TLV1702-Q1 [TI]

汽车类双路高电压、低功耗比较器;
TLV1702-Q1
型号: TLV1702-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类双路高电压、低功耗比较器

比较器
文件: 总20页 (文件大小:1103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
TLV1702-Q1 2.2V 36V 微功耗比较器  
1 特性  
3 说明  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
TLV1702-Q1 器件可提供宽电源电压范围、轨到轨输  
入、低静态电流和低传播延迟。 凭借符合行业标准且  
在极小型封装内集成的上述特性,此类器件成为当前市  
场中的最佳通用比较器。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体模型 (HBM) 分类等级 1C  
集电极开路输出具有能够将输出拉至任意电压轨(最多  
可高出负电源 36 V)且不受 TLV1702-Q1 电源电压影  
响的优势。  
器件充电器件模型 (CDM) 分类等级 C6  
电源电压范围:2.2V 36V ±1.1V ±18V  
低静态电流:每个比较器 55µA  
输入共模范围包括两个电源轨  
低传播延迟:560ns  
该器件是一款双通道微功耗比较器。 低输入偏移电  
压、低输入偏置电流、低电源电流和集电极开路配置使  
TLV1702-Q1 器件能够灵活处理从简单电压检测到驱  
动单个继电器的多数应用。  
低输入偏移电压:300µV  
集电极开路输出:  
最多可高出负电源电压 36V 且不受电源电压影  
该器件在 –40°C +125°C 的扩展级工业温度范围内  
额定运行。  
工业温度范围:-40°C +125°C  
器件信息(1)  
小型封装:  
部件号  
封装  
封装尺寸(标称值)  
双列:超薄小外形尺寸 (VSSOP)-8  
超薄小外形尺寸封装  
(VSSOP) (8)  
TLV1702-Q1  
3.00mm × 3.00mm  
2 应用范围  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
过压和欠压检测器  
窗口比较器  
过流检测器  
零交叉检测器  
针对以下应用的系统监控:  
电源  
白色家电  
工业传感器  
汽车  
医疗  
TLV1702-Q1 用作窗口比较器  
稳定传播延迟与温度  
V
(PULLUP)  
1200n  
V
I
“18 V Low-to-High  
V
S
R
(PULLUP)  
V
(th+)  
“18 V High-to-Low  
+
1000n  
V
V
1
(th+)  
½
V
O
2.2 V Low-to-High  
Device  
V
(thœ)  
_
800n  
600n  
400n  
200n  
2.2 V High-to-Low  
t
t
GND  
V
V
O
I
V
S
V
(PULLUP)  
+
½
Device  
_
(thœ)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (ƒC)  
GND  
C012  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS890  
 
 
 
