0)  
(see Note A)  
t
c
(Channel 1)  
(see Note A)  
t
t
d(EOC_RDL)  
su(DAV_WRH)  
t
dis(RDH_DAV)  
t
h(WRH_DAV)  
Config  
Data  
D[0:9]  
INT  
ADC Data  
ADC Data  
t
t
en(RDL_DAV)  
en(RDL_DAV)  
OR  
EOC  
Auto Powerdown  
NOTE A: AIN for TLV1571; channels sweep according to register settings.  
Figure 6. Multichannel Input Mode Conversion – Software Start, External Clock  
software START conversion (continued)  
internal clock  
With CS low and WR low, data is written into the ADC. Sampling begins at the rising edge of WR. Conversion begins 6 clocks after sampling  
begins. The internal clock begins at the rising edge of WR. The internal clock is disabled after each conversion. Subsequent sampling begins  
at the rising edge of RD.  
t
su(CSL_RDL)  
t
t
h(RDH_CSH)  
su(CSL_WRL)  
CS  
t
h(WRH_CSH)  
WR  
RD  
t
t
(STARTOSC)  
(STARTOSC)  
0
4
5
6
15  
16  
0
4
5
15  
INTCLK  
t
(sample)  
t
(sample)  
(Channel 0)  
(see Note A)  
(Channel 1)  
(see Note A)  
t
t
d(EOC_RDL)  
su(DAV_WRH)  
t
dis(RDH_DAV)  
t
t
t
h(WRH_DAV)  
c
c
Config  
Data  
ADC  
Data  
D[0:9]  
INT  
ADC  
t
en(RDL_DAV)  
OR  
EOC  
Auto Powerdown  
Auto Powerdown  
NOTE A: AIN for TLV1571; channels sweep according to register settings.  
Figure 7. Multichannel Input Mode Conversion – Software Start, Internal Clock  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
software START conversion (continued)  
system clock source  
The TLV1571/TLV1578 internally derives multiple clocks from the SYSCLK for different tasks. SYSCLK is used  
for most conversion subtasks. The source of SYSCLK is programmable via control register zero bit 5. The  
source of SYSCLK is changed at the rising edge of WR of the cycle when CR0.D5 is programmed.  
internal clock (CR0.D5 = 0, SYSCLK = internal OSC)  
The TLV1571/TLV1578 has a built-in 10 MHz OSC. When the internal OSC is selected as the source of  
SYSCLK, the internal clock starts with a delay (one half of the OSC period max) after the falling edge of the  
conversion trigger (either WR, RD, or CSTART). The OSC speed can be set to 10 ± 1 MHz or 20 ± 2 MHz by  
setting register bit CR1.6.  
external clock (CR0.D5 = 1, SYSCLK = external clock)  
The TLV1571/TLV1578 is designed to accept an external clock input (CMOS/TTL logic) with frequencies from  
1 MHz to 20 MHz.  
host processor interface  
The TLV1571/TLV1578 provides a generic high-speed parallel interface that is compatible with  
high-performance DSPs and general-purpose microprocessors. The interface includes D(0–9), INT/EOC, RD,  
and WR.  
output format  
The data output format is unipolar (code 0 to 1023) when the device is operated in single-ended input mode.  
The output code format can be either binary or twos complement by setting register bit CR1.D3.  
power up and initialization  
After power up, CS must be low to begin an I/O cycle. INT/EOC is initially high. The TLV1571/TLV1578 requires  
two write cycles to configure the two control registers. The first conversion after the device has returned from  
the power-down state may be invalid and should be disregarded.  
definitions of specifications and terminology  
integral nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale.  
The point used as zero occurs 1/2 LSB before the first code transition. The full-scale point is defined as level  
1/2 LSB beyond the last code transition. The deviation is measured from the center of each particular code to  
the true straight line between these two points.  
differential nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value.  
A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
zero offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