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application ................................................. 12  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Related Products ................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Switching Characteristics.......................................... 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
9
10 Power Supply Recommendations ..................... 13  
11 Layout................................................................... 14  
11.1 Layout Guidelines ................................................. 14  
11.2 Layout Example .................................................... 14  
12 器件和文档支持 ..................................................... 15  
12.1 文档支持................................................................ 15  
12.2 社区资源................................................................ 15  
12.3 ....................................................................... 15  
12.4 静电放电警告......................................................... 15  
12.5 Glossary................................................................ 15  
13 机械、封装和可订购信息....................................... 15  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 11 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TLV1702-Q1  
www.ti.com.cn  
ZHCSED6 NOVEMBER 2015  
5 Related Products  
DEVICE  
FEATURES  
TLC3702-Q1  
TLC3704-Q1  
TLV3012-Q1  
TLV3501-Q1  
TLV3502-Q1  
TLV3701-Q1  
TLV3702-Q1  
REF50xx-Q1  
TL4050xx-Q1  
TLVH431-Q1  
Push-Pull, 20 µA, 20 mA drive  
Push-Pull, 5 µA, Integrated 1.242-V Reference  
Push-Pull, 3.2 mA, 4.5-ns Propagation Delay  
Push-Pull, 560 nA, Reverse Battery to 16 V  
Series Reference, 0.1% Tolerance, 8 ppm/°C  
Shunt Reference, 0.1% Tolerance, 50 ppm/°C  
Adjustable Shunt Reference 1.24 to 18 V  
Copyright © 2015, Texas Instruments Incorporated  
3
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
www.ti.com.cn  
6 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
1OUT  
1INœ  
1IN+  
V-  
1
2
3
4
8
7
6
5
V+  
2OUT  
2INœ  
2IN+  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
1IN+  
2IN+  
1IN–  
2IN–  
1OUT  
2OUT  
V+  
NO.  
3
I
I
Noninverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 1  
Inverting input, channel 2  
Output, channel 1  
5
2
I
6
I
1
O
O
7
Output, channel 2  
8
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
4
Copyright © 2015, Texas Instruments Incorporated  
TLV1702-Q1  
www.ti.com.cn  
ZHCSED6 NOVEMBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40 (±20)  
(VS+) + 0.5  
±10  
UNIT  
V
Supply voltage  
Voltage(2)  
Current(2)  
(VS–) – 0.5  
V
Signal input pins  
mA  
mA  
°C  
Output short-circuit(3)  
Continuous  
Operating temperature  
Junction temperature, TJ  
Storage temperature, Tstg  
–55  
–65  
150  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground; one comparator per package.  
7.2 ESD Ratings  
VALUE  
±1000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2 (±1.1)  
–40  
NOM  
MAX  
36 (±18)  
125  
UNIT  
Supply voltage VS = (VS+) – (VS–)  
Specified temperature  
V
°C  
7.4 Thermal Information  
TLV1702-Q1  
DGK (VSSOP)  
8 PINS  
199  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
89.5  
120.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22  
ψJB  
118.7  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
at TA = 25°C, VS = 2.2 V to 36 V, CL = 15 pF, RPULLUP = 5.1 kΩ, VCM = VS / 2, and VS = VPULLUP (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
TA = 25°C, VS = 2.2 V  
±0.5  
±0.3  
±3.5  
±2.5  
±5.5  
±20  
mV  
mV  
VOS  
Input offset voltage  
TA = 25°C, VS = 36 V  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
TA = 25°C  
mV  
dVOS/dT  
PSRR  
Input offset voltage drift  
±4  
15  
20  
μV/°C  
μV/V  
μV/V  
100  
Power-supply rejection ratio  
TA = –40°C to +125°C  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
TA = –40°C to +125°C  
(V–)  
(V+)  
V
INPUT BIAS CURRENT  
TA = 25°C  
5
15  
20  
nA  
nA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
IOS  
Input offset current  
0.5  
CLOAD  
OUTPUT  
Capacitive load drive  
See Typical Characteristics  
I
O 4 mA, input overdrive = 100 mV,  
900  
600  
mV  
mV  
VS = 36 V  
VO  
Voltage output swing from rail  
IO = 0 mA, input overdrive = 100 mV,  
VS = 36 V  
ISC  
Short circuit sink current  
Output leakage current  
20  
70  
mA  
nA  
VIN+ > VIN–  
POWER SUPPLY  
VS  
Specified voltage range  
2.2  
36  
75  
V
IO = 0 A  
55  
μA  
μA  
IQ  
Quiescent current (per channel)  
IO = 0 A, TA = –40°C to +125°C  
100  
7.6 Switching Characteristics  
at TA = 25°C, VS = +2.2 V to +36 V, CL = 15 pF, RPULLUP = 5.1 kΩ, VCM = VS / 2, and VS = VPULLUP (unless otherwise noted)  
PARAMETER  
Propagation delay time, high-to-low  
Propagation delay time, low-to-high  
Rise time  
TEST CONDITIONS  
Input overdrive = 100 mV  
Input overdrive = 100 mV  
Input overdrive = 100 mV  
Input overdrive = 100 mV  
MIN  
TYP  
460  
560  
365  
240  
MAX  
UNIT  
ns  
tpHL  
tpLH  
tR  
ns  
ns  
tF  
Fall time  
ns  
6
Copyright © 2015, Texas Instruments Incorporated  
TLV1702-Q1  
www.ti.com.cn  
ZHCSED6 NOVEMBER 2015  
7.7 Typical Characteristics  
at TA = 25°C, VS = 5 V, RPULLUP = 5.1 kΩ, and input overdrive = 100 mV (unless otherwise noted)  
75  
70  
65  
60  
55  
50  
45  
40  
35  
6
4
2
0
VS = 2.2 V  
VS = ±18 V  
VS = ±18 V  
VS = 2.2 V  
Ibn  
Ibp  
5
20 35 50 65 80 95 110 125  
0
25  
50  
75  
100  
125  
œ40 œ25 œ10  
œ50  
œ25  
Temperature (°C)  
Temperature (°C)  
C017  
C015  
Figure 1. Quiescent Current vs Temperature  
Figure 2. Input Bias Current vs Temperature  
1
0.75  
0.5  
0
œ2  
VS = ±1.1 V  
œ4  
œ6  
VS = ±18 V  
œ8  
œ10  
œ12  
œ14  
œ16  
œ18  
0.25  
0
VS = 2.2 V  
VS = ±18 V  
0
25  
50  
75  
100  
125  
œ50  
œ25  
0
5
10  
15  
20  
Temperature (°C)  
Output Current (mA)  
C014  
C011  
Figure 3. Input Offset Current vs Temperature  
Figure 4. Output Voltage vs Output Current  
3
2
1
0
3
2
1
0
-1  
-1  
-2  
-3  
-2  
-3  
0
6
12  
18  
24  
30  
36  
0
0.5  
1
1.5  
2
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
D003  
D002  
VS = ±18 V  
14 typical units shown  
VS = 2.2 V  
13 typical units shown  
Figure 5. Offset Voltage vs Common-Mode Voltage  
Figure 6. Offset Voltage vs Common-Mode Voltage  
Copyright © 2015, Texas Instruments Incorporated  
7
 
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RPULLUP = 5.1 kΩ, and input overdrive = 100 mV (unless otherwise noted)  
3
1000n  
800n  
600n  
400n  
200n  
±18 V Low-to-High  
±18 V High-to-Low  
2.2 V Low-to-High  
2.2 V High-to-Low  
2
1
0
-1  
-2  
-3  
0
200  
400  
600  
800  
1000  
0
6
12  
18  
24  
30  
36  
Input Overdrive (mV)  
C020  
Supply Voltage (V)  
D001  
16 typical units shown  
Figure 8. Propagation Delay vs Input Overdrive  
Figure 7. Offset Voltage vs Supply Voltage  
4.0  
3.5ꢀ  
3.0ꢀ  
2.5ꢀ  
2.0ꢀ  
1.5ꢀ  
1.0ꢀ  
0.5ꢀ  
0.0ꢀ  
1200n  
1000n  
800n  
600n  
400n  
200n  
2.2 V Supply  
“18 V Low-to-High  
“18 V High-to-Low  
2.2 V Low-to-High  
2.2 V High-to-Low  
±18 V Supply  
tPLH  
tPHL  
20p  
200p  
2n  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Output Capacitive Load (F)  
Temperature (ƒC)  
C020  
C012  
VOD = 100 mV  
Figure 9. Propagation Delay vs Capacitive Load  
Figure 10. Propagation Delay vs Temperature  
,QSXWꢀ9ROWDJHꢀ  
2XWSXWꢀ9ROWDJHꢀ  
W ꢀ ꢀꢈꢈꢃꢀQVꢀ  
3/+  
W
ꢀ ꢀꢈꢃꢃꢀQVꢀ  
3/+  
2XWSXWꢀ9ROWDJHꢀ  
,QSXWꢀ9ROWDJHꢀ  
7LPHꢀꢁꢂꢆꢃꢀQVꢄGLYꢅꢀ  
7LPHꢀꢁꢂꢆꢃꢀQVꢄGLYꢅꢀ  
&ꢃꢃꢇꢀ  
&ꢃꢃꢇꢀ  
VS = 36 V  
Overdrive = 100 mV  
VS = 36 V  
Overdrive = 100 mV  
Figure 11. Propagation Delay (TpLH  
)
Figure 12. Propagation Delay (TpHL)  
8
Copyright © 2015, Texas Instruments Incorporated  
TLV1702-Q1  
www.ti.com.cn  
ZHCSED6 NOVEMBER 2015  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RPULLUP = 5.1 kΩ, and input overdrive = 100 mV (unless otherwise noted)  
2XWSXWꢀ9ROWDJHꢀ  
,QSXWꢀ9ROWDJHꢀ  
W ꢀ ꢀꢂꢈꢃꢀQVꢀ  
3/+  
W ꢀ ꢀꢇꢈꢃꢀQVꢀ  
3/+  
2XWSXWꢀ9ROWDJHꢀ  
,QSXWꢀ9ROWDJHꢀ  
7LPHꢀꢁꢆꢂꢃꢀQVꢄGLYꢅꢀ  
7LPHꢀꢁꢆꢂꢃꢀQVꢄGLYꢅꢀ  
&ꢃꢃꢇꢀ  
&ꢃꢆꢃꢀ  
VS = 2.2 V  
Overdrive = 100 mV  
VS = 2.2 V  
Overdrive = 100  
mV  
Figure 13. Propagation Delay (TpLH  
)
Figure 14. Propagation Delay (TpHL  
)
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
D005  
D004  
Offset Voltage (mV)  
Offset Voltage (mV)  
VS = ±18 V  
Distribution taken from 2524 comparators  
VS = 2.2 V  
Distribution taken from 2524 comparators  
Figure 15. Offset Voltage Production Distribution  
Figure 16. Offset Voltage Production Distribution  
30  
VS = 2.2 V  
25  
20  
15  
10  
5
0
0
6
12  
18  
24  
30  
36  
Supply Voltage (V)  
C016  
Sink current  
Figure 17. Short-Circuit Current vs Supply Voltage  
Copyright © 2015, Texas Instruments Incorporated  
9
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV1702-Q1 comparator features rail-to-rail input and output on supply voltages as high as 36 V. The rail-to-  
rail input stage enables detection of signals close to the supply and ground. The open collector configuration  
allows the device to be used in wired-OR configurations, such as a window comparator. A low supply current of  
55 μA per channel with small, space-saving packages, makes these comparators versatile for use in a wide  
range of applications, from portable to industrial.  
8.2 Functional Block Diagram  
V+  
OUT  
IN+  
IN-  
IN+  
IN-  
V-  
10  
Copyright © 2015, Texas Instruments Incorporated  
TLV1702-Q1  
www.ti.com.cn  
ZHCSED6 NOVEMBER 2015  
8.3 Feature Description  
8.3.1 Comparator Inputs  
The TLV1702-Q1 device is a rail-to-rail input comparator, with an input common-mode range that includes the  
supply rails. The TLV1702-Q1 device is designed to prevent phase inversion when the input pins exceed the  
supply voltage. Figure 18 shows the TLV1702-Q1 device response when input voltages exceed the supply,  
resulting in no phase inversion.  
Output Voltage  
Input Voltage  
Time (5 ms/div)  
C030  
Figure 18. No Phase Inversion: Comparator Response to Input Voltage  
(Propagation Delay Included)  
8.4 Device Functional Modes  
8.4.1 Setting Reference Voltage  
Using a stable reference is important when setting the transition point for the TLV1702-Q1 device. The REF3333,  
as shown in Figure 19, provides a 3.3-V reference voltage with low drift and only 3.9 μA of quiescent current.  
V
S
REF3333  
GND  
V
(PULLUP)  
V
S+  
R
(PULLUP)  
+
Device  
_
V
O
V
Sœ  
V
I
Figure 19. Reference Voltage for the TLV1702-Q1  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
 