gain error  
The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition  
should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the deviation of the actual  
difference between first and last code transitions and the ideal difference between first and last code transitions.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
software START conversion (continued)  
signal-to-noise ratio + distortion (SINAD)  
Signal-to-noise ratio + distortion is the ratio of the rms value of the measured input signal to the rms sum of all  
other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
effective number of bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
N = (SINAD – 1.76)/6.02  
it is possible to get a measure of performance expressed as N, the effective number of bits. Thus, the effective  
number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its  
measured SINAD.  
total harmonic distortion (THD)  
Total harmonic distortion is the ratio of the rms sum of the first six harmonic components to the rms value of the  
measured input signal and is expressed as a percentage or in decibels.  
spurious free dynamic range (SFDR)  
Spurious free dynamic range is the difference in dB between the rms amplitude of the input signal and the peak  
spurious signal.  
DSP interface  
The TLV1571/TLV1578 is a 10-bit 1-/8-analog input channel analog-to-digital converter with throughput up to  
1.25 MSPS at 5 V and up to 625 KSPS at 3 V. To achieve 1.25 MSPS throughput, the ADC must be clocked  
at 20 MHz. Likewise to achieve 625 KSPS throughout, the ADC must be clocked at 10 MHz. The  
TLV1571/TLV1578 can be easily interfaced to microcontrollers, ASICs, and DSPs. Figure 8 shows the pin  
connections to interface the TLV1571/TLV1578 to the TMS320C6x DSP.  
TMS320C6X  
A0–A15  
TLV1571/78  
Address  
Decoder  
EN  
CH(18)  
CS  
REF  
WR  
HW  
HR  
REFP  
REFM  
RD  
EOC  
D0D9  
INTx  
D0D15  
The TLV1571 has only one analog input (AIN).  
Figure 8. TMS320C6x DSP Interface  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
grounding and decoupling considerations  
General practices should apply to the PCB design to limit high frequency transients and noise that are fed back  
into the supply and reference lines. This requires that the supply and reference pins be sufficiently bypassed.  
In most cases 0.1-µF ceramic chip capacitors are adequate to keep the impedance low over a wide frequency  
range. Since their effectiveness depends largely on the proximity to the individual supply pin, they should be  
placed as close to the supply pins as possible.  
To reduce high frequency and noise coupling, it is highly recommended that digital and analog grounds be  
shorted immediately outside the package. This can be accomplished by running a low impedance line between  
DGND and AGND under the package.  
DV  
AV  
DD  
DD  
TLV1571/78  
AV  
DD  
AGND  
REFP  
REFM  
100 nF  
DV  
DD  
V
REFP  
100 nF  
V
REFM  
DGND  
100 nF  
Figure 9. Placement for Decoupling Capacitors  
power supply ground layout  
Printed-circuit boards that use separate analog and digital ground planes offer the best system performance.  
Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected  
together at the low-impedance power-supply source. The best ground connection may be achieved by  
connecting the ADC AGND terminal to the system analog ground plane making sure that analog ground  
currents are well managed.  
Driving Source  
TLV1571/78  
V
V
= Input Voltage at AIN  
= External Driving Source Voltage  
I
S
s
MO  
R
i(MUX)  
AIN  
R
R = Source Resistance  
R
R
R
s
i(ADC)  
V
I