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV1702-Q1 device can be used in a wide variety of applications, such as zero crossing detectors, window  
comparators, over and undervoltage detectors, and high-side voltage sense circuits.  
9.2 Typical Application  
Comparators are used to differentiate between two different signal levels. For example, a comparator  
differentiates between an overtemperature and normal-temperature condition. However, noise or signal variation  
at the comparison threshold causes multiple transitions. This application example sets upper and lower  
hysteresis thresholds to eliminate the multiple transitions caused by noise.  
5 V  
Rp  
5 k  
-
+V  
+
Vout  
5 V  
Vin  
5 V  
Rx  
100 kΩ  
Rh  
576 kΩ  
Ry  
100 kΩ  
Figure 20. Comparator Schematic with Hysteresis  
9.2.1 Design Requirements  
The design requirements are as follows:  
Supply voltage: 5 V  
Input: 0 V to 5 V  
Lower threshold (VL) = 2.3 V ±0.1 V  
Upper threshold (VH) = 2.7 V ±0.1 V  
VH – VL = 2.4 V ±0.1 V  
Low-power consumption  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
TLV1702-Q1  
www.ti.com.cn  
ZHCSED6 NOVEMBER 2015  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
Make a small change to the comparator circuit to add hysteresis. Hysteresis uses two different threshold voltages  
to avoid the multiple transitions introduced in the previous circuit. The input signal must exceed the upper  
threshold (VH) to transition low, or below the lower threshold (VL) to transition high.  
Figure 20 illustrates hysteresis on a comparator. Resistor Rh sets the hysteresis level. An open-collector output  
stage requires a pullup resistor (Rp). The pullup resistor creates a voltage divider at the comparator output that  
introduces an error when the output is at logic high. This error can be minimized if Rh > 100 Rp.  
When the output is at a logic high (5 V), Rh is in parallel with Rx (ignoring Rp). This configuration drives more  
current into Ry, and raises the threshold voltage (VH) to 2.7 V. The input signal must drive above VH = 2.7 V to  
cause the output to transition to logic low (0 V).  
When the output is at logic low (0 V), Rh is in parallel with Ry. This configuration reduces the current into Ry, and  
reduces the threshold voltage to 2.3 V. The input signal must drive below VL = 2.3 V to cause the output to  
transition to logic high (5 V).  
For more details on this design and other alternative devices that can be used in place of the TLV1702, refer to  
Precision Design TIPD144, Comparator with Hysteresis Reference Design.  
9.2.3 Application Curve  
Figure 21 shows the upper and lower thresholds for hysteresis. The upper threshold is 2.76 V and the lower  
threshold is 2.34 V, both of which are close to the design target.  
Figure 21. TLV1701 Upper and Lower Threshold with Hysteresis  
10 Power Supply Recommendations  
The TLV1702-Q1 device is specified for operation from 2.2 V to 36 V (±1.1 to ±18 V); many specifications apply  
from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement; see the Layout  
Guidelines section.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
TLV1702-Q1  
ZHCSED6 NOVEMBER 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Comparators are very sensitive to input noise. For best results, maintain the following layout guidelines:  
Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane. Proper grounding (use  
of ground plane) helps maintain specified performance of the TLV1702-Q1 device.  
To minimize supply noise, place a decoupling capacitor (0.1-μF ceramic, surface-mount capacitor) as close  
as possible to VS as shown in Figure 22.  
On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
Solder the device directly to the PCB rather than using a socket.  
For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some  
degradation to propagation delay when the impedance is low. Run the topside ground plane between the  
output and inputs.  
Run the ground pin ground trace under the device up to the bypass capacitor, shielding the inputs from the  
outputs.  
11.2 Layout Example  
V+  
IN+  
IN-  
+
OUT  
V-  
(Schematic Representation)  
Run the input traces  
as far away from  
the supply lines  
as possible  
Use low-ESR, ceramic  
bypass capacitor  
VS+  
IN+  
IN+  
GND  
V+  
VSœ or GND  
Vœ  
OUT  
OUT  
IN-  
IN-  
GND  
Only needed for  
dual-supply  
operation  
Figure 22. Comparator Board Layout  
14  
版权 © 2015, Texas Instruments Incorporated  
 