= Input Resistance of ADC  
= Input Resistance (MUX on resistance)  
i(ADC)  
i(MUX)  
V
S
V
C
C = Input Capacitance  
i
C
V
C
= Capacitance Charging Voltage  
i
15 pF  
Driving source requirements:  
Noise and distortion for the source must be equivalent to the resolution of the converter.  
R must be real at the input frequency.  
s
Figure 10. Equivalent Input Circuit Including the Driving Source  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
simplified analog input analysis  
Using the equivalent circuit in Figure 9, the time required to charge the analog input capacitance from 0 to V  
S
within 1/2 LSB, t (1/2 LSB), can be derived as follows.  
ch  
The capacitance charging voltage is given by:  
–t  
R C  
t
ch  
1–e  
i
V
V
C(t)  
S
Where:  
(1)  
R = R + R  
i
t
s
R = R  
+ R  
i(MUX)  
i
i(ADC)  
t
= Charge time  
ch  
The input impedance R is 718 at 5 V, and is higher (~ 1.25 k) at 2.7 V. The final voltage to 1/2 LSB is given  
i
by:  
(2)  
V (1/2 LSB) = V – (V /2048)  
C
S
S
Equating equation 1 to equation 2 and solving for cycle time t gives:  
c
–t  
R C  
t
ch  
1–e  
i
V
V
2048  
V
S
S
S
(3)  
and time to change to 1/2 LSB (minimum sampling time) is:  
(1/2 LSB) = R × C × ln(2048)  
t
ch  
t
i
Where:  
ln(2048) = 7.625  
Therefore, with the values given, the time for the analog input signal to settle is:  
(1/2LSB)=(R + 718 )× 15 pF × ln(2048)  
(4)  
(5)  
(6)  
t
ch  
s
This time must be less than the converter sample time shown in the timing diagrams, which is 6x SCLK.  
(1/2 LSB) 6x 1/f  
t
ch  
(SCLK)  
Therefore the maximum SCLK frequency is:  
Max(f ) = 6/t (1/2 LSB) = 6/(ln(2048) × R × C )  
(SCLK)  
ch  
t
i
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, GND to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
CC  
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to AV  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150°C  
J
Operating free-air temperature range, T : TLV1571C, TLV1578C . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV1571I, TLV1578I . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
power supplies  
MIN  
2.7  
MAX  
5.5  
UNIT  
V
Analog supply voltage, AV  
DD  
Digital supply voltage, DV  
2.7  
5.5  
V
DD  
NOTE 1: Abs (AV  
– DV ) < 0.5 V  
DD  
DD  
analog inputs  
MIN  
MAX  
UNIT  
Analog input voltage, AIN  
AGND VREFP  
V
digital inputs  
MIN NOM  
MAX  
UNIT  
V
High-level input voltage, V  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
= 4.5 V to 5.5 V  
= 2.7 V to 3.3 V  
= 4.5 V to 5.5 V, f  
= 2.7 V to 3.3 V, f  
= 4.5 V to 5.5 V, f  
= 2.7 V to 3.3 V, f  
2.1  
2.4  
IH  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Low level input voltage, V  
0.8  
20  
10  
V
IL  
MHz  
MHz  
ns  
Input CLK frequency  
= 20 MHz  
= 10 MHz  
= 20 MHz  
= 10 MHz  
23  
46  
23  
46  
4
CLK  
CLK  
CLK  
CLK  
Pulse duration, CLK high, t  
w(CLKH)  
ns  
ns  
Pulse duration, CLK low, t  
w(CLKL)  
ns  
Rise time, I/O and control, CLK, CS  
Fall time, I/O and control, CLK, CS  
50 pF output load  
50 pF output load  
ns  
4
reference specifications  
MIN  
2
NOM  
MAX  
UNIT  
AV  
AV  
AV  
AV  
= 3 V  
AV  
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
DD  
VREFP  
= 5 V  
2.5  
AV  
External reference voltage  
= 3 V  
= 5 V  
AGND  
AGND  
2
1
VREFM  
2
VREFP – VREFM  
AV –AGND  
DD  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted)  
digital specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Logic inputs  
I
I
High-level input current  
Low-level input current  
Input capacitance  
DV  
DV  
= 5 V, DV  
= 3 V, Input = DV  
DD  
= 3 V, Input = 0 V  
–1  
1
1
µA  
µA  
pF  
IH  
DD  
DD  
DD  
DD  
= 5 V, DV  
–1  
IL  
C
10  
15  
i
Logic outputs  
V
V
High-level output voltage  
I
I
= 50 µA to 0.5 mA  
= 50 µA to 0.5 mA  
DV 0.4  
DD  
V
OH  
OH  
Low-level output voltage  
0.4  
1
V
OL  
OL  
I
I
High-impedance-state output current  
Low-impedance-state output current  
Output capacitance  
DV  
DV  
= 5 V, DV  
= 5 V, DV  
= 3 V, Input = DV  
DD  
= 3 V, Input = 0 V  
µA  
µA  
pF  
OZ  
DD  
DD  
DD  
DD  
–1  
OL  
C
5
10  
20  
o
3 V, AV  
5 V, AV  
= DV  
= DV  
9
11  
22  
DD  
DD  
DD  
Internal clock  
MHz  
18  
DD  
dc specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
10  
Bits  
Accuracy  
Integral nonlinearity, INL  
Best fit  
±0.5  
±0.5  
±1  
±1  
0
LSB  
LSB  
Differential nonlinearity, DNL  
Missing codes  
E
E
Offset error  
±0.1% ±0.15%  
FSR  
FSR  
O
Gain error  
±0.1%  
±0.2%  
G
Analog input  
AIN, AV  
= 3 V, AV  
= 5 V  
15  
25  
pF  
pF  
µA  
DD  
DD  
= 3 V, AV  
C
Input capacitance  
i
MUX input, AV  
DD  
= 5 V  
DD  
I
Input leakage current  
Input MUX ON resistance  
V
AIN  
= 0 to AV  
DD  
±1  
680  
340  
lkg  
AV  
= DV  
= DV  
= 3 V  
= 5 V  
240  
215  
DD  
DD  
DD  
DD  
r
i
AV  
Voltage reference input  
r
Input resistance  
2
kΩ  
i
C
Input capacitance  
300  
pF  
i
Power supply  
AV  
AV  
= DV  
= DV  
= 3 V, f  
= 5 V, f  
= 10 MHz  
= 20 MHz  
4
7
5.5  
8.5  
17  
mA  
mA  
DD  
DD  
DD  
CLK  
CLK  
Operating supply current, I  
+ I  
DD REF  
DD  
AV +DV  
DD  
= 3 V  
= 5 V  
12  
35  
mW  
mW  
DD  
PD  
Power dissipation  
AV +DV  
DD  
43  
DD  
AV  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
1
2
8
10  
1
µA  
µA  
DD  
DD  
DD  
DD  
Software  
I
+ I  
DD REF  
AV  
AV  
AV  
I
Supply current in power-down mode  
PD  
0.5  
0.5  
mA  
mA  
Auto  
I + I  
DD REF  
1
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted) (continued)  
ac specifications, AV  
= DV  
= 5 V (unless otherwise noted)  
DD  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
56  
TYP  
60  
MAX  
UNIT  
dB  
f = 1.25 MSPS, AV  
s
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
f = 100 kHz,  
I
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Signal-to-noise ratio, SNR  
80% of FS  
f = 625 KSPS, AV  
s
58  
60  
dB  
f = 1.25 MSPS, AV  
s
55  
60  
dB  
f = 100 kHz,  
I
80% of FS  
Signal-to-noise ratio + distortion, SINAD  
Total harmonic distortion, THD  
f = 625 KSPS, AV  
s
55  
60  
dB  
f = 1.25 MSPS, AV  
s
–60  
–60  
9.3  
9.3  
–63  
–63  
–56  
–56  
dB  
f = 100 kHz,  
I
80% of FS  
f = 625 KSPS, AV  
s
dB  
f = 1.25 MSPS, AV  
s
9
9
Bits  
Bits  
dB  
f = 100 kHz,  
I
80% of FS  
Effective number of bits, ENOB  
f = 625 KSPS, AV  
s
f = 1.25 MSPS, AV  
s
–56  
–56  
f = 100 kHz,  
I
80% of FS  
Spurious free dynamic range, SFDR  
f = 625 KSPS, AV  
s
dB  
Analog input  
Channel-to-channel cross talk  
75  
18  
dB  
–1 dB  
Full-scale 0 dB input sine wave  
Full-scale 0 dB input sine wave  
–20 dB input sine wave  
12  
15  
MHz  
MHz  
MHz  
MHz  
Full-power bandwidth  
Small-signal bandwidth  
–3 dB  
–1 dB  
–3 dB  
30  
20  
–20 dB input sine wave  
35  
AV  
AV  
= 4.5 V to 5.5 V  
= 2.7 V to 3.3 V  
0.0625  
0.0625  
1.25 MSPS  
0.625 MSPS  
DD  
Sampling rate, f  
s
DD  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
timing requirements, AV  
= DV  
= 5 V (unless otherwise noted)  
DD  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX  
UNIT  
ns  
DV  
= 4.5 V to 5.5 V  
DD  
DD  
t
Cycle time, CLK  
c(CLK)  
DV  
= 2.7 V to 3.3 V  
100  
ns  
SYSCLK  
Cycles  
t
t
t
t
Reset and sampling time  
Total conversion time  
6
10  
10  
1
(sample)  
SYSCLK  
Cycles  
c
SYSCLK  
Cycles  