TLV1702-Q1  
www.ti.com.cn  
ZHCSED6 NOVEMBER 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
《高精度设计,采用滞后参考设计的比较器》TIDU020  
REF33xx 3.9μASC70-3SOT-23-3 UQFN-830ppm/°C 漂移电压基准》SBOS392  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
15  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV1702AQDGKRQ1  
ACTIVE  
VSSOP  
DGK  
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
1702Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV1702AIDGK

双路高电压低功耗比较器 | DGK | 8 | -40 to 125
TI

TLV1702AIDGKR

双路高电压低功耗比较器 | DGK | 8 | -40 to 125
TI

TLV1702AIRUGR

双路高电压低功耗比较器 | RUG | 8 | -40 to 125
TI

TLV1702AQDGKRQ1

汽车类双路高电压、低功耗比较器 | DGK | 8 | -40 to 125
TI

TLV1704

四路高电压低功耗比较器
TI

TLV1704-Q1

汽车类四路高电压、低功耗比较器
TI

TLV1704-SEP

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器
TI

TLV1704AIPW

四路高电压低功耗比较器 | PW | 14 | -40 to 125
TI

TLV1704AIPWR

四路高电压低功耗比较器 | PW | 14 | -40 to 125
TI

TLV1704AMPWPSEP

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器 | PW | 14 | -55 to 125
TI

TLV1704AMPWTPSEP

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器 | PW | 14 | -55 to 125
TI

TLV1704AQPWQ1

汽车类四路高电压、低功耗比较器 | PW | 14 | -40 to 125
TI