Pulse width, end of conversion, EOC  
Pulse width, interrupt  
wL(EOC)  
wL(INT)  
SYSCLK  
Cycles  
t
t
Start-up time, internal oscillator  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(STARTOSC)  
Delay time, CS high to CSTART low  
10  
20  
40  
5
d(CSH_CSTARTL)  
DV  
DV  
DV  
DV  
= 5 V at 50 pF  
= 3 V at 50 pF  
= 5 V at 50 pF  
= 3 V at 50 pF  
DD  
DD  
DD  
DD  
t
t
Enable time, data out  
Disable time, data out  
en(RDL_DAV)  
dis(RDH_DAV)  
10  
t
t
Setup time, CS to WR  
Hold time, CS to WR  
5
5
su(CSL_WRL)  
h(WRH_CSH)  
Clock  
t
t
Pulse width, write  
Pulse width, read  
1
1
w(WR)  
Period  
Clock  
Period  
w(RD)  
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, data valid to WR  
Hold time, data valid to WR  
Setup time, CS to RD  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(DAV_WRH)  
h(WRH_DAV)  
5
5
su(CSL_RDL)  
Hold time, CS to RD  
h(RDH_CSH)  
Hold time WR to clock high  
5
5
5
5
5
5
5
5
h(WRL_EXTXLKH)  
h(RDL_EXTCLKH)  
h(CSTARTL_EXTCLKH)  
su(WRH_EXTCLKH)  
su(RDH_EXTCLKH)  
su(CSTARTH_EXTCLKH)  
d(EXTCLK_CSTARTL)  
d(EOC_RDL)  
Hold time RD to clock high  
Hold time CSTART to clock high  
Setup time WR high to clock high  
Setup time RD high to clock high  
Setup time CSTART high to clock high  
Delay time clock low to CSTART low  
Delay time, conversion end to RD ↓  
NOTE: Specifications subject to change without notice.  
Data valid is denoted as DAV.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
TYPICAL CHARACTERISTICS  
ANALOG MUX INPUT RESISTANCE  
vs  
SUPPLY CURRENT  
vs  
FREE AIR TEMPERATURE  
INPUT CHANNEL NUMBER  
700  
600  
500  
400  
300  
200  
100  
0
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
AV  
= DV  
= 5 V  
DD  
DD  
AV  
= DV  
= 3 V  
DD  
DD  
AV  
DD  
= DV  
= 2.7 V  
DD  
AV  
= DV  
= 5 V  
3
DD  
DD  
0
1
2
4
5
6
7
–40 –30 –20 –10 0 10 20 30 40 50 60 70 80  
Input Channel Number  
T
A
– Free Air Temperature – °C  
Figure 11  
Figure 12  
ANALOG INPUT BANDWIDTH  
SUPPLY CURRENT  
vs  
vs  
FREQUENCY  
CLOCK FREQUENCY  
1
0
7
6
5
4
3
2
1
0
AV  
DD  
= DV  
= 5 V  
DD  
–1  
–2  
–3  
AV  
DD  
= DV  
= 5 V,  
DD  
AV  
= DV  
= 3 V  
DD  
DD  
–4  
AIN = 90% of FS,  
REF = 5 V,  
–5  
–6  
T
A
= 25°C  
0.1  
1
10  
100  
0
2
4
6
8
10 12 14 16 18 20  
f – Frequency – MHz  
f
– Clock Frequency – MHz  
clock  
Figure 13  
Figure 14  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
1.0  
0.5  
0.0  
AV  
DD  
External Ref = 3 V,  
= DV  
= 3 V,  
DD  
–0.5  
–1.0  
CLK = 10 MHz,  
T
= 25°C  
A
0
1023  
256  
512  
768  
Digital Output Code  
Figure 15  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
1.0  
0.5  
AV  
DD  
External Ref = 3 V,  
= DV  
= 3 V,  
DD  
CLK = 10 MHz,  
T
= 25°C  
A
0.0  
–0.5  
–1.0  
0
1023  
256  
512  
768  
Digital Output Code  
Figure 16  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
1.0  
0.5  
0.0  
AV  
DD  
External Ref = 5 V,  
= DV  
= 5 V,  
DD  
–0.5  
–1.0  
CLK = 20 MHz,  
T
= 25°C  
A
0
1023  
256  
512  
768  
Digital Output Code  
Figure 17  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
1.0  
0.5  
0.0  
AV  
DD  
External Ref = 5 V,  
= DV  
= 5 V,  
DD  
–0.5  
–1.0  
CLK = 20 MHz,  
T
= 25°C  
A
0
1023  
256  
512  
768  
Digital Output Code  
Figure 18  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
FREQUENCY  
10  
9
8
7
6
5
4
3
2
1
0
AV  
DD  
= DV  
= 3 V,  
DD  
External Ref = 3 V  
50  
100  
150  
200  
250  
f – Frequency – kHz  
Figure 19  
EFFECTIVE NUMBER OF BITS  
vs  
FREQUENCY  
10  
9
8
7
6
5
4
3
2
1
0
AV  
DD  
= DV  
= 5 V,  
DD  
External Ref = 5 V  
50 100 150 200 250 300 350 400 450 500  
f – Frequency – kHz  
Figure 20  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
TYPICAL CHARACTERISTICS  
FAST FOURIER TRANSFORM MAGNITUDE  
vs  
FREQUENCY  
0
–20  
AIN = 200 KHz  
CLK = 10 MHz  
AV = DV  
= 3 V  
DD  
DD  
External Ref = 3 V  
–40  
–60  
–80  
–100  
–120  
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
275  
f – Frequency – kHz  
Figure 21  
FAST FOURIER TRANSFORM MAGNITUDE  
vs  
FREQUENCY  
0
–20  
AIN = 200 KHz  
CLK = 20 MHz  
AV  
DD  
= DV  
= 5 V  
DD  
External Ref = 5 V  
–40  
–60  
–80  
–100  
–120  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
f – Frequency – kHz  
Figure 22  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
MECHANICAL DATA  
DA (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
38 PINS SHOWN  
0,30  
0,19  
M
0,13  
0,65  
38  
20  
6,20  
8,40  
NOM 7,80  
0,15 NOM  
Gage Plane  
1
19  
0,25  
A
0°8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
28  
30  
32  
38  
DIM  
9,80  
9,60  
11,10  
10,90  
11,10  
12,60  
12,40  
A MAX  
A MIN  
10,90  
4040066/D 11/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-153  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1571, TLV1578  
2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTERS  
SLAS170D –MARCH 1999 – REVISED JULY 2000  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PINS SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
28  
0.710  
DIM  
0.410  
0.510  
0.610  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
4040000/C 07/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Sep-2006  
PACKAGING INFORMATION  
Orderable Device  
TLV1571CDW  
TLV1571CDWG4  
TLV1571IDW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
24  
24  
24  
24  
24  
24  
32  
32  
32  
32  
32  
32  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
DW  
DW  
DW  
PW  
PW  
DA  
DA  
DA  
DA  
DA  
DA  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1571IDWG4  
TLV1571IPW  
SOIC  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TLV1571IPWG4  
TLV1578CDA  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
46 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TLV1578CDAG4  
TLV1578CDAR  
TLV1578CDARG4  
TLV1578IDA  
46 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
46 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TLV1578IDAG4  
46 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Sep-2006  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TLV1578CDAR  
TSSOP  
DA  
32  
2000  
330.0  
24.4  
8.6  
11.5  
1.6  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP DA 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 41.0  
TLV1578CDAR  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TLV1571CPW

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571CPWG4

IC,A/D CONVERTER,SINGLE,10-BIT,CMOS,TSSOP,24PIN
TI

TLV1571CPWR

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, PLASTIC, TSSOP-24
TI

TLV1571CPWRG4

IC,A/D CONVERTER,SINGLE,10-BIT,CMOS,TSSOP,24PIN
TI

TLV1571IDW

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571IDWG4

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571IDWR

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, GREEN, PLASTIC, SOIC-24
TI

TLV1571IDWRG4

IC 1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, PLASTIC, SOP-24, Analog to Digital Converter
TI

TLV1571IPW

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571IPWG4

2.7 V TO 5.5 V, 1-/8-CHANNEL, 10-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTERS
TI

TLV1571IPWLE

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24
TI

TLV1571IPWR

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, PLASTIC, TSSOP-24
TI